
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

8-31-2020

Changing the focus: worker-centric optimization in human-in-the-Changing the focus: worker-centric optimization in human-in-the-

loop computations loop computations

Mohammadreza Esfandiari
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Engineering Commons, Databases and Information Systems Commons, and the

Management Information Systems Commons

Recommended Citation Recommended Citation
Esfandiari, Mohammadreza, "Changing the focus: worker-centric optimization in human-in-the-loop
computations" (2020). Dissertations. 1472.
https://digitalcommons.njit.edu/dissertations/1472

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1472?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1472&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

CHANGING THE FOCUS:
WORKER-CENTRIC OPTIMIZATION IN HUMAN-IN-THE-LOOP

COMPUTATIONS

by
Mohammadreza Esfandiari

A myriad of emerging applications from simple to complex ones involve human

cognizance in the computation loop. Using the wisdom of human workers, researchers

have solved a variety of problems, termed as “micro-tasks” such as, captcha

recognition, sentiment analysis, image categorization, query processing, as well as

“complex tasks” that are often collaborative, such as, classifying craters on planetary

surfaces, discovering new galaxies (Galaxyzoo), performing text translation. The

current view of “humans-in-the-loop” tends to see humans as machines, robots, or

low-level agents used or exploited in the service of broader computation goals. This

dissertation is developed to shift the focus back to humans, and study different data

analytics problems, by recognizing characteristics of the human workers, and how to

incorporate those in a principled fashion inside the computation loop.

The first contribution of this dissertation is to propose an optimization

framework and a real world system to personalize worker’s behavior by developing a

worker model and using that to better understand and estimate task completion time.

The framework judiciously frames questions and solicits worker feedback on those to

update the worker model. Next, improving workers skills through peer interaction

during collaborative task completion is studied. A suite of optimization problems are

identified in that context considering collaborativeness between the members as it

plays a major role in peer learning. Finally, “diversified” sequence of work sessions

for human workers is designed to improve worker satisfaction and engagement while

completing tasks.

CHANGING THE FOCUS:
WORKER-CENTRIC OPTIMIZATION IN HUMAN-IN-THE-LOOP

COMPUTATIONS

by
Mohammadreza Esfandiari

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2020

Copyright © 2020 by Mohammadreza Esfandiari

ALL RIGHTS RESERVED

APPROVAL PAGE

CHANGING THE FOCUS:
WORKER-CENTRIC OPTIMIZATION IN HUMAN-IN-THE-LOOP

COMPUTATIONS

Mohammadreza Esfandiari

Dr. Senjuti Basu-Roy, Dissertation Advisor Date
Assistant Professor of Computer Science,NJIT

Dr. Vincent Oria, Committee Member Date
Professor of Computer Science, NJIT

Dr. Quentin Jones, Committee Member Date
Associate Professor of Information Systems, NJIT

Dr. Yi Chen, Committee Member Date
Professor of Business Data Science, School of Management, NJIT

Dr. Sihem Amer-Yahia, Committee Member Date
Research Director at Laboratoire d‘Informatique de Grenoble, University of
Grenoble-Alpes, France

BIOGRAPHICAL SKETCH

Author: Mohammadreza Esfandiari

Degree: Doctor of Philosophy

Date: August 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2020

• Bachelor of Science in Computer Science,
Sharif University of Technology, Tehran, Iran, 2012

Major: Computer Science

Presentations and Publications:

Mohammadreza Esfandiari and Dong Wei and Sihem Amer-Yahia and Senjuti Basu
Roy, “Optimizing Peer Learning in Online Groups with Affinities,” Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp 1216-1226, 2019.

Mohammadreza Esfandiari and Senjuti Basu Roy and Sihem Amer-Yahia , “Explicit
Preference Elicitation for Task Completion Time,” Proceedings of the 27th
ACM International Conference on Information and Knowledge Management,
pp 1233-1242, 2018.

Mohammadreza Esfandiari and Kavan Bharat Patel and Sihem Amer-Yahia and
Senjuti Basu Roy, “Crowdsourcing Analytics With CrowdCur,” Proceedings
of the 2018 International Conference on Management of Data, pp 1701-1704,
2018.

iv

To Sizi. For her endless support and love.

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Senjuti Basu Roy, who not only

served as my research advisor, providing valuable technical and writing guidance but

also constantly gave me support, encouragement, and reassurance through my years

of PhD. Her extensive knowledge of life, great expertise in research, and humanity

has affected me profoundly and benefited me significantly in the past and will be of

important value in my future career.

Sincere appreciation goes to Prof. Sihem Amer-Yahia who has been the source of

inspiration and constant support throughout my doctoratal study.

I also would to thank my committee members, Prof. Vincent Oria, Prof. Quentin

Jones, Prof. Yi Chen for their support.

I would like to thank the Department of Computer Science and the National Science

Foundation for providing support through my years of studies.

Last, but not least, I would like to thank Dong Wei, my friend, colleague, and

collaborator, and students of Big Data Analytics Lab at NJIT from whom I have

learned a lot about research and otherwise.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Overview . 1

1.2 Studied Problems . 5

1.2.1 Eliciting Explicit Feedback . 5

1.2.2 System CrowdCur . 7

1.2.3 Peer Learning in Online Platforms 7

1.2.4 Diversifying Recommendations 9

2 PREFERENCE ELICITATION FOR TASK COMPLETION TIME 11

2.1 Introduction . 11

2.2 Framework and Formalism . 11

2.2.1 ExPref Framework . 11

2.2.2 Data Model and Problem Definitions 13

2.3 Algorithms . 18

2.3.1 Worker Model . 18

2.3.2 Question Selector . 22

2.3.3 Preference Aggregator . 24

2.4 Experimental Evaluations . 25

2.4.1 Dataset Description . 26

2.4.2 Implemented Algorithms . 27

2.4.3 Invocation of ExPref . 28

2.4.4 Summary of Results . 30

2.4.5 Quality Experiments . 31

2.4.6 Scalability Experiments . 37

2.5 Conclusion . 39

3 CROWDSOURCING ANALYTICS WITH CROWDCUR 42

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.1 Introduction . 42

3.2 CrowdCur platform . 43

3.2.1 Worker Curation . 43

3.2.2 Task Curation . 45

3.2.3 OLAP Style Querying . 46

3.3 System Demonstration . 47

3.4 Conclusion . 51

4 OPTIMIZING PEER LEARNING WITH AFFINITIES 53

4.1 Introduction . 53

4.2 Modeling and Problem Definition . 55

4.2.1 Modeling . 56

4.2.2 Problem Definition . 59

4.3 Optimization . 60

4.3.1 Optimizing Learning Potential 61

4.3.2 Optimizing Affinity . 65

4.3.3 Optimizing Affinity with Learning Potential as a Constraint . . 67

4.4 Constrained Optimization . 68

4.4.1 Algorithm for AffC LpD . 68

4.4.2 Algorithm for AffC LpA . 71

4.4.3 Algorithms for AffD Lp-* 72

4.5 Experimental Evaluations . 73

4.5.1 Real Data Experiments . 73

4.5.2 Synthetic Experiments Setup 76

4.5.3 Quality Experiments (Synthetic) 79

4.5.4 Scalability Experiments (Synthetic) 81

4.6 Conclusion . 82

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

5 DIVERSIFYING RECOMMENDATIONS ON SEQUENCES OF SETS . . 84

5.1 Introduction . 84

5.2 Formalism and Problem Analysis . 86

5.2.1 Data Model . 86

5.2.2 Problem Definitions . 87

5.2.3 Problem Analysis . 88

5.2.4 Modified Problem Definitions 91

5.3 Optimization Algorithms . 92

5.3.1 Algorithm Min-Intra . 92

5.3.2 Algorithm Max-Intra . 93

5.3.3 Algorithm Min(Max)-Inter . 98

5.3.4 Optimizing Inter with Intra as Constraint 102

5.4 Experimental Evaluations . 104

5.4.1 Experiments with Human Subjects 104

5.4.2 Large Data Experiments . 110

5.5 Conclusion . 120

6 SUMMARY AND FUTURE WORK . 125

6.1 Summary . 125

6.2 Future Work . 127

REFERENCES . 130

ix

LIST OF TABLES

Table Page

2.1 ExPref Important Notations . 12

2.2 ExPref Experiments Parameter Settings 32

2.3 Worker Initial Preferences vs Learned Preferences 37

4.1 Example of Affinity Pairs . 56

4.2 Aff-* Lp-* NP-Hardness And Technical Results 60

4.3 Approximation Factors . 78

5.1 Example of Task Recommendation in Crowdsourcing 86

5.2 Algorithms and Approximation Factors 92

5.3 Algorithms and Approximation Factors for Problem Combinations . . . 103

5.4 Diversity Dimensions Per Context . 105

5.5 Average Evaluation Scores Across All Contexts 106

5.6 Average Number of Selected Songs Per Context 107

5.7 Average Diversity Rating Per Context 107

5.8 Average User Satisfaction Per Context 107

5.9 Task Recommendation: Short Sessions 109

5.10 Task Recommendation: Long Sessions 109

5.11 Approximation Factors on 1-Million Songs Dataset 114

5.12 Intra Approximation Factors of The Three Algorithms Varying N on 1-
Million Songs . 119

5.13 Intra Approximation Factors of The Three Algorithms Varying k on 1-
Million Songs . 120

x

LIST OF FIGURES

Figure Page

2.1 The ExPref framework. 14

2.2 Comparison between the error of the four models after ten iterations. . . 32

2.3 Error varying number of task factors. 33

2.4 Error varying number of tasks in each iteration. 33

2.5 Error varying number of questions. 34

2.6 Recent history vs partial history vs full history. 35

2.7 Error varying worker preference type. 36

2.8 Evaluation of model initialization algorithms. 36

2.9 Scalability study . 39

3.1 CrowdCur architecture overview . 43

3.2 Cube of tasks, workers, and time. 47

3.3 CrowdCur important components. 48

3.4 CrowdCur worker landing page at the end of a work session. 49

3.5 CrowdCur requester dashboard. 50

4.1 Illustration of LpA and LpD- (a) LpA: members learn from higher-skilled
ones. (b) LpD: the least skilled member learns from the most skilled one. 54

4.2 Illustration of affinity structures - (a) AffD: smallest affinity between all
pairs. (b) AffC: smallest affinity between one member and others. 54

4.3 Upper bound of approximation factor for GrAffC-LpD. 70

4.4 Skill improvement with and without affinity in LpD (a) and LpA (b). . 75

4.5 Sample of worker interactions with each other. 76

4.6 Aff-* Lp-* values varying n for Normal distribution. 79

4.7 Aff-* Lp-* values varying n for Zipf distribution. 80

4.8 Aff-* Lp-* values varying k for Normal distribution. 80

4.9 Aff-* Lp-* values varying k for Zipf distribution. 81

4.10 Scalability results for Aff-* Lp-* . 82

xi

LIST OF FIGURES
(Continued)

Figure Page

5.1 Reduction: Hamiltonian Path to the Inter problem. 90

5.2 Sorted Intra-Diversity of skills. 93

5.3 Ap-Max-Intra steps on Example 3. 96

5.4 Relationship between Min-Intra and Max-Inter. 101

5.5 Inter scores with varying N for 1-Million Song dataset. 116

5.6 Inter scores with varying k for 1-Million Songs dataset. 117

5.7 Synthetc Data: Inter and Intra scores varying distributions. 118

5.8 Synthetc Data: Zipf distribution. 119

5.9 Running times varying N for 1-Million Songs dataset. 121

5.10 Running times varying k for 1-Million Songs dataset. 122

xii

CHAPTER 1

INTRODUCTION

1.1 Overview

Bringing human in the computational loop has been the focus of research for the past

couple of decades [75, 93, 92]. It usually involves very close relationship between the

human workers and the application and one of the the main goals of such systems is

to enable human workers and computers to cooperate in making decisions and solving

problems. Recently, an emerging trend is to leverage online infrastructures to tap an

under explored and richly heterogeneous pool of knowledge resident in the general

population of consumers for innovative ideas, a practice termed as human-in-the-loop

(HIL) computation [85, 82, 128, 47, 81, 77]. These problems usually range from

simple like sorting [8], filtering, sentiment analysis [88], top-K ranking [108] to more

knowledge-intensive problems like clustering [86, 129], anomaly detection [24], entity

resolution [30, 20], or product design. The humans, so called workers, are involved

in the process as individual contributors for so called “micro-tasks”, or as a group to

collaboratively work and solve a problem.

Human workers are better off in solving certain problems that are otherwise

harder for machine algorithms. Studies suggest that human brains are uniquely

capable for language processing, pattern recognition, and invention [84]. As an

example, “The Last Tomb of Genghis Khan” project [76] sponsored by National

Geographic have used the human pattern recognition power to tag a massive number

of satellite images to resolve the age-old mystery about the location of the tomb of

this ancient Mongolian emperor. Audio perception is another difficult problem where

creating a learning algorithm to recognize the speech and transform it into a text

requires a large amount of data but is rather trivial for human workers. Games like

1

Chess [56] and Go [22] that are computationally intensive for computers are quite

well mastered by humans, or problems such as the Traveling Salesman [52, 58, 78]and

Graph Coloring [76] that are computationally intractable by machines are easy to

handle by humans even for large instances. The emerging trend of HIL computations

draws inspirations from these myriad examples.

Our focus in this dissertation however is to understand and exploit optimization

opportunities in such HIL computation process and design principled solutions at

scale. Usually, these opportunities fall into one of the three categories: application-

centric optimization, platform-centric optimization, and worker-centric optimization.

In application-centric optimization, the factors of interest usually are task throughput

which is the number of tasks that is done in unit of time, latency which measures

how long does it take for a set of tasks to finish, cost which measures the monetary

expenses or other expenses incur as a result of using human workers, and quality

which measures how good the answer of the human worker is. Platform-centric

optimization also considers factors similar to application-centric optimization. For

example, revenue which is the amount of money the platform can make or providing

simplification techniques for complex tasks. Existing works have studied these

aspects to different extent: as an example, recent works have studied optimization

opportunities in entity matching problems [70, 101] with the goal to optimize the

quality. Magellan [70], Waldo [124] develop algorithms on human workers to minimize

the cost incurred both in terms of monetary compensation while improving the

quality of work. In [13, 12], workers are used to gather information and obtain

recommendations for pattern mining. The idea is to enable users to pose general

questions, mine the responses for potentially relevant data, and to receive concise yet

relevant answers that represent frequent, significant data patterns. The optimization

goal here is to minimize cost. For collaborative tasks, similar optimization problems

are designed to minimize cost and latency or maximize quality [112, 105, 69, 114, 64].

2

For example, to find craters on different planets like Mars, non-expert human workers

have been shown to have similar accuracy to experts by collaborating and learning

about how to identify them more efficiently. In Crowd4U [64]collaborative tasks

such as text translation or video subtitle generation are performed by a group of

collaborating workers by optimizing quality and cost.

A major issue with the existing HIL systems is that they tend to push humans

further in the loop and largely ignore their role and contribution to the ecosystem.

Human workers are mere agents and are used to pursue the broader computational

goal. In fact, the existing literature of HIL computation has a clear bifurcation.

The computational world of research has purely focused on treating humans as

agents (as described in the paragraph above), whereas, the psychologists and social

scientists [35, 109, 28, 62] have acknowledged and reasoned about the necessity to

incorporate human characteristics in the computational loop. However, this latter

genre of researchers have treated these problems purely empirically and are limited to

field study and laboratory experiments. Clearly, designing algorithms that recognize

and capture human characteristics and study optimization in the HIL process has not

been studied well yet. Combining these two different genre of research, in essence, is

the primary contribution of this dissertation.

Similar to application and platform-centric factors, in this dissertation we look

at several worker-centric factors. The first one is preference of the worker. An implicit

assumption shared by most of the works in HIL systems is that the workers are willing

to perform the tasks assigned to them. In practice, however, different task-performing

intentions and preferences can lead to different types of behaviors. A worker is unlikely

to honestly and promptly complete the assigned tasks when she is not interested in

them, which cannot guarantee the quality of task results. Another interesting factor

is the skill of the workers where it has a pronounced impact on the quality of the

work returned by worker. This measure can be derived internally from the platform,

3

in terms of ‘ranking’ points, from common denominators including level of education

or by using a questioner or exam [61]. Boredom and fatigue [117] are another factors

of interest [113, 132, 68]. These factors contribute greatly to quality of the work

or throughput of the system and can be measured by looking at response time and

accuracy of each task.

Our goal in this dissertation is to bring human back in the center stage of the

computational loop and study optimization opportunities that arise to computationally

solve these problems at scale. In particular, we investigate optimization opportunities

that arise by modeling workers or studying factors that impact their performance

inside such systems (such as skill, preference, boredom, etc) which in turn optimizes

the underlying computational problems (in terms of quality, latency, cost). We

borrow inspirations from a handful of very recent works[111, 11, 96] that intend to

computationally model human characteristics in the loop, such as motivation, worker

skill, motivation, relevance, pay off but their treatment to human characteristics is

still nascent. A recent study [83] argues that in order to maintain the attractiveness

of HIL platforms, it is critical to enable worker-centric optimization. To that end,

existing works have designed empirical studies to incentivize workers for long-lasting

tasks [28, 62] or entertaining them during task completion [35]. More recently,

researchers have tried to learn worker’s behavior implicitly by creating a learning

model that looks at worker’s past history to adaptively perform task assignment [96].

Others [40] look at social media data of the worker in order to understand their

preferences and assign an appropriate task to them.

In summary, we design models and algorithms to learn the worker’s preferences

by explicitly eliciting her feedback to estimate task completion time (Chapter 2).

We also design real-world systems that demonstrate such models and algorithms in

action on large scale real-world applications (Chapter 3). Next, we investigate how

to improve worker’s skills through peer interaction and learning, especially for group-

4

based tasks and collaborative environments (Chapter 4). Finally, we explore how to

introduce diversity into a sequence of sets of tasks to improve worker satisfaction and

reduce boredom and fatigue (Chapter 5).

1.2 Studied Problems

Although using the crowd as a computational building block is exciting and

encouraging, it could also introduce some complications to the problem. As we

discussed earlier, researchers have focused on solving this problem by optimizing how

to assign tasks to workers, how to deal with the noise introduced in the process, or

how to implicitly understand what a worker is interested in. In this dissertation, we

depart from the traditional view of optimizing the application and platform-centric

parameters and bring workers to the center stage. In particular, we investigate

optimization opportunities that arise either by modeling worker behavior or enabling

factors that impact their performance inside a human-in-the-loop system. In this

section, we give an overview of the approach we have taken and the problems that

we solve.

1.2.1 Eliciting Explicit Feedback

The main actors of a HIL platform are requesters and tasks, and workers who

complete them. Understanding quality indicators in HIL computation has been a

recent research focus [68, 35, 46, 48]. Some work focuses on estimating quality

indicators such as engagement and motivation [80, 115, 96], and on revisiting this

estimation periodically in an implicit manner. An important open question however

is, can we improve the estimation of quality indicators by seeking explicit

preferences from workers?

On Amazon Mechanical Turk or Prolific Academic, a task has factors such as

type (e.g., image annotation, ranking, sentiment analysis), payment and duration, i.e.,

5

the time allotted to complete a task. Workers are characterized by their preferences

for task factors [111, 11]. Our first contribution is to propose an optimization

framework ExPref, within which an individual worker model, that captures the

preference of workers for task factors, is learned and maintained to estimate task

completion time. Worker Model is “supervised” in nature and it is initialized by

deriving principles from active learning [34]. Indeed, worker preference on task factors,

such as, payment, task types, are indicators of how much time she needs to complete

the task. Task completion time is an important quality indicator in HIL platform, as

deeper understanding and analysis of task completion time benefits customization

of payment strategies [46, 48], task assignment, and appropriate recruitment of

workforce for HIL platforms [60, 59, 112, 96].

Unless ExPref is updated periodically, it is likely to become outdated, as

worker’s preferences evolve over time (e.g., a worker’s skills improve as she completes

tasks). To update the model, we advocate the need to explicitly elicit from a

worker her preferences. That is a stark departure from the literature

where workers are observed and their preferences computed implicitly. An

additional challenge arises to address the following question: in what fashion these

preferences should be extracted and used to produce a scalable and accurate model?.

To that end, we present Question Selector for optimizing preference elicitation that

asks a worker to rank the k task factors that lead to minimizing error in the model.

For example, a worker may be asked “Rank task relevance and payment”. A higher

rank for payment will indicate the worker’s preference for high paying tasks over those

most relevant to her profile. We prove that optimally selecting k questions, i.e., k

task factors, for explicit worker preference is NP-hard, even when the Worker Model

is linear. Consequently, we develop an efficient alternative using an iterative greedy

algorithm that has a provable approximation bound. Once the worker provides her

preference, the next challenge is how to consume that feedback to update Worker Model

6

in a principled manner. We present Preference Aggregator to update the Worker

Model with the elicited preferences. To ensure that ExPref does not necessarily incur

additional burden, worker’s response can be: a total order over those k factors; or a

partial preference over a subset of those k factors, when the worker does not/ cannot

provide total ordering. Of course, an extreme case is that the worker does not provide

any preference and in that case, the Worker Model is updated implicitly. We formulate

those choices as a constrained optimization problem and develop efficient solutions.

1.2.2 System CrowdCur

In order to showcase the power of ExPref, we design and deploy a real-world HIL

platform that demonstrates the models and algorithms in action on a large scale

real-world application. The platform consists of several components and at the heart

of it lies the Worker Curation box which is in charge of understanding and modeling

worker’s preferences. The platform also provides an OLAP engine that gives insights

to workers and requesters and platform owners. As a worker, she can understand her

preference changes in the course of her task completion. She also can get curated

suggestions based on the available task pool and her latest preferences. A requester

can understand the structure of the workforce and get the latest information about

her task and projected completion time of her tasks based on the current workforce.

Platform owners also can benefit from this system by looking at different dimensions

of the system namely, workers, tasks, and requesters. She also can understand the

inter-connectivity of tasks and the workforce.

1.2.3 Peer Learning in Online Platforms

The emergence of platforms that support online networked technologies has changed

the way we communicate, collaborate, and learn things together. Learning in

groups has been studied extensively in the field of psychology and educational

7

research [63, 38, 23]. In computer science, existing works have focused on how

to identify and rank groups and communities [25], how to efficiently form a set of

groups to optimize different group recommendation semantics [110], or form groups

for task assignment [14, 15, 72, 112, 104]. The effect of online collaboration however

goes beyond, as it enables powerful and versatile strategies to improve knowledge

of individuals and promote learning. For example, online critiquing communities,1

social Q&A sites,2 and crowdsourcing platforms3 investigate how collaboration can

promote knowledge and skill improvement of individuals [63]. Learning potential,

is a key reason behind effective collaboration. It has been shown that the increase

in learning one expects from collaboration yields fruitful coordination and higher

quality contributions [3, 4]. For instance, in online fan-fiction communities, informal

mentoring improves people’s writing skills [43]. In this dissertation, we focus on

improving skills and learning through peer interaction. Existing methods usually

focus on ranking communities [25], effectively forming groups [110] or create groups

of workers in crowdsourcing environments [14, 15, 72, 112, 104]. Again, by changing

the focus on the workers and peers, we try to elevate their experience and more

importantly their skillset. The two major components in this work are Learning

potential and Affinity. Research [3, 4, 43, 15] indicates worker with a higher affinity

toward each other and with varying degree of skills, will see a higher raise in their

skills. Several problems need to be addressed. First and foremost, how to formalize

learning and affinity in the context of online learning. These factors can take several

structures which will have a different effect. Next, since this problem becomes

bi-objective optimization, we need to present efficient algorithms to solve both factors

with provable guarantees. This proves to be hard since all the instances of the problem

are NP-Hard. We show this improves skills and knowledge of workers significantly.

1https://movielens.org/(accessed on Jan 17, 2019)
2http://quora.com/(accessed on Jan 17, 2019)
3https://www.figure-eight.com/(accessed on Jan 17, 2019)

8

1.2.4 Diversifying Recommendations

Finally, we explore satisfaction and boredom in session-based applications by looking

at how diversity will affect different factors of a worker or a user of an online

platform. Diversity aims to improve user experience by addressing the problem of

over-specialization, where a user receives recommendations that are often too similar

to each other. To create online music playlists, users organize songs into channels and

listen to a few songs within the same channel before switching to the next channels to

listen to other artists in the same genre or to experience different music styles. In HIL

computation, workers complete a small set of tasks at a time (session) and sequences of

sessions within a finite time (for example, half a day). Diversifying recommendations

inside (intra) and across (inter) sessions is natural for such applications to improve

user satisfaction and engagement.

Recommending playlists during a long-drive may need to minimize both intra

and inter-session diversities to generate songs by the same artist within a channel and

similar beats across channels. Contrarily, designing playlists for a theme party is best

done by composing songs from the same period within a channel (90’s, 60’s, etc) and

different styles across channels (thereby minimizing intra diversity on release date

within a session and maximizing inter diversity on style across sessions). Similarly,

the problem of assigning tasks to workers in a single session has been studied

extensively [44, 59, 60, 133, 105]. Most works focused on satisfying both workers’

needs such as expected reward, and requesters’ criteria such as budget [46, 48].

However, when a worker comes back to the platform multiple times (each referred to

as a session), the diversity of tasks undertaken by the worker across sessions affects

the worker’s experience and performance. That was partially verified in recent work.

In [97], it was shown empirically that task throughput improved when workers were

given similar tasks. In [57], workers experienced boredom and fatigue after completing

9

similar tasks for a while. In [9], workers explicitly requested tasks posted by different

requesters to build a reputation.

These aforementioned scenarios have three things in common: first, diversity

needs to be accounted for in the design of a sequence of sessions. Second, both

minimization and maximization of diversity are meaningful. Finally, the dimensions

on which intra and inter-session diversities are expressed are factors that may not be

related - hence they cannot be combined.

In this dissertation, we introduce the problem of optimizing diversity inside

a set of items and between sets of items at the same time. More specifically, we

are interested in optimizing diversity inside a set of items (Intra Diversity) and

between consecutive sets of items (Inter Diversity). This gives rise to four different

optimization problems which are all NP-Hard. We provide efficient and scalable

solutions for all four variants and showcase what happens if one uses these in real

settings like music recommendation or a HIL system.

10

CHAPTER 2

PREFERENCE ELICITATION FOR TASK COMPLETION TIME

2.1 Introduction

This section of dissertation focuses on the problem defined in Section 1.2.1. We

start by formalizing the problem (Section 2.2.1) and present the inner working of

the framework ExPref. Next, in Section 2.3 we focus on presenting efficient and

scalable algorithms to solve those problems. Last, but not least, Section 2.4 presents

an extensive empirical study with real workers on Amazon Mechanical Turk platform.

To summarize the contribution of this chapter :

• ExPref, a framework that elicits explicit worker preference to better estimate
task completion time. ExPref has a Worker Model that captures worker
preferences for task factors.

• A formalization of two core problems: Question Selector that asks a worker
to rank k task factors, and Preference Aggregator that updates the model
with elicited preferences.

