13,364 research outputs found

    Changing the focus: worker-centric optimization in human-in-the-loop computations

    Get PDF
    A myriad of emerging applications from simple to complex ones involve human cognizance in the computation loop. Using the wisdom of human workers, researchers have solved a variety of problems, termed as “micro-tasks” such as, captcha recognition, sentiment analysis, image categorization, query processing, as well as “complex tasks” that are often collaborative, such as, classifying craters on planetary surfaces, discovering new galaxies (Galaxyzoo), performing text translation. The current view of “humans-in-the-loop” tends to see humans as machines, robots, or low-level agents used or exploited in the service of broader computation goals. This dissertation is developed to shift the focus back to humans, and study different data analytics problems, by recognizing characteristics of the human workers, and how to incorporate those in a principled fashion inside the computation loop. The first contribution of this dissertation is to propose an optimization framework and a real world system to personalize worker’s behavior by developing a worker model and using that to better understand and estimate task completion time. The framework judiciously frames questions and solicits worker feedback on those to update the worker model. Next, improving workers skills through peer interaction during collaborative task completion is studied. A suite of optimization problems are identified in that context considering collaborativeness between the members as it plays a major role in peer learning. Finally, “diversified” sequence of work sessions for human workers is designed to improve worker satisfaction and engagement while completing tasks

    Human-AI complex task planning

    Get PDF
    The process of complex task planning is ubiquitous and arises in a variety of compelling applications. A few leading examples include designing a personalized course plan or trip plan, designing music playlists/work sessions in web applications, or even planning routes of naval assets to collaboratively discover an unknown destination. For all of these aforementioned applications, creating a plan requires satisfying a basic construct, i.e., composing a sequence of sub-tasks (or items) that optimizes several criteria and satisfies constraints. For instance, in course planning, sub-tasks or items are core and elective courses, and degree requirements capture their complex dependencies as constraints. In trip planning, sub-tasks are points of interest (POIs) and constraints represent time and monetary budget, or user-specified requirements. Needless to say, task plans are to be individualized and designed considering uncertainty. When done manually, the process is human-intensive and tedious, and unlikely to scale. The goal of this dissertation is to present computational frameworks that synthesize the capabilities of human and AI algorithms to enable task planning at scale while satisfying multiple objectives and complex constraints. This dissertation makes significant contributions in four main areas, (i) proposing novel models, (ii) designing principled scalable algorithms, (iii) conducting rigorous experimental analysis, and (iv) deploying designed solutions in the real-world. A suite of constrained and multi-objective optimization problems has been formalized, with a focus on their applicability across diverse domains. From an algorithmic perspective, the dissertation proposes principled algorithms with theoretical guarantees adapted from discrete optimization techniques, as well as Reinforcement Learning based solutions. The memory and computational efficiency of these algorithms have been studied, and optimization opportunities have been proposed. The designed solutions are extensively evaluated on various large-scale real-world and synthetic datasets and compared against multiple baseline solutions after appropriate adaptation. This dissertation also presents user study results involving human subjects to validate the effectiveness of the proposed models. Lastly, a notable outcome of this dissertation is the deployment of one of the developed solutions at the Naval Postgraduate School. This deployment enables simultaneous route planning for multiple assets that are robust to uncertainty under multiple contexts

    Hierarchical clique analysis in social networks due to common knowledge of proverbs.

    Get PDF
    24th European Conference on Operational Research (EURO XXIV). Lisboa, 11 a 14 de Julho de 2010 (Comunicação).We present the Hierarchical Clique Analysis, a new algorithm for social networks analysis. The algorithm is exemplified with data about the recognition of proverbs collected in interviews in all Azorean islands and also in three Azorean emigration locations in the USA. Interpreting the set of this data as an incidence matrix of a graph, we obtain 8 oriented and isolated sub-graphs which distinguish the society in a kind of different families of proverbial users. The Hierarchical Clique Analysis finds distinct clusters with a high inner homogeneity
    • …
    corecore