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ABSTRACT

HUMAN-AI COMPLEX TASK PLANNING

by
Sepideh Nikookar

The process of complex task planning is ubiquitous and arises in a variety of

compelling applications. A few leading examples include designing a personalized

course plan or trip plan, designing music playlists/work sessions in web applications,

or even planning routes of naval assets to collaboratively discover an unknown

destination. For all of these aforementioned applications, creating a plan requires

satisfying a basic construct, i.e., composing a sequence of sub-tasks (or items) that

optimizes several criteria and satisfies constraints. For instance, in course planning,

sub-tasks or items are core and elective courses, and degree requirements capture

their complex dependencies as constraints. In trip planning, sub-tasks are points of

interest (POIs) and constraints represent time and monetary budget, or user-specified

requirements. Needless to say, task plans are to be individualized and designed

considering uncertainty. When done manually, the process is human-intensive and

tedious, and unlikely to scale. The goal of this dissertation is to present computational

frameworks that synthesize the capabilities of human and AI algorithms to enable task

planning at scale while satisfying multiple objectives and complex constraints.

This dissertation makes significant contributions in four main areas, (i)

proposing novel models, (ii) designing principled scalable algorithms, (iii) conducting

rigorous experimental analysis, and (iv) deploying designed solutions in the real-

world. A suite of constrained and multi-objective optimization problems has been

formalized, with a focus on their applicability across diverse domains. From

an algorithmic perspective, the dissertation proposes principled algorithms with

theoretical guarantees adapted from discrete optimization techniques, as well as

Reinforcement Learning based solutions. The memory and computational efficiency



of these algorithms have been studied, and optimization opportunities have been

proposed. The designed solutions are extensively evaluated on various large-scale

real-world and synthetic datasets and compared against multiple baseline solutions

after appropriate adaptation. This dissertation also presents user study results

involving human subjects to validate the effectiveness of the proposed models. Lastly,

a notable outcome of this dissertation is the deployment of one of the developed

solutions at the Naval Postgraduate School. This deployment enables simultaneous

route planning for multiple assets that are robust to uncertainty under multiple

contexts.
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CHAPTER 1

INTRODUCTION

The process of complex task planning is ubiquitous and arises in a variety of

compelling applications. A few leading examples include designing a personalized

course plan [21, 23, 41, 44, 54, 57, 58, 82, 103, 129] or trip plan [10, 19, 39, 43, 62, 68],

designing music playlists/work sessions in web applications [17, 91, 122], or even

planning routes of naval assets [16, 16, 32, 98, 121] to collaboratively discover an

unknown destination. Additionally, planning routes for multiple agents, such as ships

submarines, and unmanned aerial/surface/underwater vehicles (UAVs, USVs, UUVs),

considering multiple objectives, such as fuel, battery usage, time taken, and progress

towards a goal, is a complex, but highly-relevant, problem for search and rescue,

reconnaissance, and interdiction missions in maritime applications. These problems

involve trade-offs among different objectives and require a coordinated search for

an object in a very high-dimensional space by multiple geographically distributed

searchers (herein referred to as assets or agents).

Not only that, complex task planning finds applications in fields like manufac-

turing [80,92], project management [132], healthcare [90], and resource allocation [93].

Whether it’s optimizing production schedules, coordinating tasks in a construction

project, allocating healthcare resources efficiently, or managing complex supply

chains, studying and developing effective planning techniques can lead to improved

productivity, cost savings, and enhanced decision-making in these domains. The

motivation for studying complex task planning lies in the need to address challenges

and optimize decision-making processes in various real-world applications. By

understanding and developing effective planning algorithms, we can unlock potential

advancements and improvements in autonomous systems, manufacturing, logistics,
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healthcare, and many other fields where complex task execution is a critical

component.

For all of these aforementioned applications, creating a plan requires satisfying

a basic construct, i.e., composing a sequence of sub-tasks (or items) that optimizes

several criteria and satisfies constraints. For instance, in course planning, sub-tasks

or items are core and elective courses, and degree requirements capture their

complex dependencies as constraints. In trip planning, sub-tasks are points of

interests (POIs) and constraints represent time and monetary budget, or user-

specified requirements. Needless to say, task plans are to be individualized and

designed considering uncertainty. Moreover, the dynamic nature of real-world

environments introduces additional complexities. Unforeseen events, changes in task

requirements, or disruptions necessitate the ability to adapt plans on-the-fly. This

requires planning algorithms that can handle uncertainty, reason under incomplete

information, and generate flexible plans that can be adjusted as the situation evolves.

When done manually, the process is human-intensive and tedious, and unlikely to

scale. On the other extreme, embracing these challenges present opportunities to

develop fully automated computational processes that leverage techniques such as

machine learning, optimization, and knowledge representation to generate efficient

and adaptable plans. Additionally, advancements in collaborative planning and

multi-agent systems offer opportunities for decentralized planning and coordination

among multiple agents, enabling the execution of complex tasks in distributed

environments. However, fully automated techniques [6, 43, 44, 62, 103] require

significant training data to be effective, produce plans that are less transparent or

opaque to human comprehension. A middle ground is to judiciously leverage human

inputs and design-guided computational frameworks that satisfy multiple objectives

and complex constraints, are generalizable across multiple applications, and can scale.

The goal of this dissertation is to present computational frameworks that synthesize
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the capabilities of human and AI algorithms to enable task planning at scale while

satisfying multiple objectives and complex constraints.

1.1 Contributions

The limitations of the state-of-the-art approaches in complex task planning can

vary depending on the specific techniques and methodologies employed. However,

there are several common limitations that researchers often encounter, including

1. Scalability, 2. Uncertainty and Dynamic Environment, 3. Large State and

Action Spaces, and 4. Real-Time Constraints. To fill these gaps in the related

works, we intend to build on prior expertise in modeling several high-fidelity data

science problems and studying efficiency opportunities. Therefore, we present a set

of computational frameworks for automated task planning as a sequence generation

problem that requires minimal inputs from the end users and produces personalized

task plans in an uncertain environment while satisfying multiple objectives and

complex constraints. At the core, we propose a set of multi-objective optimization

problems with constraints, solving which will generate task plans as a sequence of

sub-tasks that are highly dependent and optimize the underlying problems. From

the algorithmic standpoint, this dissertation designs novel algorithms by adapting

Reinforcement Learning and discrete optimization-based techniques with theoretical

guarantees. This dissertation also studies data engineering and data management

opportunities to design scalable algorithms. Finally, the work presents large-scale

synthetic and real-world experiments, as well as deployment challenges in the

real-world environment.

In Chapter 3, we study the Task Planning Problem (TPP) where items are

considered as sub-tasks, with the goal of generating a sequence of items that

optimizes multiple objectives while satisfying complex constraints. TPP is modeled

as a Constrained Markov Decision Process, and we adapt weighted reinforcement
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learning to learn a policy that satisfies complex dependencies between sub-tasks, user

requirements, and satisfaction. We present a computational framework RL-Planner

for TPP. RL-Planner produces personalized plans satisfying all constraints while

requiring minimal input from domain experts. We run extensive experiments on

datasets from university programs and from travel agencies. We compare our solutions

with plans drafted by human experts and with fully automated approaches. Our

experiments corroborate that existing automated solutions are not suitable to solve

TPP and that our plans are highly comparable to expensive handcrafted ones. Unlike

existing works, our approach is highly amenable to scenarios where historical data

is not available. That is often the case with new education programs or new travel

plans.

Diversifying recommendations on a sequence of sets (or sessions) of items

captures a variety of applications. Notable examples of such applications include

recommending online music playlists, where a session is a channel and multiple

channels are listed in sequence, or recommending tasks in crowdsourcing, where

a session is a sub-task and multiple sub-tasks are completed in sequence. Item

diversity can be defined in more than one way, e.g., as an artist or genre diversity

for music, or as a function of task description or reward in crowdsourcing. A user

who engages in multiple sessions may intend to experience diversity within and/or

across sessions. Intra-session diversity is set-based, whereas, inter-session diversity

is naturally sequence-based. This novel formulation gives rise to four bi-objective

problems with the goal of optimizing inter and intra diversities in Chapter 4. We

prove hardness and develop efficient algorithms with theoretical guarantees. Our

experiments with human subjects on two real datasets, music, and crowdsourcing,

show our diversity formulations do serve different user needs and yield high user

satisfaction. Our large data experiments on real and synthetic data empirically
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demonstrate that our solutions satisfy the theoretical bounds and are highly scalable,

compared to baselines.

Planning routes for multiple assets while considering multiple objectives is a

complex, but highly relevant, problem. These challenges require a coordinated search

for an item in a very high-dimensional space by multiple searchers. We consider

the case where multiple assets have a single destination, whose location is unknown

until one of the assets comes within the sensing range. This means that the assets

need to first search for the destination or target, and then all assets are required

to find a route to the destination. The Route Planning Problem (RPP) is an

attempt to address the problem of navigating a set of distributed assets across a

discrete grid. The aim is to determine a sequence of actions/sub-tasks for each

asset (route plan) that minimizes overall fuel consumption and optimizes time to

attain the mission goal while avoiding collisions among themselves. In Chapter 5,

RPP is formalized as a Team Discrete Markov Decision Process (TDMDP) and we

propose a Multi-agent Multi-objective Reinforcement Learning (MaMoRL) framework

for solving it. We investigate challenges in deploying the solution in real-world settings

and study approximation opportunities. We also continue to investigate further

efficiency issues in order to overcome the scalability challenges by looking into how

to use the Rollout policy in a distributed environment to design a multi-objective

decision-making framework with multiple agents. We experimentally demonstrate

MaMoRL’s effectiveness on multiple real-world and synthetic grids, as well as for

transfer learning. MaMoRL is deployed for use by the Naval Postgraduate School.

1.2 Ongoing Work

To summarize, this dissertation presents a set of computational frameworks for

automated task planning with minimal end-user input despite the existing approaches

that mainly rely on logs or training data to model user preference. Our algorithms
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are effective for transfer learning, and we’ve conducted comprehensive experiments

to demonstrate their superiority over multiple baselines.

We continue to explore several related challenges in this space. Classical RL

frameworks, such as SARSA, and Q-learning [127], suffer from prohibitively expensive

memory and CPU requirements. These processes require storing the maximum

expected future rewards (Q values) for each action-state pair which needs terabytes

of space, hence bringing them into the main memory is impossible. In particular,

there are three significant challenges that we continue to study.

• Challenge 1: Exponential state/action space. One of the limitations
of RL frameworks is their struggle in dealing with problems characterized by
an exponential number of states and actions. RL algorithms typically rely
on exploration and exploitation of the state/action space to learn an optimal
policy. However, when the complexity of the problem grows, the number
of potential states and actions increases exponentially, making it challenging
for RL algorithms to explore and evaluate all the potential combinations.
Consequently, as the size of the state/action space expands, the performance of
RL algorithms can degrade rapidly.

• Challenge 2: Large memory requirement to store the Q values.
Classical RL algorithms often employ Q-values to estimate the expected rewards
associated with different actions in specific states. However, in scenarios
characterized by large state and action spaces, the number of Q-values that must
be stored and updated can be overwhelmingly large. Managing and retaining
these values in memory can become a bottleneck, as it necessitates substantial
memory resources. As the complexity of the task increases, the memory
requirements can grow to an impractical extent, limiting the applicability of
RL algorithms to domains with extensive state and action spaces.

• Challenge 3: Significant learning time to be effective. Another
limitation of classical RL frameworks is the substantial learning time required to
achieve effective performance. RL algorithms typically learn through interaction
with the environment, gradually updating their policies based on observed
rewards. In complex domains, the learning process can be time-consuming
due to the need for extensive exploration and exploitation to discover optimal
policy. Moreover, when reward signals are scarce or delayed, the learning
time can be further prolonged as RL agents struggle to identify the most
rewarding actions. This long learning time can be impractical in scenarios where
quick decision-making or adaptability is required, hindering the widespread
application of RL to real-world problems.
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We have been investigating the computational and memory bottlenecks of RL

from two distinct perspectives as follows:

1. Design an Online Policy: We investigate how to design an online policy
using techniques such as Rollout policy [29]. The Rollout policy is a one-time
policy iteration approach that can be utilized in a distributed environment. By
employing this technique, a multi-objective decision-making framework can be
created, involving multiple agents. This framework enables efficient decision-
making by considering various objectives and optimizing the actions of multiple
agents simultaneously. By leveraging the Rollout policy and incorporating it
into a distributed setting, the proposed solution tackles Challenge 1 as well as
Challenge 3.

2. Employ Data Management Techniques: One of the critical challenges
in RL arises when a substantial amount of training is required for effective
learning, which is commonly referred to as Challenge 3. In order to overcome
this challenge, we propose the implementation of various data management
techniques. By utilizing these techniques, we can successfully address the issue
of extensive training requirements in RL. Moreover, our proposed solution not
only tackles Challenge 3 but also effectively handles Challenge 1 and Challenge
2.
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CHAPTER 2

BROAD OVERVIEW OF THE RELATED WORK

My research focus lies on the context of Data Management for AI and Complex Task

Planning by designing efficient solutions for AI and leveraging data management

techniques.

2.1 Data Management for AI

Machine Learning (ML) methods encounter several challenges, including the need

for a) Data Discovery, Access, and Versioning; b) Model Management; and c)

Model Tracking and Provenance. To overcome these challenges, researchers are

concentrating on leveraging various data management techniques. Notable examples

include the works of Agrawal et al., 2019 [5] and Karanaso et al., 2019 [86], who

proposed the development of Raven, a system that combines ML inference within the

database and employs cross-optimization strategies. The core contributions of these

works include integrating ML inference into traditional relational query processing

and enabling the execution of ML models within relational databases for enhanced

data analytics and decision-making. This integration expands the range of queries

that can be performed on relational data by incorporating ML inference capabilities.

Integrating ML inference into relational query processing poses scalability challenges

due to the computational intensity of ML models, requiring careful resource allocation

and optimization techniques. Additionally, limitations in the integration of certain

ML model types or complex architectures may restrict the applicability of the

proposed approach within the relational query processing framework.

In the study conducted by Teh et al., 2017 [131], data management techniques

called distill and transfer learning were employed to simultaneously train multiple

tasks by sharing a ”distilled” policy that encompasses common behavior across the
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tasks. This approach involves extracting the knowledge acquired from one task and

distilling it into a shared policy, which is then transferred to other tasks. The process

of policy distillation can be utilized to extract the policy of a Reinforcement Learning

agent and train a new network that achieves expert-level performance, all while being

significantly smaller and more efficient. This work faces limitations in terms of the

diversity of behaviors it can exhibit due to constraints in incorporating multiple

distilled policies or latent variables. This limitation may impact its adaptability

to various scenarios and its effectiveness in complex environments. Additionally,

the proposed approach does not address the challenges of sequential task learning,

potentially hindering its ability to effectively adapt to new tasks while retaining

knowledge from previous ones.

The utilization of the Reward Machine (RM) is an example of a data

management technique explored in the research conducted by Icarte et al., 2018 [78].

RM enables the composition of different reward functions in a flexible manner. They

operate by taking abstracted descriptions of the environment as input and generating

corresponding reward functions as output. The underlying idea is that the agent

receives rewards from different functions at different times, based on the transitions

performed within the RM. Using RM for task specification and decomposition

in Reinforcement Learning has potential limitations to consider. One limitation

relates to the expressiveness of RM. While RM provides a structured approach to

task specification, it may have limitations in accurately representing complex and

nuanced objectives. This limitation could potentially hinder the learning process

and the agent’s ability to achieve desired outcomes. Another limitation pertains to

generalization to new tasks. The approach’s effectiveness in transferring and adapting

learned knowledge to novel, unseen tasks beyond the initially specified ones might

be challenging. Additional mechanisms or techniques may be necessary to ensure

successful generalization, which is crucial for practical applications.
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2.2 Complex Task Planning

Traditionally, complex task planning is highly domain dependent, hard to generalize,

and requires heavy domain expertise. As an example, course planning processes are

primarily manual, designed by academic advisors, and therefore time-consuming. On

the other hand, generating task sessions in online job platforms, such as Amazon

Mechanical Turk, are primarily ad-hoc, not personalized to individual user needs or

dependency on the tasks in generating sessions, leading to poor user satisfaction and

performance. Some of the existing fully automated approaches [6, 43, 44, 62, 103]

heavily rely on logs or training data to model user preference, which is not the case

in our work. Task Planning is also explored in [133], [22] and [111]. However, they do

not account for constraints when producing a sequence of sub-tasks, which is crucial

for our problems.

As an illustration of Complex Task Planning, let’s consider the problem of

Task Planning for Robotized Warehouses. The existing cutting-edge solutions for

this problem have a fixed duration for completing tasks, making them inflexible

when it comes to planning for varying arrival times of items. Another drawback

of current research is the inefficient planning they offer for warehouses with a large

number of robots and items. To overcome these limitations, Shi et al., 2022 [119]

proposed an adaptive approach called Adaptive Task Planning (ATP). This method

involves selecting a subset of racks for robots to pick up and deliver, rather than

processing all racks immediately upon item arrival. Shi et al., 2022 [119] also

employ data management techniques, such as memory compression, to optimize

path finding and rack selection. The proposed approach, although effective in a

research setting, may face challenges when it comes to implementing it practically

in real-world warehouses. Factors such as integrating with existing warehouse

management systems, compatibility with various types of robots, and the requirement

for additional infrastructure can present limitations and obstacles.

10



Basu Roy et al., 2011 [19] introduce an interactive approach to itinerary

planning that leverages user feedback and itinerary expected scores. The main

contribution lies in formalizing this approach and addressing the challenges of

constructing personalized itineraries while minimizing user effort. The system

suggests POIs and recommends itineraries based on user feedback, with the user

providing input at each step until they are satisfied. The paper defines the POI

Feedback Model and Itinerary Scoring Semantics to capture preferences and score

itineraries. It also presents efficient algorithms for real-time computation of the

best-scoring itineraries and proposes a probabilistic model by reducing the problem

to the rooted orienteering problem and utilizing strategies such as computing a

Hamiltonian path in a hypercube and employing an efficient heap-based data structure

for POI pruning that maximize expected scores. The paper’s limitations include a

lack of exploration of different feedback models, primarily focusing on the binary

model. Multi-user scenarios are not considered, neglecting conflicting preferences

and group dynamics. Additionally, the paper fails to adequately address budget

constraints other than time, such as monetary constraints or physical limitations. The

scoring semantics are simplified, focusing only on set semantics, without considering

the effectiveness of alternative scoring semantics like chain semantics. Addressing

these limitations would provide valuable insights, enhance practical applicability, and

enable more personalized recommendations in itinerary planning.

The core contribution of [36] is the development of three approximation

algorithms to efficiently solve the Keyword-aware Optimal Route (KOR) query

problem. The KOR query aims to find the optimal route in a graph that satisfies

constraints such as covering specific keywords and adhering to a budget limit

while optimizing an objective score. The first algorithm, called OSScaling, scales

the objective values of edges and generates routes with objective scores no worse

than a certain factor of the optimal route. The second algorithm, BucketBound,
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further improves efficiency while providing approximate solutions with performance

guarantees. The paper also introduces a greedy approach that trades off constraints

but is efficient. Cao et al., 2012 [36] make certain assumptions about the feasibility of

assigning objective scores and budget scores to every edge in the graph. Additionally,

they assume that the only constraints to consider are keyword coverage and budget

limit. However, these assumptions may not be valid in all real-world situations, which

can render the proposed algorithms inapplicable or ineffective in such cases.

The research conducted in [68] revolves around creating a framework for person-

alized tour recommendations in urban navigation, specifically within smart cities.

Gionis, et al., 2014 [68] utilize contextual information gathered from location-based

social networks to offer personalized tour suggestions. They highlight the limitations

of existing recommendation systems that evaluate venues independently and propose a

problem called TourRec that takes into account venue types, user constraints, and user

satisfaction. The paper introduces two variations of the problem and presents efficient

algorithmic solutions for each. The first variation, AdditiveTour, involves assigning

a benefit value to each location and determining the optimal sequence of venues that

maximizes the overall benefit. This is subject to constraints such as a distance budget

and a preferred order of visiting venue types. The second variation, CoveringTour,

associates each venue with a set of attractions it covers within a specified range,

aiming to maximize the total number of attractions covered while considering the

same constraints. The paper’s limitations include a dependency on location-based

social networks, which limits its applicability in regions with less popular networks.

The simplified satisfaction measurement methods may not accurately capture all

factors contributing to user satisfaction. Real-time constraints, such as dynamically

changing conditions and time-specific events, are not explicitly considered, which

affects the relevance and timeliness of the recommendations.
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Exploratory Data Analysis (EDA) shares similarities with complex task planning

aimed at assisting users in refining their requirements and discovering relevant items

within extensive collections of structured data. Within the realm of EDA, there exists

a specific case known as Text-based Item Exploration (TIE), which presents unique

challenges. These challenges include the abstraction and querying of textual data and

the need to combine queries involving both structured and unstructured content. To

tackle these challenges, Omidvar-Tehrani et al., 2022 [102] have developed GUIDE, a

framework that encompasses text dimensions such as sentiment and topics. GUIDE

introduces novel text-based operators that seamlessly integrate with conventional

EDA operators, enabling effective exploration of text-based data alongside structured

information. A limitation of this work is the absence of user feedback incorporation

within the reward mechanism, which could enhance exploration by offering a more

personalized and effective experience.

While guided EDA bears similarities to complex task planning, to the best of

our knowledge, there is no EDA framework that accounts for the intricate constraints

required in task planning.
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CHAPTER 3

GUIDED TASK PLANNING UNDER COMPLEX CONSTRAINTS

3.1 Introduction

Task planning [10, 19, 23, 103] is a complex and time-consuming effort that is

ubiquitous and has a wide range of applications, such as planning courses or trips.

Consider the scenario of an aspiring youngster wanting to jump-start her career

as a data scientist right after her B.S. in Computer Science, or a seasoned IT analyst

with years of experience in the industry wanting to join the bandwagon of data science

to change her career focus. For both individuals, designing a course plan (e.g.,

for an M.S. degree or a certificate in data science) is a complex and intellectually

demanding task with the goal of managing their education goal, and satisfying

different requirements that are compatible with their experience and background.

Similarly, a student wanting to discover museums in Europe, or a senior traveler

seeking to enjoy Southeast Asia, will need a trip plan that combines very different

requirements. In this chapter, we propose a computational framework to automate

task planning that is applicable to a variety of domains.

The current best practices of task planning offer a continuous and consistent

process which is mostly done under the guidance of human experts (e.g., academic

advisors and travel agents). It is needless to say that such a fully manual approach

is expensive and inherently not scalable. Contrarily, a fully automated approach [6,

43, 44, 62, 103] may require significant historical data or logs to learn personalized

models. We advocate that task planning must be studied as a sequence generation

problem that is sensitive to the ordering and interleaving of items, personalized and

captures progression in task achievement, as well as satisfies a multitude of complex

constraints. While this bears similarity to guided Exploratory Data Analysis (EDA),
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to the best of our knowledge, there is no EDA framework that accounts for intricate

constraints required in task planning.

We propose, RL-Planner, a mostly automated computational framework that

requires minimal input from stakeholders, yet produces highly effective task plans that

are personalized and relevant. Scenarios where in-person education or travel advising

is rare and costly and the platforms that need to scale up the process to thousands

of items (such as MOOCs [118] and vacation rentals 1) are ideal for our problem.

Example 3.1. Let us consider the case of a student aspiring to obtain an M.S.

degree in Data Science Computational Track (DS-CT) with a B.S. degree in a STEM

discipline. At the very minimum, the student must have knowledge of the core

(i.e., primary) CS subjects, such as Algorithms & Data Structures, in Mathematical

Science, such as Probability and Linear Algebra, in Programming Languages (such

as Python and RStudio), and finally Applied Data Science topics (Databases, Data

Mining, Machine Learning). Additionally, the student must satisfy the minimum

credit requirement as well as the primary vs. secondary split (e.g., 5 core courses

and 5 electives). The student must also take the prerequisites before the electives

(e.g., take Linear Algebra before Machine Learning or DBMS before Data Mining) at

least a semester before. The recommended courses should satisfy the student’s broader

goal of becoming a computational data scientist after completing the degree program.

Additionally, the student may aspire to learn some specific topics (e.g., Classification,

Clustering, Neural Networks, Linear Systems), or may be interested in taking elective

courses or in completing a project that is specifically designed to gain knowledge in

Data Science in some application domains (such as pharmaceutical, health-care, or

fintech). Such specifications must come from the student. How to design the ideal

sequence of core and elective courses and interleave them (e.g., start with one or

1https://www.airbnb.com/
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two core courses, then take two electives, then another core course) requires domain

expertise that only academic advisors are capable of providing.

Example 3.2. Consider a first-time traveler looking for an exciting day-long trip in

Paris (must be completed in 6 hours of visitation time). There are some “must-visit

places” that are the primary POIs (e.g., Eiffel Tower, Louvre Museum). The

remaining POIs are secondary/optional types (e.g., Pantheon, Rue des Martyrs,

etc). The traveler provides some preferences and requirements, such as, she wants

to visit Museum, Art Gallery, be by a River, enjoy local food (Restaurant/Cafe), and

experience Architecture of historic importance. An ideal itinerary should start the

day with POIs that are time-consuming and physically strenuous to visit (such as

Museum/Art Gallery) (formalized as prerequisites or antecedents later on) following

which one can experience some relaxation time by visiting a Restaurant/Cafe, does not

contain many POIs of the same type (e.g., only one Museum/Art Gallery, one River,

etc), and the itinerary is easily commutable. Only an experienced travel agent can

craft one such itinerary that satisfies these multitudes of requirements, i.e., ensuring

the presence of primary POIs and selecting the best from the secondary types to bring

variety, ensuring appropriate interleaving, and satisfying other constraints the traveler

provides.

The aforementioned examples call out the following requirements in task

planning - (1) Satisfying Hard Constraints: Plans must match these constraints

as part of the requirement for the task (e.g., # primary vs. # secondary, as well

as antecedents/prerequisite requirements). (2) Maximizing Soft Constraints:

These are of two different kinds: (a) Designed plans must maximize the coverage

of the topics/themes users wish to acquire (e.g., recommend courses on clustering

and neural networks, or POIs related to library and cathedral); (b) Recommended

sequences must adhere to the domain expert’s provided “template” as much as

possible. A “template” is a set of ideal permutations of primary and secondary
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items (Sub-section 3.2.1 has further details) and the generated task plan must follow

these ideal compositions as closely as possible.