• An in-depth analysis and solutions with provable guarantees for the Worker
Model, the Question Selector, and the Preference Aggregator.

• Extensive experiments that corroborate that explicit preference elicitation
outperforms implicit preference computation [96] and that our framework scales
well.

2.2 Framework and Formalism

We present our proposed framework and formalize the problems.

2.2.1 ExPref Framework

We propose an iterative framework ExPref (refer to Figure 2.1) that is designed to

ask personalized questions to a worker to elicit her preferences. The rationale is

that while task factors are stable, a worker’s preference evolves as workers undertake

tasks [57, 96]. We propose a Worker Model that consumes task factors and predicts

11

Table 2.1 Table of Important Notations

Notation Definition
n,m # tasks, # task factors
~t task t represented by a vector of m factors
T Task factor matrix
~w worker w’s preference vector
Qk a set of selected k questions
yt completion time of task t
~Y vector representing yt over a set of tasks
F Worker Model

for a task, how long will the worker spends on the task, by inferring her preferences.

However, unless the Worker Model is refreshed or updated periodically, it is likely to

become outdated, as worker preference evolves over time [57, 11, 96]. To update the

model, one has to periodically invoke an explicit preference elicitation step, called

Question Selector that selects a set of k task factors and asks worker w to rank

them. Once the worker provides her preference, the Worker Model is updated by the

Preference Aggregator.

This information could be used in many places to characterize the workforce

of a crowdsourcing platform and enable several improvements such as the analysis of

workers’ fatigue [57] and motivation, and better task assignment to workers [60, 59,

112, 96].

Two computational problems form the heart of this framework. 1. Question

Selector: - when invoked, selects the best set of k questions to elicit a worker’s

preference for task factors. 2. Preference Aggregator: - takes a worker’s

preference to the questions into account, and updates the Worker Model. The last

two components work in sequence, given the necessity to refine the learned model.

The technical challenge is to update the model while satisfying the preference the

worker has provided.

12

2.2.2 Data Model and Problem Definitions

Task Factors. Task characteristics are commonly defined by the platform and their

values by requesters. Each task t in a set of n given tasks is characterized by a set

of m factors whose values are either explicitly present or could be extracted (such as

keywords, duration, pay-off). For this work, we assume that for every task, its factors

are given. This gives rise to a task factor matrix T .

Example 1. The matrix in Table 1 contains six tasks characterized by factors, such as

type, payoff, duration. Example types are image annotation, ranking and sentiment

analysis. Payoff determines the $ value the workers receives as payment, whereas,

duration is an indication of the maximum time a worker needs to complete that task.

task − id annotation ranking sentiment payoff duration completion time

t1 1 0 0 20 35 25

t2 1 0 0 5 5 35

t3 0 1 0 5 10 45

t4 0 1 0 5 40 5

t5 0 0 1 10 10 12

t6 0 0 1 20 30 23

Given a task t that a worker w undertakes (either via self-appointment or via an

assignment algorithm), we are interested to understand and estimate task completion

time, the time spent by the worker to perform the task. The last column of the task

factor matrix indicates completion time of the individual tasks. When the worker is

arriving in the platform for the first time, we use a budget b to initialize the Worker

Model by asking workers b questions. Afterwards, we periodically update the model by

seeking explicit feedback through Question Selector and update workers preference

using Preference Aggregator in the Worker Model.

13

Worker	
Model

Question	
Selector

Preference	
Aggregator

Model	
Initialization

Task	Factors	
Matrix

Selects	K	
factors

Worker’s	
Preference

Figure 2.1 The ExPref framework.

Worker Preferences. The preferences of a worker w are represented by a

vector ~w of length m that takes real values and determines the preferences over the

task factors. Using Example 1, ~w could be represented as a set of weights for the task

factors, such as, {duration,payment}.

Worker Model. Central to our framework is a model that consumes task

factors and given a worker’s history, infers her preference vector to estimate task

completion time. It is easy to notice that task completion time is continuous in

nature.

Explicit Questions. An explicit question q is asked to elicit w’s preference

on a particular task factor, assuming there is an one to one correspondence between

the questions and task factors (thus, every task factor is a potential question and

total possible questions m). A set of k questions is asked to obtain a preferred order

among a set of k task factors (where k is part of the input). As an example, one

14

may ask to “ Rank task duration, annotation tasks, ranking tasks, sentiment analysis

tasks, payment”. A worker may provide a full order among these five factors as her

preference, or may provide partial order of preference. As an example of the former,

she may rank payment, then duration, then ranking tasks, followed by sentiment

analysis, and finally annotation tasks. On the contrary, her preference is partial,

when the worker prefers, payment over duration, but does not explicitly say anything

about the rest.

Problem Definition: Worker Model Given the task factor matrix T of a set of

n tasks, where each task t is described by m factors and associated with a continuous

variable yt denoting the time the worker spends on t, we are interested in estimating

the worker preference vector ~w. The Worker Model F is a linear aggregate function

over T and ~w , denoted as F = ~wT · T .

Optimization goal. Our objective is to estimate ~w in F , such that it minimizes

the reconstruction error [134], i.e.,

E = ||~wT · T − ~Y ||22 (2.1)

Once the model is built, it can estimate the completion time of a future task by

the worker. Using Example 1, F can estimate the completion time of any of the six

tasks or other future tasks, by consuming T .

Initialization. How to initialize the Worker Model is a challenge. Initially when

a brand new worker w joins the platform, as no past history of w is available, she is

treated akin to a “cold worker”. Initially we have no information of task completion,

hence ~w can’t be estimated accurately. The objective of the model initialization is

to select a subset of tasks B (|B| = b, given as a budget) to be completed by w and

build F using that.

15

One obvious choice is to randomly select b samples (tasks) to initialize the model.

However, we argue there does exist further merit in careful selection of initial set of

b tasks (training inputs), as a careful selection of the training examples (inputs), will

generally need far fewer examples in comparison to selecting them at random from

some underlying distribution.

Our proposed formalism is inspired from active learning in Machine Learning [34]

that is iterative in nature and is optimized to select one more input (i.e., a task) at a

time that maximizes the accuracy of the underlying model. For us, from the available

candidate pool of tasks that are not yet undertaken by the worker, this translates to

selecting one task t (input) at a time, the worker w undertakes it, and we record its

completion time yt.

Optimization goal. During the model initialization phase, in a single

iteration, our objective is to select that task t that will give rise to a worker preference

vector ŵ, which is a good estimation of true worker preference ~w by minimizing the

mean squared error of the maximum likelihood estimates between ŵ and ~w.

E(||ŵ − ~w||)2 (2.2)

Given Example 1, if b = 3 and we have already selected two tasks (t1, t2), the

objective would be to select the next best task that minimizes the mean squared error

between ŵ and ~w.

Problem Definition : Question Selector This module selects the best set

of k questions for a worker w. The objective is to select those task factors that

are responsible for the model’s inaccuracy, i.e., removing them would improve the

reconstruction error of F the most.

16

Optimization goal. Let E denote the current reconstruction error of F and Ê

denote it when k task factors are removed. Given Q, the k questions are selected such

that the model reconstruction error improves the most, i.e., argmax{Qk∈Q:|Qk|=k}(E −

ÊQ−Qk).

Using Example 1, if k = 2, this will select any two of the five task factors in the

task factor matrix.

Problem Definition : Preference Aggregator The preferences provided by a

worker for task factors, could be expressed as a set of constraints of the form, i > j,

j > l. Worker preference could take one of the three following forms:

(1) Full Order: The worker can provide a full order over the k selected factors.

The full ranking will be in the form of i � j � k � l, if i, j, k, l are the task factors

(questions). This preference could be expressed as a set of k − 1 pairwise linear

constraints of the form, i > j, j > k, and etc.

(2) Partial Order: The worker can provide a partial order instead, especially when

she can not provide full order. Given the set of k factors, a partial order takes the

form of i � j, but no preference is elicited between for k, l.

(3) No Preference: The worker does not provide any preference.

Optimization goal. Worker’s preferences are taken as hard constraints. Given

her preference, the objective is to relearn F that satisfies the preferences such that

its reconstruction error is minimized. The objective therefore is to minimize E such

that the constraints are satisfied.

Using Example 1, if worker w explicitly states that she prefers annotation

tasks to ranking tasks, this preference is translated into constraints expressed on the

worker preference vector. Those are then used by the preference aggregator to update

F .

17

2.3 Algorithms

We present solutions that are efficient and come with guarantees.

2.3.1 Worker Model

As formalized in Section 2.2.2, the Worker Model F is a linear combination of

task factors and worker preference over those factors. We design algorithms for the

optimization problem that is intrinsic to the model, and then a solution for model

initialization.

Efficient Algorithm. We first derive an alternative form of our optimization

function and then show that we can use simple matrix algebraic techniques to solve

the problem.

Equation (2.1) could be rewritten as

min~w(~wT · T)T (~wT · T) = min~w(~wTT TT ~w − 2~wTT T ~Y + ~Y T ~Y) (2.3)

To minimize Equation (2.3), we compute the gradient and set it to zero. i.e.,

∇(~w) = 2T TT ~w − 2T T ~Y = 0 (2.4)

This allows us to solve ~w by computing the matrix inverse.

T TT ~w = T T ~Y (2.5)

Which finally gives,

~w = (T TT)−1T T ~Y (2.6)

18

(T TT)−1T T in Equation (2.6) is known as the Moore-Penrose pseudo-inverse

matrix of T . This alternative representation is valid as long as the task factor matrix

T is invertible (or could be inverted by adding an additional term, refer to [21]).

With this alternative representation in Equation (2.6), computing the best

estimation of ~w is done by matrix inversion and multiplication techniques.

Running Time. The overall running time of the algorithm is dictated

by matrix multiplication (multiplying (T TT), Matrix inversion (inverting T TT −1),

followed by matrix multiplication (to obtain (T TT)−1T T), and a final matrix

multiplication (to obtain (T TT)−1T T). The asymptotic complexity is O(m2n+m3).

Initializing the Worker Model One major challenge to develop the “supervised”

Worker Model is how to handle “cold workers” - brand new workers. If the platform

does not have any information about such workers, we initialize the Worker Model

F by judiciously selecting one task at a time and repeating this process b times.

Efficient Algorithm. As described in Section 2.2.2, we present an online

problem formulation, which selects one task t at a time, the worker undertakes the

task, we record the completion time and update F . We repeat this process for b

iterations. As expressed in Equation (2.2), our objective is to estimate ŵ which

is a good estimator of ~w (the true preference vector of the worker). The model

initialization algorithm has to select a task whose completion time is not yet known.

Therefore, the challenge is, how to select a task without knowing its completion time,

so that we meet the optimization goal.

We present an alternative representation of Equation (2.2) that lies at the heart

of our algorithm. Interestingly, this alternative representation does not involve task

completion time. Hence, just by looking at the task factor matrix, we can select the

next best task that optimizes Equation (2.2). At a given run of this algorithm, let

us assume then that we already have selected a few tasks that gives rise to T ′ task

19

factor matrix. Equation (2.2) can be rewritten as (we omit the details for brevity and

refer to [134, 99] for details)

E(||ŵ − ~w||)2|T ′ = Trace[(T ′TT ′)]−1 (2.7)

Therefore, minimizing the error is same as minimizing

Trace[(T ′TT ′)]−1, where Trace[.] is the matrix trace, the sum of its diagonal

components.

Now, we are ready to describe the algorithm. Consider Equation (2.7) and let

us assume A = (T ′TT ′)−1. (assuming it is already invertible). We are now trying to

select another input task t that adds one additional row [t] to T ′. Therefore, now T ′

becomes

[
T ′ tT

] T ′
tT

 = T ′TT ′ +
[
t

] [
t

]
(2.8)

This is equal to AA−1 + ttT . Therefore, we would like to find a t that minimizes

Trace[(A−1 + ttT)−1] (2.9)

This matrix inverse could actually be carried out in closed form and it becomes

Trace[(A−1 + ttT)−1] = Trace[A]− tTAAt

1 + tTAt
(2.10)

20

Now that Trace[A] = Trace[(T ′TT ′)]−1, to minimize the mean squared error by

adding a task, we choose that task that maximizes

tTAAt

1 + tTAt
(2.11)

Therefore, at a given iteration, the algorithm selects a task that maximizes

Equation (2.11). To select the set B, this process is repeated b times.

Running Time. This algorithm takes O(m2n + m3) time to compute tTAAt
1+tTAt

of a single candidate task. In each iteration, it has to consider the entire pool of

tasks to decide the best candidate. If the number of tasks is upper-bounded by n,

one iteration of this algorithm takes O(m2n2 +m3n)

Running Example: Suppose we have selected the first two tasks in Table 1.

We describe how to select the third task to complete the set of b = 3 tasks for model

initialization. Suppose the following two tasks have been selected in the previous

iteration,

T =
[annotation ranking sentiment payoff duration

1 0 0 20 35

0 1 0 5 10

]

Assume that A = (T TT)−1. After calculating the value of A, we start by

examining the four remaining tasks one at a time and we will calculate the value of
tTAAt
1+tTAt for each of them. Out of the four remaining tasks, one can see that tTAAt

1+tTAt is

21

maximized (tTAAt
1+tTAt = 0.512) for the task t4,

t4 =
[annotation ranking sentiment payoff duration

0 1 0 5 40

]

Therefore, this task is selected and given to the worker. Once she returns it,

task completion time is recorded.

2.3.2 Question Selector

The Question Selector intends to select the k-task factors (i.e., questions) whose

removal maximizes the improvement of the Worker Model F . The idea is to present

those factors to the worker and seek her explicit preference. A careful review of the

objective function (refer to Section 2.2.2) shows that since E is a constant at a given

point - thus, maximizing (E−ÊQ−Qk) : {Qk ∈ Q : |Qk| = k} is same as minimizing the

reconstruction error of ÊQ−Qk , i.e., retaining the best m− k factors (thus eliminating

the worst k factors) that has the smallest reconstruction error of F . The problem

thus becomes selecting the best m − k factors that have the smallest reconstruction

error. The remaining k factors would therefore be chosen as the explicit questions for

preference elicitation.

Theorem 1. Optimally selecting k questions for explicit worker preference is NP-

hard.

Proof. (Sketch): When a linear model such as the one in Equation (2.1) is assumed,

the problem of identifying and removing the k worst factors, i.e., retaining the best

m − k factors, is akin to selecting a subset of m − k columns from the task factor

matrix T such that the pseudo-inverse of this sub-matrix has the smallest norm.

Under the `2 norm, using the rigorous NP-hardness proof described in [21], our

proof follows. Given an instance of that problem [21], we set k (the k worst factors to

22

remove) as the difference between the total number of columns and k′ (k′= the best

set of k′ columns giving rise to the submatrix whose pseudo-inverse has the smallest

norm). The rest of the proof is trivial and omitted for brevity.

Efficient Algorithm Under the linear model such as the one described in

Equation (2.1) and its equivalent representation using a pseudo-inverse matrix, the

objective of identifying the set Qk of k selected questions (thereby identifying m− k

best factors) out of a set Q of m questions (a task factor is a question) is equivalent

to retaining the task factor submatrix with m − k columns that is of the following

form [99]:

argmin
Qk⊂Q,|Qk|=k

Trace(T TQ\QkTQ\Qk)−1 (2.12)

We now describe a greedy algorithm K-ExFactor to identify k worst task factors

(thus retaining m− k best factors). Our algorithm makes use of Equation (2.12) and

has a provable approximation guarantee. It works in a backward greedy manner and

eliminates the factors iteratively. It works in k iterations, and in the i-th iteration,

from the not yet selected set of factors, it selects a question qj and eliminates it

which marginally minimizes Trace(T TQ\qj
TQ\qj

)−1. Once the kth iteration completes

the eliminated k questions are the selected k-factors for explicit elicitation. The

pseudo code of the algorithm is presented in Algorithm 1.

Running Time. The algorithm runs in k iterations. Line 4 in Algorithm 1

requires a O(m2n) time for matrix multiplication and inversion for the question under

consideration. Therefore, the overall complexity is O(km2n2). Notice that most of

the complexity is actually in the process of recomputing the model error and the

actual question selection is rather efficient.

Theorem 2. Algorithm k-ExFactor has an approximation factor of m
m−k .

23

Algorithm 1 Algorithm k-ExFactor: Greedy Question Selector
Require: Task factor matrix T , set of questions Q
1: TQ ← T
2: Qs ← Q
3: for j ← 1 to k do
4: qj ← argminq∈Q Trace(T TQ\qTQ\q)−1

5: TQ ← TQ\j
6: Qs ← Qs \ qj
7: end for
8: Return Q−Qs

Proof. The proof adapts from an existing result [18] that uses backward greedy

algorithm for subset selection for matrices and retains a given smaller number of

columns such that the pseudo-inverse of the smaller sub-matrix has the smallest

norm possible. These results adapt, as this is akin to removing k worst task factors

and retaining the best m − k factors. It is also shown in recent work [21] that the

objective function is not submodular, nor is it supermodular or monotone.

Running Example: Using Example 1, if k = 3,

{sentiment, Payoff, Duration} are the three task factors for which worker feedback is

solicited.

2.3.3 Preference Aggregator

We can now describe how to aggregate worker responses and incorporate her provided

preferences into the model F . Recall Section 2.2 and note that the worker provides

either a full order among the selected questions (task factors), a partial order, or

possibly no answer. For the last scenario, since the worker does not provide any

feedback, we simply update F implicitly. This is done by updating the model without

any constraints. However, for both full and partial orders, worker preference adds a

set of linear constraints in the optimization function in F .

24

Efficient Algorithm Our solution treats partial and full order in a similar fashion.

In both cases, they add linear constraints to the objective function. With the linear

constraints added to our objective function in Equation (2.1), updating the Worker

Model under preference aggregation problem becomes a constrained least squares

problem.

Specifically, our problem corresponds to a box-constrained least squares one as

the solution vector must fall between known lower and upper bounds. The solution to

this problem can be categorized into active-set or interior-point [87]. The active-set

based methods construct a feasible region, compute the corresponding active-set,

and use the variables in the active constraints to form an alternate formulation of

a least squares optimization with equality constraints [120]. We use the interior-

point method that is more scalable and encodes the convex set (of solutions) as a

barrier function. It uses primal Newton Barrier method to ensure the KKT equality

conditions to optimize the objective function [87].

Running Time. Our proposed primal Newton Barrier interior-point is iterative

and the exact complexity depends on the barrier parameter and the number of

iterations, but the algorithm is shown to be polynomial [120].

Running Example: Using Example 1 again, if the worker says that she

prefers Duration > Sentiment > Payoff, then the new weights that the preference

aggregator estimates for F are, tagging=0.1, ranking= 0.1, sentiment=0.12, payoff=0.11,

duration=0.97. Notice that the order of the task factors provided by the worker is

satisfied in the updated model.

2.4 Experimental Evaluations

We describe our experimental setup, steps, and findings in this section. All algorithms

are implemented in Python 3.5.1 using Intel Core i7 4GHz CPU and 16GB of memory

and Linux operating system. All the numbers are presented as an average of 10 runs.

25

2.4.1 Dataset Description

We use 165, 168 micro-tasks from CrowdFlower. A task belongs to one of the 22

different categories, such as, tweet classification, searching information on the web,

audio transcription, image tagging, sentiment analysis, entity resolution, etc. Each

task type is assigned a set of keywords that best describe its content and a payment,

ranging between $0.01 and $0.12. These are micro-tasks that take less than a minute

to complete.

Initially, we group a subset of micro-tasks into 240 Human Intelligence Tasks

(HITs) and publish them on Amazon Mechanical Turk. Each HIT contains 20 tasks

and has a duration of 30 minutes. A worker who accepts a HIT is redirected to

our platform to complete the tasks. A worker may complete several HITs in a work

session and gets paid for every completed micro-task.

Task Factors. The task types along with other factors, such as, payment

and duration, form the task factors. Our original data has 41 task factors that are

continuous, categorical or binary. By involving domain experts, we binarized these

them to obtain a total of 100 factors that uniquely characterize the tasks.

Worker and Keywords. Each hired worker has to previously complete at

least 100 HITs that are approved, and to have an approval rate above 80%. Overall,

58 different workers complete tasks. When a worker is hired for the first time, she

is asked to select a set of keywords from a given list of keywords that capture her

preferences. We create a unique Worker Model for all the 58 different workers that

participate in our experiments.

When a worker first joins, we ask her to choose the top-5 keywords of her

preference. We use these chosen keywords for a case study, shown in Section 2.4.5.

Ground Truth. For each micro-task, we record the ground-truth, which is

the amount of time the worker spent on it in seconds. This is encoded in the task

completion time vector for the corresponding Worker Model.

26

2.4.2 Implemented Algorithms

Worker Model The linear model in Section 2.3.1 is implemented with a regular-

ization parameter α. When implementing statistical models, this is a standard

practice to avoid overfitting. The overall objective function thus becomes,

min
~w∈Rm

∥∥∥y − ~wT · T
∥∥∥

2
+ α ‖~w‖2

2 (2.13)

The best value of α is chosen by generalized cross validation [87].

Model Initialization. We set a fixed budget b which we use to initialize the

Worker Model iteratively (Section 2.2.2) and implement the following algorithms:

1. Random Initialization. RandomInit selects a randomly selected task iteratively,

presents it to the worker and records the task completion time. The algorithm stops

when the budget b is exhausted.

2. Active Initialization. ActiveInit implements our algorithm given in

Section 2.3.1.

3. Uniform Initialization. UniformInit initializes the model by assigning uniform

weights to the worker preference vector.

Explicit Feedback This has two important components - one is the Question

Selector that selects the task factors for explicit preference elicitation, the other is

Preference Aggregator that updates the Worker Model using elicited preferences.

Question Selector. We have implemented two algorithms to find the best set

of questions to ask as described in Section 2.3.2.

1. Optimization-Aware Question Selector. k-ExFactor is our proposed

algorithm described in Section 2.3.2.

2. k-random Question Selector. k-Random is a simple baseline that randomly

selects k-task factors for preference elicitation.

27

Preference Aggregator: This is our implemented solution for preference

aggregation, as described in Section 2.3.3.

Implicit Feedback We also implement implicit feedback computation to be

compared against explicit feedback.

Algorithm Implicit-1 is an adaption of recent work [96] that investigates how to

implicitly capture worker motivation and use that for task assignment. While we do

not necessarily focus on motivation as a factor in this work, we adapt the algorithm

in [96] to estimate and update the worker preference vector over time. We do that by

taking the average over the worker preference vector of the worker model obtained

in different iterations. Since our focus is not on task assignment, once we estimate

the worker preference vector using Implicit-1, we use that in conjunction with our

Worker Model to predict a task completion time.

Algorithm Implicit-2 is a further simplification. It relearns the Worker Model at

the end of every iteration as the worker completes tasks and does not factor in the

preference of the worker.

2.4.3 Invocation of ExPref

For quality experiments, ExPref is invoked iteratively and in an online fashion: in the

beginning, we filter out the tasks and task completion history by worker id since the

framework is personalized per worker. On average, a worker undertakes 200 tasks.

We randomly divide the tasks into three subsets. We use 50% of each worker’s data

as a holdout over which error is computed. Half of the remaining tasks are used for

training/developing the Worker Model and the rest as the pool of available tasks.

To conduct experiments only related to Worker Model initialization (specifically

for “cold” workers), the training set is empty in the beginning and all tasks are in the

available pool. We use the budget b to find a subset B of tasks based on our proposed

solution in Equation (2.11).

28

After Worker Model is trained, in every iteration, we select a set x of 20 tasks

(unless otherwise stated), randomly from the pool of available tasks and present them

to the worker. After recording task completion time, we add those x tasks back to the

training set. Next, we invoke the Question Selector that seeks explicit feedback

from that worker. Upon receiving worker feedback, the Worker Model is updated

using the Preference Aggregator and the new training set. We calculate the error

over the holdout set after this. All these steps construe a single iteration of the

ExPref.

For scalability experiments, we are only interested to measure the running time

of the algorithms in ExPref. Thus, the experimental set up is rather simple there

and we use the entire dataset.

Error. Unless otherwise specified, we calculate the quality of the Worker Model

as the Mean Square Error (MSE) over validation set, defined as,

MSE = 1
n

n∑
i=1

(
~wTT − ~Y

)2

Additionally, we present R2 (co-efficient of determination) which indicates the

proportion of the variance in the task completion time that is predictable from the

task factors. R2 takes values between [−∞, 1], where higher is better.

R2 = 1−
∑
t

(
yt − ~wT~t

)2

∑
t

(
yt − Ȳ

)2

where, Ȳ is the average task completion time.

29

Iteration. We define an iteration as the completion of a HIT (Human

Intelligence Task) of 20 tasks, after which we compute the MSE and R2 of the Worker

Model.

Preference Elicitation. As described in Section 2.2.2, workers can provide

their preference either as a full order, partial order, or they may not even provide any

preference.

Preference History. For every worker, we also maintain her elicited

preferences in all previous iterations (full history), preferences only in the current

iteration (no history), or preferences in the last few iterations (partial history).

Worker Model is updated accordingly.

2.4.4 Summary of Results

Our proposed explicit preference elicitation framework outperforms (with statistical

significance) existing implicit ones after fewer iterations.

• We compare our approach ExPref with two other baseline algorithms Implicit-1 [96]
and Implicit-2 (Section 2.4.5). We present MSE and R2 with statistical
significance results (standard error) and show that ExPref convincingly and
significantly outperforms the other baselines under varying parameters : 1)
Number of iterations (Figure 2.2), 2) Number of task factors (Figure 2.3), and
3) Number of tasks worker completes in each iteration (Figure 2.4).

• We compare the effect of different parameters of ExPref with appropriate
baselines (Section 2.4.5). We show with a small number of questions k
(Figure 2.5), k-ExFactor outperforms the baselines. Our results demonstrate
that ActiveInit is an effective model initialization algorithm (Figure 2.8).

• Our results also indicate that task completion time is highly correlated to task
outcome/quality of the completed task. This further justifies our investigation
- indeed, deeper analysis of task completion time improves the quality of the
crowdsourced tasks. Our case study results show that ExPref is capable to
truly capture worker preference.

ExPref is scalable.

• We compare ExPref with other baselines under varying parameters: 1)
Number of tasks, 2) Number of task factors, and 3) Number of questions (k).
Unsurprisingly, ExPref is slower but it still scales very well.

30

• We compare our model initialization method ActiveInit by varying the budget
b. ActiveInit is slower than the two other baselines. Despite that, it scales
reasonably well. These results demonstrate the effectiveness of eliciting explicit
preferences making ExPref usable in practice.

