2,275 research outputs found

    Modeling and Predicting Future Trajectories of Moving Objects in a Constrained Network

    Get PDF
    http://ieeexplore.ieee.org/Advances in wireless sensor networks and positioning technologies enable traffic management (e.g. routing traffic) that uses real-time data monitored by GPS-enabled cars. Location management has become an enabling technology in such application. The location modeling and trajectory prediction of moving objects are the fundamental components of location management in mobile locationaware applications. In this paper, we model the road network and moving objects in a graph of cellular automata (GCA), which makes full use of the constraints of the network and the stochastic behavior of the traffic. A simulation-based method based on graphs of cellular automata is proposed to predict future trajectories. Our technique strongly differs from the linear prediction method, which has low prediction accuracy and requires frequent updates when applied to real traffic with velocity changes. The experiments, carried on two different datasets, show that the simulation-based prediction method provides higher accuracy than the linear prediction method

    Dynamic-parinet (D-parinet) : indexing present and future trajectories in networks

    Get PDF
    While indexing historical trajectories is a hot topic in the field of moving objects (MO) databases for many years, only a few of them consider that the objects movements are constrained. DYNAMIC-PARINET (D-PATINET) is designed for capturing of trajectory data flow in multiple discrete small time interval efficiently and to predict a MO’s movement or the underlying network state at a future time. The cornerstone of D-PARINET is PARINET, an efficient index for historical trajectory data. The structure of PARINET is based on a combination of graph partitioning and a set of composite B+-tree local indexes tuned for a given query load and a given data distribution in the network space. D-PARINET studies continuous update of trajectory data and use interpolation to predict future MO movement in the network. PARINET and D-PARINET can easily be integrated into any RDBMS, which is an essential asset particularly for industrial or commercial applications. The experimental evaluation under an off-the-shelf DBMS using simulated traffic data shows that DPARINET is robust and significantly outperforms the R-tree based access methods

    Yellow Tree: A Distributed Main-memory Spatial Index Structure for Moving Objects

    Get PDF
    Mobile devices equipped with wireless technologies to communicate and positioning systems to locate objects of interest are common place today, providing the impetus to develop location-aware applications. At the heart of location-aware applications are moving objects or objects that continuously change location over time, such as cars in transportation networks or pedestrians or postal packages. Location-aware applications tend to support the tracking of very large numbers of such moving objects as well as many users that are interested in finding out about the locations of other moving objects. Such location-aware applications rely on support from database management systems to model, store, and query moving object data. The management of moving object data exposes the limitations of traditional (spatial) database management systems as well as their index structures designed to keep track of objects\u27 locations. Spatial index structures that have been designed for geographic objects in the past primarily assume data are foremost of static nature (e.g., land parcels, road networks, or airport locations), thus requiring a limited amount of index structure updates and reorganization over a period of time. While handling moving objects however, there is an incumbent need for continuous reorganization of spatial index structures to remain up to date with constantly and rapidly changing object locations. This research addresses some of the key issues surrounding the efficient database management of moving objects whose location update rate to the database system varies from 1 to 30 minutes. Furthermore, we address the design of a highly scaleable and efficient spatial index structure to support location tracking and querying of large amounts of moving objects. We explore the possible architectural and the data structure level changes that are required to handle large numbers of moving objects. We focus specifically on the index structures that are needed to process spatial range queries and object-based queries on constantly changing moving object data. We argue for the case of main memory spatial index structures that dynamically adapt to continuously changing moving object data and concurrently answer spatial range queries efficiently. A proof-of concept implementation called the yellow tree, which is a distributed main-memory index structure, and a simulated environment to generate moving objects is demonstrated. Using experiments conducted on simulated moving object data, we conclude that a distributed main-memory based spatial index structure is required to handle dynamic location updates and efficiently answer spatial range queries on moving objects. Future work on enhancing the query processing performance of yellow tree is also discussed