This work makes the following contributions: 1. Formalizing Task Planning

as a Decision-Making Problem: Our first contribution is to formalize the task

Planning Problem (TPP) as a constrained sequence generation problem. We model

TPP as a Constrained Markov Decision Process (CMDP) [9]. where a state is an

item, an action generates a transition that adds one more item, and a “reward” is

associated with every transition to quantify how well the action satisfies the hard

constraints, and maximizes the soft constraints. In fact, designing a reward function

that captures all these nuances is a complex and intellectually demanding data science

task, as we shall describe in Section 3.2. We are unaware of a generic framework that

is capable of handling multiple hard and soft constraints to generate sequence-aware

outputs for multiple applications. Section 3.5 contains further details.

2. Solving TPP by adapting Reinforcement Learning: Our second

contribution is to present a computational framework (Sub-section 3.3.3), that is

inspired by Constrained Reinforcement Learning (C-RL) [4,66], specifically Weighted

RL [65], but non-trivially adapts it to handle multiple hard and soft constraints.

Essentially, we propose a weighted reward function to transform the CMDP to an

unconstrained MDP that captures multiple hard constraints as well as maximizes the

actual value by maximizing the soft constraints. We prove that our designed reward

function satisfies all hard constraints. We adapt the popular model-free on-policy

algorithm SARSA [127] for updating the Q values of the states, which is known to

converge faster and with fewer errors [113].

3. Experimental Evaluation: Our third contribution is an extensive

evaluation (Section 3.4) using real-world datasets in the education and traveling

domains. We use two datasets to plan courses for four different sought after

degree programs and one dataset to plan two trips. Our results convincingly
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demonstrate that: (a) Our algorithm generates task plans that are comparable in

quality to handcrafted ones, and are superior to fully automated sequence-aware

recommendations (e.g., OMEGA [133]) and to next-step recommendation in EDA

[97]; (b.1) based on user studies involving 25 data science computational track

(DS-CT) major students, our course plans achieve highly comparable satisfaction

scores w.r.t. handcrafted gold standards designed by domain experts; (b.2) based on

user studies involving 50 frequent travelers hired on Amazon Mechanical Turk, we

find that the produced trip plans are highly satisfactory to the users and comparable

to the handcrafted ones; (c.1) the policy learned by RL-Planner for the M.S. DS-CT

is transferable to a different degree program in M.S. Computer Science inside the

same university and vice versa; (c.2) similarly, the policy learned from a trip to NYC

is transferable to a trip to Paris, and vice versa; (d) our algorithm is robust to the

different parameters, takes reasonable time for learning the policy, and can therefore

make interactive recommendations. We finally conclude in Section 3.6.

3.2 Task Planning Problem

We present our data model and define the Task Planning Problem. We present the

used notations in Table 3.1.

3.2.1 General framework and problem definition

Let I and T represent a set of items and topics/themes, respectively. Some of the

items, denoted by P ⊆ I, are also designated as antecedents meaning they must be

recommended before some other items.

3.2.1.1 Item. Formally, an item m is represented as a quadruple

m = 〈typem, crm, prem, T m〉
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Table 3.1 Table of Notations

Symbol Description

I, T ,P Set of items, Set of topics/themes, Antecedent

typem Type of item m

crm Quantifiable number toward satisfying the requirement

prem Set of items that need to be recommended before item m

T m Boolean vector of topics/themes that are covered by item m

Phard , Psoft Hard & Soft constraints

T ideal Ideal topic/themes coverage

IT Interleaving template

#primary, #secondary # of primary items, # of secondary items

#cr Minimum hours requirement

gap The lower bound of distance between m and its antecedents

R(.) Reward function

H,R(H) Trajectory of state-action pairs, Reward returned by H

G = 〈I, E〉 Graph with a set I of items as nodes and E as edges between them

S, E State & action space

T , N Transition function, Number of episodes

α, γ, ε Learning rate, Discount factor, Topic coverage threshold

AvgSim Interleaving reward

δ, β Reward functions weights

ω1, ω2 Weight of primary & secondary items
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An item is one of the two types: a. primary or b. secondary. An item of

primary type is required for a task. Contrarily, an item of secondary type is chosen

from a number of optional items according to the user’s interest. crm designates a

quantifiable number toward satisfying the requirement of a task. m may have one

or more prerequisite prem ⊆ P , where each prerequisite mj is an item that needs

to be recommended before m (described below with examples). If m has multiple

prerequisites they are often “AND”ed meaning all antecedents are to be recommended

before m. When they are “OR”ed, any one of these items must be taken before m.

Both primary and secondary types could serve as prerequisites for some other items.

Finally, m covers a set of topics/themes represented by a Boolean vector T m of length

|T |, and the i-th bit contains 1 if m covers that topic/theme and 0 otherwise. These

are typically keywords that are extracted from a course syllabus (available in training

programs), or a POI description (available in Wikipedia). Given two items m and

m′, their vectors may or not have topics in common.

For a given end user, task planning must be personalized. That is achieved by

satisfying hard constraints and maximizing soft ones.

3.2.1.2 Hard Constraints. These are provided by a domain expert as the

requirement for achieving a task, typically a minimum requirement of credits hours

#cr (or items if each item offers the same number of credit hours), a split of

primary vs. secondary items (#primary/#secondary), and a specific ordering between

an item and its antecedent Formally speaking, a hard constraint is a quadruple,

Phard = 〈#cr,#primary,#secondary, gap〉.

3.2.1.3 Soft Constraints. There are two types of soft constraints designed in

consultation between a domain expert (academic advisor or travel agent) and the end

user (student or traveler). Notationally, soft constraints are represented as a pair:

Psoft = 〈T ideal , IT 〉
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Ideal Topics/Themes T ideal . A user needs to be recommended items that are

personalized and covers topics/themes that are commensurate to her goal.

Appropriate Item Interleaving Template IT . The second soft constraint of

planning is an intricate interleaving of primary and secondary items (e.g., start with

a primary then follow with a secondary or two, then two more primary items, and

so on) and is provided as a template IT . Formally speaking, IT = {I1, I2, ..., I|IT |}

contains a set of permutations, where each Ij is a permutation of #primary primary

items and #secondary secondary items.

Task Planning Problem (TPP). Given the hard constraints Phard , and the soft

constraints Psoft provided by an end user in consultation with a domain expert, the

Task Planning Problem (TPP) is formulated as finding a personalized plan for that

user. i.e., a sequence of items that satisfies Phard and maximizes Psoft .

3.2.2 Instantiation of the framework

3.2.2.1 Course Planning. Item. For course planning, typem represents if a course

is a core vs. elective. crm represents credit hours of a course. A prerequisite

of a course is one or more courses that is/are its prerequisite. Imagine our

course planning example consisting of six courses, as presented in Table 3.2. The

set T covers 13 topics/themes: [Algorithms, Classification, Clustering, Statistics,

Regression, Data Structure, Neural Network, Probability, Data Visualization, Linear

System, Matrix Decomposition, Data Management, Data Transfer]. The last column

shows the topic vectors of each course: e.g., for the Data Mining course, T m2 =

[0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] covers two topics, Classification and Clustering out of

the 13 topics. As an example, a data mining and a machine learning course contain

overlapping topics such as clustering, classification, etc.

Hard Constraints. As an example, an M.S. DS-CT program may require a

student to take at least 30 credit hours, five primary and five secondary courses. The
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integer constant gap specifies the distance between m and prem in the recommended

sequence: if a student takes three courses in each semester, gap = 3 enforces that the

prerequisites of m must be taken at least a semester before. Thus, Phard = 〈30, 5, 5, 3〉.

Ideal Topics/Themes T ideal . For instance, in Example 3.1, Classification,

Clustering, Neural Network, Linear System are the topics that the student wishes to

learn. Therefore, for Example 3.1, T ideal = [0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0]

Appropriate Item Interleaving Template IT . A domain expert provides

an IT containing three permutations of primary (core courses) and secondary items

(elective courses) listed in Table 3.2:

IT = {[primary, primary, secondary, primary, secondary, secondary],

[primary, secondary, secondary, secondary, primary, primary],

[primary, secondary, secondary, primary, primary, secondary]}

Using Example 3.1, m1 → m2 → m4 → m5 → m6 → m3 is a sequence that

fully satisfies the permutation I2 of the aforementioned IT . A recommended item

sequence needs to adhere to these permutations as closely as possible.

3.2.2.2 Trip Planning. Item. A POI of primary type must be present in the

planned trip (such as Eiffel Tower). crm designates the visitation time of POI m.

An antecedent of a POI is another POI, that precedes the former POI temporally

(e.g., Romanesque architecture must be visited before Gothic ones, or visit a museum

before a restaurant/cafe). Let us assume that the toy trip planning dataset contains

POIs such as Eiffel Tower, Louvre Museum, Pantheon, Rue des Martyrs, Musée

d’Orsay, Cathédrale Notre-Dame de Paris, Palais Garnier, The River Seine, Le Cinq,

etc. The set T covers eight topics/themes: Museum, Art Gallery, Cathedral, Palace,

River, Street, Restaurant, and Architecture. The topic vector for Louvre Museum =
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[1, 1, 0, 0, 0, 0, 0, 1] covers three topics, Museum, Art Gallery, and Architecture, out of

eight topics.

Hard Constraints. For the trip planning, a day-long trip in Paris to visit two

primary and three secondary POIs, with a total visit time of six hours ( #cr = 6)

and gap = 1 enforces that the antecedent of m must be visited before m. Thus,

Phard = 〈6, 2, 3, 1〉.

Ideal Topics/Themes T ideal . Example 3.2, Museum, Art Gallery, River,

Restaurant, Architecture are the topics/themes. These topics are captured in the

ideal topic vector T ideal and are considered as a soft constraint in the model.

Appropriate Item Interleaving Template IT .

IT = {[primary, secondary, primary, secondary, secondary],

[primary, secondary, secondary, secondary, primary],

[primary, secondary, secondary, primary, secondary]}

Using Example 3.2, Louvre Museum → Le Cinq → Eiffel Tower → Rue des

Martyrs → River Seine is a sequence that fully satisfies the permutation I1 of the

aforementioned IT .

Table 3.2 Course Information

CourseId CourseName typem crm prem Tm

m1 Data Structures and Algorithms primary 3 [] [1,0,0,0,0,1,0,0,0,0,0,0,0]

m2 Data Mining secondary 3 [] [0,1,1,0,0,0,0,0,0,0,0,0,0]

m3 Data Analytics primary 3 [] [0,0,0,1,0,0,0,1,0,0,0,0,0]

m4 Linear Algebra secondary 3 [] [0,0,0,0,0,0,0,0,0,1,1,0,0]

m5 Big Data secondary 3 [Data Mining OR Data Analytics] [1,0,0,0,0,0,0,0,0,0,0,1,1]

m6 Machine Learning primary 3 [Linear Algebra AND Data Mining] [0,1,1,0,1,0,1,0,0,0,0,0,0]
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3.3 Proposed Solution : RL-Planner

In this section, we present our proposed computational framework RL-Planner.

We describe our proposed modeling first, following which we provide our solution.

3.3.1 Modeling the TPP

In general, a constrained MDP (CMDP) [9] is designed to learn a policy of an agent

with the goal to

maxπE
π[R(H)] s.t. Eπ[D(H)] ≤ c (3.1)

where H is a trajectory of state-action pairs, R(H) is the total return that can be

obtained by H, and D(H) is the measure of how dangerous the trajectory is.

For TPP, our abstraction contains a complete graph G = 〈I, E〉, where the

nodes are items in I and each edge eij ∈ E represents an interaction between two

items mi and mj. TPP is a deterministic discrete CMDP [4,65] (S,E,R):

a. The set S of states is the set of nodes I in G.

b. E is a set of actions, where each action e ∈ E is akin to adding one item to
a given state. An action induces a transition between two nodes in G and is
represented by an edge. The description T of an action is deterministic, that
is, T : S×E → S, a new state is obtained by applying an action on each state.

c. R(si, ei, si+1) is the reward of transitioning from state si to state si+1 by taking
action ei. The reward needs to be designed to maximize Psoft and Phard must
be satisfied.

Course Planning: Trajectory H is computed considering #cr in Phard and

the crm of each course. As an example, if each course contributes a fixed credit of 3,

a requirement of 30 credits translates to taking 10 items, thus H = 10. Each state s

which corresponds to an item m ∈ I has a theme/topic vector T m which represents

the topics that course m covers.
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Trip Planning: H is computed considering #cr in Phard and the crm of each

POI. If the user inputs six hours, the itinerary will be terminated if the total visitation

time exceeds six hours. Thus H = 6.

3.3.2 Reward design

The process of designing the reward R(si, ei, si+1) of taking action ei on state si, is

intellectually demanding and must abide by the following: (a) an action must satisfy

the constraints in Phard ; (b) capture how well an action increases the coverage of the

ideal topic/theme vector for the soft constraints; (c) quantify “how close” it is to

the pre-defined IT template; (d) weigh in primary and secondary items differently

(ideally primary items should get higher weights); (e) combine these aforementioned

requirements using a weighted linear function and adjust the weights empirically.

Formally speaking, adding an item m to a state si equates to taking action ei

that causes a transition to si+1,

R(si, ei, si+1) = θ × [δ × AvgSim(si+1, ITi+1) + β × weighttypem ] (3.2)

δ + β = 1, θ = {0, 1}

if typem = primary, weighttypem = w1

if typem = secondary, weighttypem = w2, s.t.w1 + w2 = 1

We also look at the scenario where our reward function (Equation (3.2)) uses

minimum similarity rather than average similarity.

We now describe the different components of this overall reward.

25



3.3.2.1 Reward on Topic/Theme Coverage. During an episode, we maintain

a current topic/theme vector T current that is initialized to all 0. As a state s

(corresponding to an item m) is included in the episode, T current gets updated to

T current = {T current
⋃
T m}. Given a state si and an action ei and the next state

si+1 (which corresponds to adding item m), the action is valid only if it increases

the topic coverage of the ideal topic vector by at least a threshold ε, specified by

the domain expert. Therefore, an action has a positive reward = 1, only when

|T ideal
⋂
{T current

i+1 \ T current
i }| ≥ ε, 0 otherwise.

Formally speaking,

r1 =


1, |T ideal

⋂
{T current

i+1 \ T current
i }| ≥ ε

0, otherwise

(3.3)

Since topic coverage is an important soft constraint that allows personalization,

incorporating topic coverage in this fashion allows to eliminate items that are poor

in topic coverage w.r.t. T ideal , even though they are good otherwise.

Course Planning: Given ε = 1, considering Example 3.1 and T ideal =

[0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0], s2(m2) → s4(m4) has reward r1 = 1, but s2(m2) →

s5(m5) has r1 = 0, since adding Big Data (m5) does not increase the topic coverage

of T current w.r.t. T ideal by at least 1.

Trip Planning: Given ε = 1, a new POI is considered valid if it increases the

topic/theme coverage at least by 1.

3.3.2.2 Reward on Antecedent/Prerequisite Gap. In state si, if the prereq-

uisite(s) of m, prem is (are) present in the episode and Dist(prem,m) ≥ gap, then

an action has r2 = 1, 0 otherwise. This is needed to ensure that the gap between

the antecedents/prerequisites of an item and m must satisfy gap mentioned in Phard .

When antecedents/prerequisites are ”AND”ed, every prem must be present and satisfy
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the gap when they are ”OR”ed, any one of them needs to appear before m satisfying

the gap.

Formally speaking,

r2 =


1, Dist(prem,m) ≥ gap

0, otherwise

(3.4)

Course Planning: r2 = 1, if m2 or m3 is taken 1 semester (1 semester enforces

a gap of 3 since typically three courses are taken per semester) before m5, 0 otherwise.

Trip Planning: If Louvre is recommended before LeCinq (restaurant), then

the action gets value 1 for r2 and 0 otherwise.

3.3.2.3 Combining Topic Coverage and Prerequisite Reward. θ = 1 if

the conditions on topic coverage AND antecedents are satisfied, and 0, otherwise.

Therefore,

θ = r1 × r2 (3.5)

3.3.2.4 Reward on Interleaving. This portion of the reward function quantifies

how suitable the current sequence is based on similarity, considering the different

permutations that are present in ideal composition (IT), and aggregates them as

follows: AvgSim(si+1, IT i+1). Note that the ideal composition IT is specified in

Psoft and each I ∈ IT is a permutation of length #primary + #secondary.

Course Planning: To quantify how close the item sequence in si+1 is w.r.t.

an ideal sequence I, we must use a distance function that is sequence-aware. In

our implementation, we come up with a similarity notion, inspired by Levenshtein

distance [96]. In general, given two sequences of length k ( 1 ≤ k ≤ |I|), one is the first

k bits of an ideal composition I, and the other is a state in a session of length k, their

Levenshtein distance produces a binary vector cI of length k, where the j-th bit of the
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vector represents the similarity between these two sequences considering bit j. For our

problem, as an example, consider in a given session at a given state s, the so far chosen

item corresponds to {primary, secondary, primary, primary}. The similarity score

of this sequence and IT specified in Example 3.1 are {[1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]}

where 1 means they are the same and 0 otherwise. For each permutation I, we

compute Sim(s, I)k by capturing different lengths of match c and multiply that by

a weight ζ, which is the maximum length of the consecutive match (ζ ∈ [0, k]) and

normalized by dividing it by k.

Sim(s, I)k =
ζ ×

∑
∀c length(c)

k
(3.6)

Finally,

AvgSim(s, IT )k =

∑
∀I∈IT

Sim(s, I)

|IT |
(3.7)

Using the aforementioned example, Sim(s, I)4 = [0.5, 1, 1.5] andAvgSim(s, IT )4 =

1.

Theorem 3.1. The designed reward function (Equation (3.2)) satisfies Phard of the

TPP problem.

Proof. (Sketch) We note that there are actually four hard constraints present in TPP.

(1) the total number of credits, (2) a pre-specified number of primary items, (3) a

pre-specified number of secondary items (4) a pre-specified gap between items.

Without loss of generality, we present the proof using the course planning

application. The trip planning could also be demonstrated in a similar manner.

(1) Total number of credit constraint: The first requirement is easily met

by enforcing trajectory size H in the reward design.
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Recall Sub-section 3.3.1 which describes the trajectory value H, which is

computed considering #cr in Phard and the crm of each recommended course. By

its design choice
∑
∀m∈H cr

m = #cr, satisfying the first constraints.

(4) Gap between a course and its prerequisites: This constraint is

satisfied through the design of r2 in the reward function.

Clearly, r2 = 0 denotes that the constrained is unsatisfied and it only gets 1,

when the gap between the course and its prerequisites are met.

(2,3) Split between elective and core courses: Imagine that the reward

function does not satisfy the #primary(#core) and #secondary(#elective) constraints. In

a recommended sequence S, we can have two possibilities:

• Case I: #core < |Score| ∧#elective > |Selective|

• Case II: #core > |Score| ∧#elective < |Selective|

Case I. Is consistent, as a core course could be construed as an elective, thereby

satisfying the constraint, as long as |S| is H.

Case II. We prove it by contradiction. According to our reward design, weightcore =

ω and weightelective = 1−ω s.t. ω > 1−ω. This is akin to solving weighted RL and

the appropriate ω is learned through extensive training considering the total number

of core and elective courses in the dataset. By the design choice, |Icore| < |Ielective|,

that is, the number of core courses is smaller than the number of electives in the

dataset.

The reward function thus simplifies to R(si, ei, si+1) = β ×weighttypem , as long

as θ = 1. Therefore,

R(si, ei, si+1) = β × ω; ∀mj ∈ Icore

R(si, ei, si+1) = β × (1− ω); ∀mj ∈ Ielective
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Since, β × ω > β × (1 − ω), therefore denotes a higher preference of the core

courses over the electives. This makes #core < |Score| a contradiction.

Thus, the designed reward function satisfies all hard constraints in Phard .

Problem 3.1. (Revisiting TPP): Based on our proposed model, given the hard

constraints and soft constraints Psoft , TPP is reformulated to find a policy π∗ that

maximizes the expected cumulative reward over any initial state.

π∗ = argmaxπE[
H∑
i=1

R(si, ei, si+1)|π] (3.8)

3.3.3 Reinforcement Learning based solution

There are many well-known methods for solving MDPs, including value iteration

and policy iteration, which are iterative methods and could be solved using

Dynamic Programming [20], or Monte Carlo method, or the more popular Temporal

Difference based approach which is a combination of Monte Carlo and Dynamic

Programming [18,117,127]. Policy iteration involves two steps: policy evaluation and

policy improvement, and these two are repeated iteratively until the policy converges.

Contrary to that, value iteration includes: finding the optimal value function, followed

by one policy extraction. There is no repeat of the two because once the value

function is optimal, then the policy out of it should also be optimal (i.e. converged).

While these two methods appear seemingly close, it has been proved theoretically and

empirically in [104] that policy iteration is computationally more efficient and requires

a smaller number of iterations to converge. So, we adapt model-free RL [18,117,127]

with inputs (S,E,R,H) as a policy iteration method which fits our proposed problem

remarkably well in the absence of logs.

Using model-free RL, TPP can be expressed as the problem of finding a policy

π : S → E that maximizes the discounted cumulative reward. The goal is to maximize∑
i γ

iR(si, ei, si+1), where γ is the discount factor ∈ [0, 1].
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Each learning episode of RL-Planner contains H action-values that get period-

ically updated as the agent learns from the environment based on the reward function

(recall Equation (3.2)). Q-values are defined for states and actions. Q(s, e) is an

estimation of how good is it to take action e at state s, and is iteratively updated.

Based on our inputs, the size of the state action-pair is |I| × |I|, since the agent can

go to any other item (except for the ones that are chosen already) given our complete

graph G.

We use the popular SARSA algorithm [127] for learning a policy by updating

the Q values. A SARSA agent interacts with the environment and updates the

policy based on actions that are taken, hence this is known as an on-policy learning

algorithm. The Q value for a state-action is updated by an error and adjusted by the

learning rate α. Q values represent the possible reward received in the next step for

taking action e in state s, plus the discounted future reward received from the next

state-action observation, and expressed using Equation (3.9).

Q(si, ei)← Q(si, ei) + α[ri+1 + γQ(si+1, ei+1)−Q(si, ei)] (3.9)

where the reward ri+1 is computed using Equation (3.2). During the learning

phase, given different hard constraints Phard and soft constraints Psoft , the agent

learns Q values for a different number of episodes. For recommending item plans, it

traverses the Q-table of size |I| × |I| with different starting states. It starts with a

given initial state (corresponds to an item m), and traverses the Q table to find the

next item that has the maximum Q value. This process is repeated until the sequence

contains H items. The pseudo-code is presented in Algorithm 3.1.
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Algorithm 3.1 Algorithm in RL-Planner

1: Learning Policy:

Require: Phard , Psoft , G = (I, E), number of episodes N , size of an episode H, α, γ

Ensure: a policy π satisfying Phard

2: for i← 1 to N do

3: si ← m

4: ei ← argmax∀md,d∈{I−m}R(m,md, d)

5: r ← Equation(3.2)

6: W ← {m
⋃
d}

7: sj ← d

8: for j ← 2 to H do

9: ej ← argmax∀sjw,w∈{I−W}R(sj, sjw,w)

10: W ← {W
⋃
w}

11: Q(sj, ej) ← Q(sj, ej) + α[rj+1 + γQ(sj+1, ej+1)−Q(sj, ej)]

12: sj ← sj+1

13: ej ← ej+1

14: Return Q

15: Recommending a plan:

Require: policy π, a starting item m

Ensure: A sequence rec of H items starting with m

16: si ← m

17: W ← {m}

18: rec ← m

19: for i← 2 to H do

20: ei ← argmax∀j∈Q(si,j)Q(si, j)

21: rec ← [rec→ si+1]

22: W ← {W
⋃
si+1}

23: si ← si+1

24: Sequence of items in rec 32



Table 3.3 RL-Planner Default Parameters Values

Parameters N α γ Threshold (ε) Distance Threshold (d) Time Threshold (t) Starting Point (s1)
Reward Function’s Weights

ω1 ω2 ω3 ω4 ω5 ω6 δ β

Default

Value

Univ 1 500 0.75 0.95 0.0025 —– —– STATS 263 0.6 0.4 —– —– —– —– 0.6 0.4

Univ 2 100 0.75 0.95 0.0025 —– —– CS 675 0.25 0.01 0.15 0.42 0.01 0.16 0.8 0.2

NYC / Paris 500 0.95 0.75 —– 5 6 —– —– —– —– —– —– —– 0.6 0.4

3.4 Experimental Evaluation

We conduct various experiments to validate the effectiveness of RL-Planner and

compare it with multiple baselines. All algorithms are implemented in Python 3.7

on a macOS Catalina with a 2.4 GHz Quad-Core Intel Core i5 Processor and 16 GB

RAM. Our code and data are available on GitHub.2

3.4.1 Experimental setup

Our effort attempts to answer the following questions:

Q1. How well RL-Planner performs in comparison to baselines?

Q2. How do end users (students or travelers) compare recommendations by RL-
Planner to gold standards?

Q3. How effective is RL-Planner for transfer learning?

Q4. How robust is RL-Planner w.r.t. different parameters?

Q5. How scalable is RL-Planner?

Measures. To answer Q1 and Q4, we present average scores over 10 runs.

Q2 is answered through a user study and user satisfaction is measured on a scale of

1 − 5. We present two representative case studies to answer Q4. The score of each

recommendation is computed using Equation (3.7) for each ideal composition I ∈ IT

and the highest value is selected as the final score. Finally, we study running time to

answer Q5.

2https://github.com/RL-Planner/RL-Planner-ICDE
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3.4.1.1 Datasets. Course Planning: We consider dataset extracted from the

NJIT (Univ-1) and Stanford (Univ-2) websites. The Univ-1 (NJIT) dataset contains

1216 courses comprising 126 degree programs through six professional schools and

colleges. We focus on 3 M.S. degree programs: Data Science-Computational Track

(DS-CT), Cybersecurity, and Computer Science (CS). The hard constraints consider

the number of cores and elective courses while satisfying the gap between a course

and its prerequisites. The Univ-2 (Stanford) dataset contains 3742 courses for four

different departments related to data science. Each course has a title, department

number, department code, course description, prerequisites, minimum and maximum

number of required units. We focus on the M.S. Data Science (DS) program. The

hard constraints are designed considering the number of unit constraints in the

following six sub-disciplines while satisfying prerequisites gaps: a. Mathematical

and Statistical Foundations; b. Experimentation; c. Scientific Computing (includes

software development and large-scale computing); d. Applied Machine Learning and

Data Science; e. Practical Component; f. Elective course in data science. The

actual number of courses per program is 31, 30, 32, and 36 for DS-CT for NJIT,

MS Cybersecurity NJIT, MS CS NJIT, and MS DS Stanford. To form topic vectors,

we extract nouns from course names and removed stopwords. In Univ-1, we get 60,

61, and 100 distinct topics for the DS-CT, Cybersecurity, and for CS. We obtain 73

topics from Univ-2.