2.4.5 Quality Experiments

The objective of these experiments is to capture the effectiveness of our explicit

feedback elicitation framework and compare it with appropriate baselines. Specifically,

we are interested in answering the following questions :

1. How ExPref performs compared to implicit ones (Section 2.4.5).

2. Effect of different parameters in ExPref (Section 2.4.5).

3. Relationship between task completion time and task outcome (Section 2.4.5).

4. A case study on worker’s explicit feedback (Section 2.4.5).

5. A case study on worker preferences (Section 2.4.5).

Parameter Setting. For a given worker, there are four parameters to vary:

1) Number of tasks in each iteration (x), 2) Number of task factors (m), 3) Number

of questions asked (k), and 4) Number of iterations. For initializing the model, we

additionally vary the budget b. Table 2.2 presents the default values alongside the

experimental settings for each parameter. To select a different number of task factors,

the best m features are retained by finding factors that are highly correlated to the

target and discarding the rest. By default, we always maintain the full history of

worker’s preference while updating the Worker Model under varying iterations.

ExPref vs. Baselines We compare two explicit solutions with two implicit ones.

We vary # iterations, # task factors, and x (# tasks assigned to a worker after which

the framework is invoked).

Varying the number of iterations.

Figure 2.2 presents the error of the four Worker Models in the course of ten iterations.

31

Table 2.2 Parameter Settings

Parameters Range Default
tasks in each iteration (x) 5, 10, 15, 20, 25 20
task factors (m) 5, 10, 25, 50, 80 80
questions to ask (k) 3, 5, 7, 9 3
iterations 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 7
initialization budget (b) 5, 15, 30, 50, 75 50

ExPref
k-Random

Implicit-1
Implicit-2

M
SE

0
1000

2000

3000

4000

R
2

−0.4
−0.2
0
0.2
0.4

Iteration
1 2 3 4 5 6 7 8 9 10

Figure 2.2 Comparison between the error of the four models after ten iterations.

We notice that after the seventh iteration, all the four models become stable and their

corresponding errors vary only by a very small margin. This means that ExPref can

achieve significantly better results than the other three baselines after few iterations.

Additionally, we observed that ExPref achieve stability in far fewer iterations than

the baselines. This confirms the fact that worker’s preference will be helpful to the

model.

Varying the number of task factors.

In Figure 2.3, we observed that by adding more task factors, all the models perform

better but ExPref performs significantly better. We also see that the number of task

factors extracted from the tasks on our Worker Model is minimal compared to the

other three baselines.

32

ExPref
k-Random

Implicit-1
Implicit-2

M
SE

0
500
1000
1500
2000
2500

R
2

−0.4
−0.2
0
0.2
0.4

varying	#	factors
5 10 25 50 80

Figure 2.3 Error varying number of task factors.

ExPref
k-Random

Implicit-1
Implicit-2

M
SE

0
1000
1500
2000
2500
3000

R
2

−0.2
0
0.2
0.4

#	Tasks	in	each	iteration
5 10 15 20 25

Figure 2.4 Error varying number of tasks in each iteration.

Varying the number of tasks in each iteration.

Figure 2.4 presents the results for varying the number of tasks a worker receives in

each iteration (denoted by x). ExPref outperforms the other three baseline by a large

margin in terms of achieving smaller error. Notice that for x = 20 all the algorithms

perform well but ExPref is better that the other three. For this reason, we set the

default value of x to be 20.

Varying the number of questions.

Since the results of Implicit-1 and Implicit-2 do not change with k, we present

the results in the next section (Section 2.4.5).

33

k-ExFactor
k-Random

M
SE

0
200
400
600
800

R
2

−0.1
0
0.1
0.2
0.3
0.4
0.5

varying	k
3 5 7 9

Figure 2.5 Error varying number of questions.

Effect of Different Parameters We do a comparative study on the effect of

different parameters, namely, how we track worker’s history (recent history vs full

history vs partial history), the number of questions we ask a worker (k), and the

budget we use for model initialization (b).

Number of explicit questions to ask.

As the number of questions increases, the quality of the Worker Model decreases

(Figure 2.5). This happens for two reasons. First, when the number of questions

is higher than five, worker responses are inconsistent. Second, since we keep the

full history of responses for the worker, the number of constraints imposed in our

optimization problem grows significantly which in turn affects performance.

Similarly, as we ask more questions from workers, most of the answers provided

are in the form of partial ranking rather than full ranking. It’s likely that the workers

simply picked the most important factors and ignored the rest.

Full, partial, no history.

We present a comparative study between fully or partially capturing the history of

the worker’s preferences versus no history, i.e., using the most recent preferences only.

To better understand the difference between the three, as an example, consider we

ask four explicit questions to a worker in each iteration, after the third iteration,

her full history size is 12, whereas, her most recent history size is four; i.e., the

34

k-ExFactor k-Random

M
SE

0
500
1000
1500
2000

R
2

−0.1
0
0.1
0.2
0.3
0.4

Full Partial	(last	5	iterations) Recent

Figure 2.6 Recent history vs partial history vs full history.

recent history represents the number of feedback in the current iteration. Assuming

an expiration time of two, the partial history is defined as the preference of the

worker based on the last two iterations which is of size 8. Figure 2.6 presents the

results of k-ExFactor against k-Random in the last iteration for four scenarios. We

omit the results for the other two implicit models since their results is not affected

by the worker’s history. Clearly, maintaining a full history for the worker performs

significantly better. Intuitively, this shows that the model can understand the worker

better when all the information about her is maintained. This means that the Worker

Model can handle variations in worker’s behavior significantly better compared to

using recent information only.

Full, partial, no order of preference.

Figure 2.7 presents the results for different types of feedback a worker can provide.

We set the number of questions that we ask in each iteration to k = 4. Notice

that when the worker does not provide any answer, the results are very similar to

Implicit-2. This means that if the worker does not provide any answer, we fall back

to the implicit model. Similarly, note that the performance of the Worker Model is

not affected by the type of answer a worker provides. This means that as long as the

worker provides some feedback, albeit partially, our Preference Aggregator can

help the Worker Model better estimate the task completion time.

35

k-ExFactor k-Random

M
SE

250
750
1000
1250
1500
1750

R
2

0
0.1
0.2
0.3
0.4

Worker	preference
Full	Ranking Partial	Ranking No	Answer

Figure 2.7 Error varying worker preference type.

ActiveInit RandomInit UniformInit

M
SE

0
1000
1500
2000
2500

R
2

−0.2
0
0.2
0.4

Initialization	size
5 15 30 50 75

Figure 2.8 Evaluation of model initialization algorithms.

Model Initialization Figure 2.8 presents the difference in the reconstruction error

between the three initialization methods. ActiveInit performs better overall and for

b = 50 it has the lowest reconstruction error between the three methods. Notice that

as the size of initialization set grows, the reconstruction error drops. This is attributed

to the fact that the Worker Model needs a reasonable amount of training data to be

able to predict the task completion duration. Another important phenomena is that

increasing b beyond 50 results in an increase in the reconstruction error. This is

because the Worker Model will overfit the training data and lose its predictive power.

Task Completion Time vs. Task Outcome We notice that completed tasks

that have correct answers take more time on average to complete than the tasks

36

that are not. Using Chi-squared test, we observe a high positive correlation between

task completion time and its outcome/quality (with χ2 = 3796.99 and p − value =

0.00001). This in fact is one of the motivations behind our study, as the correct

estimation of task completion time will help us better understand task outcome.

Worker’s Feedback We profile all 58 workers over the course of their participation

and notice that they always provide some feedback (partial/full). We notice that if

the number of questions is less than four, the workers are more likely to provide

full feedback. As we increase the number of questions, worker’s tend to give partial

feedback.

A Case Study We profile three workers randomly from our database and analyze

their models in conjunction with the keywords they have initially chosen. Table 2.3

presents the five keywords chosen by the workers and the top-2 worker preferences.

It is easy to notice that they are highly correlated, which shows that our proposed

model successfully captures worker preference.

Table 2.3 Worker Keywords and Preference Learned By Worker Model

Worker no Worker Keywords Top-2 preference
1 dress,google street view, airlines, classifi-

cation, scene
dress, scene

2 business, body parts, google street view,
health, classification

classification, google
street view

3 image, south Asia, disease, animals, text image, text

2.4.6 Scalability Experiments

We are interested in answering the following questions :

1. How ExPref scales compared to implicit preference computation (Section 2.4.6).

37

2. Effect of different parameters in ExPref (Section 2.4.6).
3. Time Profile of each component of ExPref (Section 2.4.6).

Unless otherwise stated, we report running times in seconds.

Parameter Setting. Our dataset contains 165, 168 tasks and 80 task factors

obtained from 58 workers. In these experiments, we vary the following parameters:

tasks, # task factors, k, and the initialization budget b. Unless otherwise stated,

all the numbers present the average running time of a single iteration over all the 58

workers. The default values are set as # tasks = 30, 000, # task factors = 50, k = 3,

and b = 20. By default, we consider full order of worker preference since that adds

more constraints to the problem. For the Worker Model initialization comparison,

only the appropriate three methods are compared.

Efficiency of ExPref vs. Baselines Figure 2.9(a) presents the running times of

the four algorithms with varying number of tasks. Of course, our proposed solution

k-ExFactor makes a lot more computation to ensure optimization and hence has the

highest running time. However, it is easy to notice that with an increasing number

of tasks, it scales well and the running time is comparable to the other competing

algorithms. A similar observation holds when we vary the number of task factors,

as shown in Figure 2.9(b). k-ExFactor scales well and never takes more than 80

seconds.

Effect of Parameters on Efficiency Figure 2.9(c) represents the running times

by varying k, the number of task factors chosen for preference elicitation. Here only

k-ExFactor is compared with k-Random, as the other two algorithms do not rely on

explicit preference elicitation. Unsurprisingly, k-Random is faster, but our proposed

solution k-ExFactor scales well and has a comparable running time. Finally, in

Figure 2.9(d), we vary the initialization sample size and present the running time

of ActiveInit. Our initialization model scales well and does not take much time

38

as the size of initialization set grows. The other two baselines do not perform any

computation and take negligible time to terminate.

ExPref
k-Random
Implicit-1
Implicit-2

T
im
e	
(S
ec
on
ds
)

25
50
75
100
125
150
175
200

#	Tasks
30K 60K 90K 120K 150K

(a) varying # tasks

ExPref
k-Random
Implicit-1
Implicit-2

T
im
e	
(S
ec
on
ds
)

0

5

10

15

20

25
30

#	Task	factors
20 40 60 80 100

(b) varying # task factors

k-ExFactor
k-Random

T
im
e	
(S
ec
on
ds
)

0

10

20

30

40

#	Questions	(k)
5 10 15 20 25

(c) varying k

ActiveInit

4

10

15

21

29

T
im
e	
(S
ec
on
ds
)

0

5

10

15

20

25
30

#	Samples	for	initialization
0 250 500 750 1000 1250

(d) varying b

Figure 2.9 Scalability study

Profiling ExPref for Efficiency We further profile the individual running time

of ExPref with the default settings; i.e., # tasks = 30, 000, # task factors= 50,

k = 3. It takes eight seconds to train the Worker Model, 6.15 seconds to solve

Question Selector that finds the best k factors, and 9.1 seconds to run Preference

Aggregation that updates the Worker Model with the added constraints. These

results demonstrate that the individual components of the framework take comparable

time.

2.5 Conclusion

We present a framework ExPref for eliciting explicit worker’s preference for task

completion time in crowdsourcing platforms by developing and maintaining a

personalized Worker Model. Around this model, we define two core optimization

problems; Question Selector that selects the best set of questions to obtain

39

a worker’s preference in the form of a full/partial ranking of task factors, and

Preference Aggregator that updates the worker model with provided preferences.

We present theoretical results showing the hardness of our problems and algorithms

with theoretical guarantees. We conduct large-scale experiments with 165, 168 tasks

from CrowdFlower involving 58 workers hired from Amazon Mechanical Turk. Our

quality experiments corroborate the necessity of explicit preference elicitation by

comparing that with state of the art implicit preference computation. Our scalability

results demonstrate that our framework is practical and could be used in real

crowdsourcing platforms. As an ongoing work, we are investigating how to adapt

this problem, when the explicit feedback is erroneous or has bias due to malicious

user behavior.

The related work can be classified into three categories: preference elicitation

from the crowd, leveraging worker preferences in crowdsourcing processes, and worker

models.

Preference Elicitation. In [51, 98, 37], the crowd was solicited to perform

max/top-k and clustering operations with the assumption that workers may make

errors. These papers study the relationship between the number of comparisons

needed and error. Efficient algorithms are proposed with a guarantee to achieve

correct results with high probability. A similar problem was addressed in [50] in

the case of a skyline evaluation. In that setting, it is assumed that items can only

be compared through noisy comparisons provided by the crowd and the goal is to

minimize the number of comparisons. A recent work studies the problem of computing

the all pair distance graph [103] by relying on noisy human workers. The authors

addressed the challenge of how to aggregate those feedback and what additional

feedback to solicit from the crowd to improve other estimated distances. While we also

rely on inputs from the crowd, the elicited input represents each worker’s preference

for different factors (as opposed to completing actual tasks), and is hence not assumed

40

to be noisy or erroneous. However, as worker preferences evolve over time, we propose

an iterative approach with the goal of improving task completion time overall.

Leveraging Preferences. Worker preferences for task factors are heavily leveraged

in all crowdsourcing processes. Very few of these efforts focused on leveraging them

in task completion [28, 35, 116]. Authors of [68] investigated 13 worker motivation

factors and found that workers were interested in skill variety or task autonomy as

much as task reward. Chandler and Kapelner [28] empirically showed that workers

perceived meaningfulness of a task improved throughput without degrading quality.

Shaw et al. [116] assessed 14 incentives schemes and found that incentives based on

worker-to-worker comparisons yield better crowd work quality. Hata et al. [57] studied

worker fatigue and it affects how work quality over extended periods of time. Other

efforts focused on gradually increasing pay during task completion to improve worker

retention [48]. Lately, adaptive task assignment were studied with a particular focus

on maximizing the quality of crowdwork [44, 59, 60, 96] but primary for improved

task assignment. Existing work showed the importance of leveraging implicit worker

preferences for task assignment. In contrast, we show explicit elicitation of worker

preferences results in a more accurate model that leads to better estimation of task

completion time.

41

CHAPTER 3

CROWDSOURCING ANALYTICS WITH CROWDCUR

3.1 Introduction

After the initial introduction of ExPref in Chapter 2, we demonstrate CrowdCur,

a system that provides that capability and allows requesters and workers to examine

various analytics of interest.

CrowdCur is a platform that provides better transparency and generates less

frustration among workers. This should incur better worker retention. The idea

behind CrowdCur is not new, and several proposals have addressed transparency

in crowdsourcing from requester and platform perspectives. Requester transparency

reveals details ,such as, recruitment criteria, the conditions under which work may

be rejected, and the time before workers’ contributions are approved [54]. Platform

transparency, e.g., showing feedback to workers on their performance, has also been

addressed [68]. Several tools and forums have been developed to disclose information

to workers. For example, Turkopticon [65] provides a plug-in that helps workers

determine which HITs do not pay fairly and which requesters have been reviewed by

other workers. CrowdFlower displays a panel with a worker’s estimated accuracy so

far.

CrowdCur is designed following the ExPref framework. It relies on three core

components. The worker and task curation components continuously monitor the

platform and produce basic statistics, and the analytics component that aggregates

those statistics. We describe the architecture of CrowdCur and demonstration

scenarios. CrowdCur is implemented in such a way that it can be used as a plugin

with existing platforms such as AMT, CrowdFlower and Prolific Academic and it’s

designed only for micro-tasks.

42

OLAP Style Querying

Requester

Worker
Model

Preference
Aggregator

Question
Selector

Worker Curation Box Task Curation Box

Task
Feature

Extraction

Task
Assignment

and
Monitoring

Worker

Figure 3.1 CrowdCur architecture overview

3.2 CrowdCur platform

Figure 3.1 outlines the architecture of our platform. CrowdCur is a plugin that the

worker or requester installs on their system. The web-based interface enables workers

to select and work on tasks, requesters to monitor the completion of their submitted

jobs and to get meaningful statistics and recommendations. The back-end consists of

three components, Worker Curation, Task Curation, and OLAP Style Querying.

3.2.1 Worker Curation

The ability to characterize workers with their desired preferences is of great

importance in crowdsourcing [111, 11, 68]. Most platforms such as, Amazon

Mechanical Turk or CrowdFlower rely solely on implicit monitoring of worker

preferences. In CrowdCur, our overarching goal is to interleave implicit obser-

vations with explicitly seeking feedback from workers to maintain an accurate worker

model for effective task completion duration. To achieve this goal, we use Worker

Curation to keep track of their preferences and progress as they complete tasks. We

now describe briefly the three primary components of Worker Curation. The inner

43

working of the algorithms and solutions used in Worker Curation have been studied

in Chapter 2.

Worker Model: To capture the preference of workers, CrowdCur learns

and maintains a learning model. Once this model is developed, one can use it to

appropriately estimate future outcomes - in our case to estimate the completion time

of a future task. An understandable and practical simplification is that the preference

of a worker for a task factor is represented by a weight in the model. We define Worker

Model as a linear combination of task factors, where the learning parameters are the

worker preference. Similarly, we define the task completion duration as the amount

of time it took for the worker to complete that task. This frames the learning model

into a regression problem. Specifically, we describe a linear regression problem where

the objective is to estimate a worker’s preferences which minimize the mean square

error between the predicted duration and the real duration, i.e.,

argmin
~w∈Rm

||~wT · T − ~Y ||22 (3.1)

where ~Y is the outcome of a set of tasks, T is a matrix of task factors and

~w is the worker preference. This learning model keeps track of which task factors

are important to a worker. Clearly, as the worker completes different tasks, her

preferences evolve. This will result in an error in the prediction of the model.

Question Selector: In order to quickly resolve the error in the Worker Model,

CrowdCur finds a subset of the task factors that cause error in the worker model.

This problem is akin to selecting a subset of columns from the task factor matrix

such that the pseudo-inverse of the sub-matrix has the smallest norm.

argmin
Qk⊂Q,|Qk|=k

Trace(T TQ\Qs
TQ\Qs)−1 (3.2)

44

where Q is the set of task factors, Qs is a subset of task factors. The result of

Question Selector is a set of task factors which the model is not sure about and

there is a chance that the preference of the worker is different than what the model

has learned so far.

Preference Aggregator: To understand the preference of the worker, we

present the result of Question Selector to the worker and ask for their input.

Specifically, we are interested to see the worker’s full order or partial order among the

selected task factors. This will result in a set of linear constraints of the form i ≥ j.

We introduce a set of linear constraints to the Worker Model which transform the

learning model to a constrained optimization problem. In order to keep track of the

latest preference of the worker, we keep track of the history of the preferences that

we acquired from the worker. If there is a conflicting constraint, we ignore the older

information since there is a chance that the worker’s preference has changed.

3.2.2 Task Curation

Tasks come from different sources and have different content. Task Curation is in

charge of monitoring the flow of tasks and also creating descriptive factors for each

task to be used in Worker Curation. Task Curation has two components: (a) Task

Feature Extraction, and (b) Task Assignment and Monitoring. These components are

fully customizable.

Task Feature Extraction: Popular platforms, such as Mechanical Turk

or Prolific Academic, characterize tasks using factors, such as type, payment and

duration. In CrowdCur, we create a set of factors using unsupervised feature

extraction methods. One of the well studied methods for this is Autoencoders [32,

125]. The autoencoder learns a function fw(x) ≈ x, i.e., an approximation to the

identity function, so as to output fw(x) that is similar to x. We use the output of

the learned function from the Autoencoder (i.e fw(x)) to create the artificial features

45

by giving the content of the tasks to the function. For example, given a set of images

for an image tagging task, we create the artificial features by passing each image to

our learned Autoencoder. These extracted features alongside the provided factors for

the tasks constitute the foundation of CrowdCur.

Task Assignment and Monitoring: Rather than show the same set of

tasks to all workers, the added value of CrowdCur is its ability to integrate a

task recommendation component that displays tasks to which workers can self-assign

themselves. CrowdCur does not assume a specific task assignment algorithm. It

advocates self-assignment where workers decide which task to partake in, since that

reveals more information about workers and their preferences.

3.2.3 OLAP Style Querying

Different initiatives implement transparency in crowdsourcing platforms through

plug-ins. Turkopticon [65] is a plug-in for AMT that lets workers review tasks and

requesters. Crowd-Workers and Turkbench [54] provide expected hourly wages when

workers browse tasks. The MobileWorks platform [71] facilitates worker-to-worker

communication and assigns manager roles to some workers, allowing workers to

monitor each other and benefit from each other’s experience, which results in higher

quality contributions. CrowdCur complements these plug-ins by providing the

ability to reason over computed statistics by querying and comparing the statistics

of different tasks and workers.

The third component of our platform is an OLAP style querying component

which will expose the information gathered by the previous two components to the

workers and requesters. One can consider the information in an online crowdsourcing

environment as a cube with multiple dimensions (Figure 3.2). That enables querying

and aggregating workers and tasks and comparing them on various dimensions. For

example, a worker can compare oneself to alike workers, and a requester could

46

Figure 3.2 Cube of tasks, workers, and time.

get statistics on a certain kind of tasks. We advocate for an expressive analytics

exploration approach. Existing approaches can be classified into by-example [94],

by-query [67], by facet (question-answering) [122], and by-analytics [10].

The front end of CrowdCur is implemented using Chrome Plugin Development

Toolkit which is a popular front-end javascript library provided by Google. We also

use the D3.js library to visualize the information. The back-end has been implemented

completely in Python 3.6. For Task Feature Extraction, we use Theano [6] to

implement various unsupervised feature extraction methods.Worker Curation Box

is implemented using SciPy optimization framework. At the heart of CrowdCur,

we use Django REST web framework and PostgreSQL server as the web server and

back-end database.

3.3 System Demonstration

In order to demonstrate the effectiveness of the system, we present different

perspectives one might assume in a crowdsourcing environment.

47

We use 5, 000 different tasks in five different categories, such as tweet classi-

fication, image tagging, sentiment analysis, and etc. We obtain these tasks from

CrowdFlower data for everyone 1 alongside their corresponding responses. In this

dissertation, we present two end-to-end scenarios of interacting with CrowdCur 1)

How a new worker will experience the CrowdCur enhanced crowdsourcing platform

and how the provided analytics can improve her overall satisfaction, and 2) How a

requester can get deep insights about tasks and workers.

(a) Work Interface - Landing Page (b) Work Interface - Working on a Task

(c) Eliciting Explicit Feedback (d) CrowdCur Plugin

Figure 3.3 CrowdCur important components.

The three scenarios that we look at in this dissertation are :

As a worker: Since we are interested in simulating different types of workers,

we ask the users to complete a set of tasks and provide an explicit feedback when

needed. These information will simulate a worker with different rates of task

1https://www.crowdflower.com/data-for-everyone/

48

Figure 3.4 CrowdCur worker landing page at the end of a work session.

completion on different task types and different preferences: their preference changes

as a function of time. In each round of task completion, the users see the probability of

successful completion and the predicted task completion duration of the task currently

chosen. After completion of every five tasks, the Question Selector is invoked and

the users are presented with a set of factors that they can rank according to their

preferences. The users will choose which factor ranks higher. These ranked factors

are then given to Preference Aggregator which in turn will update the model.

At any time during the work session, CrowdCur will generate a list of

recommended tasks based on Worker Model of tasks they have previously completed.

The user also will get information about how similar workers performed and how

49

Figure 3.5 CrowdCur requester dashboard.

the worker’s preference have changed as a function of time. CrowdCur will also

provide insightful information about different aspects of worker’s performance such

as how much money they have made, how fast they have worked and etc. It also will

produce a set of advices for the worker on how to improve their performance based

on comparing Worker Models. For example, for a worker interested in making more

money, the system will check how similar workers acted and which tasks they have

chosen and their performances, then it will generate simple guides that will help the

worker boost her earnings. Figures 3.3 and 3.4 shows the interface of CrowdCur if

the user has logged in as a worker. Users get access to different interactive plots which

they can explore. They can also see a list of advices that CrowdCur generated for

the workers.

As a requester: Requesters can get different analytics about the workers that

are working on their tasks. They can get the structure of the whole workforce that

is currently working on the platform and look at their preferences as a function of

50

time. Users also have access to different analytics about their tasks and also how the

tasks are getting completed on the platform. For example, one might be interested in

finding out how long does an audio transcription task takes on a platform and what

type of worker usually work on these tasks. This will be helpful to a prospective

requester since they can decide based on this information which platform to deploy

their tasks on or how much they should reward workers. Figures 3.5 shows the user

interaction with CrowdCur, if the attendee has logged in as a requester. The user

can use the interactive plots to examine how workers’ preferences have changed as a

function of time. They also can see the top preferences of people who work on a type

of task. As a requester, they also can interact with information about the tasks they

have submitted such as the rate at which they are getting done.

OLAP style querying: Users will have access to CrowdCur powerful OLAP

tool at the end of each experience. For example, as a worker, they can create a query

that will compare the current worker profile to other profiles on user defined metrics,

or ask about how changes in worker’s preference impacts the rate of task completion.

Users will also get to use the CrowdCur OLAP system as a requester. For example,

as a requester, they can make queries about what type of workers are more likely to

work on their tasks, or how long does a specific type of task take to finish.

3.4 Conclusion

We have developed an end-to-end crowdsourcing platform which keeps the focus

on the worker instead of requester. CrowdCur follows closely the framework

ExPref presented in Chapter 2. CrowdCur enables all the three players in the

crowdsourcing environment to have a unified access to their data. The Worker

Curation integrates ExPref in the platform and is in charge of periodically updating

Worker Model by explicitly eliciting worker’s preference. Task Curation box helps

platform owner to identify task factors and fine tune what workers will see in terms

51

of factors. It also uses state-of-art algorithms to automatically extract important

factors from each micro-task in order for the platform to have micro understanding of

each task. Lastly, OLAP engine helps bring all the components together. It enables

unified access and transparency. The worker can use OLAP system to understand

how she did and the Worker Curation box will help her to follow her preferences. As

requester, CrowdCur provide an overview of what the crowd looks like and how her

tasks are performing and even she can get an estimate of when her tasks are done.

52

CHAPTER 4

OPTIMIZING PEER LEARNING WITH AFFINITIES

4.1 Introduction

In this chapter, we explore how affinity between group members improves peer

learning and address modeling, theoretical, and algorithmic challenges. To the best

of our knowledge, this work is the first to examine algorithmic group formation with

affinities for peer learning. Group formation in online communities has been studied

primarily in the context of task assignment [14, 15, 72, 112, 104]. The problem is

often stated as: given a set of individuals and tasks, form a set of groups for the

tasks that optimize some aggregated utility subject to constraints such as group size,

maximum workload etc. Utility can be aggregated in different ways: the sum of

individual skills, their product, etc [15]. Group formation is combinatorial in nature

and proposed algorithms solve the problem under different constraints and utility

definitions (e.g., [72]). Unlike these problems, we study how to form groups with the

goal of maximizing peer learning under different affinities.

Our first contribution is to present principled models to formalize peer learning

and affinity structures. We assume that a peer can only learn from another peer if

the skill of the latter is strictly higher than the skill of the former [4]. The learning

potential of a peer from a more skilled peer can then naturally be defined as the skill

difference between the latter and the former [3, 4, 2]. The learning potential of the

latter from the former is null. We use that to formulate two common learning models

(Figure 4.1): LpA where each member learns from all higher skilled ones, and LpD

where the least skilled member (resp., the most skilled) learns from (resp. teaches to)

all others.

