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Abstract

Advances in wireless sensor networks and positioning
technologies enable traffic management (e.g. routing traf-
fic) that uses real-time data monitored by GPS-enabled
cars. Location management has become an enabling tech-
nology in such application. The location modeling and tra-
jectory prediction of moving objects are the fundamental
components of location management in mobile location-
aware applications. In this paper, we model the road
network and moving objects in a graph of cellular au-
tomata (GCA), which makes full use of the constraints
of the network and the stochastic behavior of the traf-
fic. A simulation-based method based on graphs of cel-
lular automata is proposed to predict future trajectories.
Our technique strongly differs from the linear prediction
method, which has low prediction accuracy and requires
frequent updates when applied to real traffic with veloc-
ity changes. The experiments, carried on two different
datasets, show that the simulation-based prediction method
provides higher accuracy than the linear prediction method.

1 Introduction

The continued advances in wireless sensor networks
and position technologies enable traffic management and
location-based services that track continuously changing
positions of moving objects. For example, moving cars on a
road network can be monitored and their locations are sam-
pled by sensors or GPS periodically, then sent to the server
and stored in a database. According to the real-time loca-
tions and predicted future trajectories of cars, we can fore-
cast traffic jams and route the traffic intelligently. Timely
location information is becoming one of the key features
in these applications. In this paper, we focus on the the
location modeling and future trajectory prediction of mov-

ing objects, which are the foundations for efficient location
management in mobile location-aware applications.

Many models and algorithms have been proposed to han-
dle the continuously changing positions of moving objects.
Wolfson et al. in [16, 21] firstly proposed a Moving Objects
Spatio-Temporal (MOST) model, which represents the lo-
cation as a dynamic attribute. Later, the model based on
linear constrain [17], abstract data types [9] and Space-
Time Grid Storage [4] for moving objects have been pro-
posed. However, in most real life applications, objects move
within constrained networks, especially the transportation
networks (e.g., vehicles move on road networks). These
works ignore the interaction between moving objects and
the underlying transportation networks.

In fact, the interaction is very important to manage
network-constrained moving objects. For example, in the
location tracking, the road-network representation of mov-
ing objects can be exploited to reduce the number of up-
dates from moving objects to the database server [5]. For
indexing moving objects in road networks, the temporal as-
pect can be distinguished and related to the road network to
save considerable index storage space [2, 8] since the spa-
tial property of objects’ movement is already captured by
the network. In addition, using the network constraints, the
query processing can also be improved [10, 15].

More recently, the models connecting moving objects
with the road network representation have been pro-
posed [7, 13, 14, 20]. Most of them represent road net-
works as graphs and moving objects as moving graph points
with their speed in order to capture objects’ movement.
However, the models assume linear movement and can not
reflect the real movement feature of moving objects in a
road network where objects frequently change their veloc-
ity. This limits their applicability in a majority of real appli-
cations.

In this paper, we propose a new graph of cellular au-
tomata (GCA) model to integrate the traffic movement fea-
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tures into the model of moving objects and the underly-
ing road network. The GCA model exploits the stochas-
tic behavior of the real traffic by the cellular automaton
which is used in the traffic simulation [12]. It also com-
bines the road network model with the real movement of
objects and therefore improves the efficiency of managing
network-constrained moving objects.

Considering the new feature of the GCA model, it can
be efficiently used to simulate future trajectories of mov-
ing objects, where objects’ movement follows traffic rules.
We further propose a simulation-based prediction method
based on the GCA model. Since the GCA exploits features
of traffic systems, the method can predict future trajectories
of moving objects in road network more accurately than the
linear prediction method widely used in the predictive in-
dexing and query processing.

The framework built on the GCA model and simulation-
based prediction forms the foundation of the efficient stor-
age and management of network-constrained moving ob-
jects. Specifically, it is capable of reducing the number of
updates in tracking and indexing and supporting the predic-
tive queries on moving objects in a road network.

In summary, this paper makes the following contribu-
tions:

1. We present the graphs of cellular automata (GCA)
model to integrate the trajectory representation of
moving objects and the transportation network with in-
trinsic movement features in the real traffic.

2. Based on the GCA model, we propose a simulation-
based prediction (SP) method, which improves the ac-
curacy of predicting future trajectories of objects mov-
ing in a traffic network.

3. The experiments show that the simulation-based pre-
diction method obtains higher accuracy than the linear
prediction method widely used.

The rest of the paper is organized as follows. Section 2
surveys related work. In Section 3, the graph of cellular au-
tomata model is introduced to model the road network and
movement of objects. Section 4 presents the simulation-
based prediction method. Section 5 contains experimental
evaluation. We conclude in Section 6.