Trip Planning: Akin to a prior work of ours [19], we use publicly available

Flickr data to plan trips in NYC and Paris, where the photos are tagged with

corresponding POI names and the respective date/time associated with the photos

define the set of possible itineraries (such as, a set of POIs visited on the same day).

This dataset contains 2908 and 5494 itineraries, respectively. The number of POIs

for NYC and Paris is 90, 114. The hard constraint is considered as the total time

that one will allocate for visitation. We extract the themes/topics of the POIs from
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Google Maps’ Places API which comprises of 21 distinct themes for NYC, and 16 for

the city of Paris. The gap is provided as not visiting two POIs of the same theme

consecutively.

3.4.1.2 Implemented Baselines. We implement two types of baselines.

1. Fully Manual Gold Standard: Course Planning: This is a handcrafted

sequence of courses designed by academic advisors for the relevant degree programs

at Univ-1. For Univ-2, we obtain the gold standard from the website of the degree

program. The gold standard scores (refer to Equation (3.7)) are 10 for Univ-1 and 15

for Univ-2 since the ideal course plans consist of 10 and 15 courses, respectively. Trip

Planning: This is a handcrafted itinerary designed by a domain expert. The average

of gold standard score is presented which is 5, since that is the highest popularity

score of any POI in the dataset.

2. Fully Automated Solutions: We implement two types of automated solutions.

One that performs sequence mining, and the other that adapts exploratory data

analysis (EDA) based solutions. Both of these are model-free and hence can not be

adapted to transfer learning.

• OMEGA: To the best of our knowledge, existing sequence recommendation
algorithms leverage historical data. For the purpose of comparison, we chose
a recent sequence recommendation algorithm OMEGA [133], that leverages
the co-frequency of items (courses and POIs in our case). We non-trivially
adapt it to account for topic/theme coverage and ideal compositions. OMEGA
greedily selects edges in the graph and exploits graph-theoretic properties to
determine an optimal sequence of items from a given set of edges. It first
performs a topological ordering of items in the graph. At each subsequent
iteration, an edge is chosen to maximize the specified utility function based on
the sequence of items induced by the selected edge. OMEGA is NOT designed
to satisfy constraints. Therefore, we adapt it into a two-step process that
generates two sub-sequences and concatenates them. The first sub-sequence is
generated greedily to satisfy the gap constraint. The second is recommended by
OMEGA and is designed to optimize the soft constraint. The two sub-sequences
concatenated together to satisfy the length constraint (number of primary and
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secondary items). Originally, OMEGA uses a matrix that captures the number
of times item i is consumed before item j, for each pair of items. In our
implementation, we redesign it to capture the total number of topics covered
by i and j.

• EDA: To the best of our knowledge, there does not exist any exploratory
data analysis (EDA) based solution [97] that satisfies a multitude of complex
constraints such as ours. We adopt the EDA paradigm by implementing
a greedy method that chooses the action with the highest reward based on
Equation (3.2) in each step. If two actions provide the same result, one will be
picked at random.

3.4.1.3 Default Parameter Settings. Table 3.3 contains default values for all

parameters of our model. After consultation with students and academic advisors

|T ideal | is set to 60 for DS-CT, 61 for Cybersecurity, 100 for M.S. CS for Univ-1, and

73 for Univ-2 M.S. DS. For NYC and Paris, these are 21 and 16, respectively.

3.4.1.4 Summary of Results. Our results demonstrate that: (a) Existing fully

automated approaches are not capable to adapt to sequence recommendations with

a multitude of complex constraints. Both OMEGA [133] and EDA are unable to

generate course plans and trip plans that satisfy the hard constraints most of the time,

RL-Planner generates high-quality course plans and trip plans that are comparable

to handcrafted gold standards; (b) Based on user studies involving 25 data science

computational track (DS-CT) major students, RL-Planner is highly comparable

w.r.t. handcrafted gold standards. RL-Planner gets a 3.39 user satisfaction score

on average out of 5 compared to 3.74 for gold standards. The generated trip plans

by RL-Planner are evaluated by 50 Amazon Mechanical Turk Workers and the gold

standard itineraries are also rated. Itineraries that are generated using RL-Planner

get an average score of 3.94 out of 5 compared to 4.15 for the gold standard; (c)

RL-Planner is effective in transferring policy for both the applications, whereas, the

fully automated baselines can not; (d) RL-Planner is robust to different parameters,

takes reasonable time for learning the policy, and is capable to make interactive
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recommendations in real-time. We conduct two sets of experiments using average

similarity and minimum similarity in our reward function (Equation (3.2)), and

RL-Planner outperforms all baselines in both situations. In certain cases, using

minimal similarity yields a greater score than using average similarity, demonstrating

that the RL-Planner works effectively regardless of the similarity metric used.

3.4.2 Comparison with baselines

We compare the plans generated by RL-Planner to the automated baselines OMEGA,

EDA and to the fully manual gold standard described in Sub-section 3.4.1. Figure 3.1

presents the average scores. We observe that RL-Planner generates plans that are

higher in score than the fully automated baselines for all cases while being very close

to the gold standard. Contrarily, OMEGA fails to produce valid recommendations

most of the time, leading to 0 scores. Despite our non-trivial adaptation, OMEGA

fails to meet the stringent TPP requirements, and EDA generates a lower score

compared to our proposed solutions.

(a) Time to learn policy (b) Time to recommend course plan

Figure 3.1 RL-Planner, OMEGA, EDA, and Gold Standard comparison.
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Table 3.4 Average Ratings: RL-Planner User Study

Questions:
Course Planning Trip Planning

RL-Planner Gold Standard RL-Planner Gold Standard

Overall Rating 3.6 4.12 4.2 4.5

Ordering of Items 3.1 3.4 3.7 4.12

Topic/Theme Coverage 3.6 3.76 3.8 3.9

Core and Elective Interleaving/Distance and Time Threshold 3.24 3.68 4.09 4.11

3.4.3 User studies

We measure user satisfaction with the sequence generated by RL-Planner against

the gold standard. OMEGA or EDA are not considered in this study due to their

low-quality recommendations.

The course planning study involves 25 student volunteers majoring in M.S. DS-

CT at Univ-1, who are highly familiar with the courses. We validate 10 handcrafted

itineraries (five for NYC and five for Paris) generated by domain experts and by

RL-Planner by involving 50 unique AMT workers. Each itinerary is validated by five

unique experienced travelers in NYC and Paris and their average score is presented.

Each worker is paid 50 cents. The students/workers are shown two sequences of

courses: by RL-Planner and the gold standard without revealing which one is which.

Each volunteer is asked to provide a rating for four questions on a scale of 1− 5 with

5 being the best. Our results are summarized in Table 3.4. RL-Planner produces

course/trip plans that are highly comparable to the gold standards across all four

questions, demonstrating its effectiveness.

3.4.4 Case study: Transfer learning

We present the effectiveness of RL-Planner in transfer learning through a small

number of case studies using the Univ-1 dataset and for NYC and Paris trip plans.

Clearly, the automated baselines fail to adapt to transfer learning.
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Course Planning: We learn a policy using M.S. DS-CT to recommend course

plans for M.S. CS and vice versa. Table 3.5 presents the results (the full mapping to

course titles is in Table 3.6). We present cases where both courses accurately meet

all core and elective requirements and all other hard constraints. We also present

less effective cases, when the learned policies produce course plans with one less core

course during transfer learning.

Trip Planning: We learn a policy for NYC and apply it to Paris and vice

versa. The results are shown in Table 3.7. A good sequence is one that meets the

hard constraints, whereas one that does not meet these constraints is deemed to be

a bad outcome. Table 3.8 shows a few results from RL-Planner, the type of POIs in

each itinerary, as well as the time and distance thresholds that each one meets.

Table 3.5 RL-Planner for Course Planning: Transfer Learning between M.S. CS
and M.S. DS-CT

Learnt Policy Applied Policy Sequence of Recommended Courses

M.S. CS M.S. DS-CT
Good:

CS 675 : core → CS 683 : elective → CS 652 : elective → CS 677 : core → CS 639 : elective

→ CS 645 : elective → CS 644 : core →MATH 661 : core → CS 610 : elective → CS 636 : core

Bad:
CS 675 : core → CS 683 : elective → CS 645 : elective → CS 652 : elective → CS 636 : core

→ CS 644 : core → CS 639 : elective → CS 696 : elective → CS 677 : core → CS 634 : elective

M.S. DS-CT M.S. CS
Good:

CS 610 : core → CS 608 : elective → CS 656 : core → CS 667 : core → CS 652 : elective

→ CS 634 : elective → CS 675 : elective → CS 631 : core → CS 630 : core → CS 700B : core

Bad:
CS 610 : core → CS 608 : elective → CS 656 : core → CS 667 : core → CS 652 : elective

→ CS 704 : elective → CS 675: elective → CS 645 : elective → CS 636 : elective → CS 700B : core

3.4.5 Robustness of RL-Planner

We vary one parameter at a time while all other parameters are kept at the default

values (see Table 3.3). The parameters are: Number of Episodes (N), Starting Point

(s1), Learning Rate (α), Discount Factor (γ), Topic/Theme Coverage Threshold (ε),

Reward Function Weights (w1, w2, δ, β). The results for both average and minimum

similarity are summarized in Tables 3.10, 3.9, 3.11 and Tables 3.12, 3.13, 3.14 for
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Table 3.6 Course IDs and Descriptions for RL-Planner

Course Number Course Name

Data Science

CS 675

CS 683

CS 652

CS 677

CS 639

CS 645

CS 644

MATH 661

CS 610

CS 636

Machine Learning

Software Project Management

Computer Networks-Architectures, Protocols and Standards

Deep Learning

Elec. Medical Records: Med Terminologies and Comp. Imp.

Security and Privacy in Computer Systems

Introduction to Big Data

Applied Statistics

Data Structures and Algorithms

Data Analytics with R Program

Computer Science

CS 610

CS 608

CS 656

CS 667

CS 652

CS 634

CS 675

CS 631

CS 630

CS 700B

Data Structures and Algorithms

Cryptography and Security

Internet and Higher-Layer Protocols

Design Techniques for Algorithms

Computer Networks-Architectures, Protocols and Standards

Data Mining

Machine Learning

Data Management System Design

Operating System Design

Master’s Project

Table 3.7 RL-Planner for Trip Planning: Transfer Learning between NYC and
Paris

Learnt Policy Applied Policy Sequence of recommended POIs Score

NYC Paris [’musée du luxembourg’ → ’musée des Égouts de paris’ → ’Église st-sulpice’] 4.3

Paris NYC [’museum of television and radio’ → ’new york university’] 4.5
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Table 3.8 RL-Planner for Trip Planning: Itinerary Description

Itinerary:
Constraints:

Time Threshold (t) Distance Threshold (d) POIs’ Type

NYC
[’battery park’, ’brooklyn bridge’, ’colonnade row’] ≤ 6 ≤ 4 [’park’, ’establishment’, ’museum’]

[’brooklyn bridge’, ’colonnade row’, ’flatiron building’,

’hudson river park’, ’rockefeller center’]
≤ 8 ≤ 5

[’establishment’, ’museum’, ’establishment’,

’park’, ’establishment’]

Paris

[’pont neuf’, ’promenade plantee’, ’sainte chapelle’,

’tour montparnasse’, ’Eglise st-eustache’]
≤ 6 ≤ 5

[’establishment’, ’park’, ’church’, ’establishment’,

’church’]

[’pont neuf’, ’promenade plantee’, ’viaduc des arts’,

’Église st-germain des prés’]
≤ 5 ≤ 5 [’establishment’, ’park’, ’establishment’, ’church’]

Table 3.9 RL-Planner vs. EDA: Parameter Tuning Results Univ-1 M.S. DS-CT

Parameter Topic Coverage Threshold (ε) w1 , w2

Value 0.0025 0.005 0.01 0.0175 0.02 0.4 0.6 0.8 0.2 0.5 0.5 0.6 0.4 0.65 0.35

RL-Planner score using Avg similarity 7.9 5.6 5.6 5.7 5.4 0 0 5.9 7.9 0

RL-Planner score using Min similarity 8.24 6.48 7.6 6 7.48 0 5.44 4.8 8.24 7.36

EDA Score 6.4 3.2 6.4 3.2 0 —– —– —– —– —–
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Univ-1 and Univ-2, respectively. Tables 3.15, 3.16 represent the results for NYC

and Paris. Please note that OMEGA does not have those parameters - hence these

experiments are not applicable to OMEGA. Contrarily, EDA is a model-free solution,

hence some of the aforementioned parameters (such as N , α, γ, and s1) can not be

tuned for EDA. Those results are marked as ”—–” in the tables.

Table 3.10 RL-Planner Parameter Tuning Results Univ-1 M.S. DS-CT

Parameter Number of Episodes (N) Learning Rate (α) Discount factor (γ)

Value 100 200 300 500 1000 0.5 0.6 0.75 0.8 0.95 0.5 0.6 0.9 0.95 0.99

RL-Planner score using Avg similarity 3.2 5.6 5.6 7.9 4.5 3.2 4.2 7.9 4.8 5.8 4.8 5.6 5.6 7.9 5.6

RL-Planner score using Min similarity 5.68 5.72 7.92 8.24 6.08 5.6 6.28 8.24 5.36 4.08 4.16 7.48 8.08 8.24 7.2

Table 3.11 RL-Planner vs. EDA: Parameter Tuning Results Univ-1 M.S. DS-CT

Parameter Starting Point (s1) δ , β

Value CS 644 CS 636 CS 675 MATH 661 0.4 0.6 0.45 0.55 0.5 0.5 0.55 0.45 0.6 0.4

RL-Planner score using Avg similarity 7.2 7.1 7.9 7.2 5.6 4.8 3.2 6.2 7.9

RL-Planner score using Min similarity 8.24 2 6.36 6 5.6 6.72 6.16 8.24 8.24

EDA Score —– —– —– —– 4.8 4 3.2 6.4 6.4

Table 3.12 RL-Planner vs. EDA: Parameter Tuning Results Univ-2 M.S. DS

Parameter Number of Episodes (N) Learning Rate (α) Discount Factor (γ) Topic Coverage Threshold (ε)

Value 100 200 300 500 1000 0.5 0.6 0.75 0.8 0.9 0.7 0.75 0.8 0.9 0.95 0.0025 0.005 0.01 0.015 0.02

RL-Planner score using Avg similarity 10 10 10 11 10 11 11 10 9 11 10 11 11 10 10 11 10 11 9 10

RL-Planner score using Min similarity 12 11 10.4 11.2 6.2 11.2 11.4 12 10.8 11 10.8 11.8 11 11.2 12 12 10.6 10.6 11.6 11.4

EDA Score —– —– —– —– —– —– —– —– —– —– —– —– —– —– —– 9 9 10 11 11

If the hard constraints are not satisfied, those are marked with values 0 in Tables

3.9 and 3.14.

Course Planning: For Univ-1 (Table 3.11), we notice that starting with any

of the acceptable starting core courses, has minimal impact on the performance of the
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Table 3.13 RL-Planner Parameter Tuning Results Univ-2 M.S. DS

Parameter w1, w2, w3, w4, w5, w6

Value 0.2 0.01 0.16 0.4 0.01 0.22 0.21 0.01 0.15 0.41 0.02 0.2 0.25 0.01 0.15 0.4 0.01 0.18

RL-Planner score using Avg similarity 13 12 11

RL-Planner score using Min similarity 11.6 11.6 12.2

Table 3.14 RL-Planner vs. EDA: Parameter Tuning Results Univ-2 M.S. DS

Parameter Starting Point (s1) δ , β

Value STATS 263 MS&E 237 0.2 0.8 0.3 0.7 0.4 0.6 0.6 0.4 0.7 0.3 0.8 0.2

RL-Planner score using Avg similarity 11 10 10 10 10 10 11 11

RL-Planner score using Min similarity 12 10.4 0 0 0 0 11 12

EDA Score —– —– 10 9 10 9 10 12

Table 3.15 RL-Planner vs. EDA: Parameter Tuning Results Trip Planning

Parameter Number of Episodes (N) Learning Rate (α) Discount Factor (γ) Distance Threshold (d)

Value 100 200 300 500 1000 0.5 0.6 0.75 0.8 0.95 0.5 0.6 0.75 0.8 0.95 4 5

NYC RL-Planner score using Avg similarity 4.6 4.53 4.6 4.63 4.6 4.63 4.63 4.6 4.6 4.63 4.63 4.63 4.63 4.5 4.47 4.8 4.63

NYC RL-Planner score using Min similarity 3.76 4.56 4.6 4.6 4.55 4.33 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.59 4.59 4.6

NYC EDA Score —– —– —– —– —– —– —– —– —– —– —– —– —– —– —– 3.65 3.33

Paris RL-Planner score using Avg similarity 4.5 4.58 4.58 4.56 4.44 4.63 4.6 4.6 4.63 4.63 4.63 4.63 4.63 4.5 4.47 4.47 4.56

Paris RL-Planner score using Min similarity 4.6 4.6 4.58 4.53 4.52 4.58 4.58 4.56 4.52 4.53 4.54 4.58 4.53 4.58 4.52 4.58 4.53

Paris EDA Score —– —– —– —– —– —– —– —– —– —– —– —– —– —– —– 3.33 2.26

Table 3.16 RL-Planner vs. EDA: Parameter Tuning Results Trip Planning

Parameter Time Threshold (t) δ , β

Value 5 6 8 0.4 0.6 0.45 0.55 0.5 0.5 0.55 0.45 0.6 0.4

NYC RL-Planner score using Avg similarity 4.625 4.63 4.74 4.6 4.6 4.6 4.45 4.63

NYC RL-Planner score using Min similarity 2.33 4.6 4.6 4.62 4.6 4.61 4.59 4.62

NYC EDA Score 3.55 3.33 3.57 3.52 3.42 3.12 4.4 3.33

Paris RL-Planner score using Avg similarity 4.4 4.56 4.42 4.58 4.58 4.5 4.52 4.53

Paris RL-Planner score using Min similarity 4.52 4.53 4.58 4.56 4.56 4.58 4.56 4.56

Paris EDA Score 2.9 2.27 4.1 1.8 3.14 3 2.3 2.3
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model. We also note that our reward parameters are best at δ = 0.6, β = 0.4, w1 =

0.6, w2 = 0.4. We also observe that reducing the threshold for accepting an action

improves the score and that setting the discount factor (γ) at 0.95 and learning rate

(α) at 0.75 produce the best set of results. Overall, these results demonstrate that

RL-Planner is robust.

Similar results are observed for Univ-2 (Tables 3.12, 3.13, 3.14). We observe

RL-Planner performs well for all parameter values and is stable with respect to the

starting point, as there is not much variation in the score with a changing start point.

These results corroborate the robustness of RL-Planner with different parameters.

Trip Planning: For NYC and Paris, changing the learning rate (α) and the

discount factor (γ) (Table 3.15) does not have a high impact on the final score and

the results are stable with respect to reward’s weights (δ, β).

3.4.6 Scalability evaluation

We explore the time taken to learn a policy and recommend a course plan based on

the learned policy. We vary the number of episodes. All other parameters are held

at the default values. In Figure 3.2 (a)(c), we plot the time taken to learn a policy

against the number of episodes. We observe that the time taken to learn a policy

increases linearly with the number of episodes. In Figure 3.2 (b)(d), we plot the time

taken to apply a learned policy w.r.t. the number of episodes we train against. The

time taken to recommend course plans is only a few seconds which means it can be

used in interactive mode.

3.5 Related Work

We review four types of work: (1) Sequence Recommendation, (2) Course Recommen-

dation, (3) Trip Recommendation, and (4) Reinforcement Learning and Guided EDA.
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(a) Time to learn policy (b) Time to recommend course plan

(c) Time to learn policy (d) Time to recommend trip plan

Figure 3.2 RL-Planner scalability results.
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3.5.1 Sequence recommendation

Sequence recommendation is explored in [133], [22] , [111] and [125]. In [133], a

Directed Acyclic Graph is used to model sequential dependencies, and a novel class of

utility functions is provided to extend the expressive power of Sub Modular functions.

The OMEGA algorithm is proposed and provides a constant factor approximation

guarantee when applied to a DAG, to produce an ordering which maximizes a given

utility function. This algorithm, however, has a high run time and is improved upon

by an edge-based algorithm [22]. However, both [133] and [22] do not account for

constraints or prerequisites when producing a sequence of items, which is crucial for

TPP.

In [81], Jiang et al., 2016 develop a framework that automatically mines user and

route data, to build an optimal route that provides a personalized sequence of POIs for

users visiting a city. Caser is represented in [130] that leverages Convolutional Neural

Network for capturing both general preferences and sequential patterns. SASRec [85]

balances Markov Chains and Recurrent Neural Network approaches to make sequence

recommendations.

In [111], Quadrana et al., 2018 propose techniques to mine logs for capturing

short-term user interests combined with long-term sequential patterns for making

sequence recommendations. They also acknowledge that applications such as course

and trip recommendations require consideration of constraints. In [125], the notion

of satisfaction and disagreement is used to present the problem of sequential group

recommendations. They mainly concentrated on aggregating the recommendation

lists of individual group members into a group list. SDAA, SIAA, and Average+ are

three new methods for aggregating group members’ recommendation lists that were

studied by Stratigi et al., 2021.

As shown experimentally, the above algorithms do not adapt well to constrained

sequences, as is needed to solve TPP.
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3.5.2 Course planning

The use of recommendation systems for course predictions for students has been

extensively studied in [21, 23, 41, 44, 54, 57, 58, 82, 103, 129]. CourseRank [23], is a

popular course planning platform developed at Stanford University. The platform

provides useful course feedback on specific courses as well as course recommendations

based on existing courses or preferences. Bercovitz et al., 2009 demonstrate the

need for an accurate course planning tool to assist students in fulfilling their needs

whilst navigating complex degree requirements. Our work achieves a similar goal

using reinforcement learning techniques as well as provides a personalized learning

experience that helps a student acquire expertise on a topic whilst also completing

their degree. In [103], Parameswara et al., 2011 acknowledge the importance of

prerequisites and ordering when recommending courses to a college student. However,

adding complex prerequisites (such as AND/OR) in their context requires the use

of an Integer Linear Programming algorithm which is found to be slow when

recommending courses using the Extended Model described in the paper. In [41]

a hybrid algorithm, using Collaborative Filtering and Sequential Pattern Mining

algorithms, is used to propose a list of learning items in an e-learning setting as

per a given user’s interests. Grade prediction and top-n course recommendation

problems are studied in [57] using collaborative filtering and popularity ranking, and

a follow-up work proposes a hybrid of the Random Forest and Matrix Factorization

in [129] for this. Ebner et al., 2011 [54] develop a personalized learning environment

(PLE) using widgets for a university, which point to web resources to help students

find relevant resources.

The approaches above heavily rely on existing logs or social networks to make

recommendations, which is not the case in our work.
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3.5.3 Trip planning

How to recommend trips that are personalized have been studied in many recent

related works [10,39,43,62,68], including our own [19]. Unlike our proposed solutions,

most of these do not account for a multitude of constraints, except for [68]. Unlike

these works, we study trip planning as a guided planning problem with the goal of

making an agent learn from the environment on the go and take actions based on

that.

From the perspective of solution design, existing approach designs combinatorial

solutions, heavily rely on logs or training data to model user preference, which is not

the case in our work.

3.5.4 RL and guided EDA

RL has a broad range of applications in problems with dynamic environments where

an agent needs to learn behavior through trial and error and has been studied in [63,

84,105,138]. Our guided task planning bears similarity to guiding users in performing

Exploratory Data Analysis (EDA), a well-studied problem. Numerous works proposed

next-step recommendations [97], by using logs of previous operations (e.g., [55]),

or by relying on real-time feedback [53, 77]. Fully automated generation of EDA

sessions has been examined in [18,117]. The use of Reinforcement Learning (RL) for a

recommendation of user groups or sequences of EDA techniques has been documented

in [117] and [18] respectively. In [117], RL is used to allow an agent to learn a policy

that helps find a set of target users (such as forming a conference PC). In [18], deep

RL is used to produce an ideal set of EDA strategies to explore a dataset. The

objective is to provide meaningful EDA notebooks for use in data analysis. In [99],

Narvekar et al., 2017 propose how to design a curriculum through transfer learning.

The problem is formulated as an MDP for training the agents through a series of

tasks and solved using RL.
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Existing work on guided EDA (either next-step recommendation or end-to-

end guidance) does not handle the intricacies of the constraints we consider in our

framework. We will nevertheless adopt a next-step EDA to create a baseline for our

experiments.

The closest to our work is the area of safe reinforcement learning [63], which

is defined as the process of learning policies that maximize the expectation of the

return in problems in which it is important to ensure reasonable system performance

and/or respect safety constraints. In particular, our work borrows inspiration from

constrained MDPs [65,66], for which linear programming, weighted sum, state space

extension, and recursive formulation of the constraints-based approaches are known.

In [66], the reward function is designed by weighting the original value function and

the risk associated with constraints. The weight parameter is adapted in order to

find a feasible solution for the constrained problem that has a good performance with

respect to the value function.

Our proposed solution bears similarity with the weighted approach, although

traditional weighted RLs do not have to deal with multiple soft and hard constraints,

such as TPP.

3.6 Conclusion

We formalize task planning as a constrained sequence generation problem. We present

a computational framework RL-Planner for task planning, especially for scenarios

where little to no data is available as logs that specify students’ past preferences. RL-

Planner requires minimal input from domain experts, yet produces personalized plans.

We adapt reinforcement learning to learn a policy that satisfies item interleaving,

requirements, and item features. We compare our solutions with item plans drafted by

human experts and with fully automated ones. Our experiments corroborate that our

proposed model and solution recommend high-quality plans. We also experimentally
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demonstrate that RL-Planner is effective in transfer learning using several real-world

data in the education and trip planning domains.

In the future, we would like to investigate an adaptive approach to task planning

that leverages feedback. Feedback could come as binary values (useful item/ not

useful), categorical ratings (e.g., on a scale of 1− 5), or as a probability distribution.

This will allow us to create a loop that accounts for effectiveness and incorporate

that in future design choices. We are also interested to investigate how to design a

small number of agents that are cooperatively equipped to plan a large number of

task plans.
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CHAPTER 4

DIVERSIFYING RECOMMENDATIONS ON SEQUENCES OF SETS

4.1 Introduction

Diversity aims to improve user experience by addressing the problem of over-

specialization, where a user receives recommendations that are often too similar

to each other. To create online music playlists, users organize songs into channels

and listen to a few songs within the same channel before switching to the next

channels to listen to other artists in the same genre or to experience different music

styles. On crowdsourcing platforms, workers complete a small set of tasks at a time

(session) and sequences of sessions within a finite time (for example, half a day).