53

(a) (b)

Figure 4.1 Illustration of LpA and LpD- (a) LpA: members learn from
higher-skilled ones. (b) LpD: the least skilled member learns from the most skilled one.

Affinity, on the other hand, depends on the application and can be expressed

using common socio-demographic attributes or more generally, using models that

capture psychological traits. We study our two learning models in conjunction

with two common affinity structures (Figure 4.2): AffD where group affinity is

the smallest between all members, and AffC where group affinity is the smallest

between a designated member (e.g., the least skilled or the most skilled) and all others.

We investigate these two affinity scenarios through fact-checking and fact-learning

applications.

(a) (b)

Figure 4.2 Illustration of affinity structures - (a) AffD: smallest affinity between all
pairs. (b) AffC: smallest affinity between one member and others.

Our second contribution is to study the formalized models systematically and

present our theoretical findings. In its general form, our problem formulation is a

54

bi-objective optimization, with the goal to build k equi-sized groups over a set of

n members that maximize both learning potential and affinity. Interestingly, we

prove that no variant of optimizing learning potential alone is hard to solve (LpD

and LpA), however, the problems become NP-hard when affinity and group size

constraints are considered. Therefore, our solution first finds k groups that yield

the highest possible learning potential value and then transforms our two-objective

problem into a constrained optimization that looks for k groups that optimize affinity,

with that learning potential value as a constraint.

Our third contribution is algorithmic. We present a suite of scalable algorithms

that form groups to maximize learning potential and optimize affinity within constant

approximation factors. To attain their approximation guarantees, these algorithms

assume that affinity satisfies triangle inequality [72]. Many similarity/distance

measures such as Jaccard distance and edit distance are known to satisfy metric

properties and these properties are usually assumed to design algorithms with

guarantees [72]. Our technical contributions are summarized in Table 4.2.

4.2 Modeling and Problem Definition

We present our models following which we define the problems we tackle in this work.

Example 2. We have a set of fact-checking tasks to be completed by 12 individuals

with varying skills. We design questions to compute one skill per individual (e.g., on

the British royal wedding) and obtain the skill values: {2, 3, 1, 5, 6, 4, 9, 8, 10, 12, 14, 17}.

Each pair of individuals has an affinity that reflects how effectively they can collaborate

based on their socio-demographics. Therefore, there are
(

12
2

)
pairs of affinities forming

a complete graph. We show a subset of that graph in Table 4.1 where each worker is

identified by her skill. Our goal is to divide the workers into three equi-sized groups

of four members each.

55

Table 4.1 Partial Affinity Table for Example 2

member 2 3 1 5 6 4 9 8 10 12 14 17

2 - 20 - - - - 3 - - - 11 17
3 20 - 13 - - - 17 - - - 11 4
1 - 13 - - - - 10 - - - 14 21
. . .
17 17 4 21 - - - - - - - 6 -

4.2.1 Modeling

Group. A group is a set of individuals who will complete a task together. The

group size is constant throughout task completion.

Skill. Each individual has an approximated skill reflecting an ability to perform

a task. We obtain skills from standard tests and questionnaires to assess expertise

level. Other approaches such as inferring skills from completed tasks [106], are also

possible.

Affinity. Between every pair of individuals working on a task, affinity captures

how well they get along. We express affinity as a similarity measure (higher values

are better). We assume affinity satisfies triangle inequality [72]. Group affinity is the

aggregation of affinities between its members.

Learning Potential. We define the learning potential between two individuals

as the difference between their skill values. The learning potential is not a metric since

for the person with the higher skill value, we set it to 0 [3, 4]. The learning potential

for a group is the sum of learning potentials of its members.

We have a set of n individuals who are working on a collaborative task. Each wi

has a skill value wsi ∈ R ≥ 0 representing an ability to complete a task. Our goal is to

group them into k equi-sized groups such that the aggregated learning potential and

affinity of the groups are maximized. Before formalizing the problem, we investigate

variants of learning potential and affinity.

56

Learning Potential Models Intuitively, the higher the learning potential of a

group, the more likely its members will learn from each other. We examine two

definitions.

Learning Potential - Diameter. We define LpD as the difference in skills

between the most skilled and the least skilled members. This reflects that for a

group, we are interested in maximizing the highest learning potential of the least

skilled individual in that group.

LpD(g) = max
wi∈g

(wsi)−min
wj∈g

(wsj) (4.1)

In Example 2, if we create the following three groups (we use a member’s skill

to represent her). G = {g1 = (2, 3, 1, 5), g2 = (6, 4, 9, 8), g3 = (10, 12, 14, 17)} then,

LpD(g1) = 5 − 1 = 4, LpD(g2) = 9 − 4 = 5, and LpD(g3) = 17 − 10 = 7. The

aggregated learning potential of the grouping G is 16.

Learning Potential - All. We define LpA as the sum of differences between

each member’s skill and that of all other members with higher skills.

LpA(g) =
∑
wi∈g

∑
(wj∈g,s.t.ws

i<w
s
j)

(wsj − wsi) (4.2)

Given the previous grouping, we can compute G = {g1 = (2, 3, 1, 5), g2 =

(6, 4, 9, 8), g3 = (10, 12, 14, 17)}, LpA(g1) = |1 − 2| + |1 − 3| + |1 − 5| + |2 − 3| +

|2 − 5| + |3 − 5| = 13, LpA(g2) = 17, and LpA(g3) = 23. The aggregated learning

potential of the grouping under LpA is 53.

57

Affinity Models It is important to look at the effect of affinity on learning

since members with higher affinities are likely to learn better from each other and

collaborate more effectively [43, 90, 104]. We examine two affinity variants.

Affinity - Diameter. We can formalize affinity as a complete graphG = (V,E)

where V is the set of n individuals and E contains weighted edges that correspond

to the affinity between every pair of them. In this case, affinity satisfies triangle

inequality. We refer to this case as AffD and define the affinity of a group as the

minimum pairwise affinity of all its members as follows:

AffD(g) = min
wi,wj∈g

aff (wi, wj) (4.3)

According to Example 2, if g = {2, 12, 14} then

AffD(g) = min{aff (2, 12), aff (2, 14), aff (12, 14)}, i.e., 4.

Affinity - Center. Affinity can also be defined based on the relationship

between one member and all others. We refer to that as AffC and capture it as a

graph G = (V,E) where edges are defined between one designated member wD and

all others.

AffC(g) = min
wD,wj∈g

aff (wD, wj) (4.4)

AffC captures the cases where the designated member is the least skilled or the

most skilled. Similarly to AffD, in Example 2, if g = {2, 12, 14} and the group center

is 14 then AffC(g) = min{aff (2, 14), aff (12, 14)} which corresponds to aff (12, 14) =

6.

58

For instance, when the task is collaborative fact-checking (e.g., check facts

related to the British royal wedding), LpA reflects that each group member will

learn from other members with higher skills and AffD captures agreement between

the most two disagreeing members in the group. When LpA is combined with AffC,

we can capture a task such as text editing where group members collaborate to correct

grammar and spelling mistakes in text. In that case, one can intuitively assume that

each group member will learn from other members with higher skills and that everyone

must have affinity with the highest skilled member. Another example, AffD LpD

captures a task where group members are asked to produce facts they believe to be

true. In that case, the least skilled member learns from all others and all get along

when stating facts.

4.2.2 Problem Definition

Given a set W = {w1, ..., wn} of individuals with their corresponding skill values

wsi , our goal is to form a grouping G that contains k equi-sized groups g1, g2, ..., gk

that maximizes two objective functions, aggregated learning potential and aggregated

affinity. More formally:

maximize
G

k∑
i=1

LP(gi),
k∑
i=1

Aff (gi)

s.t. |G| = k, |gi| =
n

k

(4.5)

where LP(gi) (resp. Aff (gi)) refers to any of the learning potential (resp.

affinity) definitions above.

Since the two objectives are incompatible with one another, our problem

qualifies as multi-objective. Upon examining the learning potential expressions, we

notice that these are polynomial time solvable problems, simply because the primary

59

Table 4.2 Aff-* Lp-* NP-Hardness And Technical Results

Problem Algo. Approx. Time

(AffC LpD) GrAffC-LpD exact LpD, 3 AffC O(klogn + nlogk)

(AffC LpA) GrAffC-LpA exact LpD, 3 AffD O(nlogn)

(AffD LpD) GrAffD-LpD exact LpA, 6 AffC O(klogn + nlogk)

(AffD LpA) GrAffD-LpA exact LpA, 6 AffD O(nlogn)

operation that these problems require is sorting. We present exact algorithms for

the two learning potential problems in Section 4.3.1. The complexity of our problem

lies within the affinity structure and the group size constraint. One way to solve our

bi-objective optimization problem is therefore to transform it into a single-objective

problem with constraints. We can rewrite Equation (4.5) as follows:

maximize
G

k∑
i=1

Aff (gi)

s.t.
k∑
i=1

LP(gi) ≥ OptLP

|G| = k, |gi| =
n

k

(4.6)

where OptLP is the optimal solution for learning potential maximization.

Essentially, we are interested in finding a solution for the affinity objective on the

Pareto front, that has the highest learning potential. In Section 4.4, we present

approximation algorithms that find a feasible grouping (that maximizes learning

potential) and offer provable constant approximation for affinities.

4.3 Optimization

In this section, we first study how to optimize each of our two objectives individually,

learning potential and affinity, and in the last subsection we begin studying our bi-

objective optimizations by translating them into constrained optimization problems.

60

This exercise has many benefits - (a) it offers a deeper understanding of the individual

problems and (b) it provides perspective on how to combine them and design scalable

solutions with provable guarantees (refer to Section 4.4).

4.3.1 Optimizing Learning Potential

Our algorithmic endeavor begins by first describing solutions to group formation

that maximize learning potential (LP) alone. Once we obtain the optimal LP value,

we use that as a constraint when optimizing affinity (Equation 4.6 in Section 4.2.2).

Fortunately, both LP problems are computationally tractable, and we present efficient

algorithms that form a grouping with exact solutions. While different, our algorithms

are designed in the same spirit as those designed to solve the value-based group

formation [3] and the p-percentile partitioning problem [4]. A central idea to those

algorithms is to create a grouping based on sorting group members on skill values.

Learning Potential LpD We want to form k groups that maximize the aggregated

learning potential which in LpD is the maximum pairwise skill difference (Equation 4.4).

LpD of a group is always determined by a single pair of its members, the least skilled

and the most skilled ones. Therefore, if we have to form a single group, we just need

to select the most and least skilled members and make them part of that group. The

other members in the group could be any as their participation does not increase or

decrease the LpD value. This seemingly simple logic sufficiently extends to forming

k groups. To form k groups, we need to find two buckets with a total of 2k people,

the most skilled bucket containing the k highest skilled workers (the i-worker in that

bucket is referred to as ws.highi), and the least skilled bucket containing the k least

skilled workers (the i-worker in that bucket is referred to as ws.lowi). We can then

form k pairs by grouping one member in the least skilled bucket with one in the most

skilled bucket and placing them in the same group. The remaining n − 2k workers

61

can be distributed arbitrarily across the k groups, while keeping the group size the

same (pseudo-code in Algorithm 2).

Applied to Example 2, this is akin to forming the least skilled bucket with

participants of skill values {1, 2, 3}, the most skilled one with values {12, 14, 17}, and

forming three pairs, each one representing a group of size two, by pairing members

across the buckets. We can state the following theorem:

Theorem 3. Any pairing across the least skilled and most skilled buckets produces

the optimal aggregated value for LpD.

Proof. Consider the set of k least skilled members and k most skilled members. It

is easy to see that changing the assignment of the least skilled members would not

change the overall sum of the skill difference. LpD of the grouping is:

OPTLpD = (ws.high1 − ws.low1) + (ws.high2 − ws.low2)+

. . .+ (ws.highk − ws.lowk)

Indeed, any possible grouping across the buckets over these 2k members will not affect

the sum, and thus the LpD value.

Based on Theorem 3, we can state that multiple groupings maximize the LpD

value. This corollary is important, because it provides intuition on the challenges

that arise when combining affinity with learning potential.

Corollary 3.1. There are k!×(n−2k)!
(n/k−2)!k possible groupings to maximize LpD.

Proof. The members in the highest and the lowest skilled buckets could be paired in k!

groupings. The remaining (n−2k) members are to be placed over (n/k−2) positions

in each group, and a total over k groups. This gives rise to k!×(n−2k)!
(n/k−2)!k groupings.

Lemma 1. Computing one optimal grouping for LpD takes O(n+ klogn).

62

Algorithm 2 Algorithm to maximize LpD
input: set of workers W , k
output: a grouping G, OPTLpD
procedure LpD(W,k)

OPTLpD← 0
create highest and lowest skill buckets with k workers each
G ← a set of k empty groups
for i in (1, ..., k) do

pick wm ∈ most skilled and wl ∈ least skilled
gi ← {wm, wl}
W ← W \ {wl, wm}
OPTLpD← OPTLpD + (wsm − wsl)

end for
while W is not empty do

Assign wi ∈ W in gi, s.t gi ≤ n/k.
end while

end procedure

63

Learning Potential LpA The LpA of a group is the sum of skill differences

between every member with every other more skilled member (Equation 4.3). The

LpA of a set of k groups is the sum over the LpA of each group. What becomes

intuitively apparent is that if one has to form one group to maximize LpA, one should

always group the most skilled member with the remaining less skilled ones. This logic

extends to creating k groups by sorting members on skills (in increasing or decreasing

order), and creating n/k buckets, each with k members. To form a group of size n/k,

we choose a member from each bucket and repeat this process k times.

Using Example 2, this is akin to sorting the skills of the participants and forming

a total of four buckets:

{1, 2, 3}, {4, 5, 6}, {8, 9, 10}, {12, 14, 17}

We form the first group by arbitrarily selecting one member from each of these four

buckets, for example, those with skills {1, 4, 8, 12}. Then we repeat the process twice

to get the two other groups, e.g., {2, 5, 9, 14} and {3, 6, 10, 17}.

This algorithm turns out to be optimal - moreover, just like for LpD, all possible

groupings across n/k buckets are permissible and will produce the same optimal LpA

value.

Theorem 4. Any grouping across the n/k buckets produces the optimal aggregated

value for LpA.

Proof. The proof is very similar to the proof of LpD. Consider a grouping that we

get by running the above algorithm. We sort the members based on their skill values

and we create x buckets. The first k workers will go into the first bucket and so

on. We create a group by choosing one member of each bucket. After k iterations,

we obtain our grouping. Without loss of generality, assume that the highest skilled

64

member of group i has the skill value of Si and the other members have sji where j

denotes the bucket that this member has been chosen from. Consider the grouping

G = {g1 = (S1, s
1
1, s

2
1), g2 = (S2, s

1
2, s

2
2), . . . , gk = (Sk, s1

k, s
2
k)}. We can show that

swapping two members from the same bucket will not change the LpA optimal value.

Without loss of generality, consider a new grouping G′ where the position of sji and

sji′ is swapped. Now consider the LpA value for G and G′. We can show that the

difference between these two scores is 0. This holds when we pick the lowest skilled

member.

LP(G) =
k∑
i=1

x−1∑
j=1

(Si − sji) (4.7)

In the Equation (4.7), the only difference between G and G′ is in group i and i′. More

accurately, we need to show that (Si − sji) + (Si′ − sji′) in the grouping G is equal to

(Si − sji′) + (Si′ − sji). It’s easy to see that these two are identical; hence the proof.

Corollary 4.1. There are k!n/k possible groupings for LpA.

Lemma 2. Computing one optimal grouping for LpA takes O(nlogn).

4.3.2 Optimizing Affinity

Since we express affinity as similarity, optimizing it amounts to minimizing distance.

AffC takes the affinity graph over n members and a subset of k members as centers

(teachers) as input, and intends to partition the remaining n−k members into k equi-

sized groups such that the sum of the radii (maximum distance between the center

and a member in each group) is minimized. AffD, on the other hand, only takes

the affinity graph over n members and k to partition the members into k equi-size

groups, such that, the sum of the diameters (diameter of a group is the maximum

65

pairwise distance in the group) of the grouping is minimized. We first present some

theoretical results on the hardness of these two problems.

Even though it intuitively appears that AffC is an easier problem than AffD,

both problems are NP-hard. The hardness of AffC is due to the group size

constraint.

Theorem 5. The decision version of the AffC problem in NP-Complete.

Proof. (sketch) It is easy to see that the problem is in NP. To prove the NP-hardness,

the reduction is straightforward (there is a one-to-one correspondence) if we consider

the uniform p-centered min-max partition problem as the source problem, which is

proved to be NP-hard [73] for general graphs.

Theorem 6. The decision version of the AffD problem is NP-Complete.

Proof. For simplicity, we consider a simpler scenario, where affinity (distance) is

binary - 0/1.

For this binary scenario, the decision version of the Affinity-All problem is as

follows: given a set of n members, is there a grouping of k equal sized groups, such

that the sum of diameters of the grouping is k?

It is easy to see that the problem is in NP. To prove NP-hardness, we use the

well-known exact cover by 3-Sets (X3C) for reduction. The decision version of X3C is

as follows: given a finite set X with |X| = 3q elements and a collection C of 3-element

subsets of X, does C contain an exact cover for X, that is, a sub-collection C ′ ⊆ C,

where C ′ contains exactly q subsets, such that every element of X occurs in exactly

one member of C ′?

Given an instance of X3C, we reduce it to an instance of AffD in the following

way: Each element in X is a member. Therefore, the total number of members

n = 3q. The affinity graph is a weighted complete graph among the n members and

it involves adding edge weights between every pair of members. Each subset of three

66

elements in C represents three nodes in this graph, and the edge weights between them

gets the value 1. This is a polynomial time operation and the number of operations

involved in this is the size of C. After that, we need to resolve all the edge weights

that are across the subsets. For that, we start considering all the triangles with some

unresolved edge weights.

There are three possible scenarios to handle in this process: (1) all three edges

unresolved, (2) one edges unresolved, (3) one edge unresolved. For the first case, we

can safely add the weight of 0 to each of such edge (this happens when the subsets are

fully disjoint). For the second scenario (this happens when two nodes in the triangle

are part of the same subset but the third node is part of a different subset), one of

the unresolved edges gets 1 and the other gets 0. Finally, for the third scenario (this

happens when one member in the triangle is part of both subsets), the unresolved

edge gets a 0. We note that this step is again fully polynomial and takes at most

O
(
n
3

)
time. After completing this step, we will have assigned all the edge weights in

the affinity graph. It could be shown that the affinity graph constructed this way

satisfies triangle inequality.

After that, we set k = q. Now, the reduction is complete. Notice that X3C

≤P AffD. There exists a solution to the X3C problem if and only if a solution to

our instance of AffD problem exists with the total diameter value q (or k). This

completes the proof.

4.3.3 Optimizing Affinity with Learning Potential as a Constraint

Finally, we turn our attention to studying the four constrained optimization problems,

with the objective to optimize affinity, while satisfying the learning potential value

obtained from the algorithms in Section 4.3.1. Since affinity is modeled as a distance,

our goal is to minimize that distance, considering the underlying affinity structure.

67

Recall that LpD and LpA are polynomial-time problems and that we presented exact

solutions for both in the previous section. To ease exposition, we will henceforth call

the optimal values obtained for the LP problems as Lp-* (it is either LpD or LpA).

Our focus now is to study how to optimize Aff-* (AffC or AffD), with Lp-* as

constraints.

Theorem 7. The decision versions of Aff-* Lp-* problems are NP-Complete.

Proof. The proof is straightforward.

Our technical deep dive into these four problems is described in Section 4.4.

We develop greedy algorithms that are extremely lean in computational time with

constant approximation factors. Table 4.2 summarizes the four problem variants and

our technical results.

4.4 Constrained Optimization

We now present a suite of algorithms with theoretical guarantees to solve the four

different variants of optimizing affinity with learning potential as a constraint. As

our problems are NP-hard, we develop approximation algorithms that are scalable

and bear theoretical guarantees. Our results are summarized in Table 4.2.

Our algorithms are greedy and use the following intuition: Lp-* problems are

first solved and these solutions produce an intermediate grouping that has the optimal

LP values. Our algorithms start from these solutions and greedily choose the rest of

the members to output the final grouping that is guaranteed to have optimal LP

values and provable constant approximation factors for affinity.

4.4.1 Algorithm for AffC LpD

Our discussion of LpD in Section 4.3.1 stated that only 2k members (k most skilled

and k least skilled) are needed to produce the optimal grouping. Our proposed

Algorithm GrAffC-LpD starts from there (recall Algorithm 2) - that is, it first

68

identifies the 2k members which will guarantee the optimal LpD value (thereby

satisfying the constraint of the optimization problem). These outputs are referred

to as boundary members. That means, two members in each group are decided by

now and a total of 2k members are decided for the grouping. In each group, the

highest skilled member is the teacher and acts as the center for that group since

AffC is formalized as the maximum distance between that member and anyone else

in the group. The rest of the grouping is performed in a greedy manner. For the

remaining n−2k members, all we have to do is assign them to their respective closest

center. Since each group has a size constraint, this greedy assignment may lead to

sub-optimality - since for a member wi, the group with the closest distance between

its center and wi may have reached its size and wi may need to be assigned to a group

such that the distance between wi and its center ci is larger (potentially worsening the

AffC value). But as we shall prove later, this greedy assignment cannot be arbitrarily

worse, since affinity between members satisfies triangle inequality (pseudo-code in

Algorithm 3).

Going back to Example 2, based on GrAffC-LpD, initially we will have the

following partial grouping : g1 = {1, 12}, g2 = {2, 17}, g3 = {3, 14}. After that,

Algorithm GrAffC-LpD greedily adds two more members in each group that are

not yet part of any group. For example, for g1, it will add the member who has the

highest affinity with 12 and the process will repeat.

Algorithm 3 Algorithm GrAffC-LpD
input: a set W of n participants, k groups
output: a grouping G
B = Call LpD(W,k)
C = the k highest skilled members in B that are k centers
Assign wi ∈ {W −B} to the closest center cj s.t., |gj| ≤ n/k

69

Theorem 8. Algorithm GrAffC-LpD accepts a 3 approximation factor to optimize

AffC.

c1

c2
c3

a1 a2

a3

b1 b2 b3

p1 p2
p3

𝛼1 + 𝛼2 + 𝛼3 ≥ 𝛽1 + 𝛽2 + 𝛽3
𝛼1 ≤ 𝛽1, 𝛼2 ≤ 𝛽2, 𝛼3 ≥ 𝛽1, 𝛼3 ≥ 𝛽2, 𝛼3 ≥ 𝛽3

Figure 4.3 Upper bound of approximation factor for GrAffC-LpD.

Proof. Without loss of generality, let us assume a worst case scenario of three groups

as shown in Figure 4.3, where members p1, p2, p3 dictate the AffC score of these

three groups that are centered around c2,c3,c1, respectively. Because of the greedy

assignment, p1 is assigned to the center c2, p2 is assigned to c3, but at the end

because of the size constraints p3 gets a really bad assignment of c1. Distance between

p1 and c2, i.e., d(p1, c2) = α1, similarly d(p2, c3) = α2, and d(p3, c1) = α3. The

optimal assignment would have given rise to a different assignment though (as shown

in the dotted line), where p1 ∈ c1, p2 ∈ c2, p3 ∈ c3. d(p1, c1) = β1, d(p2, c2) = β2,

and d(p3, c3) = β3. Let OPT denote the optimum AffC value, such that OPT =

β1 + β2 + β3. Of course, α1 + α2 + α3 ≥ β1 + β2 + β3. But it is easy to notice that

α3 ≤ (α1 + β1 + α2 + β2 + β3) (4.8)

α3 ≤ (2β1 + 2β2 + β3) (4.9)

70

Because of the triangle inequality, this is indeed true, α1 + β1 ≤ 2β1 (because

α1 ≤ β1 what the greedy algorithm GrAffC-LpD will ensure. Therefore, we can

write that,

α1 + α2 + α3 ≤ (3β1 + 3β2 + β3) (4.10)

≤ 3(β1 + β2 + β3) (4.11)

≤ 3×OPT (4.12)

It is easy to notice that this argument easily extends to an arbitrary number of

groups; hence the proof.

Corollary 8.1. Running time of GrAffC-LpD is O(klogn+ nlogk)

4.4.2 Algorithm for AffC LpA

The idea of this greedy algorithm GrAffC-LpA is similar to the previous one, that is

start with the partial grouping that LpA returns. However, unlike LpD, LpA creates

a set of n/k buckets (or partitions) (see Section 4.3.1) that dictate that forming an

intra-partition group is forbidden, and any possible inter-partition groups will result

in the same optimal LpA value. In fact, as Corollary 4.1 suggests, there are (k!)n/k

possible groupings that yield the optimal LpA value. The challenge is to find one

grouping that optimizes affinity.

GrAffC-LpA begins by invoking the LpA procedure to compute n/k buckets

that are sorted in increasing order of skills. It selects the teachers as the k members in

the last buckets (they are the centers and they have the k highest skills). After that,

GrAffC-LpA operates in a greedy fashion. For the remaining n − k members, it

71

follow a similar approach as Algorithm GrAffC-LpD. At each iteration, it chooses

a member from the bucket and assigns it to the closest center. In Example 2, we

create a total of four buckets:

{1, 2, 3}, {4, 5, 6}, {8, 9, 10}, {12, 14, 17}

Next, we assign each high skilled member in the last bucket to a group and consider

them as centers. As an example, g1 = {12}, g2 = {14}, and g3 = {17}. Next, for the

members of the first bucket, based on their affinities, 1 is assigned to g1, 2 to g3, and

3 to g2. The process continues until all the buckets are empty.

Since each group has a size constraint, this greedy assignment may lead to

sub-optimality - as it happened in GrAffC-LpD. However, this greedy assignment

cannot be arbitrarily worse, because affinity between members satisfies triangle

inequality.

Theorem 9. Algorithm GrAffC-LpA accepts a 3 approximation factor for AffC.

Proof. Similar to the proof for Theorem 8, since the two algorithms follow the same

exact process.

Corollary 9.1. Running time of Algorithm GrAffC-LpA is O(nlogn).

4.4.3 Algorithms for AffD Lp-*

There is an interesting relationship between AffC and AffD that merits further

delineation. In the AffC problem, we want to minimize the distance from a center

to the farthest member in the group (i.e., minimizing the radii). In AffD, we do not

have any member as the center, rather we are interested to form groups to minimize

the maximum distance (i.e., the diameter). The next theorem states that any solution

for the former problem is a solution for the latter that is at most two times worse.

72

Based on that, the greedy algorithms in Sections 4.4.1 and 4.4.2 could be used to solve

AffD,Lp-* problems. We refer to these algorithms as GrAffD-LpD and GrAffD-

LpA, respectively for the AffD LpD and AffD LpA problems. GrAffD-LpD

is identical to GrAffC-LpD, and GrAffD-LpA is identical to GrAffC-LpA

operationally. Their respective running times are the same as their counterparts.

