1,649 research outputs found

    Distance-based sensor node localization by using ultrasound, RSSI and ultra-wideband - A comparision between the techniques

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. In a wireless sensor system, sensors are spread over a region to build a sensor network and the sensors in a region co-operate to each other to sense, process, filter and routing. Sensor Positioning is a fundamental and crucial issue for sensor network operation and management. WSNs have so many applications in different areas such as health-care, monitoring and control, rescuing and military; they all depend on nodes being able to accurately determine their locations. This master’s thesis is focused on distance-based sensor node localization techniques; Received signal strength indicator, ultrasound and ultra-wideband. Characteristics and factors which affect these distance estimation techniques are analyzed theoretically and through simulation the quality of these techniques are compared in different scenarios. MDS, a centralized algorithm is used for solving the coordinates. It is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Centralized and distributed implementations of MDS are also discussed. All simulations and computations in this thesis are done in Matlab. Virtual WSN is simulated on Sensorviz. Sensorviz is a simulation and visualization tool written by Andreas Savvides.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    Distance-based sensor node localization by using ultrasound, RSSI and ultra-wideband - A comparision between the techniques

    Get PDF
    Wireless sensor networks (WSNs) have become one of the most important topics in wireless communication during the last decade. In a wireless sensor system, sensors are spread over a region to build a sensor network and the sensors in a region co-operate to each other to sense, process, filter and routing. Sensor Positioning is a fundamental and crucial issue for sensor network operation and management. WSNs have so many applications in different areas such as health-care, monitoring and control, rescuing and military; they all depend on nodes being able to accurately determine their locations. This master’s thesis is focused on distance-based sensor node localization techniques; Received signal strength indicator, ultrasound and ultra-wideband. Characteristics and factors which affect these distance estimation techniques are analyzed theoretically and through simulation the quality of these techniques are compared in different scenarios. MDS, a centralized algorithm is used for solving the coordinates. It is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Centralized and distributed implementations of MDS are also discussed. All simulations and computations in this thesis are done in Matlab. Virtual WSN is simulated on Sensorviz. Sensorviz is a simulation and visualization tool written by Andreas Savvides.fi=OpinnĂ€ytetyö kokotekstinĂ€ PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=LĂ€rdomsprov tillgĂ€ngligt som fulltext i PDF-format

    Anchor Self-Calibrating Schemes for UWB based Indoor Localization

    Get PDF
    Traditional indoor localization techniques that use Received Signal Strength or Inertial Measurement Units for dead-reckoning suffer from signal attenuation and sensor drift, resulting in inaccurate position estimates. Newly available Ultra-Wideband radio modules can measure distances at a centimeter-level accuracy while mitigating the effects of multipath propagation due to their very fine time resolution. Known locations of fixed anchor nodes are required to determine the position of tag nodes within an indoor environment. For a large system consisting of several anchor nodes spanning a wide area, physically mapping out the locations of each anchor node is a tedious task and thus makes the scalability of such systems difficult. Hence it is important to develop indoor localization systems wherein the anchors can self-calibrate by determining their relative positions in Euclidean 3D space with respect to each other. In this thesis, we propose two novel anchor self-calibrating algorithms - Triangle Reconstruction Algorithm (TRA) and Channel Impulse Response Positioning (CIRPos) that improve upon existing range-based implementations and solve existing problems such as flip ambiguity and node localization success rate. The localization accuracy and scalability of the self-calibrating anchor schemes are tested in a simulated environment based on the ranging accuracy of the Ultra-Wideband modules

    Techniques for Communication and Geolocation using Wireless Ad hoc Networks

    Get PDF
    Networks with hundreds of ad hoc nodes equipped with communication and position finding abilities are conceivable with recent advancements in technology. Methods are presented in this thesis to assess the communicative capabilities and node position estimation of mobile ad hoc networks. Specifically, we investigate techniques for providing communication and geolocation with specific characteristics in wireless ad hoc networks. The material presented in this thesis, communication and geolocation, may initially seem a collection of disconnected topics related only distantly under the banner of ad hoc networks. However, systems currently in development combining these techniques into single integrated systems. In this thesis first, we investigate the effect of multilayer interaction, including fading and path loss, on ad hoc routing protocol performance, and present a procedure for deploying an ad hoc network based on extensive simulations. Our first goal is to test the routing protocols with parameters that can be used to characterize the environment in which they might be deployed. Second, we analyze the location discovery problem in ad hoc networks and propose a fully distributed, infrastructure-free positioning algorithm that does not rely on the Global Positioning System (GPS). The algorithm uses the approximate distances between the nodes to build a relative coordinate system in which the node positions are computed in three-dimensions. However, in reconstructing three-dimensional positions from approximate distances, we need to consider error threshold, graph connectivity, and graph rigidity. We also statistically evaluate the location discovery procedure with respect to a number of parameters, such as error propagation and the relative positions of the nodes

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications

    Acoustic indoor localization employing code division multiple access

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2010Includes bibliographical references (leaves: 107-108)Text in English; Abstract: Turkish and Englishxvi, 160 69 leavesIndoor localization becomes a demand that comes into prominence day by day. Although extensively used outdoor location systems have been proposed, they can not operate in indoor applications. Hence new investigations have been carried on for accurate indoor localization in the last decade. In this thesis, a new indoor location system, that aims to locate an entity within an accuracy of about 2 cm using ordinary and inexpensive off-the-shelf devices, has been proposed and an implementation has been applied to evaluate the system performance. Therefore, time of arrival measurements of acoustic signals, which are binary phase shift keying modulated Gold code sequences using direct sequence spread spectrum technique, are done. Direct sequence-code division multiple access is applied to perform simultaneous accurate distance measurements and provides immunity to noise and interference. Two methods have been proposed for the location estimation. The first method takes the average of four location estimates obtained by trilateration technique. In the second method, only a single robust position estimate is obtained using three distances while the least reliable fourth distance measurement is not taken into account. The system performance is evaluated at positions from two height levels using two sets of variables determined by experimental results. The precision distributions in the work area and the precision versus accuracy plots depict the system performance for different sets of variables. The proposed system provides location estimates of better than 2 cm accuracy within 99% precision. Eventually, created graphical user interface provides a user friendly environment to adjust the parameters

    Radio Frequency-Based Indoor Localization in Ad-Hoc Networks

    Get PDF
    The increasing importance of location‐aware computing and context‐dependent information has led to a growing interest in low‐cost indoor positioning with submeter accuracy. Localization algorithms can be classified into range‐based and range‐free techniques. Additionally, localization algorithms are heavily influenced by the technology and network architecture utilized. Availability, cost, reliability and accuracy of localization are the most important parameters when selecting a localization method. In this chapter, we introduce basic localization techniques, discuss how they are implemented with radio frequency devices and then characterize the localization techniques based on the network architecture, utilized technologies and application of localization. We then investigate and address localization in indoor environments where the absence of global positioning system (GPS) and the presence of unique radio propagation properties make this problem one of the most challenging topics of localization in wireless networks. In particular, we study and review the previous work for indoor localization based on radio frequency (RF) signaling (like Bluetooth‐based localization) to illustrate localization challenges and how some of them can be overcome
    • 

    corecore