Diversifying recommendations inside (Intra) and across (Inter) sessions is natural for

such applications to improve user satisfaction and engagement.

Recommending playlists during a long drive may need to minimize both Intra

and Inter session diversities to generate songs by the same artist within a channel

and similar beats across channels. Contrarily, designing playlists for a theme party

is best done by composing songs from the same period within a channel (90’s,

60’s, etc) and different styles across channels (thereby minimizing Intra diversity on

release date within a session and maximizing Inter diversity on style across sessions).

Similarly, in crowdsourcing, it may be ideal to recommend tasks requiring similar skills

within a session and different completion times across sessions. Whereas, workers

who have multiple expertise may be recommended tasks with different skills in a

session and different rewards across sessions. More generally, applications may require

minimization or maximization of Intra and Inter diversities.

These aforementioned scenarios have three things in common: first, diversity

needs to be accounted for in the design of a sequence of sets of recommendations.
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Second, both minimization and maximization of diversity are meaningful. Finally,

the dimensions on which Intra and Inter session diversities are expressed are item

features that may not be related - hence they cannot be combined. We present

a framework that satisfies all three requirements focusing purely on diversity and

assuming that the items consumed by the framework are always suitable (relevant)

to the user.

Our goal is to develop an algorithmic framework for Inter and Intra session

diversities in tandem with the goal to recommend k sessions to a user, with a small

number l of relevant items in each, yielding a total of N = k × l items 1. Intra

and Inter diversities can be either minimized or maximized which gives rise to a

bi-objective formalism to express four problem variants (Sub-section 4.2.2). We also

study the relaxed version of our proposed framework where the sessions are of varying

lengths and the total number of items recommended to the user is a subset of N

items. To the best of our knowledge, our work is the first attempt to combine set

and sequence diversities, two problems extensively studied individually in search and

recommendation [2, 12,42,60,74,75,100,109,110,112,134,140,142,143,146].

Our second contribution is theoretical. We first study each of the Intra

and Inter diversity optimization problems individually and find that irrespective of

minimization or maximization, the Inter problem is NP-hard (Sub-section 4.2.3).

We also prove that the Intra minimization problem can be optimally solved in

polynomial time. However, the complexity of each bi-objective problem remains

NP-hard (because Inter optimization is NP-hard).

Our third contribution is algorithmic (Section 4.3). We design principled

solutions with provable guarantees for Intra and Inter problems individually. Algorithm

Ex-Min-Intra runs in O(NlogN) time and produces an exact solution to the Min-Intra

problem. For Min-Inter and Max-Inter, algorithms Ap-Min-Inter and Ap-Max-Inter

1A preliminary version of this work has got accepted in The Web Conference, 2021 [59].
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achieve 4−2/k- and 1
2
-approximation factors, respectively. We also design an efficient

1
2−1/k

-approximation algorithm Ap-Max-Intra to solve the Max-Intra problem.

Additionally, we investigate an alternative formulation (Sub-section 4.2.4) of all

four problems to a corresponding constrained optimization problem, with the goal of

obtaining one point from the Pareto front. The idea is to optimize Inter diversity,

subject to constraining Intra diversity. The constraint on Intra is obtained by solving

the Intra optimization first. There exists more than one benefit to this approach.

First, in one of the two cases (i.e., Minimization) Intra is tractable and easier to solve,

therefore, finding the optimal constraint value is computationally efficient. More

importantly, the constrained optimization problem aims at finding one point in the

Pareto front, which is perfectly acceptable, as the points in the Pareto front are

qualitatively indistinguishable (unless further information is available). When Inter

problems are optimized subject to constraining Intra, the combined solutions hold

guarantees for two out of the four problems (Sub-section 4.3.4). Tables 4.2 and 4.3

summarize our theoretical and algorithmic results.

Our last contribution is experimental. We consider two real-world applications

and conduct multiple experiments involving 400 human subjects, as summarized in

Table 4.4, for music and task recommendation. We additionally perform large-scale

experiments using real and simulation data to validate the properties of our designed

algorithms. In music recommendation (Sub-section 4.4.1), our results highlight, with

statistical significance, that user satisfaction is higher when playlists are recommended

considering diversity and the preferred diversity scenario depends on the underlying

context. In task recommendation, our results show the benefit of diversification in

task sessions across different session gaps or time intervals between sessions. Our

algorithms achieve higher quality and worker satisfaction with statistical significance,

than a baseline with No-diversity in all the specified session gaps.
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Table 4.1 Task Skill and Reward

Task Skill Reward Task Skill Reward Task Skill Reward

t1 0.5 0.3 t2 0.51 0.4 t3 0.54 0.49

t4 0.59 0.50 t5 0.6 0.23 t6 0.63 0.4

t7 0.69 0.1 t8 0.7 0.60 t9 0.79 0.36

t10 0.8 0.12 t11 0.89 0.55 t12 0.93 0.34

Sub-section 4.4.2 investigates approximation factors and the scalability of our

algorithms against several non-trivial baselines. We observe that in most cases, our

algorithms produce approximation factors that are very close to 1. For the cases where

the approximation factor is slightly worse, the solution is close enough. Finally, we

also observe that our approach is faster and highly scalable when varying the number

of items and the number of sessions considering different data distributions. We

present related works in Section 4.5 and conclude in Section 4.6.

4.2 Formalism and Problem Analysis

For the purpose of illustration, we describe a simple running example of recommending

task sessions in crowdsourcing. The same example could be used for streaming music.

Example 4.1. Consider a set of N = 12 tasks, which are most relevant to a specific

worker. Table 4.1 shows two dimensions of these tasks. The first dimension is the

skill requirement of the task as provided by the requester. The second dimension is

the task reward. We want to recommend four (=k) sessions, each containing three

(=l) tasks.
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4.2.1 Data model

Item. An item has a set of dimensions. tdi represents the d-th dimension of the i-th

item. Using Example 4.1, task t1 is represented by two dimensions, < 0.5, 0.30 >. In

the case of a song, examples of dimensions are artist, vibe, genre, etc.

Session. A session s consists of a set of l items that can be consumed in any

order.

Sequence. A sequence of sessions is an ordering of k sessions S =<

s1, s2, . . . , sk > where sessions are presented to a user one after another.

Intra Diversity. Given a dimension d, the diversity of a set of items in a

single session s is referred to as Intra and defined by capturing how each item in that

session deviates from the average, considering d, and taking an aggregate over l items

as follows:

Intrad(s) =
l∑

i=1

(tdi − µds)2 (4.1)

where tdi is the value of dimension d of item ti and µds is the average of d values

of items in session s. Intra essentially captures the variance of a set of items for

a dimension d. Following Example 4.1, if the session s1 consists of {t1, t3, t5}, then

Intraskill(s1) = 0.005.

Inter Diversity. The diversity of items between two consecutive sessions is

referred to as Inter and is defined for two consecutive sessions for a dimension d as

follows:

Interd(si, si+1) = (µdsi − µ
d
si+1

)2 (4.2)

which captures the difference between the average of two consecutive sessions. Given

S =< {t1, t3, t5}, {t2, t4, t6}, {t7, t8, t9} >, InterReward(S) = (0.34− 0.433)2 + (0.433−

0.35)2 = 0.015 using Example 4.1 .

55



Changing the aggregation function from square to the exact definition of

variance (i.e., divide it by the number of items in the session), taking the square root of

the current definition, or changing the solutions to standard deviation will not require

any changes in the solution and approximation factor, because these definitions are

technically equivalent. In fact, the approximation factors remain unaltered for many

popular distance functions that are part of the Minkowski family, such as L1, L2, and

L∞. Other set-based [2] and sequence-based [146] definitions could be considered in

future work.

For the simplicity of illustration, we use one dimension at a time to model

diversity. For all practical purposes, both Intra and Inter dimensions could be

designed to reflect multiple attributes by combining them and allowing overlap.

We explicitly chose to handle one attribute at a time because we believe that

diversity becomes more difficult to perceive users when combining several attributes.

That is further exacerbated by the fact that users have to perceive Intra and Inter

diversities at once. The use of a single attribute for Intra and for Inter allowed us to

focus on the algorithmic and theoretical contributions. There is however a workaround

to reduce any number of dimensions to one for each type of diversity by combining

their values with a weighted linear function as in MMR [37].

4.2.2 Problem definitions

We formalize our problems and propose to do that in two stages: we first focus on

producing Fixed Length Sessions that consume all input items, and we then relax our

problem to produce Variable Length Sessions that consume only a subset of input

items. This allows us to study Fixed and Variable Length Sessions in conjunction

with consuming all versus some input items. The problems of Fixed Length Sessions

with all input items and the problem of Variable Length Sessions with a subset of

input items are omitted as they are subsumed by the ones formalized in this paper.
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4.2.2.1 Fixed Length Sessions. Given N items, we are interested in finding a

sequence S =< s1, . . . , sk > of k sessions, each consisting of l items. We consider

four problem variants all of which are instances of a general problem formalized as

follows:

Optimize-Intra, Optimize-Inter. Given a set of N items with two

dimensions of interest d and d′ on Intra and Inter respectively, we are interested

in creating a sequence S =< s1, ..., sk > of k sessions, each containing l items, s.t.

N = k × l and

optimize
S

k∑
i=1

(Intrad(si))

optimize
S

k−1∑
i=1

(Interd
′
(si, si+1))

s.t.

|S| = k, |si| = l, N = k × l

(4.3)

4.2.2.2 Variable Length Sessions. Given N items, we are interested in finding

a sequence S =< s1, . . . , sk > of k sessions, with length L =< l1, . . . , lk > s.t. li ≤

l; ∀i = 1, . . . , k. We consider four problem variants all of which are instances of a

general problem formalized as follows:

Optimize-Intra, Optimize-Inter. Given a set of N items with two

dimensions of interest d and d′ on Intra and Inter respectively, we are interested

in recommending a subset of items by creating a sequence S =< s1, ..., sk > of k

sessions with length L =< l1, . . . , lk > s.t. li ≤ l; ∀i = 1, . . . , k, and N = k × l
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optimize
S

k∑
i=1

(Intrad(si))

optimize
S

k−1∑
i=1

(Interd
′
(si, si+1))

s.t.

|S| = k, |si| = li, li ≤ l,
∑
∀i

li < N, N = k × l

(4.4)

We refer to Sub-section 4.4.2 for further details.

4.2.3 Analysis of the problems considering fixed length sessions

We analyze the complexity of Intra and Inter diversities. This exercise allows us to

analyze the nature of these problems and sheds light on designing principled solutions.

4.2.3.1 Intra Diversity Optimization.

Theorem 4.1. Min-Intra is Polynomial time solvable.

Proof. Minimizing Intra diversity is akin to grouping a set of points in a line to

produce the smallest aggregated variance. This requires sorting the points based on

the Intra dimension d and grouping every l points to create a session. Clearly, this is

polynomial-time solvable.

Theorem 4.2. Optimizing Max-Intra is NP-Hard.

Proof. The proof of this theorem uses another claim that we prove later (Theorem 4.6).

This latter theorem formally proves that Max-Intra happens (
∑k

i=1(Intra(si)) is

maximized) if the mean of each session is equal (or very close) to the global mean of

all N items for the specific dimension d. We omit the superscript d from the proof

and ti is considered as the value of the item ti for dimension d. Since groups have the

same size l, the problem is akin to finding groups of items whose sum is equal:

58



∑
ti∈s1

ti =
∑
ti∈s2

ti = · · · =
∑
ti∈sk

ti (4.5)

To prove NP-hardness we reduce an instance of the k-Equal Subset Sum of

Equal Cardinality Problem (k-ESSEC) [45] to an instance of Max-Intra, as follows.

Given an instance of k-ESSEC with P = {a1, ..., aN} which are N positive integers

and k, we set the items ti = ai and k remains the same. A solution to the k-ESSEC

with k disjoint subsets, each with equal value sum(s1) = sum(s2) = . . . = sum(sk)

occurs, iff a solution of the Max-Intra exists with l = N/k and µsi = µsglobal =
ΣN

i=1ai
N

.

4.2.3.2 Inter Diversity Optimization. The Inter diversity problem aims to find

a sequence of k sessions of length l that will optimize the aggregated Inter distance

computed on a dimension d over all k sessions in that sequence.

Theorem 4.3. Inter Problem (both Min and Max) is NP-Hard.

Proof. (Sketch) We show the NP-hardness for the Min-Inter case, and the maximization

works analogously. To prove the NP-hardness of the Min-Inter problem, we reduce

an instance of the known NP-hard problem Hamiltonian Path problem [64] to an

instance of the Min-Inter problem. Consider an instance of the Hamiltonian Path

problem with G = (V,E), where V is the set of nodes and E is the set of edges. Each

node vi ∈ V represents l items with the same value on the dimension of interest.

Essentially, these l items form a session. For assigning the Inter diversity of two

sessions, we first deal with the non-edges in G. For each edge (vi, vj) /∈ E, we set

the µsi and µsj such that ||µsi − µsj || > X (where X is an integer) and for each

edge (vi, vj) ∈ E, we create ||µsi − µsj || ≤ X. This creates an instance of Min-Inter

problem with |V | (i.e., k for Min-Inter) sessions, each with l items. Clearly, this

reduction can be done in polynomial time. Figure 4.1 shows such a reduction from
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Figure 4.1 Reduction: Hamiltonian path to the Inter problem.

an example graph, where X = 15. Now a Hamiltonian Path exists in G, iff Min-Inter

value is < X2 × |V |.

Theorem 4.4. The bi-objective optimization problems combining Intra and Inter

diversity are all NP-Hard.

Proof. (Sketch) We omit the formal proof for brevity - but it is easy to show that the

NP-hardness remains for each of the four bi-objective problems since the individual

optimization problems are NP-hard.

4.2.4 Modified problem definitions of fixed length sessions

As proved in Theorem 4.4, each of the four bi-objective optimization problems is

NP-hard. In fact, two ((Min-Inter, Max-Intra) and (Max-Inter, Max-Intra)) out

of the four problems are NP-hard on both objectives. Upon careful investigation,

we propose an alternative formulation of each of these bi-objective problems to a
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corresponding constrained optimization problem, with the goal of obtaining one point

from the Pareto front. The idea is to optimize Inter diversity, subject to the constraint

of Intra diversity.

The constraint on Intra is obtained by solving the Intra optimization first. There

exists more than one benefit to this approach. First, in one of the two cases (i.e.,

Minimization) Intra is tractable and easier to solve, therefore, coming up with the

optimal value of the constraint is computationally efficient. More importantly, the

constrained optimization problem aims at finding one point in the Pareto front,

which is perfectly acceptable, as the points in the Pareto front are qualitatively

indistinguishable (unless further information is available).

min(max)
S

k−1∑
i=1

(Interd2(si, si+1))

s.t.

k∑
i=1

(Intra(si))x <= OPTIntrad1

|S| = k, |si| = l, N = k × l

(4.6)

where OPTIntra is the optimal solution of the Intra problem.

Using Example 4.1, the sequence

S =< {t5, t6, t7}, {t1, t2, t3}, {t9, t10, t11} >

minimizes the IntraSkill score but at the same time maximizes the InterReward score

whereas

S ′ =< {t1, t2, t3}, {t9, t10, t11}, {t5, t6, t7} >

minimizes the IntraSkill and minimizes the InterReward.
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Table 4.2 Optimization Algorithms and Results for Fixed Length Sessions

Algorithm Running Time Approx Factor

Ex-Min-Intra O(NlogN) Exact

Ap-Max-Intra O(NlogN +Nl) 1
2−1/k

Ap-Min-Inter O(NlogN + k2 + logk) 4− 2/k

Ap-Max-Inter O(NlogN + k2 + logk) 1/2

.5	.51			.54						.59	.6			.63									.69	.7											.79		.8																				.89										.93														

Skills	of	the	12	tasks	sorted	in	increasing	order	

Figure 4.2 Sorted Intra diversity of skills.

4.3 Optimization Algorithms

We design optimization algorithms for the Intra and Inter problems individually,

following which, we study how to solve the constrained optimization problem

(Equation (4.6)). Table 4.2 summarizes our technical results.

4.3.1 Algorithm Min-Intra

4.3.1.1 Fixed Length Sessions. The objective here is to design k sessions, each

of length l, such that the aggregated Intra diversity over the k sessions is minimized.

Specifically, if there are l values associated with a dimension in a session, the Intra

diversity is the variance of those points that is to be minimized here.

With an abstract representation, once sorted, the dimension values of N items,

fall on a line, as shown in Figure 4.2. Therefore, if the aggregated variance is to be

minimized, it is intuitive that the sessions need to be formed by grouping l values

that are closest to each other.
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Thus our proposed Ex-Min-Intra algorithm for minimizing Intra diversity first

sorts the values of the dimension of interest. After that, it starts from the smallest

value and finds each consecutive l points to form a session.

Theorem 4.5. Algorithm Ex-Min-Intra is exact.

Proof. (Sketch) Let us assume that our algorithm does not produce an exact solution.

That means there exists another algorithm that produces a solution with smaller Intra

diversity than that of Ex-Min-Intra. Suppose this other algorithm uses another way

to create the sessions. Of course, this is different from sorting the items by increasing

the value of the dimension of interests and grouping each l of them starting from the

smallest one. However, that is a contradiction because then the latter algorithm will

have a larger Min-Intra value, as l non-consecutive points will have higher variance

than consecutive ones. Hence the proof.

Lemma 4.1. Algorithm Ex-Min-Intra runs in O(NlogN).

Proof. Since the only required operation is sorting, the running time of the algorithm

will take O(NlogN).

4.3.1.2 Variable Length Sessions. For the Variable Length Sessions problem,

we group the items depending on the specified input length after sorting them. To

clarify more, in Example 4.1, if we are given [2, 3, 2, 3] as the sessions’ length input,

we choose the first two items after sorting as the first session, then the following three

items as the second session, and so on.

4.3.2 Algorithm Max-Intra

As proved in Sub-section 4.2.3, Max-Intra is NP-hard. What makes it computa-

tionally intractable is that when the objective is to maximize variance, the search

space has to be combinatorially explored.
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We show that Max-Intra is optimized when all sessions have the same mean,

which is equal to the global mean µglobal. This proof is critical, as it helps us design

our solution. Theorem 4.6 has the formal statement.

Theorem 4.6.
∑k

i=1(Intra(si)) is maximized when

µds1 = µds2 , . . . = µdsk = µglobal (4.7)

Proof. The theorem states that the objective is maximized when the means of all

sessions are equal, which in turn are equal to the global mean. It is indeed true that

when µds1 = µds2 , . . . = µdsk , the global mean µglobal = 1
N

∑N
j=1(tdj ) =

k×µdsi
k

= µdsi

Our intention is to prove that
∑k

i=1(Intra(si)) is maximized when this

aforementioned scenario occurs. For ease of exposition, we omit the superscript d

from the proof.

We do the proof by the method of contradiction. Consider two different sets of

k sessions, S and S ′. For S = s1, s2, . . . , sk, we have µs1 = 1
l

∑
t∈s1 t and similarly for

other si ∈ S. For S ′ = s′1, s
′
2, . . . , s

′
k where

µs′1 = µs′2 = . . . = µs′k = µglobal =
1

k ∗ l
∑

t (4.8)

We also assume, Intra(S) > Intra(S ′).

Intra(S) =
∑
si

Intra(si)

=
∑
t∈s1

(t− µs1)2 + . . .+
∑
t∈sk

(t− µsk)2

=
N∑
i=1

t2i − l(µ2
s1

+ µ2
s2

+ . . .+ µ2
sk

)

(4.9)

Intra(S ′) =
N∑
i=1

t2i − klµ2
global (4.10)
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According to our assumption, Intra(S) > Intra(S ′) this means that,

N∑
i=1

t2i − l(µ2
s1

+ µ2
s2

+ . . .+ µ2
sk

) >
N∑
i=1

t2i − klµ2
global (4.11)

which after considering µopt =
µs1+µs2+...+µsk

k
we get,

µ2
s1

+ µ2
s2

+ . . .+ µ2
sk
< 0 (4.12)

which is a clear contradiction, hence the proof.

4.3.2.1 Fixed Length Sessions. Theorem 4.6 provides a useful insight, that is,

to maximize the Intra, we need to form the k sessions in such a way that the means

of all the sessions are equal or very close to each other. Algorithm Ap-Max-Intra

is iterative and greedy and it relies on this principle to create sessions that satisfy

this property. First, it creates l bins, each has k different slots. The bins are then

initialized so that each contains a subset of k items from the set of items that are

sorted in ascending order. Then, in the third step, each of the l bins are scored using a

scoring function described in Definition 4.1 , which captures the maximum difference

between the average of all items and the ones in each bin. Finally, it merges the two

bins with the highest and lowest scores greedily. The final two steps are repeated

iteratively. This process is repeated for l − 1 times.

Definition 4.1. (Score of the i-th bin:)

d(bi) = max{|µglobal − argmax
∀j

bij|, |µglobal − argmin
∀j

bij|}

This scoring function captures the largest difference between items in a bin and

the global average, allowing the highest and lowest-scoring bins to be merged. If we

do this, as we proved in Theorem 4.6, the sessions created at the last step have an

average near to µglobal, which maximizes the Intra value.
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𝑇 = {0.5,0.51,0.54,0.59,0.6,0.63,0.69 ,0.7,0.79,0.8,0.89,0.93}

Step 1: 𝑏 =
[] ⋯ []
⋮ ⋱ ⋮
[] ⋯ []

Step 2: 𝑏+×- =
[0.5] [0.51] [0.54] [0.59]
[0.6] [0.63] [0.69] [0.7]
[0.79] [0.8] [0.89] [0.93]

Step 3:
𝑑 𝑏8 = max 0.68 − 0.59 , 0.68 − 0.5 = 0.18
𝑑 𝑏> = max 0.68 − 0.6 , 0.68 − 0.7 = 0.08

𝑑 𝑏? = max 0.68 − 0.79 , 0.68 − 0.93 = 0.25

Step 4: 𝑀𝑒𝑟𝑔𝑒(𝑏>, 𝑏?)
0.5 0.51 0.54 0.59

0.6,0.93 0.63,0.89 0.69,0.8 0.7,0.79

Figure 4.3 Ap-Max-Intra steps on Example 4.1.

To illustrate the solution further, bij represents the j-th slot in bin i, which is

kept as a placeholder for j-th session. To initialize the bins, we first sort the items

in increasing order on the dimension of interests. Next, in the i-th bin 1 ≤ i ≤ l,

we put the sorted items t(i)∗k+j in bij. Using Example 4.1, this amounts to creating

three bins of tasks where b1 = {[t1], [t2], [t3], [t4]}, b2 = {[t5], [t6], [t7], [t8]}, and b3 =

{[t9], [t10], [t11], [t12]}. In step 3, each bin is scored, based on d(bi), as presented in

Definition 4.1. Then two bins i and j are merged that have the largest and smallest

score respectively. Going back to the Example 4.1, the scores are calculated as follows

d(b1) = 0.18 , d(b2) = 0.08, and d(b3) = 0.25 and b2 and b3 are merged. Figure 4.3

details these steps.

To merge b with b′, where b has the largest score and b′ has the smallest score,

we create a new bin bmerge such that, bmergeij contains the m-th smallest items of b and

m-th largest items of b′ (1 ≤ m ≤ k). Considering Example 4.1, the new bin bmerge is
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created by combining b2 and b3 , such that

bmerge = {[t5, t12], [t6, t11], [t7, t10], [t8, t9]}

This process is then repeated until only a single bin is left.

Algorithm 4.1 Algorithm Ap-Max-Intra

Require: N , Number of sessions k, Length of session l

1: µglobal ← Average of all items

2: Initialize l bins each with k slots ←

3: bi ← {bi1 = [til+1], bi2 = [til+2, ..., bik = [til+k]]}

4: while number of bins > 1 do

5: pick bi and bj with the largest and smallest scores

6: bmerge=merge bi and bj

7: Delete bi and bj

8: number of bins ← l − 1

9: Return the final merged bin

Theorem 4.7. Ap-Max-Intra runs in O(NlogN +Nl) .

Proof. Getting the average of the items takes O(N). The partitioning of items into

k bins takes O(NlogN) which is done by sorting items first and then putting each

item in their corresponding bin by iterating over them once more. Now there are

l − 1 iterations of the algorithm to merge the bins. Each bin merge takes at most

O(kl) since there are k sessions with at most l members which means for l − 1

iterations we will have O(kl2). Overall, the running time of the algorithm will be

O(NlogN +Nl)

Theorem 4.8. Algorithm Ap-Max-Intra has 1
2−1/k

approximation factor.
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Proof. (Sketch) The detailed proof of this problem makes use of an approximation-

preserving reduction. Basically, the idea of an approximation-preserving reduction

is as follows: we need to show that an instance of Ap-Max-Intra is reducible to

an instance of another known NP-hard problem, Balanced Number Partitioning

problem [95] and by applying Algorithm BLDM, which is an approximation algorithm

for the latter problem produces a solution for the problem Ap-Max-Intra. The proof

sketch makes use of two arguments: the first is that an instance of Max-Intra could

be reduced to an instance of the Balanced Number Partitioning problem [95] in

polynomial time. Then, it can be shown that the BLDM algorithm has one-on-one

correspondence with Ap-Max-Intra. Ap-Max-Intra will accept 1
2−1/k

approximation

factor, since BLDM holds 2− 1/k approximation factor.

4.3.2.2 Variable Length Sessions. The solution of Max-Intra for Variable Length

Sessions is identical to the aforementioned one, except for the last step. If the length

of each of the k bins is smaller than the length of the input variable, we merge them;

otherwise, we skip that one and move on to the next one to merge. To clarify, if

we want to merge one more time after step 4 in Figure 4.3, we skip the first column

because the first session must have length 2, but we merge [0.51] and [0.63, 0.89]

in the second column to get a session with length 3 as specified in the input length

[2, 3, 2, 3].

4.3.3 Algorithm Min(Max)-Inter

4.3.3.1 Fixed Length Sessions. Optimization of Inter diversity, both minimization

and maximization variants, is NP-hard, and they bear remarkable similarity to

each other. Given a set of N items, the Min(Max)-Inter problems will try to find

an ordering of k sessions, each with l items, such that the aggregated differences

between the average of two consecutive sessions is minimized (maximized). To better

understand these problems, we break them into two steps. We only present these steps
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for the Max-Inter problem and note that the Min-Inter version works analogously, only

by inverting the optimization goals inside the algorithm. For example, for optimizing

Max-Inter, our goal is to find a sequence of sessions that maximizes Equation (4.2).