Theorem 10. Any solution for AffC gives a 2 approximate solution for AffD.

Proof. Consider a solution to AffC. Consider that for a group gi, the distance from

the center ci to the farthest member is αi. Assume that wi is the member with

this distance equal to αi. Based on the triangle inequality, we can easily show that

in the worst case, there is another member wj ∈ gi where d(wi, wj) < d(wi, ci) +

d(wj, ci) < 2× αi. Hence, any algorithm that solves AffC also solves AffD with a

2 approximation factor.

Corollary 10.1. Algorithms GrAffD-LpD and

GrAffD-LpA have a 6 approximation factor for AffD.

Proof. Proofs are direct derivatives of Theorem 10.

4.5 Experimental Evaluations

Our experimental effort goes in two directions. In Section 4.5.1, we involve actual

human workers and collaborative tasks. In the remaining three subsections, we

describe synthetic data experiments.

4.5.1 Real Data Experiments

These experiments examine if affinity brings added utility in peer learning. They

are designed for collaborative fact-checking and fact-learning and involve Amazon

Mechanical Turk (AMT) workers in three stages: 1) pre-task skill assessment, 2) task

completion in a group, and 3) post-task completion skill assessment.

73

Experimental setup and design. We design four HITs for the four variants

of our problem that consider both AFF and LP, as well as four additional HITS that

only consider LP (without AFF), a model similar to [3]. We recruit 100 workers

from AMT who are redirected to an internal website. Each HIT contains the three

aforementioned stages. One of our fact-checking tasks is about the British royal

family. These experiments are run in three different stages. We first run a pre-

task skill test to assess the skills of each worker using eight true/false questions

for which we know the true answer. We set questionnaires for that purpose. Next

stage, we set up a collaborative document that contains five facts about the royal

family and where workers in the same group can collaborate, comment, and edit.

Workers are asked to discuss if these facts are true, and provide further evidence

that support their answer. Finally, each worker takes a post-task completion skill

test that is again eight true/false questions on the royal family. We also explicitly

ask each worker what they have learned by completing that task. We design similar

studies for fact-learning, where workers have to actually propose facts with supporting

evidence. To keep this experiment tractable, we form groups of size three and run

three different samples of the same experiment. This also allows us to analyze results

with statistical significance. We pay each worker $2, if all three stages are completed.

Each experiment must run over a window of 24 hours to account for differences in

time.

Affinity calculation. For simplicity, we capture affinity as the Euclidean

distance between their socio-demographic data (specifically, age, country, education)

obtained from AMT. There exists other sophisticated measures such as MBTI tests

for project-based learning [90]. We nevertheless note that the simple measures that

we have used have been shown to be useful affinity indicators [104].

Evaluation criteria. In order to evaluate the effectiveness of affinity in peer

learning, we measure the difference between each member’s skills before and after

74

LPD
AFFC	LPD

Sk
ill
	Im

pr
ov
m
en
t

0

1

2

3

4

					LPD									AFFC	LPD

LPD
AFFD	LPD

						LPD						AFFD	LPD

(a)

LPA
AFFC	LPA

Sk
ill
	Im

pr
ov
m
en
t

1

1.5

2

2.5

3

3.5

4
4.5

				LPA									AFFC	LPA

LPA
AFFD	LPA

			LPA							AFFD	LPA

(b)

Figure 4.4 Skill improvement with and without affinity in LpD (a) and LpA (b).

task completion, and refer to that as skill improvement. We also measure the average

number of comments in each group and the quality of contributions. These two

criteria help us interpret worker engagement and skill improvement.

Summary of results. We compare with and without affinity counterparts for

each problem variant (e.g., AffC LpD with LpD). Our results confirm that affinity

improves learning potential substantially with statistical significance. Figure 4.4(a)

contains the average skill improvement comparison of LpD with and without affinity

and shows the important role of affinity. This is consistent with LpA (Figure 4.4(b)).

We also observe that LpA has higher improvements, possibly because facts have many

facets that one learns from more skillfull peers. Additionally, Figure 4.5 presents two

sample interactions between two workers during task completion. In the first question,

Worker 2 provides a new piece of information about the Queen, which is set as one

of the questions in the post-task skill assessment. This additional information helps

Worker 1 improve her skill during post-task assessment.

Finally, we anecdotally observe that higher learning potential yields higher

quality task outcomes. On average, quality (computed as the average number of

75

The Queen does not need a passport to
travel

True or False ?

• Worker 1: True. All British Passports are
issued in the Name of Her Majesty, The
Queen.

• Worker 2 : I found an article which agrees
with your findings. Fun fact: she also
doesn’t need a driver’s license or a
license plate on her car.

Members of the royal family have to
accept absolutely all gifts.

• Worker 1 : (Mostly false; Large true in
practice.) While I couldn’t find any law
requiring the Royals to accept all gifts.

• Worker 2 : I found an article which says
they make a list of all gifts they receive
throughout the year and release it
publicly. In addition, they donate many of
their gifts.

Figure 4.5 Sample of worker interactions with each other.

facts correctly identified by the groups), is higher for groups built with affinity (4.3

facts out of 5 are correct), compared to their counterparts built without affinity (3.9

out of 5).

4.5.2 Synthetic Experiments Setup

These experiments evaluate the qualitative guarantees and the scalability of our

algorithms. All algorithms are implemented in Python 3.6 using Intel Core i7 4GHz

CPU and 16GB of memory and Windows operating system. All numbers are averages

of 10 runs.

Implemented Algorithms. The closest works to ours [3, 4] do not consider affinity

and cannot be used for synthetic data experiments. Hence, we implement three

additional baselines:

Optimal. We formalize the ILP solution using the below formulation. It’s

easy to implement this formulation in any Linear Programming software. For this

experiments we use PuLP, a popular python based ILP package.

76

optimize
G

k∑
i=1

Aff-*(gi)

s.t.
k∑
i=1

LP(gi) ≥ Lp-*

Aff-*(gi) =
n∑
j=1

n∑
m=1

xi,j ∗ xi,m ∗ Aff(wj, wm),∀i = 1 . . . k

n∑
j=1

xi,j = n/k, ∀i = 1 . . . k

xi,j = 0/1 (i = 1...k & j = 1 . . . n)

The rationale behind implementing ILP is to demonstrate that the theoretical

approximation factors of our algorithms hold in practice. Since ILP is NP-hard, the

algorithm does not terminate beyond k = 3 and n = 50.

Baseline-1 (clustering-based). This baseline is motivated by the popular

k-means algorithm. It starts with a random grouping and greedily swaps members

across groups as long as that improves affinity, while satisfying group size. Once the

grouping converges based on affinity, we check if it satisfies the optimum learning

potential value (which could be derived efficiently in polynomial time). If not, we

perform another set of swaps to move members across the groups until we find a

grouping that reaches the optimal learning value.

Baseline-2. This is a simpler and efficient baseline. It first solves the learning

potential problem and finds the seed members in each group that dictate the optimal

learning value. The rest of the members are assigned randomly to groups by

considering group size.

These solutions are compared with four of our algorithms GrAffC-LpD,

GrAffC-LpA, GrAffD-LpD, GrAffD-LpA (refer to Section 4.4, whenever

applicable).

77

Experimental Setup. We simulate a group of workers with two functions that

capture the relationship between skill and affinity. Specifically, there are two random

number generators, one produces the skill of each member and the other generates

pairwise affinities that satisfy triangle inequality.

We consider two skill and affinity distributions: (a) Normal, where the mean

and standard deviations are set to µ = 100, σ = 20, respectively; (b) Zipf, where the

value of the exponent α is set to 1.5.

Parameters: We vary n (the total number of individuals), k (the number of

groups), and the skill and affinity distributions.

Summary of Results. 1. Our algorithms exhibit tighter approximation factors

than the bounds we proved. Our algorithms also outperform the two baselines.

2. The approximation factors of the algorithms with a Normal skill distribution are

better than Zipf.

3. All algorithms are highly scalable considering up to 106 members and 160 groups

and only take seconds to run.

Table 4.3 Approximation Factors

Algo. Parameters App. Factor

(GrAffC-LpD)
[n = 15, k = 3] 1.13(0.12)
[n = 50, k = 3] 1.23(0.02)

(GrAffC-LpA)
[n = 15, k = 3] 1.04(0.07)
[n = 50, k = 3] 1.02(0.03)

(GrAffD-LpD)
[n = 15, k = 3] 1.21(0.14)
[n = 50, k = 3] 1.31(0.04)

(GrAffD-LpA)
[n = 15, k = 3] 1.18(0.11)
[n = 50, k = 3] 1.19(0.12)

78

4.5.3 Quality Experiments (Synthetic)

We assess quality by measuring the approximation factor and the objective function

value. Both of these are described considering affinity, per our problem definition. LP

values are always optimal (as the algorithms for LP are exact). Default parameter

setting. Unless otherwise stated, k is set to 25 and n to 1000.

Comparison against ILP: Table 4.3 presents the approximation factor of the

four algorithms on a small dataset generated from Normal Distribution. For all the

four algorithms, the approximation factor in practice is very tight and the deviation

is always between 1 and 2.

Optimal
GrAffC-LpD

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
250
500
750
1000
1250
1500
1750

No	of	Workers
50 100 200 500 1000

(a) AffC LpD

Optimal
GrAffC-LpA

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(b) AffC LpA

Optimal
GrAffD-LpD

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(c) AffD LpD

Optimal
GrAffD-LpA

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(d) AffD LpA

Figure 4.6 Aff-* Lp-* values varying n for Normal distribution.

Varying n : Figure 4.6 reports the results of varying n for Normal distribution.

Of course, ILP does not scale beyond n = 50, but it is easy to notice that for all

the cases we could compare, our greedy solutions attain a very tight approximation

factor (close to 1.5). Figure 4.7 shows the affinity values for Zipf distribution. Similar

observations hold. Our proposed algorithms perform significantly better.

There are two interesting observations in both Figures 4.6 and 4.7. Firstly, the

grouping generated by our algorithm attains smaller objective value as the number

of workers grow. Secondly, for Normally distributed data, we observe a consistent

79

Optimal
GrAffC-LpD

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(a) AffC LpD

Optimal
GrAffC-LpA

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0

500

1000

1500

2000

No	of	Workers
50 100 200 500 1000

(b) AffC LpA

Optimal
GrAffD-LpD

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(c) AffD LpD

Optimal
GrAffD-LpA

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
500
1000
1500
2000
2500

No	of	Workers
50 100 200 500 1000

(d) AffD LpA

Figure 4.7 Aff-* Lp-* values varying n for Zipf distribution.

growth of objective value as the number of workers increases. This is not the case for

the Zipfian distributed data. We conjecture that this is caused by the skew in the

values generated from the Zipfian distribution. Some values are very large and others

are vary small. Another important factor is that the data sampled from a Zipfian

distribution consists of mostly duplicate values.

Optimal
GrAffC-LpD

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
1000
2000
3000
4000
5000

Number	of	groups
5 10 25 40 100

(a) AffC LpD

Optimal
GrAffC-LpA

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
1000
2000
3000
4000
5000

Number	of	groups
5 10 25 40 100

(b) AffC LpA

Optimal
GrAffD-LpD

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
1000
2000
3000
4000
5000
6000

Number	of	groups
5 10 25 40 100

(c) AffD LpD

Optimal
GrAffD-LpA

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
1000
2000
3000
4000
5000
6000
7000

Number	of	groups
5 10 25 40 100

(d) AffD LpA

Figure 4.8 Aff-* Lp-* values varying k for Normal distribution.

Varying k : Figures 4.8 and 4.9 present the results of varying k for Normal

and Zipf distributions. The ILP for k = 5 is ran on n = 50. Our presented algorithms

80

consistently outperform the other baselines. We observe that the change in k affects

the objective value significantly more than change in the number of workers (n). We

believe this is because larger k signifies more centers to assign workers to. Remember

in Algorithm 3, we need to assign workers to the closest center. This means for larger

values of k, we would diverge from the optimal solution easier. In fact, k impacts our

algorithm more than n.

Optimal
GrAffC-LpD

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0

2000

4000

6000

8000

Number	of	groups
5 10 25 40 100

(a) AffC LpD

Optimal
GrAffC-LpA

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0

1000

2000

3000

4000

Number	of	groups
5 10 25 40 100

(b) AffC LpA

Optimal
GrAffD-LpD

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
1000
2000
3000
4000
5000

Number	of	groups
5 10 25 40 100

(c) AffD LpD

Optimal
GrAffD-LpA

Baseline-1
Baseline-2

A
ffi
ni
ty
	v
al
ue

0
1000
2000
3000
4000
5000
6000
7000

Number	of	groups
5 10 25 40 100

(d) AffD LpA

Figure 4.9 Aff-* Lp-* values varying k for Zipf distribution.

4.5.4 Scalability Experiments (Synthetic)

We measure running times and compare with Baseline-1. We exclude ILP since it

does not scale, and Baseline-2 since it produces inferior objective values. Running

time is reported in seconds.

Default parameter settings. We found that Normal and Zipf skill distri-

butions have identical running times for each variant of Aff-* Lp-* problems. We

also note that, as proved in Section 4.4.3, the running time of AffD is identical to

that of AffC, considering their respective Lp-* counterparts. Therefore, we only

present results for Aff-* LpD and Aff-* LpA. We vary n and k with defaults set

to n = 100000 and k = 5.

81

GrAff-*	LpD
Baseline-1

R
un
ni
ng
	t
im
e	
(s
ec
)

10
20
30
40
50
60
70

No	of	Workers
2×105 4×105 6×105 8×105 106

(a) AffC LpD

GrAff-*	LpA
Baseline-1

R
un
ni
ng
	t
im
e	
(s
ec
)

10
20
30
40
50
60
70

No	of	Workers
2×105 4×105 6×105 8×105 106

(b) AffC LpA

GrAff-*	LpD
Baseline-1

R
un
ni
ng
	t
im
e	
(s
ec
)

2

4

6

8

10

Number	of	groups
20 40 60 80 100

(c) AffD LpD

GrAff-*	LpA
Baseline-1

R
un
ni
ng
	t
im
e	
(s
ec
)

3
4
5
6
7
8
9
10

Number	of	groups
20 40 60 80 100

(d) AffD LpA

Figure 4.10 Scalability results for Aff-* Lp-*

Results. Figure 4.10 presents results. Our algorithms are highly scalable and

take seconds only. The algorithms run linearly with varying n and k which confirms

our theoretical analysis.

4.6 Conclusion

We examine online group formation where members seek to increase their learning

potential via task completion with two learning models and affinity structures.

We formalize the problem of forming a set of k groups with the purpose of

optimizing peer learning under different affinity structures and propose constrained

optimization formulations. We show the hardness of our problems and develop four

scalable algorithms with constant approximation factors. Our experiments with

real workers demonstrate that considering affinity structures drastically improves

learning potential, and our synthetic data experiments corroborate the qualitative

and scalability aspects of our algorithms. Our work studies computational aspects

and relates to team formation and computer-supported learning.

Team formation was first studied to form a single group with one objective

and later a 2-approximation algorithm was proposed for bi-criteria team formation in

82

social networks [72]. In [14, 15], Anagnostopoulos et al. propose online algorithms for

the balanced social task assignment problem. Capacitated assignment was studied

in a follow up work [79]. Generalized density sub-graph algorithms were later

proposed [107]. [112, 104] study the problem of forming teams for task assignment

considering affinity. In [110], the hardness of forming groups to optimize group

satisfaction is studied under different group satisfaction semantics.

Computer-Supported Collaborative Learning (CSCL). Social science

has a long history of studying non-computational aspects of computer-supported

collaborative learning [33, 36]. With the development of online educational platforms

(such as, Massive Open Online Courses or MOOCs), several parameters were

identified for building effective teams: (1) individual and group learning and social

goals, (2) interaction processes and feedbacks [119], (3) roles that determine the nature

and group idiosyncrasy [36].

83

CHAPTER 5

DIVERSIFYING RECOMMENDATIONS ON SEQUENCES OF SETS

5.1 Introduction

Our goal is to develop an algorithmic framework for inter and intra session diversities

in tandem with the goal to recommend k sessions to a user, with a small number l of

relevant items in each, yielding a total of N = k× l items. Intra and inter diversities

can be either minimized or maximized which gives rise to a bi-objective formalism

to express four problem variants (Section 5.2.2). To the best of our knowledge,

our work is the first attempt to combine set and sequence diversities, two problems

extensively studied individually in search and recommendation [16, 29, 1, 135, 131,

130, 123, 102, 91, 95, 44, 59, 60, 133, 105].

Our second contribution is theoretical. We first study each of the intra

and inter diversity optimization problems individually and find that irrespective

of minimization or maximization, the inter problem is NP-hard (Section 5.2.3).

We also prove that the intra minimization problem can be optimally solved in

polynomial time. However, the complexity of each bi-objective problem remains

NP-hard (because inter-optimization is NP-hard).

Our third contribution is algorithmic (Section 5.3). We design principled

solutions with provable guarantees for intra and inter problems individually. Algorithm

Ex-Min-Intra runs in O(NlogN) time and produces an exact solution of the

Min-Intra problem. For Min-Inter and Max-Inter, algorithms Ap-Min-Inter and

Ap-Max-Inter achieve 4 − 2/k- and 1
2 -approximation factors, respectively. We

also design an efficient 1
2−1/k -approximation algorithm Ap-Max-Intra to solve the

Max-Intra problem.

84

Additionally, we investigate an alternative formulation (Section 5.2.4) of all

four problems to a corresponding constrained optimization problem, with the goal of

obtaining one point from the Pareto front. The idea is to optimize inter diversity,

subject to constraining intra diversity. The constraint on intra is obtained by solving

the Intra optimization first. There exists more than one benefit to this approach.

First, in one of the two cases (i.e., Minimization) intra is tractable and easier to solve,

therefore, finding the optimal constraint value is computationally efficient. More

importantly, the constrained optimization problem aims at finding one point in the

Pareto front, which is perfectly acceptable, as the points in the Pareto front are

qualitatively indistinguishable (unless further information is available). When inter

problems are optimized subject to constraining intra, the combined solutions hold

guarantees for two out of the four problems (Section 5.3.4). Tables 5.2 and 5.3

summarize our theoretical and algorithmic results.

Our last contribution is experimental. We conduct 4 large-scale experiments:

two with human subjects (music playlist and task recommendation), the other two

with large real and simulated data. In music recommendation (Section 5.4.1), our

results highlight, with statistical significance, user satisfaction is higher when playlists

are recommended considering diversity and the preferred diversity scenario depends on

the underlying context. In task recommendation, our results show that the benefit of

diversification is more prominent for long sessions (contains 5 sets and 10 tasks per set

compared to shorter sessions that contain 3 sets and 3 tasks per set), as for those, our

algorithms achieve higher quality and worker satisfaction with statistical significance,

than a baseline with no diversity. (Section 5.4.2) investigates approximation factors

and the scalability of our algorithms against several non-trivial baselines. We observe

that in most cases, our algorithms produce approximation factors that are very close

to 1. For the cases where the approximation factor is slightly worse, the solution is

close to the optimal. Finally, we also observe that our approach is faster and highly

85

scalable when varying the number of items and the number of sessions considering

different data distributions.

5.2 Formalism and Problem Analysis

For the purpose of illustration, we describe a simple running example on recom-

mending task sessions in crowdsourcing. Same example could be used for the

streaming music.

Table 5.1 Example of Task Recommendation in Crowdsourcing

Task Skill Reward Task Skill Reward Task Skill Reward
t1 0.5 0.3 t2 0.51 0.4 t3 0.54 0.49
t4 0.59 0.50 t5 0.6 0.23 t6 0.63 0.4
t7 0.69 0.1 t8 0.7 0.60 t9 0.79 0.36
t10 0.8 0.12 t11 0.89 0.55 t12 0.93 0.34

Example 3. Consider a set of N = 12 tasks, which are most relevant to a specific

worker. Table 5.1 shows two dimensions of these tasks. The first dimension is the

skill requirement of the task as provided by the requester. The second dimension is the

task reward. We want to recommend 4 (=k) sessions, each containing 3 (=l) tasks.

5.2.1 Data Model

Item. An item has a set of dimensions. tdi represents the d-th dimension of the i-th

item. Using Example 3, task t1 is represented by two dimensions, < 0.5, 0.30 >. In

the case of a song, examples of dimensions are artist, vibe, genre, etc.

Session. A session s consists of a set of l items that can be consumed in any

order.

Sequence. A sequence of sessions is an ordering of k sessions S =<

s1, s2, . . . , sk > where sessions are presented to a user one after another.

86

Intra-Diversity. Given a dimension d, the diversity of a set of items in a

single session s is referred to as Intra and defined by capturing how each item in that

session deviates from the average, considering d, and taking an aggregate over l items

as follows:

Intrad(s) =
l∑

i=1
(tdi − µds)2 (5.1)

where tdi is the value of dimension d of item ti and µds is the average of d values of

items in session s. Intra essentially captures variance of a set of items for a dimension

d. Following Example 3, if the session s1 consists of {t1, t3, t5}, then Intraskill(s1) =

0.005.

Inter-Diversity. The diversity of items between two consecutive sessions is

referred to as Inter and is defined for two consecutive sessions for a dimension d as

follows:

Interd(si, si+1) = (µdsi
− µdsi+1

)2 (5.2)

which captures the difference between the average of two consecutive sessions. Given

S =< {t1, t3, t5}, {t2, t4, t6}, {t7, t8, t9} >, InterReward(S) = (0.34− 0.433)2 + (0.433−

0.35)2 = 0.015 using Example 3 .

Other set-based [1] and sequence-based [135] definitions exist and could be

considered in future work.

5.2.2 Problem Definitions

Given N items, we are interested in finding a sequence S =< s1, . . . , sk > of k

sessions, each consisting of l items. We consider four problem variants all of which

are instances of a general problem formalized as follows:

87

Optimize-Intra, Optimize-Inter. Given a set of N items with two

dimensions of interest d and d′ on intra and inter respectively, we are interested

in creating a sequence S =< s1, ..., sk > of k sessions, each containing l items, s.t.

N = k × l and

optimize
S

k∑
i=1

(Intrad(si))

optimize
S

k−1∑
i=1

(Interd′(si, si+1))

s.t.

|S| = k, |si| = l, N = k × l

(5.3)

5.2.3 Problem Analysis

We analyze the complexity of intra and inter diversities. This exercise allows us to

analyze the nature of these problems and sheds light on designing principled solutions.

Intra Diversity Optimization

Theorem 11. Min-Intra is Polynomial time solvable.

Proof. Minimizing intra diversity is akin to grouping a set of points in a line to

produce the smallest aggregated variance. This requires sorting the points based on

the Intra dimension d and grouping every l points to create a session. Clearly, this is

polynomial time solvable.

Theorem 12. Optimizing Max-Intra is NP-Hard.

Proof. The proof of this theorem uses another claim that we prove later (Theorem 16).

This latter theorem formally proves that Max-Intra happens (i.e., ∑k
i=1(Intra(si)) is

maximized) if the mean of each session is equal (or very close) to the global mean

88

of all N items for the specific dimension d. Since groups have the same size l, the

problem is akin to finding groups of items whose sum is equal:

∑
ti∈s1

ti =
∑
ti∈s2

ti = · · · =
∑
ti∈sk

ti (5.4)

To prove NP-hardness we reduce an instance of the k-Equal Subset Sum of

Equal Cardinality Problem (k-ESSEC) [31] to an instance of Max-Intra, as follows.

Given an instance of k-ESSEC with S = {a1, ..., aN} which are N positive integers

and k, we set the items ti = ai and k remains the same. A solution to the k-ESSEC

with k disjoint subsets, each with equal value sum(s1) = sum(s2) = . . . = sum(sk)

occurs, iff a solution of the Max-Intra exists with l = N/k and µsi
= µsglobal

= ΣN
i=1ai

N
.

Inter Diversity Optimization The Inter diversity problem aims to find a

sequence of k sessions of length l that will optimize the aggregated Inter distance

computed on a dimension d over all k sessions in that sequence.

Theorem 13. Inter Problem (both Min and Max) is NP-Hard.

Proof. We show the NP-hardness for the Min-Inter case, and the maximization

works analogously. To prove the NP-hardness of the Min-Inter problem, we reduce

an instance of the known NP-hard problem Hamiltonian Path problem [49] to an

instance of the Min-Inter problem. Consider an instance of the Hamiltonian Path

problem with G = (V,E), where V is the set of nodes and E is the set of edges.

Each node vi ∈ V represents l items with same value on the dimension of interest.

Essentially, these l items form a session. For assigning the inter-diversity of two

sessions, we first deal with the non-edges in G. For each edge (vi, vj) /∈ E, we set

the µsi
and µsj

such that ||µsi
− µsj

|| > X (where X is an integer) and for each

89

10

36

10 20

36 46

10 20

36

66

46

10 20

30

66

45

100

256

100

40
0

10 20

36

66

46

100

256

100

40
0

676676

900

3136

(1) (2) (3)

(4) (5) (6)

Figure 5.1 Reduction: Hamiltonian Path to the Inter problem.

edge (vi, vj) ∈ E, we create ||µsi
− µsj

|| ≤ X. This creates an instance of Min-Inter

problem with |V | (i.e., k for Min-Inter) sessions, each with l items. Clearly, this

reduction can be done in polynomial time. Figure 5.1 shows such a reduction from

an example graph, where X = 15. Now a Hamiltonian Path exists in G, iff Min-Inter

value is < X2 × |V |.

Theorem 14. The bi-objective optimization problems combining intra and inter

diversity are all NP-Hard.

Proof. Consider one of the problem variations, Max-Intra-Min-Inter. Since both

multi-objective functions correspond to a NP-complete, we can easily argue that if

we have an algorithm to solve the bi-objective problem to optimality, then we can

replace one of the objective functions with a constant factor and solve the other

NP-hard problem optimally which is impossible.

90

5.2.4 Modified Problem Definitions

As proved in Theorem 14, each of the four bi-objective optimization problems are

NP-hard. In fact two ((Min Inter, Max Intra) and (Max Inter, Max Intra)) out of the

four problems are NP-hard on both objectives. Upon careful investigation, we propose

an alternative formulation of each of these bi-objective problems to a corresponding

constrained optimization problem, with the goal of obtaining one point from the

Pareto front. The idea is to optimize inter diversity, subject to the constraint of intra

diversity. The constraint on Intra is obtained by solving the Intra optimization first.

There exists more than one benefit to this approach. First, in one of the two cases

(i.e., Minimization) Intra is tractable and easier to solve, therefore, coming up with

the optimal value of the constraint is computationally efficient. More importantly,

the constrained optimization problem aims at finding one point in the Pareto front,

which is perfectly acceptable, as the points in the Pareto front are qualitatively

indistinguishable (unless further information is available).

min(max)
S

k−1∑
i=1

(Interd2(si, si+1))

s.t.
k∑
i=1

(Intra(si))x <= OPTIntrad1

|S| = k, |si| = l, N = k × l

(5.5)

where OPTIntra is the optimal solution of the Intra problem.