    A Spatial Data Model for Moving Object Databases

    Get PDF

    Linking Spatial Video and GIS

    Get PDF
    Spatial Video is any form of geographically referenced videographic data. The forms in which it is acquired, stored and used vary enormously; as does the standard of accuracy in the spatial data and the quality of the video footage. This research deals with a specific form of Spatial Video where these data have been captured from a moving road-network survey vehicle. The spatial data are GPS sentences while the video orientation is approximately orthogonal and coincident with the direction of travel. GIS that use these data are usually bespoke standalone systems or third party extensions to existing platforms. They specialise in using the video as a visual enhancement with limited spatial functionality and interoperability. While enormous amounts of these data exist, they do not have a generalised, cross-platform spatial data structure that is suitable for use within a GIS. The objectives of this research have been to define, develop and implement a novel Spatial Video data structure and demonstrate how this can achieve a spatial approach to the study of video. This data structure is called a Viewpoint and represents the capture location and geographical extent of each video frame. It is generalised to represent any form or format of Spatial Video. It is shown how a Viewpoint improves on existing data structure methodologies and how it can be theoretically defined in 3D space. A 2D implementation is then developed where Viewpoints are constructed from the spatial and camera parameters of each survey in the study area. A number of problems are defined and solutions provided towards the implementation of a post-processing system to calculate, index and store each video frame Viewpoint in a centralised spatial database. From this spatial database a number of geospatial analysis approaches are demonstrated that represent novel ways of using and studying Spatial Video based on the Viewpoint data structure. Also, a unique application is developed where the Viewpoints are used as a spatial control to dynamically access and play video in a location aware system. While video has been to date largely ignored as a GIS spatial data source; it is shown through this novel Viewpoint implementation and the geospatial analysis demonstrations that this need not be the case anymore

    Advance of the Access Methods

    Get PDF
    The goal of this paper is to outline the advance of the access methods in the last ten years as well as to make review of all available in the accessible bibliography methods

    Path prediction and predictive range querying in road network databases

    Get PDF
    In automotive applications, movement-path prediction enables the delivery of predictive and relevant services to drivers, e.g., reporting traffic conditions and gas stations along the route ahead. Path prediction also enables better results of predictive range queries and reduces the location update frequency in vehicle tracking while preserving accuracy. Existing moving-object location prediction techniques in spatial-network settings largely target short-term prediction that does not extend beyond the next road junction. To go beyond short-term prediction, we formulate a network mobility model that offers a concise representation of mobility statistics extracted from massive collections of historical object trajectories. The model aims to capture the turning patterns at junctions and the travel speeds on road segments at the level of individual objects. Based on the mobility model, we present a maximum likelihood and a greedy algorithm for predicting the travel path of an object (for a time duration h into the future). We also present a novel and efficient server-side indexing scheme that supports predictive range queries on the mobility statistics of the objects. Empirical studies with real data suggest that our proposals are effective and efficien

    Spatiotemporal Indexing With the M-Tree

    Get PDF
    Modern GIS applications for transportation and defense often require the ability to store the evolving positions of a large number of objects as they are observed in motion, and to support queries on this spatiotemporal data in real time. Because the M-Tree has been proven as an index for spatial network databases, we have selected it to be enhanced as a spatiotemporal index. We present modifications to the tree which allow trajectory reconstruction with fast insert performance and modifications which allow the tree to be built with awareness of the spatial locality of reference in spatiotemporal data

    Data Models for Moving Objects in Road Networks – Implementation and Experiences

    Get PDF
    Paper deals with the specific LBS scenario – Fleet management (FM) and more specifically with systems for Automatic vehicle location (AVL). Well designed and implemented spatial data model for moving objects is one of the most significant elements of any AVL system. In practical applications the results of the latest scientific research are seldom applied, despite the fact that this area has been developing intensively for more than 20 years. The reasons for this are analysed in the paper. Short analysis of functionality of these systems is presented considering the impact of these functionalities on the implemented data model for moving objects and more specifically their impact on spatio-temporal component of the model. The paper especially reviews the possibility of using road networks as a basis for the representation of moving objects data models and a fact that these models are rarely used in practical applications. A solution overcoming this situation is proposed. The solution assumes transition from the system that is not based on road network to the system that is based on network. There are quite few research papers dealing with OSM data models. Therefore, a significant space in this paper is dedicated to the description of these models since OSM data can be valuable for this type of applications
    • …
    corecore