One intuition is that Inter diversity increases if the means of individual sessions (on

the dimension of interest) are highly different from each other. Indeed, if the k sessions

have the same exact mean, no matter how one orders them, Inter diversity will be

zero. As we prove in Lemma 4.2, this relates to forming a set of k sessions with the

goal to minimize Intra diversity. So, the first step of our algorithm is to produce a set

of sessions with the smallest Intra diversity. The next step is to order these sessions,

such that the resulting sequence has the Inter value maximized. This is our guiding

principle in creating the algorithms to solve this problem.

Our proposed solution Ap-Max-Inter for Max-Inter works as follows: we first

find k sessions obtained by running Algorithm Ap-Min-Intra. This is needed since

it will generate sessions with means as different from each other as possible. After

that, we create a graph of k nodes, each representing one of the k sessions. The

weight of each edge (si, sj) is defined as w(si, sj) = (µsi − µsj)
2. After that, the

goal is to run an algorithm for the Longest path problem for Max-Inter. Since the

graph is complete with positive weights on the edges, the Longest Path Problem

could be solved by replacing the positive weights with negative values and running a

traveling salesman problem (TSP) over it. In our implementation, we use the simple

yet effective 2-approximation algorithm for TSP in metric space, described in [89,107].

The algorithm starts by finding the Minimum Spanning Tree of the input graph using

Prim’s algorithm. Next, it lists the nodes in Minimum Spanning Tree in a pre-order

walk and adds the edge to the starting vertex to the end. This path will create an

ordering of sessions by following from the starting vertex si to the ending vertex sj.

This algorithm runs in O(k2logk) which is dominated by the running time of Prim’s
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algorithm. We further improve this running time by using Fibonacci heaps and obtain

O(k2 + logk).

Inversely, Algorithm Ap-Min-Inter, designed for Min-Inter first solves the Min-

Inter problem to create sessions with the largest Intra diversity. Then, we create

the graph the same as we have done in Ap-Max-Inter but the edge weights do not

need to be negated. Finally, we run TSP [107] to generate a sequence of sessions

for minimizing Inter diversity of those sessions. For both problems, the obtained

solution is a cycle and has one extra edge. We simply remove the edge with the

smallest (largest) value in the solution. This produces an ordering of the sessions.

Algorithm 4.2 presents the pseudo-code of Max-Inter algorithm.

Algorithm 4.2 Algorithm Ap-Max-Inter

Require: N items, Number of sessions k, Length of session l

1: Sinit ← Min− Intra(N, k, l)

2: G = (S,E) ← complete graph with k nodes

3: w(si, sj) = (µsi − µsj)2

4: Run Longest path algorithm on G

5: Longest path contains the ordering of the sessions.

Theorem 4.9. Both Ap-Max-Inter and Ap-Min-Inter run in O(NlogN + k2 + logk).

Proof. The running time of the algorithm Ap-Max-Inter is dominated by the first

step which is getting the solution of Min-Intra (for Ap-Min-Inter it is Max-Intra).

The algorithm for TSP takes O(k2 + logk). This means that the overall running time

will be O(NlogN + k2 + logk).

Lemma 4.2. Given a set of N items forming k sessions (each with l items),

when defined on the same dimension of interest, Inter diversity of the k sessions is

maximized (minimized), when Intra diversity of those k sessions is minimized(maximized).

70



!" !# !$

%

&

!" !# !$

!′" !′#

%′

+) -)

1

2

Figure 4.4 Relationship between Min-Intra and Max-Inter when defined on the
same dimension (1) If S =< s2, s1, s3 > is the Min-Intra solution and µs1 ≤ µs2 ≤ µs3 ,
the Inter value reaches its maximum value, which is α + β; (2) If a task is swapped
between sessions s1 and s2, the Inter value for the new sessions will be α + β − 3x
which is smaller and cannot be the solution of Max-Inter.

Proof. (Sketch)

Inter Minimization Case: For the case of Max-Intra, the solution will require

the averages of all groups to be the same (Recall Theorem 4.6). This results in having

Min-Inter with value 0, leading to the optimal solution. Hence the proof.

Inter Maximization Case: We prove by contradiction for Min-Intra and

Max-Inter, for k = 3. For the purpose of illustration, consider the sequence S =<

s2, s1, s3 > where µs1 ≤ µs2 ≤ µs3 . Consider s1, s2, s3 are the solution of Min-Intra

and µs3 − µs1 = α and µs2 − µs1 = β. Figure 4.4 presents one such solution. Now

consider that we swap a task between s1 and s2. After this swap, the value of µs1

will increase by x amount, and the value of µs2 will decrease by the same x. Now it

is easy to see that if the value of Inter is α+β for the solution of Min-Intra, then the

value of the new solution will be α+ β− 3x which is smaller. This argument extends

to k > 3.

Theorem 4.10. Ap-Max-Inter produces an answer that is at least 1/2 of the the

optimal solution.

71



Proof. The approximation of Ap-Max-Inter occurs in step 2 while solving the longest

path problem (Since Min-Intra has an exact solution)). Since the longest path

algorithm has the 1/2 approximation factor, the overall algorithm Ap-Max-Inter has

1/2 approximation factor.

Theorem 4.11. Algorithm Ap-Min-Inter has 4− 2/k approximation factor.

Proof. Similar to the proof of Ap-Max-Inter, using Lemma 4.2, the first step of

Ap-Max-Inter is finding a set of sessions that are closest to each other. Using the

algorithm Ap-Max-Intra provides these sessions with 2 − 1/k approximation. The

next step multiplies this error by a factor of 2 since the composition of the groups

is not changed and we only find an ordering over the fixed groups. This yields an

approximation factor of 4− 2/k.

4.3.3.2 Variable Length Sessions. The Inter solution of the Variable Length

Sessions is the same as Fixed Length Sessions for both minimization and maximization

problems.

4.3.4 Optimizing Inter with Intra as a constraint for fixed length sessions

We now develop algorithms for the constrained optimization problems defined in

Sub-section 4.2.4. When the values of the item dimension used for Intra diversity

are all unique, two of these four algorithms have provable approximation factors.

Table 4.3 provides the summary of our technical results.

To optimize Inter with Min-Intra as a constraint, we design two algorithms

Alg-Min-Intra, Min-Inter and Alg-Min-Intra, Max-Inter. For both, we start from the

solution of the Min-Intra problem using the algorithm Ex-Min-Intra. This solution is

an exact algorithm for solving Min-Intra and gives a set of k sessions as the output.

After that, we run Ap-Max-Inter in Alg-Min-Intra, Min-Inter and Ap-Min-Inter in

Alg-Min-Intra, Max-Inter.
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Table 4.3 Optimization Algorithms and Results for Fixed Length Sessions

Algorithm Running Time Approximation Factor

Alg-Min-Intra,Min-Inter O(NlogN + k2) (OPT, 4− 2/k)

Alg-Min-Intra, Max-Inter O(NlogN + k2) (OPT, 1/2)

Alg-Max-Intra, Min-Inter O(NlogN +Nl + k2) heuristic

Alg-Max-Intra, Max-Inter O(NLogN +Nl + k2) heuristic

On the other hand, to optimize Inter with Max-Intra as a constraint, we start

from the solution of the Max-Intra using the algorithm Ap-Max-Intra. This solution

is an approximation algorithm for solving Max-Intra and returns a set of k sessions.

After that, we run Ap-Max-Inter for Max-Intra, Max-Inter and Ap-Min-Inter for the

Max-Intra, Min-Inter. Using Example 4.1, to solve Alg-Min-Intra, Max-Inter where

the Intra dimension is on Skill and Inter dimension is on Skill as well, we first call

the Ex-Min-Intra subroutine which sorts N items and group these items that are

close to each other and obtain the following sessions, s1 = {t1, t2, t3}, s2 = {t4, t5, t6},

s3 = {t7, t8, t9}, and s4 = {t10, t11, t12} where µs1 = 0.516, µs2 = 0.6066, µs3 = 0.726,

and µs4 = 0.873 (see Figure 4.2). Given the solution of these 4 sessions, we then

create a complete graph (Figure 4.5) by considering each session as a node. The

weight of each edge in this graph is the Inter value of adjacent sessions on the Skill

dimension that are calculated using Equation (4.2). The Ap-Max-Inter is then akin

to the longest path problem. We convert these positive weights to negative weights

by introducing a minus sign and then apply our proposed 2-approximation algorithm

for the traveling salesman problem (TSP) on metric space that gives us the following

tour T = {s1 → s4 → s2 → s3 → s1}. We remove the edge s2 → s3 since it has the

smallest weight. The solution of Max-Inter is hence the sequence S =< s2, s4, s1, s3 >.
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Figure 4.5 Ap-Max-Inter graph of Example 4.1.

Alg-Min-Intra, Min-Inter problem is solved in a similar manner by following the

steps outlined above. The only distinction is that we don’t have to convert weight to

negative weight.

Algorithm 4.3 presents the generic pseudo code. These two algorithms are based

on heuristics and may not have any provable bounds.

Algorithm 4.3 Algorithm for maximizing Inter with Intra as a constraint

Require: N items, Number of sessions k, Length of session l, dimensions d1 and d2

1: Sinit ← k sessions of l items each, obtained by running Intra optimization

algorithm on d1

2: G = (V,E)← complete graph with nodes of Sinit and edge weights are calculated

based on d2 values between a pair of sessions

3: Call Subroutine Ap-Max-Inter or Ap-Min-Inter on G

Theorem 4.12. Algorithm Alg-Min-Intra, Max-Inter has (1, 1/2) approximation

factor Min-Intra, Max-Inter problem and Alg-Min-Intra, Min-Inter has (1, 4 − 2/k)

approximation factor Min-Intra, Min-Inter problem, as long as items in Intra

dimension have unique values.
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Proof. (Sketch) We provide the proof for Alg-Min-Intra, Max-Inter and the proof of

Alg-Min-Intra, Min-Inter works analogously. Ex-Min-Intra is optimal. Since items

have unique values on Intra diversity dimension, there exists one and only one set of

k sessions that minimizes Intra diversity values. The second step of the algorithm

Alg-Min-Intra, Max-Inter creates an ordering over these sessions. In that subset

of the search space, i.e. containing only solutions that start with the sessions of

Ex-Min-Intra where the Min-Intra is optimal, our Max-Inter algorithm produces a

solution that is 1/2 the optimal solution. Hence the (1, 1/2) approximation factor

holds for Min-Intra, Max-Inter problem. Similarly, the (1, 4 − 2/k) approximation

factor holds for Min-Intra, Min-Inter problem.

4.4 Experimental Evaluations

We first conduct experiments involving human subjects on music playlist recommen-

dation and task recommendation in crowdsourcing to observe the effect of diversity on

user satisfaction (in both applications) and worker performance (in crowdsourcing).

Then, using large-scale real data and synthetic data, we examine the quality of our

algorithms in comparison to baselines and evaluate the scalability of our approach.

Except for Sub-section 4.4.2, which is related to the Variable Length Sessions,

the rest of the section focuses on the Fixed Length Sessions.

4.4.1 Experiments with human subjects

We validate our framework in two applications: music recommendation, where we

generate music playlists, and task recommendation in crowdsourcing, where we

generate task sessions. These experiments are summarized in Table 4.4.

4.4.1.1 Music Recommendation. We generate music playlists for users and

consider different contexts namely music for long drives, theme party, Sunday

morning, and learning a new music style, to observe how diversity affects user
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Table 4.4 Summary of Experiments With Human Subjects

Experiment
# of

workers
Setup Observed data Findings

1. Music

Recommendation
200

Users rate playlists.

Each playlist has 5 channels.

Each channel has 10 songs.

user satisfaction

no. of selected songs

diversity rating

User satisfaction, no. of selected

songs, and diversity rating are

higher in diversified playlists.

2. Task

Recommendation

200

(total)

Workers complete and

rate task sessions.

Each task session has 5 task sets.

Each task set has 10 tasks.

worker satisfaction

quality

throughput

Worker satisfaction and quality

are higher in diversified task sessions.

2.1. Controlled

Session Gap
102

Workers complete task sessions

in session gaps of 1 minute,

5 minutes, and 10 minutes.

workers’ preference

(diverse vs. similar

task sessions)

factors affecting workers’

satisfaction (diversity,

relevance, others)

Worker satisfaction is higher

in diversified task sessions

across all session gaps and

peaks at the 5-minute session gap.

Quality is higher in diversified task

sessions across all session gaps.

Workers prefer diverse sessions

diversity is the main factor

in 55% of the workers’ ratings.

2.2. Random

Session Gap
98 Workers complete tasks anytime.
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Table 4.5 Diversity Dimensions per Context

Long

Drive

Theme

Party

Sunday

Morning

Learn

Music

Intra tempo period popularity genre

Inter popularity genre genre tempo

satisfaction in different contexts. Each playlist contains five distinct channels, each

with 10 songs.

Dataset. The dataset consists of 727 songs from 54 albums, 47 artists, and 10

genres. The songs are from albums that won the Grammy Best Album of the Year

Award between 1961 and 2020. The list of albums and their corresponding genres are

from Wikipedia while the other information such as artist, period, popularity, tempo,

and duration are from Spotify.

Experiments Flow. We first collect preferred genres and artists from users

to form their profiles. We then generate five music playlists for each user. Each

playlist has five channels, and each channel has 10 songs. The first four playlists

are generated using the algorithms in Table 4.3, with dimensions specified for each

context in Table 4.5. The 5th playlist represents the baseline with No-diversity. It

consists of similar songs randomly selected from the same dimension. Specifically,

in this case, all songs from the period 2000’s. Lastly, users evaluate the playlists by

selecting songs they would actually listen to, rating how much they like diversity in

the sessions, and providing an overall rating of the entire playlist. The ratings are

based on a 5-pt Likert scale where 1 is the lowest and 5 is the highest. We measure

user satisfaction using the overall rating provided by users. We recruit 200 workers

(50 per context) from Amazon Mechanical Turk (AMT). We pay the workers $0.10

for profile collection and $1.00 for their evaluations.
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Table 4.6 Average Evaluation Scores across All Contexts

Scenario

No. of

Selected

Songs

Diversity

Rating

User

Satisfaction

1 Min-Intra, Min-Inter 15.16 3.57 3.54

2 Min-Intra, Max-Inter 15.05 3.66 3.66

3 Max-Intra, Min-Inter 14.71 3.59 3.71

4 Max-Intra, Max-Inter 14.66 3.69 3.71

5 No-diversity 12.83 3.35 3.44

Summary of Results. We observe in Table 4.6 that user satisfaction in

diversified playlists (Scenarios 1− 4) is higher compared to the No-diversity baseline.

This observation is statistically significant at p = 0.10 using a one-way Analysis of

Variance (ANOVA) [123]. The results are consistent with other measures: workers

select the smallest number of songs from the No-diversity playlist and the No-diversity

playlist receives the lowest average diversity ratings. Moreover, these observations

extend to different contexts, as shown in Tables 4.7, 4.8, and 4.9. These results are

summarized in Table 4.4 - Experiment 1. The sample size of 200 workers from the

estimated 200, 000 workers in AMT [50] gives our results a 99% confidence level and a

10% error margin (based on the Central Limit Theorem [126]). In summary, our music

experiment clearly shows that diversity is preferred over No-diversity. Additionally,

diversity definitions depend on context, as observed in Tables 4.7, 4.8, and 4.9.

4.4.1.2 Task Recommendation. In these experiments, we recommend task

sessions to workers in crowdsourcing. Each task session consists of five sets and

each set consists of 10 tasks.

78



Table 4.7 Average Number of Selected Songs per Context

Scenario
Long

Drive

Theme

Party

Sunday

Morning

Learn

Music

1 Min-Intra, Min-Inter 16.58 14.86 14.76 14.42

2 Min-Intra, Max-Inter 15.82 15.06 14.12 15.20

3 Max-Intra, Min-Inter 16.52 13.64 14.30 14.38

4 Max-Intra, Max-Inter 16.24 13.96 15.04 13.40

5 No-diversity 14.10 11.92 13.62 11.68

Table 4.8 Average Diversity Rating per Context

Scenario
Long

Drive

Theme

Party

Sunday

Morning

Learn

Music

1 Min-Intra, Min-Inter 3.64 3.52 3.64 3.46

2 Min-Intra, Max-Inter 3.70 3.50 3.82 3.61

3 Max-Intra, Min-Inter 3.70 3.54 3.58 3.54

4 Max-Intra, Max-Inter 3.84 3.68 3.58 3.64

5 No-diversity 3.34 3.30 3.46 3.30
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Table 4.9 Average User Satisfaction per Context

Scenario
Long

Drive

Theme

Party

Sunday

Morning

Learn

Music

1 Min-Intra, Min-Inter 3.62 3.88 3.34 3.32

2 Min-Intra, Max-Inter 3.76 3.72 3.66 3.50

3 Max-Intra, Min-Inter 3.86 3.98 3.56 3.44

4 Max-Intra, Max-Inter 3.76 3.80 3.70 3.58

5 No-diversity 3.60 3.42 3.46 3.28

Dataset. The dataset consists of 20, 000 tasks from Figure Eight’s open data

library [1]. Each task belongs to one of 10 types such as tweet classification, image

transcription, and sentiment analysis. Each task type is represented as a set of

keywords that best describe the required skills. Additionally, each task has a creation

date, an expected completion time (less than a minute), and a reward that varies

between $0.01 - $0.05.

Experiments flow. We collect a total of 200 user profiles where workers

indicate (from 1 to 5) their interest in completing tasks, which are described by a

given set of keywords. For each user profile, we generate task sessions using the

algorithms in Table 4.3 and a combination of the following dimensions: skill, reward,

duration, and creation date. We also generate a No-diversity baseline session. In this

session, we randomly pick a task type and randomly select similar tasks belonging to

that type. Next, workers complete and rate the recommended sessions. We measure

worker satisfaction, quality of the completed tasks with respect to ground truth, and

task throughput.

Satisfaction refers to how satisfied workers are with the task sessions (a rating

from 1 to 5 provided by each worker). Quality refers to the percentage of correct
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Table 4.10 Task Recommendation Sessions

Session Type
Worker

Satisfaction
Quality(%) Throughput

1
Min-Intra(creation date),

Min-Inter(skill)
4.26 0.67 7.72

2
Min-Intra(skill),

Max-Inter(reward)
4.30 0.68 7.85

3
Max-Intra(skill),

Min-Inter (reward)
4.29 0.66 7.60

4
Max-Intra(duration),

Max-Inter (skill)
4.28 0.68 7.71

5 No-diversity 4.01 0.62 7.92

answers from the tasks completed by a worker. To measure quality, we use the

answers obtained from the dataset as the ground truth. We use a näıve script that

relies on basic equality to evaluate answer correctness. Throughput refers to the

average number of tasks completed per minute.

We also investigate the impact of the session gap, the time interval between

completing sessions, in our proposed algorithms. We conduct Experiment 2.1 in Table

4.4 where we assign 102 of the 200 workers to complete the sessions in three fixed

time intervals of 1, 5, and 10 minutes between sessions (34 workers for each fixed

time interval). We also ask these workers their preference between diversified and

non-diversified sessions, and to indicate which factor mainly affects their satisfaction.

In total, we recruit 200 workers, pay each $0.03 for profile collection and at least

$0.35 for task completion.

Summary of Results. Table 4.10 presents the average worker satisfaction,

quality, and throughput in the task recommendation experiments. We observe that
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Table 4.11 Throughput, Quality, and Worker Satisfaction of Diversified and Non-
diversified Sessions with Different Session Gaps

Session Gap

(minutes)

Session Type 1 5 10

Worker

Satisfaction

Diversified 3.76 4.30 4.21

Non-diversified 3.48 4.09 3.91

Quality
Diversified 0.68 0.64 0.65

Non-diversified 0.62 0.55 0.59

Throughput
Diversified 8.50 8.82 8.01

Non-diversified 8.57 10.67 8.18

Figure 4.6 Worker satisfaction in varying session gaps.
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worker satisfaction and quality in diversified sessions are higher compared to the

No-diversity baseline. This observation is statistically significant at p = 0.01 using

a one-way Analysis of Variance (ANOVA) [123]. On the other hand, throughput

is marginally higher for the No-diversity case. This observation confirms previous

studies where workers get more proficient in completing similar (and hence not

diverse) tasks, allowing them to become faster at task completion [51].

In Table 4.11, we present the average worker satisfaction, quality, and

throughput grouped by session gap. The values are from the 102 workers in

Experiment 2.1 in Table 4.4 where we control the session gap. For each session

gap (1, 5, 10 minutes), 34 workers complete the 5 session types listed in Table 4.10.

The Diversified rows in Table 4.11 show the aggregated values obtained in the 4 task

sessions generated by our algorithms while the Non-diversified rows show the values

obtained in the baseline or No-diversity session.

Our findings show that quality and worker satisfaction are better in the

diversified tasks sessions generated by our proposed algorithms across all session

gaps. These observations are significant at p = 0.10 using a t-test [46]. Moreover, it is

interesting to note that worker satisfaction peaks at the 5-minute session gap as seen in

Figure 4.6. For the task sessions, 5 minutes may be the ideal break time workers need

to alleviate fatigue or boredom [116]. We also note that our findings are consistent

with the 102 workers’ responses where 72.5% of the workers prefer diversified sessions

over non-diversified sessions; 55% of the workers consider diversity in their ratings,

23.3% consider relevance, and 21.7% consider other factors.

In summary, our task recommendation experiments clearly show the benefit of

diversity in the workers’ satisfaction and the quality of crowdsourced tasks.
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4.4.2 Large data experiments

The goal here is to evaluate our algorithms with appropriate baselines (including

exact solutions) and compare them qualitatively (approximation factors, objective

function value) and scalability-wise (running time). All algorithms are implemented

in Python 3.6 on a 64-bit Windows server machine, with Intel Xeon Processor, and

16 GB of RAM. All numbers are presented as the average of five runs. For brevity,

we present a subset of results that are representative.

4.4.2.1 Data Sets. a. 1-Million Song: We use the Million Songs Dataset [24] that

has 1 million songs (please note the Spotify dataset used in Sub-section 4.4.1 is small

in scale). We have normalized the data to be between [0, 1]. This dataset also includes

artist popularity and hotness, genre, release date and etc. The presented results are

representative and consider tempo and loudness as dimensions.

b. Synthetic dataset: The presented results on this are the ones that vary distributions

of the underlying dimensions. We sample from three distributions: Normal, Uniform,

and Zipfian. For Normal distribution, data is sampled with mean and standard

deviation, µ = 250, σ = 10. For Uniform, the dataset is sampled from Uniform

distribution between [0,500], and for Zipfian distribution default exponent is set to

α = 1.01. We produce a pool of 230 items for each of our three distributions.

4.4.2.2 Implemented Baselines. In addition to Random where we generate

random sequences, we implement different baselines and compared the performance

of our algorithms.

Optimal. The optimal baseline is based on an Integer Programming (IP)

algorithm that solves the problem optimally on small instances. The rationale behind

implementing IP is to verify the theoretical approximation factors of our algorithms

against the optimal solution. We used Gurobi as the solver2.

2https://www.gurobi.com/resource/switching-from-open-source/
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Baseline-MMR. This baseline is inspired by the MMR algorithm [37] used in

diversifying web search results. MMR takes a search query and returns relevant and

diverse results. Hence, our mapping to MMR optimizes Intra session diversity only.

At each iteration, Baseline-MMR considers an item to be included or not in the result

and calculates two scores: the Intra score of adding a new item to a session and the

max (resp., min Inter) score of a new session to all other sessions in the case of

Max-Inter (resp., Min-Inter). It then picks the highest or the lowest weighted sum of

these two scores based on the Intra part of the problem. The item with that score is

chosen to be added to the session. This process is repeated until there is no item left.

Baseline-Constrained-KMean. This is a clustering technique similar to the one

proposed in [33], which uses the K-Mean Clustering approach to produce a set of k

clusters, each containing exactly l items. Following that, these clusters are sorted by

increasing mean to generate a sequence of sets as the final result.

4.4.2.3 Summary of Results. Overall, for our problems, where both Intra

and Inter diversity are to be optimized, our algorithms are the unanimous choice

considering both quality and scalability. When the Intra and Inter diversity is

studied individually, our algorithms outperform all the baselines and empirically

produce approximation factors close to 1, across varying k, N , and different

distributions. The only exception to this latter observation is Baseline-MMR, which

performs better in maximizing Inter diversity (while performing very poorly for Intra

optimization), which is due to its focus on optimizing Inter diversity only. Moreover,

Baseline-Constrained-KMean performs poorly for the maximization problems, our

algorithm convincingly outperforms it in both Intra and Inter minimization and

maximization. This baseline also exhibits poor scalability. Contrarily, our algorithms

are highly scalable and are much more efficient compared to the baselines.
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Table 4.12 Approximation Factors on 1-Million Song Dataset

Our Scenarios
N=8192 , k=16 N=1024 , k=128

Intra Inter Intra Inter

Min-Intra , Min-Inter 1 1.05 1 1

Min-Intra , Max-Inter 1 0.35 1 0.49

Max-Intra , Min-Inter 0.99 1.06 0.98 1.04

Max-Intra , Max-Inter 0.99 0.58 0.95 0.69

4.4.2.4 Quality Evaluation. We vary k (the number of sessions), N (the number

of items), and the data distribution. The default values are N=213 and k=27 with a

uniform distribution.

Comparison against Optimal. Table 4.12 shows the approximation factors

for our algorithms for two default settings: (N = 213, k = 24) and (N = 210,

k = 27) using 1-Million Song dataset. We can see that our algorithms produce

an approximation factor equal to 1 when Intra diversity is minimized and a factor

very close to 1 when Intra diversity is maximized.

When Inter diversity is minimized, the resulting approximation factors are close

to 1. However, when Inter diversity is maximized, the approximation factors are

slightly low as our algorithm solves the Intra part of the problem before ordering

the sessions to maximize Inter diversity. It is hence bound by the constraints of

the solution to Intra. Nevertheless, the solution formulated by our algorithm for

Min-Intra, Max-Inter and Min-Intra, Min-Inter is able to produce a point on the

Pareto Front in the optimal solution region which meets both the Intra and Inter

objectives. The synthetic dataset mimics this trend as well.

Based on the approximation factor results and the above analysis, we conclude

that our algorithms produce good and in some cases the best possible solution for the

four problems we attempt to optimize.
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Varying N . Figures 4.7 and 4.8 show how Inter scores change as we vary N

from 210 to 216 for Baseline-MMR, Baseline-Constrained-KMean, Random and our

algorithms for 1-Million Song and synthetic dataset respectively.

Figures 4.7(a)(c) and 4.8(a)(c) confirm that our algorithm performs best when

Inter diversity is minimized. The objective function improves with increasing N . On

the other hand, as seen in Figures 4.7(b)(d) and 4.8(b)(d), when Inter diversity

is maximized, Baseline-MMR outperforms our algorithm with increasing N . This

is because our algorithm is subject to the constraints imposed by optimizing Intra

diversity first and then maximizing the Inter diversity, while Baseline-MMR focuses

on the Inter dimension only.