Using Example 3, the sequence

S =< {t5, t6, t7}, {t1, t2, t3}, {t9, t10, t11} >

91

Table 5.2 Algorithms and Approximation Factors

Algorithm Running Time Approx Factor
Ex-Min-Intra O(NlogN) Exact
Ap-Max-Intra O(NlogN +Nl) 1

2−1/k

Ap-Min-Inter O(NlogN + k2 + logk) 4− 2/k
Ap-Max-Inter O(NlogN + k2 + logk) 1/2

minimizes the IntraSkill score but at the same time maximizes the InterReward score

whereas

S ′ =< {t1, t2, t3}, {t9, t10, t11}, {t5, t6, t7} >

minimizes the IntraSkill and minimizes the InterReward.

5.3 Optimization Algorithms

We design optimization algorithms for the intra and inter problems individually,

following which, we study how to solve the constrained optimization problem

(Equation 5.5). Table 5.2 summarizes our technical results.

5.3.1 Algorithm Min-Intra

The objective here is to design k sessions, each of length l, such that the aggregated

Intra diversity over the k sessions is minimized. Specifically, if there are l values

associated with a dimension in a session, the intra diversity is the variance of those

points that is to be minimized here.

With an abstract representation, once sorted, the dimension values of N items,

fall on a line, as shown in Figure 5.2. Therefore, if the aggregated variance is to be

minimized, it is intuitive that the sessions need to be formed by grouping l values

that are closest to each other.

92

.5	.51			.54						.59	.6			.63									.69	.7											.79		.8																				.89										.93														

Skills	of	the	12	tasks	sorted	in	increasing	order	

Figure 5.2 Sorted Intra-Diversity of skills.

Thus our proposed Exact-Min-Intra algorithm for minimizing intra diversity

first sorts the values of the dimension of interest. After that, it starts from the smallest

value and finds each consecutive l points to form a session.

Theorem 15. Algorithm Exact-Min-Intra is exact.

Proof. Let us assume that our algorithm does not produce an exact solution. That

means there exists another algorithm which produces a solution with smaller intra-

diversity than that of

Exact-Min-Intra. Suppose this other algorithm uses another way to create the

sessions. Of course, this is different from sorting the items in increasing value of

the dimension of interests and grouping each l of them starting from the smallest

one. However, that is a contradiction because then the latter algorithm will have

larger Min-Intra value, as l non-consecutive points will have higher variance than

consecutive ones. Hence the proof.

Lemma 3. Algorithm Exact-Min-Intra runs in O(NlogN).

Proof. Since the only required operation is sorting, the running time of the algorithm

will take O(NlogN).

5.3.2 Algorithm Max-Intra

As proved in Section 5.2.3, Max-Intra is NP-hard. What makes it computationally

intractable is that when the objective is to maximize variance, the search space has

to be combinatorially explored.

93

We show that Max-Intra is optimized when all sessions have the same mean,

which is equal to the global mean µT . This proof is critical, as it helps us design our

solution. Theorem 16 has the formal statement.

Theorem 16. ∑k
i=1(Intra(si)) is maximized when

µds1 = µds2 , . . . = µdsk
= µglobal (5.6)

Proof. The theorem states that the objective is maximized when the means of all

sessions are equal, which in turn are equal to the global mean. It is indeed true that

when µds1 = µds2 , . . . = µdsk
, the global mean µglobal = 1

N

∑N
j=1(tdj) = k×µd

si

k
= µdsi

Our intention is to prove that ∑k
i=1(Intra(si)) is maximized when this

aforementioned scenario occurs. For ease of exposition, we omit the superscript d

from the proof.

We do the proof by the method of contradiction. Consider two different sets of

k sessions, S and S ′. For S = s1, s2, . . . , sk, we have µs1 = 1
l

∑
t∈s1 t and similarly for

other si ∈ S. For S ′ = s′1, s
′
2, . . . , s

′
k where

µs′
1

= µs′
2

= . . . = µs′
k

= µglobal = 1
k ∗ l

∑
t (5.7)

94

We also assume, Intra(S) > Intra(S ′).

Intra(S) =
∑
si

Intra(si)

=
∑
t∈s1

(t− µs1)2 + . . .+
∑
t∈sk

(t− µsk
)2

=
N∑
i=1

t2i − l(µ2
s1 + µ2

s2 + . . .+ µ2
sk

)

(5.8)

Intra(S ′) =
N∑
i=1

t2i − klµ2
global (5.9)

According to our assumption, Intra(S) > Intra(S ′) this means that,

N∑
i=1

t2i − l(µ2
s1 + µ2

s2 + . . .+ µ2
sk

) >
N∑
i=1

t2i − klµ2
global (5.10)

which after considering µopt = µs1+µs2+...+µsk

k
we get,

µ2
s1 + µ2

s2 + . . .+ µ2
sk
< 0 (5.11)

which is a clear contradiction, hence the proof.

Algorithm: Theorem 16 provides a useful insight, that is, to maximize the

Intra, we need to form the k sessions in such a way that the means of all the sessions

are equal or very close to each other. Algorithm Ap-Max-Intra is iterative and greedy

and it relies on this principle to create sessions that satisfy this property. First, it

creates l bins, each has k different slots. Then, these bins are initialized in such a way

that each bin contains a subset of k items from the set of items. The final two steps

95

𝑇 = {0.5,0.51,0.54,0.59,0.6,0.63,0.69 ,0.7,0.79,0.8,0.89,0.93}

Step 1: 𝑏 =
[] ⋯ []
⋮ ⋱ ⋮
[] ⋯ []

Step 2: 𝑏+×- =
[0.5] [0.51] [0.54] [0.59]
[0.6] [0.63] [0.69] [0.7]
[0.79] [0.8] [0.89] [0.93]

Step 3:
𝑑 𝑏8 = max 0.68 − 0.59 , 0.68 − 0.5 = 0.18
𝑑 𝑏> = max 0.68 − 0.6 , 0.68 − 0.7 = 0.08

𝑑 𝑏? = max 0.68 − 0.79 , 0.68 − 0.93 = 0.25

Step 4: 𝑀𝑒𝑟𝑔𝑒(𝑏>, 𝑏?)
0.5 0.51 0.54 0.59

0.6,0.93 0.63,0.89 0.69,0.8 0.7,0.79

Figure 5.3 Ap-Max-Intra steps on Example 3.

run in an iterative manner. In the third step, the algorithm scores the bins according

to a scoring function defined in Definition 1. Finally, it greedily merges two bins.

This process is repeated for l − 1 number of iterations.

Definition 1. (Score of the i-th bin:)

d(bi) = max{|µglobal − arg max
∀j

bij|, |µglobal − argmin
∀j

bij|}

To illustrate the solution further, bij represents the j-th slot in bin i, which

is kept as a placeholder for j-th session. To initialize the bins, we first sort the

items in an increasing order on the dimension of interests. Next, in the i-th bin

1 ≤ i ≤ l, we put the sorted items t(i)∗k+j in bij. Using Example 3, this amounts to

96

creating 3 bins of tasks where b1 = {[t1], [t2], [t3], [t4]}, b2 = {[t5], [t6], [t7], [t8]}, and

b3 = {[t9], [t10], [t11], [t12]}. In step 3, each bin is scored, based on d(bi), as presented

in Definition 1. Then two bins i and j are merged that have the largest and smallest

score respectively. Going back to the Example 3, the scores are calculated as follows

d(b1) = 0.18 , d(b2) = 0.08, and d(b3) = 0.25 and b2 and b3 are merged. Figure 5.3

details these steps.

To merge b with b′, where b has the largest score and b′ has the smallest score,

we create a new bin bmerge such that, bmergeij contains the m-th smallest items of b and

m-th largest items of b′ (1 ≤ m ≤ k). Considering Example 3, the new bin bmerge is

created by combining b2 and b3 , such that

bmerge = {[t5, t12], [t6, t11], [t7, t10], [t8, t9]}

This process is then repeated until only a single bin is left.

Algorithm 4 Algorithm Ap-Max-Intra
Require: N , Number of sessions k, Length of session l

1: µglobal ← Average of all items
2: Initialize l bins each with k slots ←
3: bi ← {bi1 = [til+1], bi2 = [til+2, ..., bik = [til+k]]}
4: while number of bins > 1 do
5: pick bi and bj with the largest and smallest scores
6: bmerge=merge bi and bj

7: Delete bi and bj

8: number of bins ← l − 1
9: end while

10: Return the final merged bin

Theorem 17. Ap-Max-Intra runs in O(NlogN +Nl) .

97

Proof. Getting the average of the items takes O(N). The partitioning of items into

k bins takes O(NlogN) which is done by sorting items first and then putting each

item in their corresponding bin by iterating over them once more. Now there are

l − 1 iterations of the algorithm to merge the bins. Each bin merge takes at most

O(kl) since there are k sessions with at most l members which means for l − 1

iterations we will have O(kl2). Overall, the running time of the algorithm will be

O(NlogN +Nl)

Theorem 18. Algorithm Ap-Max-Intra has 1
2−1/k approximation factor.

Proof. The proof of this problem makes use of an approximation-preserving reduction.

Basically the idea of an approximation preserving reduction is as follows: we need to

show that an instance of Ap-Max-Intra is reducible to an instance of another known

NP-hard problem, Balanced Number Partitioning problem [89] and by applying

Algorithm BLDM, which is an approximation algorithm for the latter problem produces

a solution for the problem Ap-Max-Intra. The proof makes use of two arguments: the

first is that an instance of Max-Intra could be reduced to an instance of the Balanced

Number Partitioning problem [89] in polynomial time. Then, it can be shown that the

BLDM algorithm has one-on-one correspondence with Ap-Max-Intra. Ap-Max-Intra

will accept 1
2−1/k approximation factor, since BLDM holds 2 − 1/k approximation

factor.

5.3.3 Algorithm Min(Max)-Inter

Optimization of Inter diversity, both minimization and maximization variants, is NP-

hard, and they bear remarkable similarity to each other. Given a set of N items, the

Min(Max)-Inter problems will try to find an ordering of k sessions, each with l items,

such that the aggregated differences between the average of two consecutive sessions

is minimized (maximized). To better understand these problems, we break them into

two steps. We only present these steps for the Max-Inter problem and note that the

98

Min-Inter version works analogously, only by inverting the optimization goals inside

the algorithm. For example, for optimizing Max-Inter, our goal is to find a sequence of

sessions that maximizes Equation (5.2). One intuition is that inter-diversity increases

if the means of individual sessions (on the dimension of interest) are highly different

from each other. Indeed, if the k sessions have the same exact mean, no matter how

one orders them, inter diversity will be zero. As we prove in Lemma 4, this relates to

forming a set of k sessions with the goal to minimize intra-diversity. So, the first step

of our algorithm is to produce a set of sessions with the smallest intra-diversity. The

next step is to order these sessions, such that the resulting sequence has the Inter

value maximized. This is our guiding principle in creating the algorithms to solve

this problem.

Our proposed solution Ap-Max-Inter for Max-Inter works as follows: we first

find k sessions obtained by running Algorithm Ap-Min-Intra. This is needed, since

it will generate sessions with means as different from each other as possible. After

that, we create a graph of k nodes, each represents one of the k sessions. The weight

of each edge (si, sj) is defined as w(si, sj) = (µsi
− µsj

)2. After that, the goal is

to run an algorithm for the Longest path problem for Max-Inter. Since the graph

is complete with positive weights on the edges, the Longest Path Problem could be

solved by replacing the positive weights with negative values and running a traveling

salesman problem (TSP) over it. In our implementation, we use the simple yet

effective 2-approximation algorithm for TSP in metric space, described in [74, 100].

The algorithm starts by finding the Minimum Spanning Tree of the input graph using

Prim’s algorithm. Next, it lists the nodes in Minimum Spanning Tree in a pre-order

walk and adds the edge to the starting vertex to the end. This path will create an

ordering of sessions by following from the starting vertex si to the ending vertex sj.

This algorithm runs in O(k2logk) which is dominated by the running time of the

99

Prim’s algorithm. We further improve this running time by using Fibonacci heaps

and obtain O(k2 + logk).

Inversely, Algorithm Ap-Min-Inter, designed for Min-Inter first solves the Min-

Inter problem to create sessions with the largest intra diversity. Then, we create the

graph same as we have done in Ap-Max-Inter but the edge weights do not need to be

negated. Finally, we run TSP [100] to generate a sequence of sessions for minimizing

inter-diversity of those sessions.

For both problems, the obtained solution is a cycle and has one extra edge. We

simply remove the edge with the smallest (largest) value in the solution. This produces

an ordering of the sessions. Algorithm 5 presents the pseudo code of Max-Inter

algorithm.

Using Example 3 to find Max-Inter of Skill dimension, we first apply the

Exact-Min-Intra to find the following sessions, s1 = {t1, t2, t3}, s2 = {t4, t5, t6},

s3 = {t7, t8, t9}, and s4 = {t10, t11, t12} where µs1 = 0.516, µs2 = 0.6066, µs3 = 0.726,

and µs4 = 0.873. These sessions will become four nodes of a complete graph. The

nodes of this graph are the sessions and the weight of each edge is the Inter value

we get from Equation (5.2). We solve the longest path problem for this graph and

we get the tour of T = {s1 → s4 → s2 → s3 → s1}. We remove the edge s2 → s3

since it has the smallest weight. The solution of Max-Inter is hence the sequence

S =< s2, s4, s1, s3 >.

Algorithm 5 Algorithm Ap-Max-Inter
Require: N items, Number of sessions k, Length of session l

1: Sinit ← Min− Intra(N, k, l)
2: G = (S,E) ← complete graph with k nodes
3: w(si, sj) = (µsi

− µsj
)2

4: Run Longest path algorithm on G
5: Longest path contains the ordering of the sessions.

100

!" !# !$

%

&

!" !# !$

!′" !′#

%′

+) -)

1

2

Figure 5.4 Relationship between Min-Intra and Max-Inter.

Theorem 19. Both Ap-Max-Inter and Ap-Min-Inter run in

O(NlogN + k2 + logk).

Proof. The running time of the algorithm Ap-Max-Inter is dominated by the first

step which is getting the solution of Min-Intra (for Ap-Min-Inter it is Max-Intra).

The algorithm for TSP takes O(k2 + logk). This means that the overall running time

will be O(NlogN + k2 + logk).

Lemma 4. Given a set of N items forming k sessions (each with l items), when

defined on the same dimension of interest, Inter diversity of the k sessions is

maximized (minimized), when Intra-diversity of those k sessions is minimized(maximized).

Proof. For the case of Max-Intra, the solution will require the averages of all groups

to be the same (Recall Theorem 16). This results in having Min-Inter with value 0,

leading to the optimal solution. Hence the proof.

To show the relationship between Min-Intra and Max-Inter, we show that when

k = 3, Min-Intra corresponds to maximizing inter on the same dimension. Consider

the sequence S =< s2, s1, s3 > where µs1 ≤ µs2 ≤ µs3 . Consider s1, s2, s3 are the

solution of Min-Intra and µs3 − µs1 = α and µs2 − µs1 = β. Figure 5.4 presents one

101

such solution. Now consider that we swap a task between s1 and s2. After this swap,

the value of µs1 will increase by x amount and the value of µs2 will decrease by the

same x. Now it is easy to see that if the value of Inter is α + β for the solution of

Min-Intra, then the value of the new solution will be α + β − 3x which is smaller.

This argument extends to k > 3.

Theorem 20. Ap-Max-Inter produces an answer that is at least 1/2 of the the

optimal solution.

Proof. The approximation of Ap-Max-Inter occurs in Step-2, while solving the

longest path problem (Since Min-Intra has an exact solution)). Since the longest

path algorithm has the 1/2 approximation factor, the overall algorithm Ap-Max-Inter

has 1/2 approximation factor.

Theorem 21. Algorithm Ap-Min-Inter has 4− 2/k approximation factor.

Proof. Similar to the proof of Ap-Max-Inter, using Lemma 4, the first step of

Ap-Max-Inter is finding a set of sessions which are closest to each other. Using

algorithm Ap-Max-Intra provides these sessions with 2 − 1/k approximation. The

next step multiplies this error by a factor of 2 since the composition of the groups

is not changed and we only find an ordering over the fixed groups. This yields an

approximation factor of 4− 2/k.

5.3.4 Optimizing Inter with Intra as Constraint

We now develop algorithms for the constrained optimization problems defined in

Section 5.2.4. When the values of the item dimension used for intra diversity are all

unique, two of these four algorithms have provable approximation factors. Table 5.3

provides the summary of our technical results.

To optimize Inter with Min-Intra as a constraint, we design two algorithms

Alg-Min-Intra, Min-Inter and Alg-Min-Intra, Max-Inter. For both, we start from the

102

Table 5.3 Algorithms and Approximation Factors for Problem Combinations

Algorithm Running Time Approximation Factor
Alg-Min-Intra,Min-Inter O(NlogN + k2) (OPT, 4− 2/k)
Alg-Min-Intra, Max-Inter O(NlogN + k2) (OPT, 1/2)
Alg-Max-Intra, Min-Inter O(NlogN +Nl + k2) heuristic

Alg-Max-Intra, Max-Inter O(NLogN +Nl + k2) heuristic

solution of the Min-Intra problem using algorithm Ex-Min-Intra. This solution is an

exact algorithm for solving Min-Intra and gives a set of k sessions as the the output.

After that, we run Ap-Max-Inter in Alg-Min-Intra, Min-Inter and Ap-Min-Inter in

Alg-Min-Intra, Max-Inter.

On the other hand, to optimize Inter with Max-Intra as a constraint, we start

from the solution of the Max-Intra using algorithm Ap-Max-Intra. This solution is

an approximation algorithm for solving Max-Intra and returns a set of k sessions.

After that, we run Ap-Max-Inter for Max-Intra, Max-Inter and Ap-Min-Inter for

the Max-Intra, Min-Inter. Algorithm 6 presents the generic pseudo code. These two

algorithms are based on heuristics and may not have any provable bounds.

Algorithm 6 Algorithm for maximizing inter with intra as a constraint
Require: N items, Number of sessions k, Length of session l, dimensions d1 and d2

1: Sinit ← k sessions of l items each, obtained by running Intra optimization
algorithm on d1

2: G = (V,E)← complete graph with nodes of Sinit and edge weights are calculated
based on d2 values between a pair of sessions

3: Call Subroutine Ap-Max-Inter or Ap-Min-Inter on G

Theorem 22. Algorithm Alg-Min-Intra, Max-Inter has (1, 1/2) approximation factor

Min-Intra,Max-Inter problem and Alg-Min-Intra, Min-Inter has (1, 4− 2/k) approxi-

103

mation factor Min-Intra,Min-Inter problem, as long as items in intra dimension have

unique values.

Proof. We provide the proof for Alg-Min-Intra, Max-Inter and the proof of Alg-Min-

Intra, Min-Inter works analogously. Ex-Min-Intra is optimal. Since items have

unique values on intra diversity dimension, there exists one and only one set of k

sessions that minimizes intra diversity values. The second step of the algorithm

Alg-Min-Intra, Max-Inter creates an ordering over these sessions. In that subset

of the search space, i.e., containing only solutions that start with the sessions of

Ex-Min-Intra where the Min-Intra is optimal, our Max-Inter algorithm produces a

solution which is 1/2 the optimal solution. Hence, the (1, 1/2) approximation factor

holds for Min-Intra,Max-Inter problem. Similarly, the (1, 4 − 2/k) approximation

factor holds for Min-Intra,Min-Inter problem.

5.4 Experimental Evaluations

We first conduct experiments involving human subjects on music playlist recommen-

dation and task recommendation in crowdsourcing to observe the effect of diversity on

user satisfaction (in both applications) and worker performance (in crowdsourcing).

Then, using large scale real data and synthetic data, we examine the quality of our

algorithms in comparison to baselines, and evaluate the scalability of our approach.

5.4.1 Experiments with Human Subjects

We validate our framework in two applications: music recommendation, where we

generate music channels, and task recommendation in crowdsourcing, where we

generate task sessions.

Music Recommendation. We generate music playlists for users and consider

different contexts namely music for long drive, theme party, Sunday morning, and

104

learning a new music style, to observe how diversity affects user satisfaction in different

contexts.

Dataset. The dataset consists of 727 songs from 54 albums, 47 artists, and 10

genres. The songs are from albums that won the Grammy Best Album of the Year

Award between 1961 and 2020. The list of albums and their corresponding genres are

from Wikipedia while the other information such as artist, period, popularity, tempo,

and duration are from Spotify.

Experiments Flow. We first collect preferred genres and artists from users

to form their profiles. We then generate five music playlists for each user. Each

playlist has five channels, and each channel has 10 songs. The first four playlists

are generated using the algorithms in Table 5.3, with dimensions specified for each

context in Table 5.4. The 5th playlist represents the baseline with no diversity. It

consists of similar songs randomly selected from one of the dimensions. In this last

experiment, all songs from the period 2000’s. Lastly, users evaluate the playlists by

selecting songs they would actually listen to, rating how much they like diversity in

the sessions, and providing an overall rating of the playlist. The ratings are based

on a 5-pt Likert scale where 1 is the lowest and 5 is the highest. We measure user

satisfaction using the overall rating provided by users. We recruit 200 workers (50

per context) from Amazon Mechanical Turk (AMT). We pay workers $0.10 for profile

collection and $1.00 for their evaluations.

Table 5.4 Diversity Dimensions Per Context

Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

Intra tempo period popularity genre
Inter popularity genre genre tempo

105

Table 5.5 Average Evaluation Scores Across All Contexts

Scenario
No. of

Selected
Songs

Diversity
Rating

User
Satisfaction

1 Min-Intra, Min-Inter 15.16 3.57 3.54

2 Min-Intra, Max-Inter 15.05 3.66 3.66

3 Max-Intra, Min-Inter 14.71 3.59 3.71

4 Max-Intra, Max-Inter 14.66 3.69 3.71

5 no diversity 12.83 3.35 3.44

Summary of Results. We observe in Table 5.5 that user satisfaction in

diversified playlists (Scenarios 1− 4) is higher compared to the no-diversity baseline.

This observation is statistically significant at p = 0.10 using a one-way Analysis of

Variance (ANOVA) [121]. The results are consistent with other measures: workers

select the smallest number of songs from the no-diversity playlist and the no-diversity

playlist receives the lowest average diversity ratings. Moreover, these observations

extend to different contexts, as shown in Tables 5.6, 5.7, and 5.8. The sample size of

200 workers from the estimated 200, 000 workers in AMT [41] gives our results a 99%

confidence level and a 10% error margin (based on the Central Limit Theorem [118]).

In summary, our music experiment clearly shows that diversity is preferred over no

diversity. Additionally, diversity definitions depend on context, as observed in Tables

5.6, 5.7, and 5.8.

106

Table 5.6 Average Number of Selected Songs Per Context

Scenario
Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

1 Min-Intra, Min-Inter 16.58 14.86 14.76 14.42

2 Min-Intra, Max-Inter 15.82 15.06 14.12 15.20

3 Max-Intra, Min-Inter 16.52 13.64 14.30 14.38

4 Max-Intra, Max-Inter 16.24 13.96 15.04 13.40

5 no diversity 14.10 11.92 13.62 11.68

Table 5.7 Average Diversity Rating Per Context

Scenario
Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

1 Min-Intra, Min-Inter 3.64 3.52 3.64 3.46

2 Min-Intra, Max-Inter 3.70 3.50 3.82 3.61

3 Max-Intra, Min-Inter 3.70 3.54 3.58 3.54

4 Max-Intra, Max-Inter 3.84 3.68 3.58 3.64

5 no diversity 3.34 3.30 3.46 3.30

Table 5.8 Average User Satisfaction Per Context

Scenario
Long
Drive

Theme
Party

Sunday
Morning

Learn
Music

1 Min-Intra, Min-Inter 3.62 3.88 3.34 3.32

2 Min-Intra, Max-Inter 3.76 3.72 3.66 3.50

3 Max-Intra, Min-Inter 3.86 3.98 3.56 3.44

4 Max-Intra, Max-Inter 3.76 3.80 3.70 3.58

5 no diversity 3.60 3.42 3.46 3.28

Task Recommendation. In these experiments, we recommend short and long task

sessions to workers in crowdsourcing. The short sessions consist of three sets each

with three tasks. The long sessions consist of five sets and each set consists of 10

tasks.

107

Dataset. The dataset consists of 20, 000 tasks from Figure Eight’s open data

library. Each task belongs to one of 10 types such as tweet classification, image

transcription, and sentiment analysis. Each task type is represented as a set of

keywords that best describe required skills. Additionally, each task has a creation

date, an expected completion time (less than a minute), and a reward that varies

between $0.01 - $0.05.

Experiments flow. For each session type (short and long), we collect 100

user profiles, where workers indicate (from 1 to 5) their interest in completing tasks,

which are described by a given set of keywords. For each user profile, we generate

task sessions using the algorithms in Table 5.3 and a combination of the following

dimensions: skill, reward, duration, and creation date. Additionally, we generate

a no-diversity baseline session. In this session, we randomly pick a task type and

tasks belonging to that type. Next, workers complete the recommended sessions. We

measure task throughput, quality of the completed tasks with respect to a ground

truth, and worker satisfaction. Throughput refers to the average number of tasks

completed per minute. Quality refers to the percentage of correct answers from the

tasks completed by a worker. To measure quality, we use the answers obtained from

the dataset as the ground truth. We use a näıve script that relies on basic equality to

evaluate answer correctness. Satisfaction refers to how satisfied workers are with the

task sessions (a rating from 1 to 5 provided by each worker). We recruit 200 workers,

pay each $0.03 for profile collection and at least $0.35 for task completion.

108

Table 5.9 Task Recommendation: Short Sessions

Scenario
Through

put

Quality

(%)

Worker

Satis-

faction

1
Min-Intra(creation date),

Min-Inter(skill)
6.13 65.64 4.47

2
Min-Intra(skill),

Max-Inter(reward)
5.93 62.77 4.43

3
Max-Intra(skill),

Min-Inter (reward)
5.91 61.76 4.44

4
Max-Intra(duration),

Max-Inter (skill)
5.35 61.24 4.46

5 no diversity 7.53 64.38 4.26

Table 5.10 Task Recommendation: Long Sessions

Scenario
Through

put
Quality

(%)

Worker
Satis-
faction

1
Min-Intra(creation date),
Min-Inter(skill)

6.95 68.33 4.48

2
Min-Intra(skill),
Max-Inter(reward)

6.96 69.27 4.5

3
Max-Intra(skill),
Min-Inter (reward)

6.96 70.08 4.41

4
Max-Intra(duration),
Max-Inter (skill)

6.98 67.98 4.40

5 no diversity 6.56 66.04 4.19

Summary of Results. We present the average throughput, quality, and worker

satisfaction for short sessions in Table 5.9 and long sessions in Table 5.10. Similar

109

to the music experiments, our sample size (n=200) allows our results to achieve 99%

confidence level with 10% margin of error. We again used a one-way ANOVA to

evaluate statistical significance. In short sessions, only throughput is statistically

significant at p = 0.05. In long sessions, both quality and worker satisfaction are

statistically significant at p = 0.10.

