4,897 research outputs found

    Emotional Brain-Computer Interfaces

    Get PDF
    Research in Brain-computer interface (BCI) has significantly increased during the last few years. In addition to their initial role as assisting devices for the physically challenged, BCIs are now proposed for a wider range of applications. As in any HCI application, BCIs can also benefit from adapting their operation to the emotional state of the user. BCIs have the advantage of having access to brain activity which can provide signicant insight into the user's emotional state. This information can be utilized in two manners. 1) Knowledge of the inuence of the emotional state on brain activity patterns can allow the BCI to adapt its recognition algorithms, so that the intention of the user is still correctly interpreted in spite of signal deviations induced by the subject's emotional state. 2) The ability to recognize emotions can be used in BCIs to provide the user with more natural ways of controlling the BCI through affective modulation. Thus, controlling a BCI by recollecting a pleasant memory can be possible and can potentially lead to higher information transfer rates.\ud These two approaches of emotion utilization in BCI are elaborated in detail in this paper in the framework of noninvasive EEG based BCIs

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship

    Endogenous and exogenous hemodynamic signals in primary visual cortex of alert non-human primates

    Get PDF
    The advent of neuroimaging techniques in particular the ones suitable for studies in alert humans has disseminated fast. Research in fields involving neuro-correlates of cognitive processes has flourished. Still the neural underpinnings of the neuroimaging signals remain to be fully characterized; this field is an active topic of research. In the context of behavior/cognition, the interpretation of neuroimaging signals is even more intricate

    Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    Get PDF
    EEG and fMRI are important tools in cognitive and clinical neuroscience. Combined EEGfMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological-haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals, and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (“EEG-fMRI mapping”), or exploring a range of EEGderived quantities to determine which best explain co-localised BOLD fluctuations (“local EEG-fMRI coupling”). While reviewing studies of different forms of brain activity (epileptic and non-epileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG-fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations

    Neural Basis of Functional Connectivity MRI

    Get PDF
    The brain is hierarchically organized across a range of scales. While studies based on electrophysiology and anatomy have been fruitful on the micron to millimeter scale, findings based on functional connectivity MRI (fcMRI) suggest that a higher level of brain organization has been largely overlooked. These findings show that the brain is organized into networks, and each network extends across multiple brain areas. This large-scale, across-area brain organization is functionally relevant and stable across subjects, primate species, and levels of consciousness. This dissertation addresses the neural origin of MRI functional connectivity. fcMRI relies on temporal correlation in at-rest blood oxygen level dependent (BOLD) fluctuations. Thus, understanding the neural origin of at-rest BOLD correlation is of critical significance. By shedding light on the origin of the large-scale brain organization captured by fcMRI, it will guide the design and interpretation of fcMRI studies. Prior investigations of the neural basis of BOLD have not addressed the at-rest BOLD correlation, and they have been focusing on task-related BOLD. At-rest BOLD correlation captured by fcMRI likely reflects a distinct physiological process that is different from that of task-related BOLD, since these two kinds of BOLD dynamics are different in their temporal scale, spatial spread, energy consumption, and their dependence on consciousness. To address this issue, we develop a system to simultaneously record oxygen and electrophysiology in at-rest, awake monkeys. We demonstrate that our oxygen measurement, oxygen polarography, captures the same physiological phenomenon as BOLD by showing that task-related polarographic oxygen responses and at-rest polarographic oxygen correlation are similar to those of BOLD. These results validate the use of oxygen polarography as a surrogate for BOLD to address the neural origin of MRI functional connectivity. Next, we show that at-rest oxygen correlation reflects at-rest correlation in electrophysiological signals, especially spiking activity of neurons. Using causality analysis, we show that oxygen is driven by slow changes in raw local field potential levels (slow LFP), and slow LFP itself is driven by spiking activity. These results provide critical support to the idea that oxygen correlation reflects neural activity, and pose significant challenges to the traditional view of neurohemodynamic coupling. In addition, we find that at-rest correlation does not originate from criticality, which has been the dominant hypothesis in the field. Instead, we show that at-rest correlation likely reflects a specific and potentially localized oscillatory process. We suggest that this oscillatory process could be a result of the delayed negative feedback loop between slow LFP and spiking activity. Thus, we conclude that at-rest BOLD correlation captured by fcMRI is driven by at-rest slow LFP correlation, which is itself driven by spiking activity correlation. The at-rest spiking activity correlation, itself, is likely driven by an oscillatory process. Future studies combining recording with interventional approaches, like pharmacological manipulation and microstimulation, will help to elucidate the circuitry underlying the oscillatory process and its potential functional role

    The Correlation between Astrocytic Calcium and fMRI Signals is Related to the Thalamic Regulation of Cortical States

    Get PDF
    BOLD fMRI has been wildly used for mapping brain activity, but the cellular contribution of BOLD signals is still controversial. In this study, we investigated the correlation between neuronal/astrocytic calcium and the BOLD signal using simultaneous GCaMP-mediated calcium and BOLD signal recording, in the event-related state and in resting state, in anesthetized and in free-moving rats. To our knowledge, the results provide the first demonstration that evoked and intrinsic astrocytic calcium signals could occur concurrently accompanied by opposite BOLD signals which are associated with vasodilation and vasoconstriction. We show that the intrinsic astrocytic calcium is involved in brain state changes and is related to the activation of central thalamus. First, by simultaneous LFP and fiber optic calcium recording, the results show that the coupling between LFP and calcium indicates that neuronal activity is the basis of the calcium signal in both neurons and astrocytes. Second, we found that evoked neuronal and astrocytic calcium signals are always positively correlated with BOLD responses. However, intrinsic astrocytic calcium signals are accompanied by the activation of the central thalamus followed by a striking negative BOLD signal in cortex, which suggests that central thalamus may be involved in the initiation of the intrinsic astrocytic calcium signal. Third, we confirmed that the intrinsic astrocytic calcium signal is preserved in free moving rats. Moreover, the occurrences of intrinsic astrocytic calcium spikes are coincident with the transition between different sleep stages, which suggests intrinsic astrocytic calcium spikes reflect brain state transitions. These results demonstrate that the correlation between astrocytic calcium and fMRI signals is related to the thalamic regulation of cortical states. On the other hand, by studying the relationship between vessel–specific BOLD signals and spontaneous calcium activity from adjacent neurons, we show that low frequency spontaneous neuronal activity is the cellular mechanism of the BOLD signal during resting state
    corecore