We also compare Intra scores whilst varying N . Tables 4.13 and 4.14 showcase

the approximation factors of our algorithm’s Intra considering Optimal for N ≤ 213

and N > 213. A ratio of 1 means that the algorithm produces the best or optimal

solution. These results showcase that our solutions achieve even better bounds

empirically compared to the theoretical bounds. Tables 4.13 and 4.14 also show that

although Baseline-MMR performs better in Max-Inter problem, it performs poorly

for both Min-Intra and Max-Intra problems.

Interestingly, Random often times produces an approximation factor close to 1

for N > 213 when maximizing Intra. This is due to the fact that Intra is maximized

when the variance of the sessions is maximized which is one of the side effects

of Random algorithm. However, Baseline-MMR and Random produce very poor

approximation factors when minimizing Intra. Contrarily, our solutions stay close to

the 1 approximation factor for both minimization and maximization of Intra diversity.

AsN increases, the Intra scores do not see any drastic change in approximation factors

and always stay close to 1.

Varying k. Figures 4.9 and 4.10 present how Inter scores evolve as we vary

k between 24 and 211 for different baselines compared to our algorithm. We keep
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(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra)

(c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 4.7 Inter scores with varying N for 1-Million Song dataset.

(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra)

(c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 4.8 Inter scores with varying N for synthetic dataset.
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(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra)

(c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 4.9 Inter scores with varying k for 1-Million Song dataset.

N constant at 213. We observe Figures 4.9(a)(c) and 4.10(a)(c) that our algorithm

performs significantly better than other baselines in minimizing Inter diversity. For

Figures 4.9(b)(d) and 4.10(b)(d), our observation is similar to the case of varying

N , Baseline-MMR performs slightly better. Overall, Inter diversity increases for all

four scenarios as k increases. This is because of the fact that when more sessions are

present, it allows for more diversity between each session.

We present approximation factors of Intra in Tables 4.15 and 4.16 and observe

a similar trend as to when we vary N . Also, similar to varying N for Intra scores,

the approximation factors here also stay close to 1 for our algorithm.

Varying distribution. Figures 4.11 and 4.12 present how our algorithm and

other baselines perform as we vary data distributions. We set N to 213 and k to 27.

89



(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra)

(c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 4.10 Inter scores with varying k for the synthetic dataset.

(a) Min-Intra, Min-Inter (b) Min-Intra, Max-Inter

(c) Max-Intra, Min-Inter (d) Max-Intra, Max-Inter

Figure 4.11 Synthetic Data: Inter and Intra scores varying distributions.
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(a) Min-Intra, Min-Inter (b) Min-Intra, Max-Inter

(c) Max-Intra, Min-Inter (d) Max-Intra, Max-Inter

Figure 4.12 Synthetic Data: Zipf distribution.

(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra)

(c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 4.13 Inter scores with varying k for 1-Million Song dataset for variable
length sessions.
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Table 4.13 Intra Approximation Factors Varying N on 1-Million Song Dataset

Min-Intra

(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Constrained-KMean Ours

<= 8192 0.008 6.41E-05 0.165 1

>8192 0.002 5.42E-05 0.167 1

Max-Intra

(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Constrained-KMean Ours

<= 8192 0.22 0.98 0.0173 0.99

>8192 0.021 0.92 0.0187 0.99

Considering Intra scores, our algorithm performs the best using Uniform

distribution for all four scenarios. However, Normal performs slightly worse at times

with our algorithm when we attempt to maximize Intra.

When we compare Inter scores, our algorithm performs best with Uniform

distribution. In Figures 4.11(b)(d), Baseline-MMR outperforms our algorithm due

to the same reasons mentioned in the varying k and N sections of this paper.

Baseline-Constrained-KMean outperforms our algorithms for minimizing Intra

and Inter when using the Zipf distribution.

We also observe that across all four scenarios, Zipf produces scores much larger

in magnitude than Normal or Uniform distribution. This is due to the range of values

in Zipf, which results in larger Intra and Inter scores. Overall, our algorithms stand

out to be the best choice, with its best performance being on Uniform distribution.

4.4.2.5 Variable Length Sessions. We relaxed two limitations of the Fixed

Length Sessions problem in this section: a. session lengths vary; b. just a subset of

items is recommended. The complexity of the Min-Intra problem remains unchanged,

while the NP-hardness of Max-Intra still holds. Finally, Inter problems’ NP-hardness

remains intact. We vary k between 24 and 211 and keep N as its default value for

different baselines compared to our algorithms. These experiments incorporate an
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Table 4.14 Intra Approximation Factors Varying N on Synthetic Dataset

Min-Intra

(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Constrained-KMean Ours

<= 8192 0.006 7.53E-05 0.018 1

>8192 0.005 6.56E-05 0.0086 1

Max-Intra

(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Constrained-KMean Ours

<= 8192 0.19 0.94 0.007 0.99

>8192 0.019 0.99 0.0076 0.99

Table 4.15 Intra Approximation Factors Varying k on 1-Million Song Dataset

Min-Intra

(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours

<= 128 0.011 0.0021 0.263 1

>128 0.0012 4.95E-06 0.069 1

Max-Intra

(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours

<= 128 0.035 0.92 0.05 0.99

>128 0.29 0.85 0.0027 0.99

Table 4.16 Intra Approximation Factors Varying k on Synthetic Dataset

Min-Intra

(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours

<= 128 0.035 0.0013 0.03 1

>128 0.0008 5.05E-06 0.0045 1

Max-Intra

(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours

<= 128 0.055 0.99 0.03 0.99

>128 0.42 0.85 0.001 0.99
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Table 4.17 Intra Approximation Factors Varying k on 1-Million Song Dataset for
Variable Length Sessions

Min-Intra

(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours

<= 128 0.215 0.0127 0.39 0.725

>128 0.0485 0.0001 0.058 0.76

Max-Intra

(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Constrained-KMean Ours

<= 128 0.435 0.98 0.033 0.714

>128 0.39 0.78 0.0013 0.79

(a) Min-Intra, Min-Inter (b) Min-Intra, Max-Inter

(c) Max-Intra, Min-Inter (d) Max-Intra, Max-Inter

Figure 4.14 Running times varying N for 1-Million Song dataset.
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(a) Min-Intra, Min-Inter (b) Min-Intra, Max-Inter

(c) Max-Intra, Min-Inter (d) Max-Intra, Max-Inter

Figure 4.15 Running times varying N for synthetic dataset.

(a) Min-Intra, Min-Inter (b) Min-Intra, Max-Inter

(c) Max-Intra, Min-Inter (d) Max-Intra, Max-Inter

Figure 4.16 Running times varying k for 1-Million Song dataset.
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(a) Min-Intra, Min-Inter (b) Min-Intra, Max-Inter

(c) Max-Intra, Min-Inter (d) Max-Intra, Max-Inter

Figure 4.17 Running times varying k for synthetic dataset.

(a) Min-Intra, Min-Inter (b) Min-Intra, Max-Inter

(c) Max-Intra, Min-Inter (d) Max-Intra, Max-Inter

Figure 4.18 Running times varying k for 1-Million Song dataset for variable length
sessions.
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extra input that is generated at random and indicates the length of each session as a

list of k values between 2 and l. In Example 4.1, N = 12 and k = 4, therefore l = 3.

As a consequence, [2, 3, 2, 3] is the length list containing random integers between 2

and 3, which is our l. As we have 8192 items in our experiments for each k value,

averaging the items that are recommended in each scenario yields 4568 items out of

8192.

The results are presented in Figure 4.13 and Table 4.17. When maximizing

Intra, Random produces an approximation factor close to 1 for k ≤ 128. This is

due to the same reason that is explained in the Varying k section that when Intra is

maximized, the variance of the sessions is also maximized. Except for the Alg-Max-

Intra, Min-Inter problem, all of the scenarios follow the same trend of Fixed Length

Sessions. In comparison to the other baselines, Variable Length Sessions achieves a

higher Intra approximation factor, as shown in Table 4.17.

Since Baseline-MMR could not finish in a reasonable time for the scenario when

k is 211, we leave it blank in Figure 4.13.

4.4.2.6 Scalability Evaluation. Figures 4.14, 4.15, 4.16, and 4.17 compare the

running time of the three algorithms for 1-Million Song and synthetic dataset. The

running time of Baseline-Constrained-KMean was not included in these figures since

some scenarios took many days to complete. Naturally, as N increases, the running

time of our algorithms increases. We also observe that as we vary N with k = 27, our

algorithms are the fastest in all diversity scenarios.

In Figures 4.16 and 4.17 , we vary k and set N to 213. We observe that our

algorithms scale very well but are sometimes slightly slower than Random. This is

unsurprising, as Random does not even have to do much work to generate sessions

(recall that however, it performs poorly qualitatively). However, we observe that our

algorithm is consistently faster with increasing values of k. The scalability evaluation
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plots for relaxed problem experiments closely resemble those of the original problem

for the 1-Million Song dataset, as seen in Figure 4.18. Overall, we find that our

algorithms are highly scalable and produce results within a few seconds for very large

values of N and k, while some of the baselines take hours to complete.

4.5 Related Work

Applications Diversity has been extensively studied in recommendation and search

applications [2,12,42,60,74,75,100,109,110,112,134,136,140,142,143,146], to return

items that are relevant as well as cover full range of users interests. The goal is to

achieve a compromise between relevance and result heterogeneity. Existing works [72,

135] have also acknowledged the need for diversity and sequence-based modeling in

different recommendation applications. Recent works in crowdsourcing [61,106] have

demonstrated the importance of diversity in task recommendation. Task diversity is

grounded in organization theories and has been shown to impact the motivation of

the workers [38]. Amer-Yahia et al. [11] propose the notion of composite tasks (CT),

a set of similar tasks that match workers’ profiles, and comply with their desired

reward and task arrival rate. Their experiments show that diverse CTs contribute to

improving outcome quality. Recent work has studied Intra and Inter-table influence

in web table matching [61] involving the crowd. Even though completing similar tasks

lead to faster completion time [51], but such composition lead to fatigue and boredom,

and task abandonment [48, 71, 73]. Aipe and Gadiraju [7] empirically observe that

workers who perform similar tasks achieve higher accuracy and faster task completion

time compared to workers who worked on diverse tasks. However, they find that

these workers experience fatigue the most. Alsayasneh et al. integrate the concept

of diversity in composite tasks and empirically find a positive effect of diversity

in outcome quality [8]. Stratigi et al., 2020 [124] investigated a sequential group

recommender that is aware of the group’s previous interactions with the system by
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adding the concept of satisfaction, which characterizes how relevant the recommended

items are to each group member.

For all of these applications, diversity is studied set-based or sequence-based only.

These applications call for a deeper examination of diversity and a powerful

framework to capture its variants, which is our focus here.

Set and Sequence Diversities Existing works on diversification could be

classified as set-based only [2, 60, 100, 109, 110, 134] or sequence-based only [12, 42,

74, 88, 146]. As an example, Ziegler et al., 2005 [146] study sequence-based diversity

which is defined as the diversity of any permutation of the items. Another example

is [12], in which taxonomies are used to sample search results to reduce homogeneity.

In [2], Abbar et al., 2013 proposed an algorithm with a provable approximation factor

to find relevant and diverse news articles. In the database context, Chen and Li [42]

propose to post-process structured query results, organizing them in a decision tree

for easier navigation. In [14, 79] the notion of diversity is used in the results of

queries to produce the closest results such that each answer is different from the rest.

In recommender systems, results are typically post-processed using pair-wise item

similarity to generate a list that achieves a balance between relevance and diversity.

For example, in [56], recommendation diversity was formulated as a set-coverage

problem. By distinguishing between item and user diversity and focusing on various

definitions of each, [88] investigated a diversity-aware recommender system for a single

user or a group of users.

To the best of our knowledge, existing works have focused on achieving diversity

in a single set. We solve set-based and sequence-based diversities in tandem and

develop algorithms with guarantees.
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4.6 Conclusion

We initiate the study of a formal and algorithmic framework to address diversity for

s sequence of sets that has natural recommendation applications (from song playlists

to task recommendations in crowdsourcing). The combination of Intra and Inter

session diversities gives rise to four bi-objective optimization problems. We propose

algorithms with guarantees. Our extensive empirical evaluation, conducted using

human subjects, as well as large-scale real and simulated data, shows the need for

diversity to improve user satisfaction and the superiority of our algorithms against

multiple baselines.

In addition to theoretical questions, this work opens up interesting directions

that are of empirical interest: an immediate extension of our work is to observe

users as they consume items and learn how diversity dimensions and their respective

definitions could be personalized for different users. Similarly, we are empirically

exploring how to choose the preferred diversity dimensions depending on the

underlying context for different applications. Finally, an interesting open problem

is to understand how time affects underlying contexts and fine-tune diversified

recommendations based on that.

In terms of other widely used diversification functions, there exist diversity

functions that consider radius (maximum/minimum distance) [69], or sum (sum of

distance). One can maximize or minimize these based on the underlying optimization

goal. Many of these problems relate to the Facility Allocation Problem [13] and its

variants, as well as Graph Partitioning problems [114]. These problems are known

to be NP-hard. Our produced greedy solutions could be adapted to solve these

variants. However, whether these solutions would be just heuristics or they would

accept provable approximation factors would require revisiting and analyzing each of

them and that can be studied in future work.
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We are also going to study the approximation factors of the proposed algorithms

for the Variable Length Sessions in the future.

101



CHAPTER 5

COOPERATIVE ROUTE PLANNING FRAMEWORK FOR

MULTIPLE DISTRIBUTED ASSETS IN MARITIME APPLICATIONS

5.1 Introduction

Planning routes for multiple agents, such as ships submarines, and unmanned

aerial/surface/underwater vehicles (UAVs, USVs, UUVs), considering multiple objecti

ves, such as fuel, battery usage, time taken, and progress towards a goal, is a complex,

but highly-relevant, problem for search and rescue, reconnaissance, and interdiction

missions in maritime applications. These problems involve trade-offs among different

objectives and require a coordinated search for an object in a very high-dimensional

space by multiple geographically distributed searchers (herein referred to as assets or

agents). In this vein, automated tools are needed to aid human decision-makers in

planning courses of action (COAs).

A canonical formulation of the problem is as follows: we are given a set of

distributed assets over a discrete grid, each with a given starting location (described

by its (lat, long) value), a respective speed limit, and a sensing radius. The problem

is to cooperatively discover an object at an unknown location (described by a (lat,

long) value). The assets communicate among themselves periodically after a fixed

interval of time or communicate asynchronously by broadcasting their locations when

an asset locates the destination. When two assets communicate, they get to know

each other’s current locations. The goal is to decide a sequence of moves, including

waiting at nodes, for each asset (route plan) such that the total fuel consumption

by the assets and the maximum time for reaching the mission goal over all assets

(Makespan) is minimized while avoiding collisions among themselves. We formalize
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the Route Planning Problem (RPP) in Section 5.2 as a team decision-making problem

and describe the challenges in solving it.

Formalizing the RPP requires developing a principled model that captures the

nuances of simultaneous movement of the assets, along with how that impacts the

objectives and satisfaction of constraints. At each step, the RPP solution produces

the direction of movement for each asset and the corresponding speed (note that a

speed of 0 corresponds to the waiting option) while accounting for its sensing radius

and the locations of other assets. For distributed assets, since the locations of the

other assets are known intermittently, each asset has to anticipate the locations and

moves of other assets through an appropriate ”internal model”.

Contribution I: A Distributed RPP Model - We model the RPP problem

as a Team Discrete Markov Decision Problem (TDMDP) [108], where the states are

the nodes in the grid and an asset’s action is the decision to transit to one of the

neighboring grid points at a particular speed or wait to avoid a collision. For each

transition, there exist vector rewards that capture the multiple objectives of the team.

Section 5.2 contains further details.

Contribution II: MaMoRL - We propose a Multi-agent Multi-objective

Reinforcement Learning (MaMoRL) framework for cooperative route planning under

constraints. We identify its data-centric challenges (Sub-section 5.2.4). The MaMoRL

framework contains a. Teammate Module (TMM) that captures the probability distri-

bution of the belief of each asset on the locations and actions of other assets at each

time step; b. Action Selection Module (ASM) to enable distributed decision-making

by each asset to optimize multiple objectives, while satisfying constraints at each

time step; and c. Learning Module (LM) that allows each asset to incrementally learn

the functional approximations to the Q-functions (current best values of state-action

pairs) from the environment and incorporating that learning inside the other two

modules. Section 5.3 contains further details.
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Figure 5.1 MaMoRL framework.

We also realize that solving MaMoRL exactly is infeasible in a realistic

maritime setting, because the memory and CPU bottlenecks of TMM and LM increase

exponentially with the increase in the number of assets, the number of nodes, and

neighbors of the assets, and the cardinality of the set of speeds an asset can choose

from.

We, therefore, develop two function approximation techniques - one using Linear

Regression and the other using a Neural Network to effectively approximate the

Teammate Module (TMM) and the Learning Module (LM) [94]. The Linear Regression

based approximate solution, Approx-MaMoRL, is shown to be more effective than

its Neural Network based counterpart NN-Approx-MaMoRL. It turns out to be

as effective as the exact MaMoRL, while overcoming both the memory and CPU

bottlenecks (refer to Section 5.4). The design of Approx-MaMoRL involves extensive

feature engineering efforts.

Contribution III: Evaluation and Deployment. We perform an extensive

experimental evaluation (Section 5.4) using multiple real-world and synthetic grids
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and implement several baselines for comparisons. We identify the computational

bottlenecks of MaMoRL (Sub-section 5.4.3) and demonstrate how Approx-MaMoRL

overcomes those limitations. We design two variants of Approx-MaMoRL - one

with no knowledge of the destination and the other with partial knowledge of

the destination. The experimental results demonstrate the superiority of Approx-

MaMoRL compared to the baseline solutions with a 95% statistical significance

(Sub-section 5.4.4). Our results additionally demonstrate that the policy learned

by the Approx-MaMoRL is transferable to various sized grids (Sub-section 5.4.6).

Finally, in Sub-section 5.4.7, we describe how we deploy Approx-MaMoRL inside

TMPLAR [121], an existing tool for Multi-objective Planning and Asset Routing

used by NRL-MMD, Monterey, CA.

5.2 Preliminaries and Problem Definition

5.2.1 Preliminaries

Let N be a set of distributed assets. Each asset operates on a discrete grid G =<

V,E >. The weight of each directed edge e (weight(e)) between two nodes, vp → vq,

denotes the distance between vp and vq. The assets explore the grid cooperatively

to discover the location of an object, represented as d(x, y). Each asset i ∈ N is

represented as a quintuple:

i =< ri, spi, sourcei(x, y), curti(x, y), di(x, y) >

where ri is the sensing radius of asset i, spi is the maximum speed/ velocity,

sourcei(x, y) is the starting point, curti(x, y) is the location of asset i at time t,

and di(x, y) is the destination from the viewpoint of asset i. All assets have the same

destination, which is unknown in the beginning but gets revealed through exploration.

Therefore, di(x, y) = d(x, y); ∀i ∈ N .
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5.2.2 Problem setting and definition

Each asset i is characterized as follows:

• It moves at a speed ≤ spi.

• It observes the grid up to its sensing radius ri.

• It makes a decision on its next action at each step, i.e., which neighboring node
it moves to and at what speed or to wait. Decisions are made only when i is at
a node in G.

• Two assets (i, j) exchange their respective locations when they communicate
periodically every k time step or when the destination d(x, y) has been found.

Fuel Consumption Model: The fuel consumption of asset i to move from

node vp → vq at speed sp′i ≤ spi is fueli(vp → vq, sp
′
i), where spi is the maximum

allowable speed of asset i. The fuel consumption depends on the distance between

vp, vq, and the speed sp′i. There exist analytical models [31] for computing fuel

consumption as a function of distance traveled and speed. Thus, the fuel consumption

of asset i to explore G can be computed and we denote it by TFueli .

Definition 5.1. Total fuel consumption Ftotal : The overall fuel consumption by the

set of |N | assets while exploring G to discover d(x, y) is
∑
∀i TFueli.

Time Model: The time taken for asset i to move from node vp → vq at speed

sp′i ≤ spi is weight(vp→vq)

sp′i
. Thus, the total time taken by asset i to explore G can be

computed and is represented by TT imei .

Definition 5.2. Overall time expended Ttotal : The overall time expended by |N |

assets during exploration over G to discover d(x, y) is the maximum over TT imei, i.e.,

max∀iTT imei.

Definition 5.3. Collision: Two assets i, j collide if they are at the same location

simultaneously, i.e., curti(x, y) = curtj(x, y)
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Problem 5.1. (Route Planning Problem (RPP)) Plan routes of |N | cooperative

distributed assets (agents) with respective starting points (asset i with sourcei(x, y))

over G to discover an initially unknown destination d(x, y) to minimize Ftotal and

Ttotal, while at no point in time during the exploration, curti(x, y) = curtj(x, y),∀i, j, t.

5.2.3 Toy running example

Consider a toy example involving two assets (Table 5.1), their respective current

positions, and their visited paths after two moves in Figure 5.2. Each asset can

sense up to its sensing radius which is based on the distance and represented by

double-circled green and blue nodes for Asset1 and Asset2, respectively.

Table 5.1 A Toy Example Using Two Assets

ri spi sourcei(x, y) cur2
i (x, y) di(x, y)

Asset1 2 3 (0,0) (0,4) (4,3)

Asset2 3 2 (8,7) (5,4) (4,3)

From starting location source1, Asset1 can go to one of its two neighboring

sensed nodes. It also can move at three different speeds, (sp′1 = 1, 2, 3 ≤ sp1) or

wait; so the number of possible actions for Asset1 is seven. Evidently, without any

further information, it is beneficial to move in the direction that explores more of

the not-yet-sensed nodes, as long as collisions are avoided. Asset1 takes action a0

because more nodes will be sensed from the new position and moves at speed 2

based on Table 5.2. Its position is changed to cur1
1(x, y) = (0, 2). Similarly, Asset2

moves from source2 to node (6, 6) by taking action a′0 to sense three additional nodes.

Moreover, it chooses speed 2, because that minimizes the average of time and fuel

consumption (see Table 5.2).
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Table 5.2 Time and Fuel Consumption of the Assets

Asset1 Asset2

Speed Time Fuel Average Speed Time Fuel Average

1 2 3.7664 2.8832 1 2.24 4.2184 3.2292

2 1 4.2714 2.6357 2 1.12 4.7840 2.9520

3 0.66 4.7286 2.6943 3 — — —

Figure 5.2 Assets’ traveled paths and positions after two moves.

5.2.4 Data centric challenges

The proposed work falls under the broad category of data management/engineering

for efficient AI. The major data-centric challenges to solve the RPP stem from two

sources: (a) Model and Reward design; (b) Memory and CPU Bottlenecks.

5.2.4.1 Model and Reward Design. The problem of designing automated plans

has been recently explored in several research works [18, 101, 117] that broadly fall

under the umbrella of Exploratory Data Analysis (EDA). These efforts investigate

108



the design of RL agents to discover user groups [117], to generate exploratory

sessions for data scientists [18], or to design complex recommendation tasks, such

as courses or trip plans [101]. Similar to these problems, we model the RPP as a

sequential decision-making/control problem, where the fundamental model consists

of a state-action pair for which an appropriate reward function needs to be designed.

Unlike existing works, a state of the RPP corresponds to the current locations of all

|N | assets and an action constitutes deciding respective actions of all assets (including

waiting). Moreover, the problem requires the consideration of multiple objectives

(fuel and time) and the simultaneous planning of routes by multiple distributed

assets in a spatial domain with limited communication capabilities while satisfying

multiple constraints (avoiding collisions and intermittent communication). Therefore,

our proposed model MaMoRL, which involves extensive data engineering for the

reward design process is significantly different from existing works. From a technical

standpoint, MaMoRL contains a Teammate Module (Sub-section 5.3.2) that captures

the belief of each asset on the locations and actions of other assets at each time step,

which is unique to this distributed planning problem and has not been studied in the

aforementioned prior efforts.

5.2.4.2 Memory and CPU Bottlenecks. As we shall describe in Sub-section 5.3.3,

MaMoRL requires storing very large (multiple) P and Q tables in memory, and

the sizes of these tables increase exponentially with the number of assets, grid size,

and the number of neighbors, and the cardinality of the set of speeds an asset can

choose from (refer to Lemmata 5.1, 5.2), causing a memory bottleneck (refer to

Table 5.6 for experimental results). We design two function approximation methods

(based on Linear Regression and a Neural Network) (Sub-section 5.3.3) that avoid

pre-computing and storing these tables. The CPU bottleneck arises from the need to

learn effectively in a setting with an exponential number of environmental states and
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actions. To the best of our knowledge, some existing works [18, 145] propose Deep

Neural Network based RL framework to overcome the large state space problem but

do not comprehensively evaluate the scalability challenges. Naturally, the Neural

Network based function approximation requires more training data to be effective,

which is harder to obtain for the RPP, compared to the EDA problem studied in [18].

5.3 Proposed Solution

We present our proposed model, algorithms for TMM, LM and ASM, and describe

approximation opportunities.

5.3.1 Modeling

We model the RPP problem as a Team Discrete Markov Decision Process (TDMDP)

(S,A,R) [108]:

a. The state space S = |V ||N |, where |V | is the number of nodes in G. At a given
time t, state st is the locations of all |N | assets.

st ← {curt1(x, y), curt2(x, y), ..., curt|N |(x, y)}

b. A is the set of actions. Given a state s, where each asset i is at its corresponding
node vpi, an action ai corresponds to making decisions to move along vpi → vqi
at speed sp′i ≤ spi or staying at vpi, i.e., vpi → vpi; Let a = [ai] denote the
actions over all assets. The effect of an action is a state transition Tr, which is
assumed to be deterministic, that is, Tr : S × E → S, a new state is obtained
by taking an action at each state.

c. R(st, at, st+1) is the reward obtained for transitioning from state st to state st+1

by taking action at.

5.3.1.1 Reward Design. The process of designing the reward must be guided by

the following intuition: (1) proportional to the number of newly explored nodes by

the assets, (2) inversely proportional to the time taken, and (3) inversely proportional

to the fuel consumption.
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1. Exploration Reward: of an action a relates to how much of the unexplored

grid an asset can sense and is formulated as

raexplore =

∑|N |
i=1 Sensed(i)ai

Dmax × |N |
(5.1)

where Sensed(i)ai is the number of newly sensed nodes by asset i by taking

action ai, normalized by Dmax, which is the maximum out-degree in G. Using example

in Sub-section 5.2.3, the exploration reward of taking the first action is ra0explore =

2+3
5×2

= 0.5

2. Time Reward: of an action a over all assets is the inverse of the maximum

time each asset needs as part of a (where
weight(vpi→vqi)

sp′i
is the time asset i needs for

action ai)

ratime =
1

maxi=1,...,|N |
weight(vpi→vqi)

sp′i

(5.2)

For the toy example, ra0time = 1
max(1,1.2)

= 0.83 for the first action of the example

in Sub-section 5.2.3.