Our results indicate that short sessions generated by our algorithms do not

significantly differ from the no-diversity baseline in terms of quality and worker

satisfaction. On the other hand, the throughput of no-diversity is significantly higher

than sessions generated by our algorithms. This observation confirms previous studies

where workers get more proficient in completing similar (and hence not diverse) tasks,

allowing them to become faster at task completion [39]. As the number of tasks

per session increases (long sessions) however, this observation changes. Throughput

decreases for no-diversity and sessions generated by our algorithms obtain higher

quality and worker satisfaction with statistical significance. In summary, our

experiments show that the benefit of diversity in task recommendation is more

prominent for sessions comprising many tasks. Diversity tends to bring positive effect

to avoid boredom which is prominent for sessions with many tasks.

5.4.2 Large Data Experiments

The goal here is to evaluate our algorithms with appropriate baselines (including

exact solutions) and compare them qualitatively (approximation factors, objective

function value) and scalability-wise (running time). All algorithms are implemented

in Python 3.6 on a 64-bit Windows server machine, with Intel Xeon Processor, and

16 GB of RAM. All numbers are presented as the average of five runs. For brevity

we present a subset of results that are representative.

Data Sets. a. 1-Million Song: We use the Million Songs Dataset [19] that has

1 million songs (please note the Spotify dataset used in Section 5.4.1 is small in

110

scale). We have normalized the data to be between [0, 1]. This dataset also includes

artist popularity and hotness, genre, release date and etc. The presented results are

representative and consider tempo and loudness as dimensions.

b. Synthetic dataset: The presented results on this are the ones that vary distributions

of the underlying dimensions. We sample from three distributions: Normal, Uniform,

and Zipfian. For Normal distribution, data is sampled with mean and standard

deviation, µ = 250, σ = 10. For Uniform, dataset is sampled from Uniform

distribution between [0,500], and for Zipfian distribution default exponent is set to

α = 1.01. We produce a pool of 230 items for each of our three distributions.

Implemented Baselines. In addition to Random where we generate random

sequences, we implement different baselines and compared the performance of our

algorithms.

Optimal. The optimal baseline is based on an Integer Programming (IP)

algorithm that solves the problem optimally on small instances. The rationale behind

implementing IP is to verify the theoretical approximation factors of our algorithms

against the optimal solution. We used Gurobi as the solver1. The IP equivalent

of the Min-Intra,Max-Inter problem is described in below. Other formulations

(Max-Intra,Min-Inter, Max-Intra,Max-Inter, Min-Intra,Min-Inter) can be expressed

similarly.

1https://www.gurobi.com/resource/switching-from-open-source/ (accessed on Feb 1, 2020)

111

maximize
G

k∑
i=1

Inter(gi)

s.t.
k∑
i=1

l∑
j=1

(d1
jxij − µi)2 ≤ opt

∑
j

xij = l,∀i = 1 . . . k

∑
i

xij = 1,∀j = 1 . . . l

xij ∈ {0, 1}

where d1
j is the value of the first dimension of the task j and opt is the value of optimal

solution from Ex-Min-Intra.

Baseline-MMR. This baseline is inspired by the MMR algorithm [26] used in

diversifying web search results. MMR takes a search query and returns relevant and

diverse results. Hence, our mapping to MMR optimizes intra-session diversity only.

At each iteration, Baseline-MMR considers an item to be included or not in the result

and calculates two scores: the Intra score of adding a new item to a session and the

max (resp., min Inter) score of a new session to all other sessions in the case of

Max-Inter (resp., Min-Inter). It then picks the highest or the lowest weighted sum

of these two scores based on the Intra part of the problem. The item with that score

is chosen to be added to the session. This process is repeated until there is no item

left.

Clustering Algorithms are not applicable to be used as baselines.

We note that even though at a high level our studied problems may bear similarity

with existing clustering problems, there is more than one significant difference that

preclude the applicability of clustering algorithms as solutions to our problems. First

and foremost, clustering algorithms do not allow to control the size of the sessions,

112

which is one of our key requirements. Second, clustering algorithms are not suitable

to optimize sequence, which is one of our primary goals of Inter diversity. Finally,

clustering algorithms cannot be adapted easily to solve multi-objective optimization

problems, such as ours.

Summary of Results. Overall, for our problems, where both Intra and Inter

diversity are to be optimized, our algorithms are the unanimous choice considering

both quality and scalability. When the Intra and Inter diversity is studied

individually, our algorithms outperform all the baselines and empirically produce

approximation factors close to 1, across varying k, N , and different distributions.

The only exception to this latter observation is Baseline-MMR, which performs better

in maximizing Inter diversity (while performing very poorly for Intra optimization),

which is due to its focus on optimizing inter-diversity only. Moreover, our algorithms

is highly scalable and is much more efficient than the baselines.

Comparison against Optimal. Table 5.11 shows the approximation factors

for our algorithms for two default settings: (N = 213, k = 24) and (N = 210, k = 27)

using 1-Million dataset. We can see that our algorithms produce an approximation

factor equal to 1 when Intra diversity is minimized and a factor very close to 1 when

Intra diversity is maximized.

Quality Evaluation. We vary k (the number of sessions), N (the number of items),

and the data distribution. The default values are N=213 and k=27 with a uniform

distribution.

113

Table 5.11 Approximation Factors on 1-Million Songs
Dataset

Our Scenarios
N=8192 , k=16 N=1024 , k=128
Intra Inter Intra Inter

Min-Intra , Min-Inter 1 1.05 1 1
Min-Intra , Max-Inter 1 0.35 1 0.49
Max-Intra , Min-Inter 0.99 1.06 0.98 1.04
Max-Intra , Max-Inter 0.99 0.58 0.95 0.69

When Inter diversity is minimized, the resulting approximation factors are close

to 1. However, when Inter diversity is maximized, the approximation factors are

slightly low as our algorithm solves the Intra part of the problem before ordering

the sessions to maximize Inter diversity. It is hence bound by the constraints of the

solution to Intra. Nevertheless, the solution formulated by our algorithm for Min-

Intra,Max-Inter and Min-Intra,Min-Inter is able to produce a point on the Pareto

Front in the optimal solution region which meets both the Intra and Inter objectives.

The synthetic dataset mimics this trend as well.

Based on the approximation factor results and the above analysis, we conclude

that our algorithms produce good and in some cases the best possible solution for the

four problems we attempt to optimize.

Varying N . Figure 5.5 shows how Inter scores change as we vary N from 210

to 216 for Baseline-MMR, Random and our algorithms. We have omitted the plots for

Synthetic data experiments since those results closely follow the result for 1-Million

Songs dataset. Figures 5.5(a)(c) confirm that our algorithm performs best when

Inter diversity is minimized. The objective function improves with increasing N .

On the other hand, as seen in Figures 5.5(b)(d),when Inter diversity is maximized,

Baseline-MMR outperforms our algorithm with increasing N . This is because our

algorithm is subject to the constraints imposed by optimizing Intra diversity first then

114

maximizing the Inter diversity, while Baseline-MMR focuses on the Inter dimension

only.

We also compare Intra scores whilst varying N . Table 5.12 showcases the

approximation factors of our algorithm’s Intra considering Optimal for N ≤ 213

and N > 213. A ratio of 1 means that the algorithm produces the best or optimal

solution. These results showcase that our solutions achieve even better bound

empirically compared to the theoretical bounds. Table 5.12 also shows that although

Baseline-MMR performs better in Max-Inter problem, but it performs poorly for both

Min-Intra and Max-Intra problems.

Interestingly, Random often times produces approximation factor close to 1 for

N > 213 when maximizing Intra. This is due to the fact that Intra is maximized when

the variance of the sessions are maximized which is one of the side effects of Random

algorithm. However, Baseline-MMR and Random produce very poor approximation

factors when minimizing Intra. Contrarily, our solutions stay close to 1 approximation

factor for both minimization and maximization of Intra diversity. As N increases,

the Intra scores do not see any drastic change in approximation factors, and always

stays close to 1.

Varying k. Figure 5.6 presents how Inter scores evolve as we vary k between

24 and 211 for different baselines compared to our algorithm. We keep N constant

at 213. The synthetic dataset also mimics this trend. We observe figures 5.6(a)(c)

that our algorithm performs significantly better than other baselines in minimizing

Inter diversity. For Figures 5.6(b)(d), our observation is similar to the case of varying

N , Baseline-MMR performs slightly better. Overall, Inter diversity increases for all

four scenarios as k increases. This is because of the fact that when more sessions are

present, it allows for more diversity between each session.

115

(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra)

(c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 5.5 Inter scores with varying N for 1-Million Song dataset.

We present approximation factors of Intra in Table 5.13 and observe similar

trend as to when we vary N . Also, similar to varying N for Intra scores, the

approximation factors here also stay close to 1 for our algorithm.

Varying distribution. Figures 5.7 and 5.8 present how our algorithm and

other baselines perform as we vary data distributions. We set N to 213 and k to 27.

Considering Intra scores, our algorithm performs the best using Uniform

distribution for all four scenarios and using a Zipf distribution produces a similar

116

(a) Ap-Min-Inter (Min-Intra) (b) Ap-Max-Inter (Min-Intra)

(c) Ap-Min-Inter (Max-Intra) (d) Ap-Max-Inter (Max-Intra)

Figure 5.6 Inter scores with varying k for 1-Million Songs dataset.

trend. However, Normal performs slightly worse at times with our algorithm when

we attempt to maximize Intra.

When we compare Inter scores, our algorithm performs best with Uniform

distribution. In Figures 5.7(b)(d), Baseline-MMR outperforms our algorithm due

to the same reasons mentioned in Section 5.4.2.

We also observe that across all four scenarios, Zipf produces scores much larger

in magnitude than Normal or Uniform distribution. This is due to the range of values

117

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter

(c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Figure 5.7 Synthetc Data: Inter and Intra scores varying distributions.

in Zipf, which results in larger Intra and Inter scores. Overall, our algorithms stand

out to be the best choice, with its best performance being on Uniform distribution.

118

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter

(c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Figure 5.8 Synthetc Data: Zipf distribution.

Table 5.12 Intra Approximation Factors of The Three Algorithms Varying N on
1-Million Songs

Min-Intra
(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Ours
<= 8192 0.008 6.41E-05 1
>8192 0.002 5.42E-05 1

Max-Intra
(Minimizing & Maximizing Inter)

N
Algorithms

MMR Random Ours
<= 8192 0.22 0.98 0.99

>8192 0.021 0.92 0.99

119

Table 5.13 Intra Approximation Factors of The Three Algorithms Varying k on
1-Million Songs

Min-Intra
(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Ours
<= 128 0.011 0.0021 1
>128 0.0012 4.95E-06 1

Max-Intra
(Minimizing & Maximizing Inter)

k
Algorithms

MMR Random Ours
<= 128 0.035 0.92 0.99

>128 0.29 0.85 0.99

Scalability Evaluation. Figures 5.9 and 5.10 compare the running time of the

three algorithms for 1-Million dataset. Naturally, as N increases, the running time

of our algorithm increases. We also observe that as we vary N with k = 27, our

algorithm is the fastest in all diversity scenarios.

In Figures 5.10, we vary k and set N to 213. We observe that our algorithms

scale very well but is sometimes slightly slower than Random. This is unsurprising,

as Random does not even have to do much work to generate sessions (recall that

however it performs poorly qualitatively). However, we observe that our algorithm is

consistently faster with increasing values of k.

Overall, we find that our algorithms are highly scalable and produce results within

a few seconds for very large values of N and k, while some of the baselines take hours

to complete.

5.5 Conclusion

We initiate the study of a formal and algorithmic framework to address diversity for

s sequence of sets that has natural recommendation applications (from song playlists

to task recommendations in crowdsourcing). The combination of Intra and Inter

session diversities gives rise to four bi-objective optimization problems. We propose

120

algorithms with guarantees. Our extensive empirical evaluation, conducted using

human subjects, as well as large scale real and simulated data, shows the need for

diversity to improve user satisfaction and the superiority of our algorithms against

multiple baselines.

Applications Diversity has been extensively studied in recommendation and

search applications [16, 29, 1, 135, 131, 130, 123, 102, 91, 95, 44, 59, 60, 133,

105, 127], to return items that are relevant as well as cover full range of users

interests. The goal is to achieve a compromise between relevance and result

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter

(c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Figure 5.9 Running times varying N for 1-Million Songs dataset.

121

heterogeneity. Existing works [55, 126] have also acknowledged the need for diversity

and sequence based modeling in different recommendation applications. Recent works

in crowdsourcing [45, 96] have demonstrated the importance of diversity in task

recommendation. Task diversity is grounded in organization theories and has shown

to impact the motivation of the workers [28]. Amer-Yahia et al. [9] propose the

notion of composite tasks (CT), a set of similar tasks that match workers’ profiles,

comply with their desired reward and task arrival rate. Their experiments show that

diverse CTs contribute to improving outcome quality. A recent work has studied intra

(a) Min-Intra,Min-Inter (b) Min-Intra,Max-Inter

(c) Max-Intra,Min-Inter (d) Max-Intra,Max-Inter

Figure 5.10 Running times varying k for 1-Million Songs dataset.

122

and inter-table influence in web table matching [45] involving crowd. Even though

completing similar tasks lead to faster completion time [39], but such composition lead

to fatigue and boredom, and task abandonment [57, 35, 53]. Aipe and Gadiraju[5]

empirically observe that workers who perform similar tasks achieve higher accuracy

and faster task completion time compared to workers who worked on diverse tasks.

However, they find that these workers experience fatigue the most. Alsayasneh et al.

integrate the concept of diversity in composite tasks and empirically find a positive

effect of diversity in outcome quality [7]. For all of these applications, diversity is

studied set-based or sequence based only.

These applications call for a deeper examination of diversity and a powerful

framework to capture its variants, which is our focus here.

Set and Sequence Diversities Existing works on diversification could be

classified as set-based only [1, 44, 91, 95, 123, 102] or sequence-based only [59,

16, 29, 135]. As an example, in [135], the authors study sequence-based diversity

that is defined as the diversity of any permutation of the items. Another example

is [16], in which taxonomies are used to sample search results to reduce homogeneity.

In [1], the authors proposed an algorithm with a provable approximation factor to

find relevant and diverse news articles. In the database context, Chen and Li [29]

propose to post-process structured query results, organizing them in a decision tree

for easier navigation. In [17, 66] the notion of diversity is used in the results of

queries to produce closest results such that each answers is different from the rest.

In recommender systems, results are typically post-processed using pair-wise item

similarity to generate a list that achieves a balance between relevance and diversity.

For example, in [42], recommendation diversity was formulated as a set-coverage

problem.

123

To the best of our knowledge, existing works have focused on achieving diversity

in a single set. We solve set-based and sequence-based diversities in tandem and

develop algorithms with guarantees.

This work opens up more than one research direction: an immediate extension of

our work is to observe users as they consume items and learn how diversity dimensions

and their respective definitions could be personalized for different users. Similarly, we

are empirically exploring how to choose the preferred diversity dimensions depending

on the underlying context for different applications. Finally, an interesting open

problem is to understand how time affects underlying contexts and fine tune diversified

recommendations based on that.

124

CHAPTER 6

SUMMARY AND FUTURE WORK

Our goal in this dissertation is to bring human back in the center stage of the compu-

tational loop and study optimization opportunities that arise to computationally solve

these problems at scale. In this chapter we summarize our contribution(Section 6.1),

and explore some of the future areas of research (Section 6.2).

6.1 Summary

We start the discussion and why we need to change our focus to users in Chapter 1. We

argue that looking at workers as mere agents without understating their needs, goals,

and motivations will eventually result in subpar performance and lower engagement.

We also outlined some of the recent research in this area and showcased how this

new approach in the HIL system has increased different metrics in crowdsourcing

environments, online collaborations, and massive online learning platforms.

ExPref framework in Chapter 2 is designed to study how one might include

human factors in an optimization problem. We focus on the problem of predicting

Task Completion Time which is an interesting and important metric both for worker

and requester of a task. In Section 2.2, we dive deeper into different components

of ExPref and introduce several NP-hard problems and the overall approach in

which Worker Model works alongside Question Selector and Preference Aggregator

to understand the preference of a worker. We showcase that by using Question

Selector as our way of getting feedback from workers and Preference Aggregator, we

successfully integrated explicit worker feedback into the Worker Model. In Section 2.3,

we present ActiveInit as a method of initializing the Worker Model, k-ExFactor

for choosing the best set of questions to ask from the worker. In Section 2.4, our

extensive set of experiments showcases the power of ExPref in real platforms for real

125

workers. This gives us a great platform in which implicit and explicit feedbacks are

combined.

Chapter 4 presents another equally important problem that arises in the context

of peer learning. This problem is important for collaborative HIL problems, such as

text editing or translation. Similar to Chapter 2, by looking at the affinity between

peers and learning potential of a group, we intend to improve the skillset of the human

workers while completing on tasks. In Section 4.2, we define four variants of the

problem Lp-* Aff-*. We show Lp-* problems have polynomial-time algorithms and

Aff-* problems are NP-hard. In Section 4.3.1, we solve four constraint optimization

problems by setting the optimal value of Lp-* problem as a constraint on Aff-*.

We also run real data experiments on Amazon Mechanical Turk in Section 4.5.1 and

explore the scalability and efficiency of the algorithms in Section 4.5.2. Overall, we

show a statistically significant increase in the skill of a worker participating in a group

that was formed by one of the four variations against different baselines.

Finally, after understanding user’s preferences and knowing how to increase their

skill set, we change our focus to recommending task sessions for the human workers

such that their preferences are satisfied over important dimensions. Chapter refchapter:kdd

explores such a problem in the context of the diversity of items in a session and

the diversity of sequence of sessions. In Section 5.2 we introduced the problem

of Optimize-Intra, Optimize-Inter which tries to optimize both Intra and Inter

diversities simultaneously. It also presents efficient solutions for each problem if

considered separately. Section 5.3.4 provides solutions for the combination of these

problems. Our approximation algorithms are fast with theoretical bounds. Section 5.4

presents two sets of experiments. The first one explores two real-life applications

of these problems and measures user satisfaction and performance. We show that

that user satisfaction in diversified playlists is higher compared to the no diversity

baseline. We also measure average throughput, quality and worker satisfaction in a

126

crowdsourcing environment and our experiments show that the benefit of diversity in

task recommendation is more prominent for sessions comprising many tasks. Diversity

tends to bring a positive effect to avoid boredom which is prominent for sessions with

many tasks. Section 5.4.2 presents quality experiments that aim to measure the

approximation factor and scalability of the proposed algorithms. Overall, for our

problems, where both Intra and Inter diversity are to be optimized, our algorithms

are the unanimous choice considering both quality and scalability.

6.2 Future Work

This dissertation opens up many interesting directions. The explicit feedback

approach can learn user preferences more accurately and immediately by asking users

directly but it is not always obvious what questions to ask in order to best capture

user preferences. Some factors are explicit such as the task category, but other factors

may be latent or hard to express, such as user fatigue or mood. Furthermore, asking

for explicit user feedback may overwhelm users, who may provide sparse input or even

get driven away from the system. On the other hand, the implicit feedback approach

can more easily capture latent user preferences, but it also has its own shortcomings.

As user preferences change, an implicit worker model will adapt more slowly.

The above brings us to an interesting research question: How can we combine

explicit and implicit feedback in a worker model leveraging the best of both worlds?

This problem is challenging:

• The relationship between worker’s preference and tasks is not straight-forward.
Workers may prefer attributes that are not defined in tasks, such as fatigue or
enjoyment.

• Latent variables such as fatigue, skill improvements are usually very hard to
deal with.

127

• Explicit feedback may be in the form of ratings on specific factors, while implicit
feedback may be expressed differently, e.g. using latent factors. Then, it is not
straightforward how we can effectively combine explicit and implicit feedback.
For example, in Chapter 2 we use a linear regression model to combine explicit
and implicit feedback by introducing the feedback as a set of constraints on the
linear model and finding a solution that satisfies all the constraints. Although
this is an interesting solution there are a few issues with this. Firstly, these linear
constraints will make the optimization problem more complex. Secondly, it’s
not clear what to do with the previous constraints. Lastly, the set of questions
that they ask is on the factors that make the model worst which makes sense
but it’s not clear why adding constraints between those factors will make the
model perform better in general.

How to use this preference model for task recommendation: As the number of

tasks uploaded by requesters daily can be large, the crowdsourcing platform should

aim to recommend tasks to each worker that he will likely accept and complete as close

to the expected time as possible in order to optimize the platform productivity. On the

other hand, workers desire the top-k best-fitting tasks being promptly and effectively

recommended to them. Others have looked into this problem from the worker’s point

of view [27]. As an example,[27], use a linear combination of task factors a worker

factors to create a model for assigning tasks to workers whose completed tasks have

the best quality.

Ideally, given that we can predict the task completion time for each worker

and task, we can recommend tasks to a user such that their deadlines (i.e., expected

completion time as given by the requester) are as close as possible to the predicted

task completion time for the worker and task.

However, if for each worker we find the best tasks based on what we described

above, our recommendation model needs to be fair in two aspects: (a) making sure

that all tasks are recommended to at least a users and (b) making sure that all users

are recommended at least b tasks.

When to interview a user : A problem that naturally arises is: when do

we interview the user to refresh our knowledge on explicit user preferences? User

preferences change in a crowdsourcing system, and it is important that we can

128

quickly adapt to such changes. Any model that only relies on implicit feedback

has to collect enough “evidence” to “sense” a shift in user preferences and change its

output. Refreshing our explicit preferences knowledge can help us adapt faster and

more smoothly. The challenges that we have here are: (a) We do not want to invoke

too often because users will be annoyed, (b) We do not want to invoke too rarely

because preferences change and we will have a stale explicit model.

In diversifying recommendations on sequences of sets we explored diversifying

a set of items based on two dimensions. An immediate extension of this work is to

generalize these problems on a variable number of dimensions. One might ask the

following research questions: How can we optimize diversity on an arbitrary number

of dimensions?

• The immediate consequence of this question is that Min-Intra problem becomes
NP-hard and akin to a clustering problem.

• Since the problem is multi-dimensional, the choice of distance metric becomes
tangled to the use case. For example, diversifying a set of songs might react
differently than diversifying a set of documents.

129

REFERENCES

[1] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh Mahabadi. Real-time
recommendation of diverse related articles. In Proceedings of the 22nd
International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil,
pages 1–12, 2013.

[2] Rakesh Agrawal, Behzad Golshan, and Evangelos E. Papalexakis. Toward data-driven
design of educational courses: A feasibility study. In Proceedings of the 9th
International Conference on Educational Data Mining, EDM 2016, Raleigh,
North Carolina, USA, page 6, 2016.

[3] Rakesh Agrawal, Behzad Golshan, and Evimaria Terzi. Grouping students in
educational settings. In Proceedings of the 20th SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York,
NY, USA, pages 1017–1026, 2014.

[4] Rakesh Agrawal, Sharad Nandanwar, and Narasimha Murty Musti. Grouping
students for maximizing learning from peers. In Proceedings of the 10th
International Conference on Educational Data Mining, EDM 2017, Wuhan,
Hubei, China, 2017.

[5] Alan Aipe and Ujwal Gadiraju. Similarhits: Revealing the role of task similarity in
microtask crowdsourcing. In Proceedings of the 29th on Hypertext and Social
Media, HT 2018, Baltimore, MD, USA, pages 115–122, 2018.

130

[6] Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermüller, Dzmitry
Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov,
Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra,
Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-
Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux,
Pierre Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul F. Christiano,
Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron C. Courville,
Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins,
Sander Dieleman, Laurent Dinh, Melanie Ducoffe, Vincent Dumoulin,
Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu
Germain, Xavier Glorot, Ian J. Goodfellow, Matthew Graham, Çaglar
Gülçehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs
Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov,
Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent,
Sean Lee, Simon Lefrançois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin,
Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine
Manzagol, Olivier Mastropietro, Robert McGibbon, Roland Memisevic,
Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi,
Christopher Joseph Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel,
Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter
Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman,
Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian,
Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub
Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph P. Turian, Sebastian
Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley,
Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng
Zhang, and Ying Zhang. Theano: A python framework for fast computation of
mathematical expressions. Computing Research Repository, abs/1605.02688,
2016.

[7] Maha Alsayasneh, Sihem Amer-Yahia, Éric Gaussier, Vincent Leroy, Julien
Pilourdault, Ria Mae Borromeo, Motomichi Toyama, and Jean-Michel
Renders. Personalized and diverse task composition in crowdsourcing. IEEE
Transactions on Knowledge and Data Engineering, 30(1):128–141, 2018.

[8] Robert A. Amar, James Eagan, and John T. Stasko. Low-level components of analytic
activity in information visualization. In Proceedings of the IEEE Symposium
on Information Visualization (InfoVis 2005), Minneapolis, MN, USA, pages
111–117, 2005.

[9] Sihem Amer-Yahia, Éric Gaussier, Vincent Leroy, Julien Pilourdault, Ria Mae
Borromeo, and Motomichi Toyama. Task composition in crowdsourcing. In
Proceedings of the 2016 IEEE International Conference on Data Science and
Advanced Analytics, DSAA 2016, Montreal, QC, Canada, pages 194–203, 2016.

131

[10] Sihem Amer-Yahia, Sofia Kleisarchaki, Naresh Kumar Kolloju, Laks V. S.
Lakshmanan, and Ruben H. Zamar. Exploring rated datasets with rating
maps. In Proceedings of the 26th International Conference on World Wide
Web, WWW 2017, Perth, Australia, pages 1411–1419, 2017.

[11] Sihem Amer-Yahia and Senjuti Basu Roy. Human factors in crowdsourcing.
Proceedings of the VLDB Endowment, 9(13):1615–1618, 2016.

[12] Yael Amsterdamer, Susan B. Davidson, Tova Milo, Slava Novgorodov, and Amit
Somech. OASSIS: query driven crowd mining. In Proceedings of the
International Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, pages 589–600, 2014.

[13] Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart. Crowdminer:
Mining association rules from the crowd. Proceedings of the VLDB
Endowment, 6(12):1250–1253, 2013.

[14] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and
Stefano Leonardi. Power in unity: forming teams in large-scale community
systems. In Proceedings of the 19th Conference on Information and Knowledge
Management, CIKM 2010, Toronto, Ontario, Canada, pages 599–608, 2010.

[15] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and Stefano
Leonardi. Online team formation in social networks. In Proceedings of the
21st World Wide Web Conference 2012, WWW 2012, Lyon, France, pages
839–848, 2012.

[16] Aris Anagnostopoulos, Andrei Z. Broder, and David Carmel. Sampling search-engine
results. In Proceedings of the 14th international conference on World Wide
Web, WWW 2005, Chiba, Japan, pages 245–256, 2005.

[17] Albert Angel and Nick Koudas. Efficient diversity-aware search. In Proceedings of the
SIGMOD International Conference on Management of Data, SIGMOD 2011,
Athens, Greece, pages 781–792, 2011.

