1,485 research outputs found

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    A Cooperative Emergency Navigation Framework using Mobile Cloud Computing

    Full text link
    The use of wireless sensor networks (WSNs) for emergency navigation systems suffer disadvantages such as limited computing capacity, restricted battery power and high likelihood of malfunction due to the harsh physical environment. By making use of the powerful sensing ability of smart phones, this paper presents a cloud-enabled emergency navigation framework to guide evacuees in a coordinated manner and improve the reliability and resilience in both communication and localization. By using social potential fields (SPF), evacuees form clusters during an evacuation process and are directed to egresses with the aid of a Cognitive Packet Networks (CPN) based algorithm. Rather than just rely on the conventional telecommunications infrastructures, we suggest an Ad hoc Cognitive Packet Network (AHCPN) based protocol to prolong the life time of smart phones, that adaptively searches optimal communication routes between portable devices and the egress node that provides access to a cloud server with respect to the remaining battery power of smart phones and the time latency.Comment: This document contains 8 pages and 3 figures and has been accepted by ISCIS 2014 (29th International Symposium on Computer and Information Sciences

    Indoor Localization for Fire Safety : A brief overview of fundamentals, needs and requirements and applications

    Get PDF
    An indoor localization system for positioning evacuating people can be anticipated to increase the chances of a safe evacuation and effective rescue intervention in case of a tunnel fire. Such a system may utilize prevalent wireless technologies, e.g., Bluetooth, RFID and Wi-Fi, which today are used to survey incoming and outgoing traffic to a certain space or location, to estimate group sizes and to measure the duration of visits during normal operation of buildings. Examples also exist of where the same wireless technologies are used for safety purposes, for example to assess real-time location, tracking and monitoring of vehicles, personnel and equipment in mining environments. However, they are relatively few, and typically rely on a high degree of control over the people that are to be tracked, and their association with (connection to) the localization system used for the tracking. In this report, the results of a brief overview of the literature within the field of indoor localization in general, and the application of indoor localization systems within the field of particularly fire safety, is summarized. This information forms the underlying basis for the planning and execution of a future field study, in which an indoor Wi-Fi localization system will be tested and evaluated in terms of if, and if so how, it can be used to position evacuating people in tunnels. Whereas such a system allows digital footprints to be collected within a wireless network infrastructure (also already existing ones), questions remains to be answered regarding aspects such as precision and accuracy, and furthermore, how these aspects are affected by other independent variables. In the end of this report, examples of research questions deemed necessary to answer in order to enable a sound evaluation of the system is presented. These need to be addressed in the future planning of the above-mentioned field study

    Fog Computing Architecture for Indoor Disaster Management

    Get PDF
    Most people spend their time indoors. Indoors have a higher complexity than outdoors. Moreover, today's building structures are increasingly sophisticated and complex, which can create problems when a disaster occurs in the room. Fire is one of the disasters that often occurs in a building. For that, we need disaster management that can minimize the risk of casualties. Disaster management with cloud computing has been extensively investigated in other studies. Traditional ways of centralizing data in the cloud are almost scalable as they cannot cater to many latency-critical IoT applications, and this results in too high network traffic when the number of objects and services increased. It will be especially problematic when in a disaster that requires a quick response. The Fog infrastructure is the beginning of the answer to such problems. This research started with an analysis of literature and hot topics related to fog computing and indoor disasters, which later became the basis for creating a fog computing-based architecture for indoor disasters. In this research, fog computing is used as the backbone in disaster management architecture in buildings. MQTT is used as a messaging protocol with the advantages of simplicity and speed. This research proposes a disaster architecture for indoor disasters, mainly fire disasters

    Lost in the City? - A Scoping Review of 5G Enabled Location-Based Urban Scenarios

    Get PDF
    5G mobile network technologies and scenarios with the associated innovations receive growing interest among academics and practitioners. Current literature on 5G technologies discusses several scenarios and specific chances and challenges. However, 5G literature is fragmented and not systematically reviewed. We conducted a scoping review on 5G applications in urban scenarios. We reviewed 1,394 papers and identified 20 studies about urban logistics and emergency indoor localization. Our review accumulates current academic knowledge on these scenarios and identifies six further research directions in four research fields. It reveals several further research opportunities, e.g., regarding trust and privacy concerns. We review and discuss 5G literature for academics and practitioners, contribute towards more tailored 5G research and reflect on cost- efficient 5G applications in urban scenarios

    flooding risk in existing urban environment from human behavioral patterns to a microscopic simulation model

    Get PDF
    Abstract Climate changes-related floods will seriously strike population in existing urban environment. Despite Current assessment methods seem to underestimate the human behaviors influence on individuals' safety, especially during outdoor evacuation. Representing pedestrians' evacuation would allow considering the "human" factor in risk analysis. This work proposes a flood-induced pedestrians' evacuation simulation model, based on a combined microscopic approach. Behavioral rules, obtained by real events videotapes analyses, are organized in an agent-based model. Motion criteria proposals are based on the Social Force Model. Experimental motion quantities values are offered. The model will be implemented in a risk assessment simulation tool

    SafePASS - Transforming marine accident response

    Get PDF
    The evacuation of a ship is the last line of defence against human loses in case of emergencies in extreme fire and flooding casualties. Since the establishment of the International Maritime Organisation (IMO), Maritime Safety is its cornerstone with the Safety of Life at Sea Convention (SOLAS) spearheading its relentless efforts to reduce risks to human life at sea. However, the times are changing. On one hand, we have the new opportunities created with the vast technological advances of today. On the other, we are facing new challenges, with the ever-increasing size of the passenger ships and the societal pressure for a continuous improvement of maritime safety. In this respect, the EU-funded Horizon 2020 Research and Innovation Programme project SafePASS, presented herein, aims to radically redefine the evacuation processes, the involved systems and equipment and challenge the international regulations for large passenger ships, in all environments, hazards and weather conditions, independently of the demographic factors. The project consortium, which brings together 15 European partners from industry, academia and classification societies. The SafePASS vision and plan for a safer, faster and smarter ship evacuation involves: i) a holistic and seamless approach to evacuation, addressing all states from alarm to rescue, including the design of the next generation of life-saving appliances and; ii) the integration of ‘smart’ technology and Augmented Reality (AR) applications to provide individual guidance to passengers, regardless of their demographic characteristics or hazard (flooding or fire), towards the optimal route of escape

    Victim Detection and Localization in Emergencies

    Get PDF
    Detecting and locating victims in emergency scenarios comprise one of the most powerful tools to save lives. Fast actions are crucial for victims because time is running against them. Radio devices are currently omnipresent within the physical proximity of most people and allow locating buried victims in catastrophic scenarios. In this work, we present the benefits of using WiFi Fine Time Measurement (FTM), Ultra-Wide Band (UWB), and fusion technologies to locate victims under rubble. Integrating WiFi FTM and UWB in a drone may cover vast areas in a short time. Moreover, the detection capacity of WiFi and UWB for finding individuals is also compared. These findings are then used to propose a method for detecting and locating victims in disaster scenarios.This work was performed in the framework of the Horizon 2020 project LOCUS (Grant Agreement Number 871249), receiving funds from the European Union. This work was also partially funded by Junta de Andalucia (Project PY18-4647:PENTA)
    corecore