3. Fuel Reward: of an action a is the inverse of the sum of fuel consumed by

all |N | assets.

rafuel =
1∑|N |

i=1weight(vpi → vqi)× fueli(1, sp′i)
(5.3)

For our implementation, we use the following model [31] to capture fuel per

unit distance.

fueli(1, sp
′
i) = 0.2525× sp′i

2
+ 1.6307× sp′i (5.4)

Based on the model, the fuel reward of the initial set of actions in the toy

example is ra0fuel = 1
2×4.2714+2.24×4.784

= 0.052.
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Evidently, at state s, an action a corresponds to two things: 1. The assets should

move to the neighboring nodes to maximize the Exploration Reward (Equation (5.1));

2. The speed of each asset is to be chosen to optimize the average of Fuel Reward

(Equation (5.3)) and Time Reward (Equation (5.2)).

5.3.2 Algorithm

Our proposed solution, Multi-agent Multi-objective Reinforcement Learning or

MaMoRL in short, contains three different interacting modules (Figure 5.1) and is

inspired by model-free Reinforcement Learning for multiple agents [144].

5.3.2.1 Teammate Module (TMM). Assets are distributed and communicate

among themselves intermittently. Consequently, when an asset decides on its next

move, it needs to have an internal model that anticipates the current locations and

moves of other assets. The teammate module is designed to represent the internal

model of other team members. The purpose of this internal model is to produce the

probability distribution of actions of the remaining |N | − 1 assets. This module is

gradually updated as asset i observes the actions of asset j (a∗j) ∀j ∈ N \ {i} for each

executable action aj in state s, using the following formula:

Pit(s, aj) =


Pi(t−1)

(s, aj) + βT−t+1
∑

at∈Aj(s)\{aj}
Pi(t−1)

(s, at), aj = a∗j

(1− βT−t+1)Pi(t−1)
(s, aj), otherwise

(5.5)

Here β ∈ [0, 1] is the learning rate for determining the effect of the previous

action, T is the iteration number, Ai and Aj are the sets of possible actions for assets

i and j, respectively. Clearly, these P values are to be stored and updated periodically

while learning from the environment.
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Lemma 5.1. TMM has P tables for (exploration, time, and fuel) rewards, each with

size

|P | = (|V ||N | × |A| × sp).

where |V | is the size of the grid, |A| is the number of actions, sp is the max

speed and |N | is the number of assets.

At the initial state, Asset1 and Asset2 take actions a0 and a′0, respectively,

thus state s1 is obtained. At that time, for the exploration reward, Asset1 updates

the P1(s0, a
′) values in the system for all Asset2’s actions a′ in the action set using

Equation (5.5) as follows:

P11(s0, a
′
j) = (1− 0.3(3−1+1)P10(s0, a0))

= (1− 0.33)× 0.2 = 0.1946, ∀a′j ∈ A2(s0) \ {a′0}

P11(s0, a
′
0) = 0.2216

We consider T = 3 and β = 0.3 in our example. Asset2 also does the same for

updating P values of Asset1’s actions.

5.3.2.2 Learning Module (LM). After the transition

(s, a1, ..., ai, ...., a|N |)→ (s′, r),

asset i will update its Q-function table using the following equation:

Q(s, a1, ..., ai, ...., a|N |) = (1− α)Q(s, a1, ..., ai, ...., a|N |)

+ α(r + γmax
a′∈Ai

Q(s, a′1, ..., a
′
i, ...., a

′
|N |))

(5.6)
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where a′j = argmax
b∈Aj

Pi(s
′, b); j = 1, ..., i− 1, i+ 1, ..., |N |

Clearly, LM must leverage TMM, and update it periodically.

Lemma 5.2. There exist different Q tables, one for each reward in LM, and each of

size

|Q| = (|V | × |A| × sp)|N |.

In Example 5.2.3, the Q values are initialized as

Q(s, a, a′) =
1

|A(s)||A′(s)|
= 0.0286, ∀a ∈ A, ∀a′ ∈ A′,∀s ∈ S

Here, we take α = 0.9 and γ = 0.8. After Asset1 and Asset2 take actions a0 and

a′0, respectively, the new state s1 and exploration reward r = 2+3
5×2

= 0.5 are obtained.

Then, at t = 1, Asset1 will update its Q value for actions a0 and a′0 using Equation

(5.6) as follows:

Q(s, a0, a
′
0) = (1− 0.9)× 0.0286 + 0.9(0.5 + 0.8 ∗ 0.0286) = 0.47

5.3.2.3 Action Selection Module (ASM). Asset i uses a greedy policy for selecting

the next action using the following equation:

a∗i = argmax
ai∈Ai

V (ai|A∗) (5.7)

where A∗ = {a∗1, ..., a∗i−1, a
∗
i+1, .., a

∗
|N |} and V (ai|A∗) is the conditional expec-

tation of an action given by:

V (ai|A∗) =


∑
∀j 6=i

P (s, aj)Q(s, a∗1, ..., ai, ..., a
∗
|N |), t ≤ T

(argmax
∀j 6=i

P (s, a∗j ))Q(s, a∗1, ..., ai, ..., a
∗
|N |), t > T

(5.8)
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Here, T represents an iteration threshold. In order to see which action Asset1

is going to take in state s1 (Figure 5.2) in Example 5.2.3, we calculate the conditional

expectation for all possible actions that Asset1 can take in the current state using

the first formula in Equation (5.8) considering T = 3 and t = 1:

V1(ai|{a′j}) = 4× (0.1946× 0.0286) + 0.2216× 0.0286 = 0.0286

V1(a0|{a′j}) = 4× (0.1946× 0.0286) + 0.2216× 0.47 = 0.1264

For i = 1, ..., 6 and j = 0, ..., 4. Thus, Asset1 chooses action a0 for the next

step, and state s2 is obtained (see Figure 5.2).

5.3.3 Function approximation

It is infeasible to compute MaMoRL exactly in a realistic setting simply because

of the exponential size of the P and Q tables (Refer to Lemmas 5.1 and 5.2).

Indeed, the computational bottlenecks lie in exactly computing or traversing TMM and

LM. Therefore, we study function approximations for TMM and LM. The approximate

solution, Approx-MaMoRL, is designed with extensive feature engineering efforts to

effectively approximate TMM and LM without actually building it, and the assets make

decisions based on that approximation. It is computationally infeasible to produce

an exact solution of MaMoRL in real-world settings.

5.3.3.1 Function approximation for TMM.

1. Linear Regression : As opposed to computing Pit(s, aj), the action of each

teammate j at state s and time t by asset i is approximated as a linear function [35,

128] f̂i,aj ,s, given by
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f̂i,aj ,s = ω1degree(vj, s) + ω2θ(vj, s) + ω3α(aj, s)

+ ω4β(aj, d, s) + ω5(spj, s)

(5.9)

Where:

1. vj = latest location of asset j,

2. θ(vj, s) = 1 if there is another asset within m hops, else 0,

3. α(aj, s) is 1, if aj leads to unsensed nodes; else 0,

4. β(aj, d, s) = 1, if aj leads to d; else 0,

5. spj = speed of asset j,

6. ωl ∈ [0, 1], l = 1, ..., 5 are weights of the features.

The function approximation considers features that are useful before the goal

is discovered (all features excluding β), and ones that are only useful afterward (all

excluding α). β in Equation (5.9) is designed for the latter purpose.

Training: In the absence of historical data, we obtain a sample of the original

(Pit(s, aj) values) coming from MaMoRL to approximate TMM. The features are hand-

crafted and the goal here is to learn the weights ωl that minimize the following error

function:

Minimize
∑
∀i,aj ,s

[fi,aj ,s − f̂i,aj ,s]2 (5.10)

Route Planning: During the actual route planning, at a given state s by asset

i, an action is simply considered to be the action aj for asset j that has the highest

Pit(s, aj) value per Equation (5.9).
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2. Neural Network: Using the same training instance as that of Linear

Regression, a Neural Network is trained by collecting the P values and the

concomitant feature values for each possible action-state pair. The trained Neural

Network model is then used to predict the P values for each possible action in order

to predict the action aj with the highest Pit(s, aj) in route planning.

5.3.3.2 Function approximation of LM.

1. Linear Regression : Similarly, as opposed to storing the entire Q table, asset

i learns a reward function as a linear combination of features:

r̂i,ai,s = ω1degree(vi, s) + ω2θ(vj, s) + ω3α(ai, s)

+ ω4β(ai, d, s) + ω5(spi, s) + ω6sp
′
i

(5.11)

Here, sp′i is the speed of asset i that causes a collision and the remaining features

are as described in Equation (5.9).

Training: Similar to the function Approximation for the TMM, we sample from

the training grid to learn ωl by minimizing the least squares objective function:

Minimize
∑
∀i,ai,s

[ri,ai,s − r̂i,ai,s]2 (5.12)

Route Planning: During route planing, the reward for each action ai is

calculated using Equation (5.11) and the action resulting in the highest r̂i,ai,s is chosen

by asset i at state s.

2. Neural Network: Using the same training data as that of function approxi-

mation using Linear Regression of LM, a Neural Network is also trained.
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5.4 Experimental Evaluation

Most of the experiments are run on OS Big Sur with 2.4 GHz Quad-Core Intel Core

i5 Processor and 16 GB RAM. Experiments in Table 5.6 are run on a 64-bit OS

server with 3.5 GHz 11th Gen Intel Core i9 and 128 GB RAM. Our code and data

are available on GitHub.1 All results are presented as an average of 10 runs.

5.4.1 Experimental setup

5.4.1.1 Datasets. I. Real World Data. A discrete grid of the entire world is

produced by taking high-resolution shoreline data from the GSHHG data set and

generating a mesh using Gmsh over the world’s oceans [67] [139]. In this graph, each

node has an out-degree of at most six. To represent the greater amount of navigational

adjustments necessary near land, the mesh is generated such that regions closer to

coastlines have a higher resolution than those in the middle of the ocean. This grid is

then split into three datasets of increasing resolution: the Caribbean Grid, the North

America Shore Grid, and the Atlantic Grid (refer to Table 5.3).

Table 5.3 Datasets Description

Datasets Region |V | |E|

1 Caribbean Grid 710 1684

2 North America Shore Grid 3291 7811

3 Atlantic Grid 14655 35061

II. Synthetic Data. We use the NetworkX library in Python to generate grids

by varying one of the three parameters at a time. (a) number of nodes; (b) number

of edges; (c) max out-degree.

1https://github.com/RoutePlanningProblem/MaMoRL
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5.4.1.2 Implemented Algorithms. We implement Approx-MaMoRL, NN-Approx-

MaMoRL, MaMoRL, and compare them with several baselines. Additionally, we

implement MaMoRL with partial knowledge, which works as follows:

1. MaMoRL with partial knowledge: We assume that under partial knowledge,
the destination is inside a specified region (described by a bounding box of lat,
long) that the assets are aware of, but the exact location (lat, long) is unknown.
For that, all assets make use of Dijkstra’s Shortest Path [52] algorithm to find
the shortest path to the boundary of the region containing the destination. Then
the assets leverage MaMoRL solutions inside the region to reach the destination.

2. Baseline-1: Assets plan their routes one-by-one in a non-simulta
neous round-robin fashion. The reward functions are identical to that of the
ones described in Sub-section 5.3.1. The baseline is likely to require less fuel
for the assets to reach the destination (i.e., smaller Ftotal) because of their long
wait at the nodes and no unnecessary moves at the expense of taking a longer
time, thereby giving rise to a larger Ttotal value.

3. Baseline-2: In this RL-based implementation, assets use the same reward
functions as before but plan their routes independently, without taking into
account the actions of others. This fully distributed planning is akin to the
ALOHA protocol and is prone to collisions.

4. Random Walk-Baseline: The implementation designs a random walk based
solution, where an action in each step and the assets’ speed are decided
randomly from a uniform probability mass function (for actions) and density
(for speed).

Experimentation Goals. Our effort attempts to answer the following

questions:

Q1. How function approximation methods Approx-MaMoRL and NN-Approx-
MaMoRL compare with each other?

Q2. What are the bottlenecks of implementing the proposed solutions and the
baselines?

Q3. How effective Approx-MaMoRL is with or without partial knowledge w.r.t.
different baselines and parameters?

Q4. The Accuracy vs. Speed Tradeoff of Approx-MaMoRL.
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Table 5.4 Default Parameters Values

Parameters #Nodes(|V |) #Edges(|E|) #Neighbors(Dmax) #Assets(|N |) Speed of Assets(sp) #Episodes(TB) Communication Frequency(k)

Default Value 400 846 9 6 5 10 3

Q5. How effective is Approx-MaMoRL in Transfer Learning?

Table 5.4 contains default values for the parameters that are part of MaMoRL. We

present Ttotal, Ftotal, relative improvement in objective function values (defined in

Sub-section 5.4.4), memory usage, and running time of the corresponding solution for

evaluation purposes. Comparison results are presented with paired t-test [76] with

95% statistical significance.

5.4.1.3 Summary of Results. Our first and foremost observation is that the

Linear Regression based function approximation Approx-MaMoRL requires less

training time (15× faster) and less training data and is more effective than its Neural

Network counterpart NN-Approx-MaMoRL (Refer to Sub-section 5.4.2). Hence

the rest of our results primarily focus on Approx-MaMoRL. Consistent with our

theoretical analysis, in Sub-section 5.4.3, we demonstrate the memory and CPU

bottlenecks of MaMoRL and compare that with Approx-MaMoRL along with other

baselines (Table 5.6). These results demonstrate that MaMoRL is not a practical

solution beyond a small grid with only two assets, whereas Approx-MaMoRL produces

reasonable performance to the exact model while being an order of magnitude

faster. Baseline-2 results in asset collisions for more than 97% of the runs, due

to its unique design choice, making it infeasible in practice. Next, from extensive

synthetic data experiments, we observe in Sub-section 5.4.4 that the proposed solution

Approx-MaMoRL with or without partial knowledge is effective and robust to

problem settings. We also observe that Approx-MaMoRL returns the Pareto Front

which is better at optimizing both fuel and time when compared to the baselines.

Then, in Sub-section 5.4.5, we explore the trade-off between training time and
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accuracy of Approx-MaMoRL. Our results demonstrate that Approx-MaMoRL is

effective as a real-world solution, making substantial improvement on Ttotal with a

95% statistical significance with a moderate compromise on Ftotal. In Sub-ssection

5.4.6, we demonstrate that our proposed model is suitable for transfer learning.

5.4.2 Function approximation methods

We compare Approx-MaMoRL with NN-Approx-MaMoRL from two standpoints -

training time, and objective function values. The training data is obtained from

MaMoRL on a small grid (50 nodes, 93 edges) for 2 assets. Additional information

is presented in Table 5.5. These results demonstrate that, unsurprisingly, for the

same amount of training data, Approx-MaMoRL is more effective than NN-Approx-

MaMoRL and is 15x faster in training time (Figure 5.3). In fact, the Neural Network

based approximation requires a large amount of training data to be effective which is

hard to obtain for our problem since MaMoRL could only be run on small instances

because of its memory and CPU bottlenecks. For the remainder of the chapter, we

therefore primarily focus on Approx-MaMoRL.

(a) Objective time (b) Objective fuel (c) Training time

Figure 5.3 Approx-MaMoRL vs. NN-Approx-MaMoRL.
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Table 5.5 Neural Network Parameters Setting

Parameters # Layers # Nodes Activation Function Batch Size # Epoch

Default Value 2
Layer 1 Layer 2 Layer 1 Layer 2

1000 10000
5 1 ReLU Linear

5.4.3 Bottlenecks of the implemented solutions

We compare Approx-MaMoRL with the exact model (MaMoRL) and the baselines.

We present the objective function values as well as CPU time and memory

usage (instances that could not be run are represented as N/A in Table 5.6).

Consistent with our theoretical analysis, Table 5.6 shows that MaMoRL suffers

from significant memory and CPU bottlenecks. These bottlenecks are fully averted

in Approx-MaMoRL through a “lightweight” function approximation, whereas, the

objective function values of Approx-MaMoRL are very close to their exact counterpart

in MaMoRL. Unsurprisingly, Baseline-2 results in a majority of collisions (more

than 97%). These results demonstrate that Approx-MaMoRL is indeed a suitable

alternative to the intractable exact solution.
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Table 5.6 Comparison Among Implemented Algorithms

Scenario Algorithm Ttotal Ftotal CPU Time Memory Usage

|V | = 704

|N | = 2

Dmax = 7

MaMoRL N/A N/A N/A 205 GB

Approx-MaMoRL 158.85 46482.9 0.8 min 1056 B

Approx-MaMoRL with Partial Knowledge 177.94 49353.8 0.9 min 1056 B

Baseline-1 255.5 38912.75 0.8 min 576 B

Baseline-2 N/A N/A 0.6 min 576 B

Random Walk-Baseline 995.3 54391070.5 N/A N/A

|V | = 400

|N | = 3

Dmax = 9

MaMoRL N/A N/A N/A 17000 TB

Approx-MaMoRL 87.8 28891.4 1.9 min 2304 B

Approx-MaMoRL with Partial Knowledge 69.74 13338.7 1.9 min 2304 B

Baseline-1 128.2 19528.7 1.8 min 864 B

Baseline-2 N/A N/A 0.95 min 576 B

Random Walk-Baseline 153.9 987406.5 N/A N/A

|V | = 400

|N | = 2

Dmax = 6

MaMoRL 317.7 80898.4 208 min 38.5 GB

Approx-MaMoRL 508.1 126919.5 0.8 min 1056 B

Approx-MaMoRL with Partial Knowledge 623.3 163528.6 0.85 min 1056 B

Baseline-1 746.3 113666.9 0.8 min 576 B

Baseline-2 N/A N/A 0.6 min 576 B

Random Walk-Baseline 2442.55 58416741.8 N/A N/A

|V | = 200

|N | = 2

Dmax = 9

MaMoRL 36.3 8306.1 57 min 40 GB

Approx-MaMoRL 48.9 12907.5 0.8 min 1056 B

Approx-MaMoRL with Partial Knowledge 48.95 12139.9 0.8 min 1056 B

Baseline-1 75.4 11479.6 0.8 min 576 B

Baseline-2 N/A N/A 0.6 min 576 B

Random Walk-Baseline 115.1 460182.9 N/A N/A

5.4.4 Effectiveness of Approx-MaMoRL

In these experiments, we vary a large number of parameters systematically that are

part of our proposed solution (see Table 5.4). Figure 5.4 shows that our proposed

framework is capable of returning Pareto-front based on both the objectives Ftotal and

Ttotal, where Approx-MaMoRL convincingly outperforms the baselines. Additionally,

we measure the percentage of relative improvement (RI(.)) of Ftotal and Ttotal for
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Approx-MaMoRL with or without partial knowledge w.r.t other baselines using the

following measure.

RI(Objtotal) =
ObjBaselinetotal −ObjApprox−MaMoRL

total

ObjBaselinetotal

× 100

As demonstrated in Figure 5.5(a) with an increase in the number of nodes,

Approx-MaMoRL has around 60% relative improvement for Time w.r.t other

baselines. However, it also has a negative improvement for Fuel w.r.t Baseline-1 which

is understandable. A similar observation holds when the number of edges is increased

in Figure 5.5(b). Figures 5.5(c) and 5.6(e) show that having more neighbors or moving

assets at different speeds does not change the % relative improvement drastically. By

increasing the number of assets in Figure 5.5(d), the % relative improvement for

Time is positive while it is negative for Fuel. According to Figure 5.5(f), assets

take better actions leading to an increase in relative improvement percentage for

both objective values, when they are trained more. When assets communicate more

often, the objective values improve in general, as a result, % relative improvement of

Approx-MaMoRL w.r.t other baselines does not increase as shown in Figure 5.5(g).

Figure 5.6 shows Approx-MaMoRL with partial knowledge behaves in a similar way.

Baseline-2 results are omitted in Figures 5.5 and 5.6, since it results in asset

collisions for 97% of the runs.

124



(a) Varying number of edges (b) Varying number of neighbors

Figure 5.4 Pareto Front of Ftotal and Ttotal.

Overall, these figures demonstrate the suitability and superiority of Approx-

MaMoRL as a real-world solution.

5.4.5 Accuracy and speed trade off

In these experiments, we measure the route planning time of our model and the

baselines as seen in Figure 5.8. We do not include the Random Walk-Baseline as it

fails to exhibit consistent behavior in optimizing Ftotal and Ttotal. We consistently

observe that Approx-MaMoRL convincingly outperforms Baseline-1 in running time,

especially for larger problem settings. These Figures 5.8(a-g) demonstrate that

Approx-MaMoRL is an effective and realistic model to deploy inside TMPLAR.

5.4.6 Transfer learning

We present the effectiveness of Approx-MaMoRL in transfer learning. We learn a

policy on the Caribbean Grid and use it for navigating the assets in the North America

Shore Grid and vice versa. Figure 5.7 presents these results that corroborate that

Approx-MaMoRL is highly effective in transfer learning, i.e., Ttotal and Ftotal of the

transferred models are close to those calculated in the original grid.
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(a) Varying number of nodes (b) Varying number of edges

(c) Varying number of neighbors (d) Varying number of assets

(e) Varying speed of assets (f) Varying number of episodes

(g) Varying communication frequency

Figure 5.5 Ftotal and Ttotal varying parameters for Approx-MaMoRL.
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(a) Varying number of nodes (b) Varying number of edges

(c) Varying number of neighbors

Figure 5.6 Ftotal and Ttotal varying parameters for Approx-MaMoRL with partial
knowledge.

Figure 5.7 Transfer learning.
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(a) Varying number of nodes (b) Varying number of edges

(c) Varying number of neighbors (d) Varying number of assets

(e) Varying speed of assets (f) Varying number of episodes

(g) Varying communication frequency

Figure 5.8 Running time results.
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5.4.7 Deployment inside TMPLAR

MaMoRL inside TMPLAR [121] [32] enables simultaneous route planning for multiple

assets that are robust to uncertainty under multiple contexts (mission, environment,

asset, and threat). It has two views: a global view, to facilitate the holistic planning of

all the assets simultaneously, as well as a local view designed for single asset planning.

The developed interface is designed through extensive user studies involving human

subjects. It is fast, intuitive, logical, and designed to abstract the complex nature of

the underlying solution. TMPLAR is written in Python and is intended to be used

as a back-end service with JavaScript Object Notation (JSON) objects. MaMoRL is

deployed as a docker container simplifying and accelerating the application workflow

while giving developers the freedom to innovate with their choice of tools, application

stacks, and deployment environments. The efficacy of the tool is evaluated in the

Naval Postgraduate School considering different contexts, hazards, and threats and

is now being analyzed by studying the click and eye tracking data of the users, to

quantify and compare its ease-of-use and robustness in multi-asset decision-making.

5.5 Related Works

Reinforcement Learning. Reinforcement Learning (RL) has a broad range of

applications in dynamic and uncertain environments [105] [84] [63], including traffic

lights control and monitoring [138], exploratory data analysis [18], user group

discovery [117], and complex task planning [101]. Kadota et al., 2006 [83] and Geibel,

2005 [65] study Markov Decision Problems (MDPs) for a single agent considering

multiple objectives with constraints and propose a weighted RL. In [83], Kadota et

al., 2006 introduce a Lagrange function for solving utility constrained MDPs. In [141],

Yu, 2018 discusses the inefficiencies associated with sample cost in Reinforcement

Learning.
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Multi-Agent RL. Coordinating multiple agents in a dynamic environment is

a complicated problem - some recent efforts have been made to solve this problem

using RL [40] [49] [144] [34] [47]. [144] studies a cooperative Multi-Agent RL by

using a teammate model and reward allotment. [40] considers multiple agents in

a task-oriented environment as a Decision-Theoretic Planning (DTP) problem and

adapts RL for solving it. [49] shows how to adapt Generalized Learning Automata

(GLA) in multi-agent systems. [34] sheds light on the potential applications of Multi-

Agent Reinforcement Learning (MARL) in a variety of different areas from robotics

to different static games, whilst raising concerns about scalability. [47] points out the

absence of existing work where agents reuse knowledge acquired from one another.

Path Planning. Path Planning for ships and aerial vehicles has been studied

extensively in [16] [32] [121] [16] [98]. Bienkowski et al., 2018 [32] leverage Q-factor

as an approximate dynamic programming method for navigating ships in uncertain

environments. TMPLAR [121] is developed as a system for Multi-objective Planning

and Asset Routing.

We non-trivially adapt these works to address a problem of significant interest to

maritime navigation involving multiple distributed assets, objectives, and constraints,

as well as study scalability challenges.

5.6 Conclusion

We study the Route Planning Problem (RPP), which is formalized as a Team Discrete

Markov Decision Process and we propose a Multi-agent Multi-objective Reinforcement

Learning (MaMoRL) framework for solving it. We demonstrate why exact MaMoRL

is computationally expensive and study approximation opportunities. As an ongoing

work, we are analyzing the post-deployment data collected through click and eye

tracking of the behavior of the users to quantify its ease of use, flexibility, and

robustness in multi-asset decision-making.
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CHAPTER 6

ONGOING WORK

This chapter presents our current research efforts to address the challenges associated

with classical Reinforcement Learning (RL) frameworks. In this context, our research

primarily focuses on three key challenges that are currently being investigated:

1. Exponential State/Action Space. A major limitation of RL frameworks is
their inability to effectively handle problems that involve an exponential number
of states and actions. RL algorithms rely on exploring and exploiting the state-
action space to learn the best policy. However, as the complexity of a problem
increases, the number of potential states and actions grows exponentially,
presenting a significant challenge for RL algorithms. This exponential growth
makes it increasingly difficult for RL algorithms to thoroughly explore and
evaluate all possible combinations of states and actions. As a consequence, the
performance of RL algorithms deteriorates rapidly as the size of the state-action
space expands, hindering their effectiveness in solving complex problems.

2. Large Memory Requirement to Store Q Values. In classical RL
algorithms, Q-values are commonly used to estimate the expected rewards
associated with different actions in specific states. However, when dealing with
problems characterized by large state and action spaces, the number of Q-values
that need to be stored and updated becomes overwhelmingly large. The storage
and management of these Q-values in memory pose a significant bottleneck,
requiring substantial memory resources. As the complexity of a problem
increases, the memory requirements can grow to impractical extents, imposing
limitations on the practical applicability of RL algorithms in domains with
exponential state and action spaces. This challenge of memory management and
storage becomes a critical factor in scaling RL algorithms to address real-world
problems effectively.