[18] Haim Avron and Christos Boutsidis. Faster subset selection for matrices and appli-
cations. SIAM Journal on Matrix Analysis and Applications, 34(4):1464–1499,
2013.

[19] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman, and Paul Lamere. The
million song dataset. In Proceedings of the 12th International Society for Music
Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, pages
591–596, 2011.

[20] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational data.
IEEE Transactions on Knowledge and Data Engineering, 1(1):5, 2007.

132

[21] Sampoorna Biswas, Laks V. S. Lakshmanan, and Senjuti Basu Roy. Combating the
cold start user problem in model based collaborative filtering. Computing
Research Repository, abs/1703.00397, 2017.

[22] Bruno Bouzy and Tristan Cazenave. Computer go: An AI oriented survey. Artificial
Intelligence, 132(1):39–103, 2001.

[23] Barry Bozeman and Mary K Feeney. Toward a useful theory of mentoring: A
conceptual analysis and critique. Administration & society, 39(6):719–739,
2007.

[24] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-based
malware detection system for android. In Proceedings of the 1st Workshop
Security and Privacy in Smartphones and Mobile Devices, pages 15–26, 2011.

[25] HongYun Cai, Vincent Wenchen Zheng, Fanwei Zhu, Kevin Chen-Chuan Chang, and
Zi Huang. From community detection to community profiling. Proceedings of
the VLDB Endowment, 10(7):817–828, 2017.

[26] Jaime Carbinell and Jade Goldstein. The use of mmr, diversity-based reranking
for reordering documents and producing summaries. Proceedings of the 21st
annual international ACM SIGIR conference on Research and development in
information retrieval, 51(2):335–336, 1998.

[27] Silvana Castano, Alfio Ferrara, and Stefano Montanelli. Crowdsourcing task
assignment with online profile learning. In On the Move to Meaningful Internet
Systems. OTM 2018 Conferences - Confederated International Conferences:
CoopIS, C&TC, and ODBASE 2018, Valletta, Malta, volume 11229 of Lecture
Notes in Computer Science, pages 226–242, 2018.

[28] Dana Chandler and Adam Kapelner. Breaking monotony with meaning: Motivation
in crowdsourcing markets. Computing Research Repository, abs/1210.0962,
2012.

[29] Zhiyuan Chen and Tao Li. Addressing diverse user preferences in sql-query-result
navigation. In Proceedings of the International Conference on Management of
Data, SIGMOD 2007, Beijing, China, pages 641–652, 2007.

[30] Peter Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
2012.

[31] Mark Cieliebak, Stephan J. Eidenbenz, Aris Pagourtzis, and Konrad Schlude. On the
complexity of variations of equal sum subsets. Nordic Journal of Computing,
14(3):151–172, 2008.

133

[32] Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort
Lauderdale, USA, April 11-13, 2011, volume 15, pages 215–223, 2011.

[33] Elizabeth G Cohen. Restructuring the classroom: Conditions for productive small
groups. Review of educational research, 1994.

[34] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with
statistical models. In Proceedings of the Advances in Neural Information
Processing Systems 7, NIPS Conference, Denver, Colorado, USA, pages
705–712, 1994.

[35] Peng Dai, Jeffrey M. Rzeszotarski, Praveen Paritosh, and Ed H. Chi. And
now for something completely different: Improving crowdsourcing workflows
with micro-diversions. In Proceedings of the 18th Conference on Computer
Supported Cooperative Work & Social Computing, CSCW 2015, Vancouver,
BC, Canada, March 14 - 18, 2015, pages 628–638, 2015.

[36] Thanasis Daradoumis, Montse Guitert, Ferran Giménez, Joan Manuel Marquès,
and T. Lloret. Supporting the composition of effective virtual groups for
collaborative learning. In Proceedings of the International Conference on
Computers in Education, ICCE 2002, Auckland, New Zealand, pages 332–336,
2002.

[37] Susan B. Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Top-k and
clustering with noisy comparisons. ACM Transactions on Database Systems
(TODS)., 39(4):35:1–35:39, 2014.

[38] Phillip Dawson. Beyond a definition: Toward a framework for designing and specifying
mentoring models. Educational Researcher, 43(3):137–145, 2014.

[39] Djellel Eddine Difallah, Michele Catasta, Gianluca Demartini, and Philippe Cudré-
Mauroux. Scaling-up the crowd: Micro-task pricing schemes for worker
retention and latency improvement. In Proceedings of the Second AAAI
Conference on Human Computation and Crowdsourcing, HCOMP 2014, 2014.

[40] Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudré-Mauroux. Pick-a-
crowd: tell me what you like, and i’ll tell you what to do. In Proceedings of the
22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro,
Brazil, pages 367–374, 2013.

[41] Djellel Eddine Difallah, Elena Filatova, and Panos Ipeirotis. Demographics and
dynamics of mechanical turk workers. In Proceedings of the Eleventh
International Conference on Web Search and Data Mining, WSDM 2018,
Marina Del Rey, CA, USA, February 5-9, 2018, pages 135–143, 2018.

134

[42] Khalid El-Arini, Gaurav Veda, Dafna Shahaf, and Carlos Guestrin. Turning down
the noise in the blogosphere. In Proceedings of the 15th SIGKDD International
Conference on Knowledge Discovery and Data Mining, Paris, France, pages
289–298, 2009.

[43] Sarah Evans, Katie Davis, Abigail Evans, Julie Ann Campbell, David P. Randall,
Kodlee Yin, and Cecilia R. Aragon. More than peer production: Fanfiction
communities as sites of distributed mentoring. In Proceedings of the 2017
Conference on Computer Supported Cooperative Work and Social Computing,
CSCW 2017, Portland, OR, USA, February 25 - March 1, 2017, pages 259–
272, 2017.

[44] Ju Fan, Guoliang Li, Beng Chin Ooi, Kian-Lee Tan, and Jianhua Feng. icrowd:
An adaptive crowdsourcing framework. In Proceedings of the 2015 SIGMOD
International Conference on Management of Data, Melbourne, Victoria,
Australia, pages 1015–1030, 2015.

[45] Ju Fan, Meiyu Lu, Beng Chin Ooi, Wang-Chiew Tan, and Meihui Zhang. A hybrid
machine-crowdsourcing system for matching web tables. In Proceedings of
the IEEE 30th International Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014, pages 976–987, 2014.

[46] Siamak Faradani, Bjoern Hartmann, and Panagiotis G. Ipeirotis. What’s the right
price? pricing tasks for finishing on time. In Human Computation, Papers from
the 2011 AAAI Workshop, San Francisco, California, USA, volume WS-11-11
of Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence,
2011.

[47] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold
Xin. Crowddb: answering queries with crowdsourcing. In Proceedings of the
International Conference on Management of Data, SIGMOD 2011, Athens,
Greece, pages 61–72, 2011.

[48] Yihan Gao and Aditya G. Parameswaran. Finish them!: Pricing algorithms for human
computation. Proceedings of the VLDB Endowment, 7(14):1965–1976, 2014.

[49] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. 1979.

[50] Benôıt Groz and Tova Milo. Skyline queries with noisy comparisons. In Proceedings
of the 34th Symposium on Principles of Database Systems, PODS 2015,
Melbourne, Victoria, Australia, pages 185–198, 2015.

[51] Stephen Guo, Aditya G. Parameswaran, and Hector Garcia-Molina. So who won?:
dynamic max discovery with the crowd. In Proceedings of the International
Conference on Management of Data, SIGMOD 2012, Scottsdale, AZ, USA,
pages 385–396, 2012.

135

[52] Gregory Gutin and Abraham P Punnen. The traveling salesman problem and its
variations, volume 12. 2006.

[53] Lei Han, Kevin Roitero, Ujwal Gadiraju, Cristina Sarasua, Alessandro Checco,
Eddy Maddalena, and Gianluca Demartini. All those wasted hours: On task
abandonment in crowdsourcing. In Proceedings of the Twelfth International
Conference on Web Search and Data Mining, WSDM 2019, Melbourne, VIC,
Australia, February 11-15, 2019, pages 321–329, 2019.

[54] Benjamin V. Hanrahan, Jutta K. Willamowski, Saiganesh Swaminathan, and
David B. Martin. Turkbench: Rendering the market for turkers. In Proceedings
of the 33rd Annual Conference on Human Factors in Computing Systems, CHI
2015, Seoul, Republic of Korea, April 18-23, 2015, pages 1613–1616, 2015.

[55] Negar Hariri, Bamshad Mobasher, and Robin D. Burke. Context-aware music
recommendation based on latenttopic sequential patterns. In Proceedings of
the Sixth Conference on Recommender Systems, RecSys ’12, Dublin, Ireland,
pages 131–138, 2012.

[56] Dap Hartmann. How computers play chess. International Computer Games
Association, 14(2):79–80, 1991.

[57] Kenji Hata, Ranjay Krishna, Fei-Fei Li, and Michael S. Bernstein. A glimpse far into
the future: Understanding long-term crowd worker quality. In Proceedings
of the 2017 Conference on Computer Supported Cooperative Work and Social
Computing, CSCW 2017, Portland, OR, USA, February 25 - March 1, 2017,
pages 889–901, 2017.

[58] Arthur V Hill. An experimental comparison of human schedulers and heuristic
algorithms for the traveling salesman problem. Journal of Operations
Management, 2(4):215–223, 1982.

[59] Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive task
assignment for crowdsourced classification. In Proceedings of the 30th
International Conference on Machine Learning, ICML 2013, Atlanta, GA,
USA, volume 28 of JMLR Workshop and Conference Proceedings, pages
534–542, 2013.

[60] Chien-Ju Ho and Jennifer Wortman Vaughan. Online task assignment in crowd-
sourcing markets. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, Toronto, Ontario, Canada, 2012.

[61] Chiung Ching Ho and Choo-Yee Ting. Measuring crowd sourced analytics: A review.
Inter-national Information Institute (Tokyo). Information, 19(10B):4891,
2016.

[62] John Joseph Horton and Lydia B. Chilton. The labor economics of paid crowd-
sourcing. In Proceedings 11th Conference on Electronic Commerce (EC-2010),
Cambridge, Massachusetts, USA, pages 209–218, 2010.

136

[63] Russell L Huizing. Mentoring together: A literature review of group mentoring.
Mentoring & Tutoring: Partnership in Learning, 20(1):27–55, 2012.

[64] Kosetsu Ikeda, Atsuyuki Morishima, Habibur Rahman, Senjuti Basu Roy, Saravanan
Thirumuruganathan, Sihem Amer-Yahia, and Gautam Das. Collaborative
crowdsourcing with crowd4u. Proceedings of the VLDB Endowment,
9(13):1497–1500, 2016.

[65] Lilly Irani and M. Six Silberman. Turkopticon: interrupting worker invisibility in
amazon mechanical turk. In Proceedings of the 2013 SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13, Paris, France, pages 611–620,
2013.

[66] Anoop Jain, Parag Sarda, and Jayant R. Haritsa. Providing diversity in k-nearest
neighbor query results. In Proceedings of the Advances in Knowledge Discovery
and Data Mining, 8th Pacific-Asia Conference, PAKDD 2004, Sydney,
Australia, volume 3056 of Lecture Notes in Computer Science, pages 404–413,
2004.

[67] Prasanth Jayachandran, Karthik Tunga, Niranjan Kamat, and Arnab Nandi.
Combining user interaction, speculative query execution and sampling in the
DICE system. Proceedings of the VLDB Endowment, 7(13):1697–1700, 2014.

[68] Nicolas Kaufmann, Thimo Schulze, and Daniel Veit. More than fun and money. worker
motivation in crowdsourcing - A study on mechanical turk. In Proceedings of
the 17th Americas Conference on Information Systems, AMCIS 2011, Detroit,
Michigan, USA, 2011.

[69] Aniket Kittur, Boris Smus, and Robert E. Kraut. Crowdforge: crowdsourcing complex
work. In Proceedings of the International Conference on Human Factors in
Computing Systems, CHI 2011, Extended Abstracts Volume, Vancouver, BC,
Canada, pages 1801–1806, 2011.

[70] Pradap Konda, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,
Jeffrey R. Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeffrey F.
Naughton, Shishir Prasad, Ganesh Krishnan, Rohit Deep, and Vijay
Raghavendra. Magellan: Toward building entity matching management
systems. Proceedings of the VLDB Endowment, 9(12):1197–1208, 2016.

[71] Anand Kulkarni, Philipp Gutheim, Prayag Narula, David Rolnitzky, Tapan S. Parikh,
and Björn Hartmann. Mobileworks: Designing for quality in a managed
crowdsourcing architecture. IEEE Internet Computing, 16(5):28–35, 2012.

[72] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of experts in social
networks. In Proceedings of the 15th SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France, pages 467–476, 2009.

137

[73] Isabella Lari, Federica Ricca, Justo Puerto, and Andrea Scozzari. Partitioning a
graph into connected components with fixed centers and optimizing cost-based
objective functions or equipartition criteria. Networks, 67(1):69–81, 2016.

[74] Charles Eric Leiserson, Ronald L Rivest, Thomas H Cormen, and Clifford Stein.
Introduction to algorithms, volume 6. 2001.

[75] Joseph CR Licklider. Man-computer symbiosis. IRE transactions on human factors
in electronics, (1):4–11, 1960.

[76] Albert Yu-Min Lin, Andrew Huynh, Gert Lanckriet, and Luke Barrington.
Crowdsourcing the unknown: The satellite search for genghis khan. PLoS
ONE, 9(12):e114046, 2014.

[77] Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan Shen, Sai Wu, and Meihui Zhang.
CDAS: A crowdsourcing data analytics system. Proceedings of the VLDB
Endowment, 5(10):1040–1051, 2012.

[78] James N. MacGregor and Yun Chu. Human performance on the traveling salesman
and related problems: A review. The Journal of Problem Solving, 3(2), 2011.

[79] Anirban Majumder, Samik Datta, and K. V. M. Naidu. Capacitated team formation
problem on social networks. In Proceedings of the The 18th International
Conference on Knowledge Discovery and Data Mining, KDD ’12, Beijing,
China, pages 1005–1013, 2012.

[80] Andrew Mao, Ece Kamar, and Eric Horvitz. Why stop now? predicting worker
engagement in online crowdsourcing. In Proceedings of the First Conference
on Human Computation and Crowdsourcing, HCOMP 2013, Palm Springs,
CA, USA, 2013.

[81] Adam Marcus, Eugene Wu, David R. Karger, Samuel Madden, and Robert C.
Miller. Human-powered sorts and joins. Proceedings of the VLDB Endowment,
5(1):13–24, 2011.

[82] Adam Marcus, Eugene Wu, Samuel Madden, and Robert C. Miller. Crowdsourced
databases: Query processing with people. In CIDR 2011, Fifth Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 9-12, 2011, Online Proceedings, pages 211–214, 2011.

[83] David B. Martin, Benjamin V. Hanrahan, Jacki O’Neill, and Neha Gupta. Being
a turker. In Computer Supported Cooperative Work, CSCW ’14, Baltimore,
MD, USA, February 15-19, 2014, pages 224–235, 2014.

[84] Mark P Mattson. Superior pattern processing is the essence of the evolved human
brain. Frontiers in neuroscience, 8, 2014.

[85] Arya Mazumdar and Barna Saha. Clustering via crowdsourcing. Computing Research
Repository, abs/1604.01839, 2016.

138

[86] Arya Mazumdar and Barna Saha. Clustering with noisy queries. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA,
USA, pages 5788–5799, 2017.

[87] Jodi L Mead and Rosemary A Renaut. Least squares problems with inequality
constraints as quadratic constraints. Linear Algebra and its Applications,
432(8):1936–1949, 2010.

[88] Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment analysis algorithms
and applications: A survey. Ain Shams Engineering Journal, 5(4):1093–1113,
2014.

[89] Wil Michiels, Jan H. M. Korst, Emile H. L. Aarts, and Jan van Leeuwen. Performance
ratios for the differencing method applied to the balanced number partitioning
problem. In STACS 2003, 20th Annual Symposium on Theoretical Aspects
of Computer Science, Berlin, Germany, February 27 - March 1, 2003,
Proceedings, volume 2607 of Lecture Notes in Computer Science, pages
583–595, 2003.

[90] Vicente Rodŕıguez Monteqúın, Joaqúın Villanueva Balsera, José Manuel Mesa
Fernández, and Javier De Cos Juez. Using myers-briggs type indicator
(MBTI) for assessment success of student groups in project based learning.
In Proceedings of the Second International Conference on Computer Supported
Education, Valencia, Spain, April 7-10, 2010 - Volume 2, pages 156–160, 2010.

[91] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of
approximations for maximizing submodular set functions - I. Math. Program.,
14(1):265–294, 1978.

[92] Allen Newell, John Calman Shaw, and Herbert A Simon. Chess-playing programs
and the problem of complexity. IBM Journal of Research and Development,
2(4):320–335, 1958.

[93] JD North. The rational behavior of mechanically extended man. Boulton Paul Aircraft
Ltd., Wolverhampton, Eng, 1954.

[94] Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, and Alexandre Termier. Interactive
user group analysis. In Proceedings of the 24th International Conference
on Information and Knowledge Management, CIKM 2015, Melbourne, VIC,
Australia, pages 403–412, 2015.

[95] Shameem Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A coverage-
based approach to recommendation diversity on similarity graph. In
Proceedings of the 10th Conference on Recommender Systems, Boston, MA,
USA, pages 15–22, 2016.

139

[96] Julien Pilourdault, Sihem Amer-Yahia, Dongwon Lee, and Senjuti Basu Roy.
Motivation-aware task assignment in crowdsourcing. In Proceedings of the 20th
International Conference on Extending Database Technology, EDBT 2017,
Venice, Italy, March 21-24, 2017, pages 246–257, 2017.

[97] Julien Pilourdault, Sihem Amer-Yahia, Senjuti Basu Roy, and Dongwon Lee. Task
relevance and diversity as worker motivation in crowdsourcing. In Proceedings
of the 34th IEEE International Conference on Data Engineering, ICDE 2018,
Paris, France, April 16-19, 2018, pages 365–376, 2018.

[98] Vassilis Polychronopoulos, Luca de Alfaro, James Davis, Hector Garcia-Molina, and
Neoklis Polyzotis. Human-powered top-k lists. In Proceedings of the 16th
International Workshop on the Web and Databases 2013, WebDB 2013, New
York, NY, USA, pages 25–30, 2013.

[99] Friedrich Pukelsheim. Optimal design of experiments. 2006.

[100] Abraham P. Punnen, François Margot, and Santosh N. Kabadi. TSP heuristics:
Domination analysis and complexity. Algorithmica, 35(2):111–127, 2003.

[101] Kun Qian, Lucian Popa, and Prithviraj Sen. Systemer: A human-in-the-loop system
for explainable entity resolution. Proceedings of the VLDB Endowment,
12(12):1794–1797, 2019.

[102] Lijing Qin and Xiaoyan Zhu. Promoting diversity in recommendation by entropy
regularizer. In IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, pages 2698–2704, 2013.

[103] Habibur Rahman, Senjuti Basu Roy, and Gautam Das. A probabilistic framework
for estimating pairwise distances through crowdsourcing. In Proceedings of
the 20th International Conference on Extending Database Technology, EDBT
2017, Venice, Italy, March 21-24, 2017, pages 258–269, 2017.

[104] Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-
Yahia, and Gautam Das. Task assignment optimization in collaborative
crowdsourcing. In Proceedings of the 2015 IEEE International Conference
on Data Mining, ICDM 2015, Atlantic City, NJ, USA, pages 949–954, 2015.

[105] Habibur Rahman, Senjuti Basu Roy, Saravanan Thirumuruganathan, Sihem Amer-
Yahia, and Gautam Das. Optimized group formation for solving collaborative
tasks. The International Journal on Very Large Data Bases, 28(1):1–23, 2019.

[106] Habibur Rahman, Saravanan Thirumuruganathan, Senjuti Basu Roy, Sihem Amer-
Yahia, and Gautam Das. Worker skill estimation in team-based tasks.
Proceedings of the VLDB Endowment, 8(11):1142–1153, 2015.

140

[107] Syama Sundar Rangapuram, Thomas Bühler, and Matthias Hein. Towards realistic
team formation in social networks based on densest subgraphs. In 22nd
International World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil,
pages 1077–1088, 2013.

[108] Christopher Ré, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k query evaluation
on probabilistic data. In Proceedings of the 23rd International Conference on
Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April
15-20, 2007, pages 886–895, 2007.

[109] Jakob Rogstadius, Vassilis Kostakos, Aniket Kittur, Boris Smus, Jim Laredo, and
Maja Vukovic. An assessment of intrinsic and extrinsic motivation on
task performance in crowdsourcing markets. In Proceedings of the Fifth
International Conference on Weblogs and Social Media, Barcelona, Catalonia,
Spain, 2011.

[110] Senjuti Basu Roy, Laks V. S. Lakshmanan, and Rui Liu. From group recommen-
dations to group formation. In Proceedings of the 2015 SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, pages
1603–1616, 2015.

[111] Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan, Sihem
Amer-Yahia, and Gautam Das. Crowds, not drones: Modeling human factors
in interactive crowdsourcing. In Proceedings of the First VLDB Workshop on
Databases and Crowdsourcing, DBCrowd 2013, Riva del Garda, Trento, Italy,
volume 1025, pages 39–42, 2013.

[112] Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan, Sihem
Amer-Yahia, and Gautam Das. Task assignment optimization in knowledge-
intensive crowdsourcing. The International Journal on Very Large Data Bases,
24(4):467–491, 2015.

[113] Jeffrey M Rzeszotarski, Ed Chi, Praveen Paritosh, and Peng Dai. Inserting micro-
breaks into crowdsourcing workflows. In First AAAI Conference on Human
Computation and Crowdsourcing, 2013.

[114] Tim Schlippe, Chenfei Zhu, Daniel Lemcke, and Tanja Schultz. Statistical machine
translation based text normalization with crowdsourcing. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2013, Vancouver, BC, Canada, pages 8406–8410, 2013.

[115] Avi Segal, Ya’akov (Kobi) Gal, Ece Kamar, Eric Horvitz, Alex Bowyer, and Grant
Miller. Intervention strategies for increasing engagement in crowdsourcing:
Platform, predictions, and experiments. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016, pages 3861–3867, 2016.

141

[116] Aaron D. Shaw, John J. Horton, and Daniel L. Chen. Designing incentives for inexpert
human raters. In Proceedings of the 2011 Conference on Computer Supported
Cooperative Work, CSCW 2011, Hangzhou, China, March 19-23, 2011, pages
275–284, 2011.

[117] Jianhua Shen, Joseph Barbera, and Colin M Shapiro. Distinguishing sleepiness
and fatigue: focus on definition and measurement. Sleep medicine reviews,
10(1):63–76, 2006.

[118] Julio M. Singer. Central limit theorems. In International Encyclopedia of Statistical
Science, pages 228–234. 2011.

[119] Ivan Srba and Mária Bieliková. Dynamic group formation as an approach to
collaborative learning support. IEEE Transactions on Learning Technologies,
8(2):173–186, 2015.

[120] Philip B Stark and Robert L Parker. Bounded-variable least-squares: an algorithm
and applications. Computational Statistics, 10:129–129, 1995.

[121] Michael R Stoline. The status of multiple comparisons: simultaneous estimation of
all pairwise comparisons in one-way anova designs. The American Statistician,
35(3):134–141, 1981.

[122] Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai, Jingjing Liu, and Ming-Wei Chang.
Open domain question answering via semantic enrichment. In Proceedings of
the 24th International Conference on World Wide Web, WWW 2015, Florence,
Italy, pages 1045–1055, 2015.

[123] Saúl Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. Coverage,
redundancy and size-awareness in genre diversity for recommender systems. In
Proceedings of the Eighth Conference on Recommender Systems, RecSys ’14,
Foster City, Silicon Valley, CA, USA, pages 209–216, 2014.

[124] Vasilis Verroios, Hector Garcia-Molina, and Yannis Papakonstantinou. Waldo: An
adaptive human interface for crowd entity resolution. In Proceedings of the
2017 International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, pages 1133–1148, 2017.

[125] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders.
In Proceedings of the Twenty-Fifth International Conference on Machine
Learning (ICML 2008), Helsinki, Finland, volume 307 of ACM International
Conference Proceeding Series, pages 1096–1103, 2008.

[126] Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott
Sanner. Two-stage model for automatic playlist continuation at scale. In
Proceedings of the Recommender Systems Challenge, RecSys Challenge 2018,
Vancouver, BC, Canada, pages 9:1–9:6, 2018.

142

[127] Dongjing Wang, Shuiguang Deng, and Guandong Xu. Sequence-based context-aware
music recommendation. Journal of Information Retrieval, 21(2-3):230–252,
2018.

[128] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. Crowder:
Crowdsourcing entity resolution. Proceedings of the VLDB Endowment,
5(11):1483–1494, 2012.

[129] Jinfeng Yi, Rong Jin, Anil K. Jain, Shaili Jain, and Tianbao Yang. Semi-crowdsourced
clustering: Generalizing crowd labeling by robust distance metric learning. In
Proceedings of the 26th Annual Conference on Neural Information Processing
Systems 2012. December 3-6, 2012, Lake Tahoe, Nevada, United States, pages
1781–1789, 2012.

[130] Cong Yu, Laks V. S. Lakshmanan, and Sihem Amer-Yahia. It takes variety to
make a world: diversification in recommender systems. In Proceedings of
the 12th International Conference on Extending Database Technology, Saint
Petersburg, Russia, March 24-26, 2009, Proceedings, volume 360 of ACM
International Conference Proceeding Series, pages 368–378, 2009.

[131] Mi Zhang and Neil Hurley. Avoiding monotony: improving the diversity of
recommendation lists. In Proceedings of the 2008 Conference on Recommender
Systems, RecSys 2008, Lausanne, Switzerland, pages 123–130, 2008.

[132] Ying Zhang, Xianghua Ding, and Ning Gu. Understanding fatigue and its impact
in crowdsourcing. In 2018 IEEE 22nd International Conference on Computer
Supported Cooperative Work in Design ((CSCWD)), pages 57–62. IEEE, 2018.

[133] Yudian Zheng, Jiannan Wang, Guoliang Li, Reynold Cheng, and Jianhua Feng.
QASCA: A quality-aware task assignment system for crowdsourcing appli-
cations. In Proceedings of the 2015 International Conference on Management
of Data, Melbourne, Victoria, Australia, pages 1031–1046, 2015.

[134] Eric R. Ziegel. Multivariate statistical modelling based on generalized linear models.
Technometrics, 44(1):94, 2002.

[135] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen.
Improving recommendation lists through topic diversification. In Proceedings
of the 14th international conference on World Wide Web, WWW 2005, Chiba,
Japan, pages 22–32, 2005.

143

	Changing the focus: worker-centric optimization in human-in-the-loop computations
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2 : Preference Elicitation for Task Completion Time
	Chapter 3: Crowdsourcing Analytics with Crowdcur
	Chapter 4: Optimizing Peer Learning With Affinities
	Chapter 5: Diversifying Recommendations on Sequences of Sets
	Chapter 6: Summary and Future Work
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