3. Significant Learning Time to Be Effective. Another critical limitation of
classical RL frameworks is the substantial amount of time required to achieve
effective performance. RL algorithms learn by interacting with the environment
and gradually updating their policies based on observed rewards. However,
in complex domains, the learning process can be time-consuming due to the
necessity of extensive exploration and exploitation to discover optimal policy.
Furthermore, the presence of scarce or delayed reward signals further prolongs
the learning time, as RL agents struggle to identify the most rewarding actions.
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This extended learning time can be impractical in scenarios that demand quick
decision-making or adaptability, posing a barrier to the widespread application
of RL in real-world problems that require timely and dynamic responses. The
challenge of significant learning time undermines the efficiency and scalability
of RL algorithms in practical settings.

To address these challenges, our ongoing research explores two distinct perspectives:

designing online policy and developing data management techniques. The former

studies applicability of Rollout techniques [25] [26] [27] [28] [29] [30], which employs

an one-time policy iteration approach in a distributed environment. Indeed, Rollout

techniques has the capability of addressing Challenge 1 and Challenge 3. Additionally,

we investigate data management techniques, in particular, how to store and reuse fine

grained metadata of previously trained policies to overcome Challenge 3, while also

tackling Challenge 1 and Challenge 2.

In the following sections, we delve into further details.

6.1 Design Online Policy

6.1.1 Introduction

In Chapter 5, we have introduced a distributed Reinforcement Learning framework

that focuses on team decision-making within the context of multi-agent routing. This

framework employs a teammate model to predict the actions of other agents and a

reward model to learn the cost or reward associated with state-action pairs.

Building upon the Multi-Agent Multi-Objective Reinforcement Learning

(MaMoRL) framework, our current exploration aims to develop a multi-objective

route planning approach. This approach allows each agent to determine its own set of

actions in cognizance of its teammates. Our objective is to enhance the computational

efficiency of the MaMoRL framework.

In our ongoing investigations, we are specifically examining the ”Rollout

Algorithm”, which is a one-time policy iteration technique that can be implemented in

an online manner to improve policies. This algorithm trades off the complexity of the
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action space for that of the state space, leading to a novel form of policy improvement

known as ”one-agent-at-a-time.” By employing this technique, we hope to overcome

the computational challenges that arise when dealing with a large number of agents

in an extensive grid environment.

6.1.2 Modeling

We model our problem as Dynamic programming (DP), which involves the following

components:

a. State: The state in our model represents the current location of l ships at stage
n. It captures the spatial information of the ships at a specific time.

b. Stage: In the context of our formulation, a stage refers to the outcome of the
transition tn that occurs at state sn. This transition is achieved by taking the
action an, resulting in a new state sn−1 with n− 1 stages remaining.

c. Action: At each stage n, the action space is denoted as Akn =
⋃l
i=1{Ai∪waiti},

which is the union of the sets Ai and waiti for each ship i. Here, Ai represents
the set of possible actions available for ship i, while waiti corresponds to the
option of staying at the same location without taking any action.

By employing this DP formulation, we can effectively model and analyze the

problem, considering the state of the ships, the transitions between stages, and the

available actions at each stage.

6.1.3 Proposed solution

In this section, we will introduce our proposed algorithm for solving the TPP.

6.1.3.1 Local Optimization Function.

Given the current positions curni , cur
n
2 , ..., cur

n
l of the ships and the number of stages

remaining n, we aim to determine the optimal action a∗n by minimizing the cost

function Cn(an, sn).

The local optimization problem can be formulated as follows:
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a∗n = argminanCn(an, sn)

s.t. curni 6= curn2 6= ... 6= curnl

(6.1)

Where Cn(an, sn) = α × Fueli(n) + β × Timei(n). Fueli(n) and Timei(n)

represent normalized quantities with the same unit.

By applying this local optimization function, we aim to determine the best

action at each stage, considering the current ship locations and minimizing the cost

function that incorporates fuel consumption and time.

6.1.3.2 Optimization Problem.

vn(sn) = min {Cn(an, sn) + Cn−1(an−1, sn−1) + ...+ C0(a0, s0)}

= min {Cn(an, sn) + vn−1(sn−1)}

s.t.

curmi 6= curm2 6= ... 6= curml , m = 0, 1, ..., n
sm−1 = sm, if am = wait; m = 1, ..., n

sm−1 = tm(am, sm), otherwise; m = 1, ..., n

am ∈ Am; m = 0, 1, ..., n

(6.2)

6.1.3.3 Algorithm.

To mitigate the exponential growth in computational complexity associated with

Dynamic Programming (DP) as the grid size and number of ships increase, we propose

an approximation approach using the Rollout strategy. We introduce the ”Multi-

Objective Rollout Policy Iteration with one-step look-ahead” (MaMoRPI) framework,

which is a technique for one-time policy iteration. This framework is designed to

improve policies in an online fashion. The MaMoRPI framework addresses the trade-

off between the complexity of the action space and the complexity of the state space,
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resulting in a unique type of policy improvement known as ”one-agent-at-a-time.”

This approach is visualized in Figure 6.1. At each time step t, MaMoRPI consists

of two parts: 1) Determining which ship should take action, and 2) Deciding which

action the selected ship should take. To answer these two questions, we employ two

separate Rollouts.

Figure 6.1 Rollout diagram.

1. In each time step t, MaMoRPI selects the ships that maximize the following

equation:

i ∈ argmaxiE{R(i, t, t′) + γJ(i, n)} (6.3)

Where R(i, t, t′) represents the reward, which is calculated using the following

equation:

R(i, t, t′) =
SF (i, t, t′)

Fueli
(6.4)

The starvation factor SF (i, t, t′) = t−t′
t

is incorporated into the reward design

to prevent keeping a ship in the same location for an extended period. t′ in starvation

factor is the last time that ship i took action.
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In Equation (6.3), J(i, n) is the cost-to-go, which captures the number of newly

unsensed nodes that will be explored by each ship. It is computed using the following

equation:

J(i, n) =

∑
ai∈Ai

Sni (ai)

|Ai|
(6.5)

Here, Ai represents the set of all possible actions for ship i, and Sni (ai) indicates

the number of newly sensed nodes by ship i after taking action ai.

2. After selecting the ship i based on Equation (6.3) at time step t, MaMoRPI

determines the action for the chosen ship using the following equation:

a∗i ∈ argmaxani E{R
′(ani , v

n
i ) + γJ ′(currni , ri)} (6.6)

Where the action reward is defined as R′(ani , v
n
i ) = [

vni
ω(ani )

+ deg(ani )]× θ(ani ).

In the above equation, ω(ani ) represents the distance between the current

position (curri) of ship i and the next position obtained by taking action ai, while vi

indicates its velocity. To prevent ships from getting stuck in grid corners, we consider

the degree of a node as a component of the action for moving towards that node.

Additionally, we include θ to avoid collisions between ships, which can be calculated

using the following equation:

θ(ani ) =


0, ∃ j s.t. currnj = ai; j = 1, ..., l \ {i}

1, otherwise;

In the above equation, θ(ani ) is set to 0 if there is another ship j that is one hop

away from currni .

The cost-to-go J ′(currni , ri) in Equation (6.6) captures the average shortest path

between each pair of unsensed nodes, which is computed using the following equation:
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J ′(currni , ri) =
ri

Avgmi
(Dijkstra(mi, p))

(6.7)

Here, ri represents the sensing radius, mi ∈ neighbors(currni ), and p indicates

an unsensed node.

6.1.4 Generalization

We also extend our approach to select k ships from a total of l ships to simultaneously

take action. Our method consists of two stages for determining which k ships should

take actions and which actions they should take: 1. Before detecting the destination,

and 2. After detecting the destination.

Solving the general MaMoRPI problem is NP-hard, so we reduce it from the

maximum coverage problem. However, for the maximum coverage problem, we can

use a greedy algorithm that iteratively selects k ships to maximize the marginal

increase in coverage, providing a logarithmic approximation factor.

1. Before Detecting the Destination: For ship selection and action

selection, we use the same maximization equations as in Equations (6.3) and (6.6),

respectively. However, we employ different reward functions and cost-to-go:

R(k, i, t, t′) =
min
i=1,..,k

SF (i, t, t′)∑k
i=1 Fueli

(6.8)

J(k, i, n) =
k∑
i=1

Coveragein (6.9)

Where Coveragein =

∑
an
i
∈Ai

Sn
i (ani )

|Ai| .
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After selecting k ships, we determine the action that maximizes Equation (6.6)

for each of the k ships. The reward and cost-to-go for the general form can be

rewritten as follows

R′(ani , v
n
i ) = [

vni
ω(ani )

+ deg(ani )]× θ(ani ) (6.10)

If any ship is two hops away from the current ship’s position, the θ(ani ) in

Equation (6.10) returns a value of 0; otherwise, it returns 1. This penalizes actions

where two ships are 2 hops apart, as there is a risk of both ships going to the same

common neighbor and colliding.

The cost-to-go for the general action selection is calculated using the following

equation.

J ′(currni , ri) =
ri

Avgmi
(Dijkstra(mi, p))

(6.11)

2. After Detecting the Destination: When one of the ships detects the

destination, all ships use the Dijkstra Shortest Path algorithm to reach the destination,

and the paths for the ships are treated as hyper-edges.

• Which Ships? In this case, k ships that can move simultaneously are chosen
to take action. It indicates that the ships’ hyper-edges do not intersect, allowing
them to avoid collisions.

• Which Actions? Ships will either follow a hyper-edge to reach their goal or
remain in the same location to avoid collisions.

6.2 Reusing Pretrained Policies for Efficient Inferencing

6.2.1 Introduction

The field of Reinforcement Learning (RL) has experienced significant advancements,

making it a powerful tool for addressing complex decision-making problems across
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various domains [3, 80, 90, 92, 93, 105, 120, 132]. RL algorithms have demonstrated

remarkable success in areas such as robotics, data exploration, and query planning.

By integrating RL techniques into these applications, there is an opportunity to

enhance performance, optimize resource utilization, and improve overall efficiency.

This work focuses on the utilization of RL algorithms for efficient inferencing

in data-driven systems. The prominent use cases that stand out as ideal applications

of RL are data exploration [18], robot movement [70, 87], and query planning

[115]. By leveraging RL’s ability to learn from interactions with an environment,

data exploration techniques can efficiently uncover valuable insights and patterns

within large datasets. Additionally, RL algorithms can enhance robot movement

strategies, enabling autonomous agents to navigate complex environments effectively.

Furthermore, incorporating RL into query planning processes has the potential to

optimize resource allocation and improve query execution efficiency.

We present a novel approach to RL inferencing by leveraging fine-grained

metadata of pre-trained policies. The main objective is to harness the reusability

of pre-trained models and reduce the expensive training time typically required

for RL algorithms. By focusing on inferencing, the paper explores methods that

effectively utilize the knowledge captured in pre-trained policies, enabling efficient

decision-making without extensive retraining. Our primary goal is to provide insights

and methodologies for efficient inferencing in RL. The ability to reuse pre-existing

models and reduce training time holds substantial practical value, opening avenues

for improved performance and resource optimization in various domains.

The contributions of this work include proposing a computation framework

that is generalizable to multiple RL models, as well as suitable to different reward

functions. We present efficient inferencing algorithms with theoretical guarantees.

As part of this research, we explore three primary RL implementations:

Q-Learning [137], SARSA [127], and Deep RL [15]. Q-Learning is a model-free
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algorithm that learns the optimal action-value function through iterative updates.

SARSA, another model-free algorithm, follows an on-policy approach by updating

action-values based on the actual actions taken. Deep RL combines RL techniques

with deep Neural Networks to handle high-dimensional and continuous state and

action spaces.

To evaluate the performance of different approaches, several essential metrics

are considered, including recall, pruning percentage, training+inference time, training

time only, and energy consumption. These metrics provide a comprehensive

assessment of the efficiency and effectiveness of the proposed RL techniques in the

inferencing phase.

We also examine the impact of varying important parameters on inferencing

performance, including inference query characteristics, discount factors for SARSA

and Q-Learning algorithms, number of epochs, reward function, and the size of the

state and action space. By exploring the effect of these variables, we can gain

some insights into overall system performance, enabling the identification of optimal

configurations.

6.2.2.1 Toy Running Example. Consider a grid environment (Figure 6.2) where

an agent, represented by a robot, needs to learn two distinct tasks. The first task,

Task 1, requires the robot to reach the goal state by following the shortest path. The

second task, Task 2, involves the robot reaching the goal state while collecting as

many powers as possible. Both tasks have the constraint that the robot must avoid

bomb cells in the environment.

To train the robot for these tasks, we model the problem as an MDP, where

each cell in the grid represents a state. In each state, the robot has four possible

actions: Right, Down, Left, and Up. We utilize RL techniques to train the robot
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separately for each task, resulting in two optimal policies that enable the robot to

achieve the objectives of Task 1 and Task 2, respectively.

The challenge arises when we are asked to train the robot to perform both

tasks simultaneously, where it needs to reach the goal state by following the shortest

path and collecting as many powers as possible while avoiding bombs. To address

this combined task, training the robot from scratch would be time-consuming and

inefficient. Instead, we aim to leverage the training data from the individual tasks to

obtain an optimal path for the combined task.

By using the knowledge gained from the individual task training, we can devise

a strategy to adapt the robot’s behavior and decision-making process to effectively

solve the new combined task. This approach allows us to capitalize on the learnings

and policies derived from the separate tasks and use them as a basis for training the

robot to perform optimally in the combined setting.

Figure 6.2 Environment of Example 6.2.1

6.2.2 Background and problem definition

The following assumptions are made:
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• The reward function of the combined task is a linear function of the reward
functions of the individual tasks.

• The combined task shares exactly the same states and action spaces as the
individual tasks, ensuring a seamless integration of the tasks without any need
for additional modifications or conversions.

• Both the state and action space are considered to be discrete, implying that
there is a finite and distinct set of states and actions available for the agent to
navigate through.

• The state transition function is deterministic, implying that given a particular
state and action, the next state is uniquely determined, and there is no
randomness involved in the transition process.

• The rewards are provided at each time step during the execution of the task,
rather than being dependent on a final outcome, allowing for a continuous
feedback loop for the agent’s decision-making process.

Given to us are K tasks, where each is represented as a Deterministic Discrete

Markov Decision Process (DDMDP) (S,A,R):

a. S is a set of states.

b. A is a set of actions.

c. R(si, ei, si+1) is the reward of transitioning from state si to state si+1 by taking
action ei.

6.2.2.1 Reinforcement Learning based solutions. There are various methods

for solving Markov Decision Processes (MDPs), such as value iteration and policy

iteration, which are iterative techniques. However, the focus of the work is on model-

free Reinforcement Learning (RL). Three different RL approaches are considered:

1. Q-Learning: It is a popular RL method that aims to find the optimal action-
selection policy in an MDP. It utilizes a Q-table to store the expected cumulative
rewards for each state-action pair. Through an iterative process of exploration
and exploitation, Q-Learning updates the Q-values based on observed rewards
to make informed decisions and maximize long-term rewards.
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2. SARSA: Another RL algorithm, SARSA (State-Action-Reward-State-Action),
operates similarly to Q-Learning but follows an on-policy approach. It considers
the current policy when determining the next action, updating Q-values based
on the subsequent state and action pair.

3. DeepRL: DeepRL, short for Deep Reinforcement Learning, combines RL
with deep neural networks to handle complex tasks and large state or action
spaces, enabling learning directly from raw sensory data without manual feature
engineering.

Definition 6.1. (Combined Task.) Given K individual tasks Ti; i = 1, ..., K,

each of which can be represented as an MDP Mi = (S,A,Ri); i = 1, .., K, task T

is categorized as a combined task if it shares the same state and action space with

the individual tasks and its reward is a linear function of a subset of these tasks.

In other words, task T can be represented as an MDP M = (S,A,R), where R ⊆

R1 ±R2 ± ...±RK.

Problem 6.1. Given a combined task T and a set of individual tasks Ti; i = 1, ..., K,,

a collection of fine-grained training metadata π1, ..., πK for each, the objective is to

find an optimal policy for task T maximize its cumulative reward without the need

for additional training for T . The reward function R of T , is expressed as a linear

function of f(R1, ..., RK).

6.2.3 Proposed solution

In order to solve Problem 6.1, we design two different algorithms. The first one

provides an exact solution, ensuring the optimal outcome with provable guarantee.

We also design a highly scalable heuristic approach. This approach is particularly

useful when finding an exact solution is computationally expensive. The heuristic

algorithm prioritizes computational efficiency over optimality. While it may not

provide the absolute best solution, it guarantees a good approximation, as we observe

in our preliminary investigation.
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Exact Solution: To achieve an exact solution for the combined task, we employ

Algorithm 6.1 to train K individual policies. After training, we obtain the graph

representation of each policy as well as fine-grained training metadata. In these

graphs, the nodes represent the states, while the edges correspond to the actions.

Additionally, the Q-values associated with each state-action pair are stored as node

features within the graph structure. Algorithm 6.1 follows a similar approach to the

offline phase of traditional Q-Learning, with the key distinction being the storage of

Q values in a graph format rather than a tabular format. This graph representation

allows for efficient and organized access to Q-values during the subsequent phases of

the combined task.

Next, by employing Algorithm 6.2, we iterate through all K graphs in a brute-

force manner to obtain Gunion (Lines 2-4). By leveraging the fact that the Q-value of

the goal state (sgoal) remains unchanged throughout the training process, we utilize

a backtracking approach to determine the boundaries for each (node, edge) pair. For

the lower bound, we assume that each (node, edge) pair has been visited only once,

while for the upper bound, we consider that each (node, edge) pair has been visited

in every episode. However, it’s worth noting that this approach becomes ineffective if

the graph contains cycles, as the cyclic dependencies may prevent us from attaining

the exact solution we seek.

Lastly, Algorithm 6.3 is employed to perform edge pruning within the graph,

removing edges that cannot be included in the optimal path. In essence, an edge

is pruned if its upper bound is found to be lower than the lower bound of another

outgoing edge from the current node (Line 6). Once this pruning process is complete,

we retrieve all the paths from the starting node to the goal node. Each path’s

cumulative reward is then calculated, and the path with the highest cumulative reward

is selected as the optimal path for the combined task. This final step ensures that the
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resulting solution maximizes the cumulative reward, providing an effective outcome

for the given problem.

Heuristic Solution: In scenarios where the state and action space is exponentially

large, obtaining an exact solution becomes impractical. To address this challenge, we

introduce a heuristic approach that balances efficiency and approximation to achieve

results close to optimality. The heuristic solution closely resembles the exact solution,

with a notable modification in Algorithm 6.2. Instead of performing brute force and

combining the graphs of all K individual policies, we selectively unite a subset of

each graph. Specifically, we consider only the top h actions for each state, rather

than evaluating all possible actions. The subsequent steps of the algorithm remain

unchanged. This heuristic approach may not yield the absolute optimal path for

the combined task, but it delivers a solution that closely aligns with the optimal

path, differing only in a few waypoints. By striking a balance between efficiency and

accuracy, this heuristic method provides a practical alternative for dealing with large

state and action spaces.

Hypothesis 6.1. In the Brute Forcing part of Algorithm 6.2, Gunion contains all

possible paths that start at the start node (sstart) and end at the goal node (sgoal).

Hypothesis 6.2. The number of possible paths that starts at the start node (sstart)

and end at the goal node (sgoal) in Gscratch is a subset of possible paths in Gunion.

Hypothesis 6.3. At least one of retained paths produced by the Algorithm 6.3 will

have the identical cumulative reward as that of the popt.

Lemma 6.1. In an MDP denoted by (S,A,R), where the discount factor γ is set to

zero, if a specific state-action pair (s, a) has been visited j times, the Q-values after

the jth visit can be calculated using the following formula:

Qj(s, a)← (−1)j−1R[(α− 1)j + (−1)j−1]; ∀(s, a) ∈ S × A (6.12)
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Proof. Without loss of generality, let us consider Q-Learning as our chosen approach

with the following Q-function:

Q(s, a)← Q(s, a) + α[R + γ maxa′Q(s′, a′)−Q(s, a)] (6.13)

When γ = 0, the Q-function simplifies to Q(s, a)← (1− α)Q(s, a) + αR.

We will proceed with the proof by induction. When (s, a) is visited for the first

time, the Q-value is updated as Q1(s, a)← αR, since all Q-values are initially set to

0.

Now, with j = 1 in Equation (6.12), we have:

Q1(s, a) = (−1)1−1R[(α− 1)1 + (−1)1−1] = R[α− 1 + 1] = αR

Next, assuming that (s, a) has been visited (j − 1) times, the Q-value is given

by:

Qj−1(s, a)← (−1)j−2R[(α− 1)j−1 + (−1)j−2]

Now, we can calculate the Q-value when (s, a) has been visited j times:

Qj(s, a) = (1− α)Qj−1(s, a) + αR

= (1− α)[(−1)j−2R[(α− 1)j−1 + (−1)j−2]] + αR

= (−1)(α− 1)[(−1)j−2R(α− 1)j−1 + (−1)2j−4R] + αR

= (−1)j−1R(α− 1)j + (1− α + α)R

= (−1)j−1R[(α− 1)j + (−1)j−1]

The same steps can be applied to SARSA.
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Theorem 6.1. If the discount factor (γ) is set to zero in both Q-Learning and SARSA

algorithms, the Q-value of the combined task for all (state, action) pair will be obtained

as follows:

Qc(s, a) = Q1(s, a)±Q2(s, a)± ...±QK(s, a); ∀(s, a) (6.14)

Proof. Using Lemma 6.1, the Q-value for each individual policy after j visits can be

expressed as follows:

Qj
1(s, a) = (−1)j−1R1[(α− 1)j + (−1)j−1]

Qj
2(s, a) = (−1)j−1R2[(α− 1)j + (−1)j−1]

...

Qj
K(s, a) = (−1)j−1RK [(α− 1)j + (−1)j−1]

For the combined task, the Q-value after the jth visit of (s, a)isgivenby :

Qj
c(s, a) = (−1)j−1(R1 ±R2 ± ...±RK)[(α− 1)j + (−1)j−1]

Now, let’s combine the Q-values of all K policies as follows:

Qj
1(s, a)±Qj

2(s, a)± ...±Qj
K(s, a) =

(−1)j−1R1[(α− 1)j + (−1)j−1]

± (−1)j−1R2[(α− 1)j + (−1)j−1]

...

± (−1)j−1RK [(α− 1)j + (−1)j−1]

= (−1)j−1(R1 ±R2 ± ...±RK)[(α− 1)j + (−1)j−1]

= Qj
c(s, a)
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Algorithm 6.1 DAG Representation Algorithm

Require: State Set S, Action Set A, Reward R, Number of Episodes N

Ensure: A Weighted Directed Graph G = (V,E)

1: Create a node vi;∀si ∈ S

2: Initialize features of node vi as the Q value of each possible action; F (vi) = {a :

0, ∀a ∈ A}

3: for i← 1 to N do

4: while st 6= sgoal do

5: Observe the current state st

6: at ← argmax∀a∈AR(st, a, st+1)

7: Take action at

8: rt+1 ← R(st, at, st+1)

9: et ← (st.st+1)

10: E ← {E
⋃
et}

11: Q(st, at)← Q(st, at) + α[rt+1 + γmaxa′∈AQ(st+1, a
′)−Q(st, at)]

12: F (vst)[at]← max{F (vst)[at], Q(st, at)}

13: st ← st+1
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Algorithm 6.2 Backtracking Algorithm

Require: M Individual Policies with Reward R1, R2, ..., RK , respectively, Number of

Episodes N

Ensure: A Weighted Directed Graph Gunion

1: Brute Forcing:

2: for i← 1 to K do

3: Gi ← Using Algorithm 6.1 for policy πi

4: Gunion ← G1

⋃
G2

⋃
....

⋃
GM

5: Bound Computation:

6: node ← sgoal

7: while node 6= sstart do

8: Neighbors(node,Gunion) ← {n|(n, node) ∈ E}

9: for n ∈ Neighbors do

10: e ← (n, node)

11: R ← R1 ±R2 ± ...±RM

12: LB(n, e) ← α×R

13: UB(n, e)← (−1)N−1×R×[(1−α)N+(−1)N−1]+α[γmax{UB(v, .)|(n, v) ∈

E}]
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Algorithm 6.3 Pruning Algorithm

Require: The Weighted Directed Graph Gunion, Start Node sstart, Goal Node sgoal

Ensure: A set of paths from sstart to sgoal

1: Pruning:

2: Traverse Gunion in forward manner

3: node ← sstart

4: Neighbors(node,Gunion) ← {n|(n, node) ∈ E}

5: for n ∈ Neighbors do

6: if UB(n, (node, n))) ≤ LB(n′, (node, n′))s.t. n′ ∈ Neighbors&n′ 6= n then

7: Prune (node, n)

8: Path Finding:

9: return P ← FindPath(Gunion, sstart, sgoal)
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CHAPTER 7

CONCLUSION

In conclusion, this dissertation addresses the challenges and opportunities in complex

task planning by presenting a set of computational frameworks that synthesize the

capabilities of human inputs and AI algorithms. The motivation for studying complex

task planning lies in its ubiquity and relevance in various real-world applications,

including personalized course planning, trip planning, music playlist design, and

route planning for multiple agents. These applications demand efficient planning

techniques that can handle uncertainty, optimize multiple objectives, and satisfy

complex constraints.

The dissertation’s contributions are centered around the development of

computational frameworks for automated task planning with minimal end-user input.

It presents algorithms based on Reinforcement Learning and discrete optimization

techniques, along with data engineering and data management opportunities to design

scalable algorithms. These frameworks are applied to tackle different aspects of

complex task planning, such as task sequencing, diversifying recommendations, and

multi-agent route planning.

Ongoing work in the dissertation focuses on addressing several challenges in

complex task planning, including the exponential state/action space, large memory

requirements, and significant learning time associated with classical RL algorithms.

The research explores the use of online policy techniques like Rollout policy to create

multi-objective decision-making frameworks with multiple agents. Additionally, data

management techniques are proposed to reduce the training time required for effective

learning, making the algorithms more scalable and applicable to real-world scenarios.
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Overall, the research presented in this dissertation contributes to the advancement

of complex task planning, offering solutions that combine the strengths of human

inputs and AI algorithms. By developing efficient and adaptable planning algorithms,

this work opens up potential advancements and improvements in autonomous

systems, manufacturing, logistics, healthcare, and various other fields where complex

task execution is essential. The findings and methodologies in this dissertation have

the potential to pave the way for more effective and scalable task planning solutions

in a wide range of practical applications.
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