2 Related Work
The modeling of moving objects attracts a lot of research

interests. Wolfson et al. in [16, 21] firstly proposed a Mov-
ing Objects Spatio-Temporal (MOST) model which is capa-
ble of tracking not only the current, but also the near future
position of moving objects. Su et al. in [17] presented a
data model for moving objects based on linear constraint
databases. Chon et al. in [4] proposed a Space-Time Grid

Storage model for moving objects. In [9], Güting et al. pre-
sented a data model and data structures for moving objects
based on abstract data types. However, nearly none of these
works have treated the interaction between moving objects
and the underlying transportation networks in any way.

In 2001, Vazirgiannis and Wolfson [20] first introduced
a model for moving objects on road networks, which con-
nects the moving object’s trajectory model with the road
network representation. In the model, the road network is
represented by an electronic map and the trajectory of a
moving object is constructed by the map and its destination.
In [14], the authors presented a computational data model
for network constrained moving objects in which the road
network has two representations namely a two-dimensional
representation and a graph representation to obtain both ex-
pressiveness and efficient support for queries. In this model,
the moving objects treated as query points are represented
by graph points located on segments or edges. Ding et
al. [7] proposed a MOD model, based on dynamic trans-
portation networks. They model transportation networks
as dynamic graphs and moving objects as moving graph
points. In addition, Papadias et al. in [13] presented a
framework to support spatial network databases. However,
these models capture movement information of objects only
by their speed and assume the linear movement, which limit
applicability in a majority of real applications.

Prediction methods for future trajectories of moving ob-
jects play an important role in indexing and querying cur-
rent and anticipated future positions. Most existing pre-
diction methods, used in the indexing and querying, as-
sume linear movement, which cannot reflect the real move-
ment. Aggarwal et al [1] introduced a non-linear model
that uses quadratic predictive function, Tao et al [18] pro-
posed a prediction method based on recursive motion func-
tions for objects with unknown motion patterns, and Cai et
al [6] used Chebyshev polynomials to represent and index
spatio-temporal trajectories. In [19], Tao et al developed
Venn sampling (VS), a novel estimation method optimized
for a set of pivot queries that reflect the distribution of ac-
tual ones. These prediction methods improve the precision
in predicting the location of each object, but they ignore
the correlation of adjacent objects when they move in traf-
fic networks, and thus may not reflect the realistic traffic
scenario.

Despite the wide use of traffic simulation rules in trans-
portation GIS domain [12, 3], their integration to a database
model for objects in constrained networks has never been
done before.

3 Graphs of Cellular Automata Model

We model a road network with a graph of cellular au-
tomata (GCA), where the nodes of the graph represent road
intersections and the edges represent road segments with
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Figure 1: An example of a road network and its GCA model

no intersections. Different from the general graph model,
each edge in the GCA consists of a cellular automaton (CA),
which is represented, in a discrete mode, as a finite sequence
of cells. Each cell corresponds in practice to some road seg-
ment of about 7.5 m.

Figure 1 shows an example of a road network and its
GCA model. Each node has a label which represents an
intersection of the road network. The wide lines represent
edges and each edge treated as one CA connects many cells.

The CA model was used in this context by [12]. We first
recall the definition of cellular automaton.

Definition 1 A cellular automaton consists of a finite ori-
ented sequence of cells. In a configuration, each cell is
either empty or contains a symbol. During a transition,
symbols can move forward to subsequent cells, symbols can
leave the CA and new symbols can enter the CA.

An example of cellular automaton corresponding to edge
(N1, N2) in Figure 1(b) with a transition between two con-
figurations is given in Figure 2. We now formally define a
graph of cellular automata.

Definition 2 The structure of a GCA is a directed weighted
graph G = (V, E, l) where V is a set of vertices (i.e.,
nodes),E is a set of edges andl : E → N is a function
which associates to each edge the number of cells of the
corresponding cellular automaton.

We assume a countably infinite alphabetΩ :
{α, β, γ, · · ·}, denoting moving objects’ names. LetC be
the set of cells of a GCA.

A configuration or an instance of a GCA, is a mapping
from the cells of the GCA to constants inΩ together with
a given velocity. Intuitively, the velocity is the number of
cells an object can traverse during a time unit.

Definition 3 An instanceI of a GCA is defined by two func-
tions:

µ : C → Ω
⋃
{ε} (1-1 mapping)

v : Ω → N.

A moving object is represented as a symbol attached to
the cell in the GCA and it can move several cells ahead at
each time unit. Figure 1(b) is an instance of the GCA corre-
sponding to the road network of Figure 1(a). In Figure 1(b),
moving objects are denoted by squares. A moving object
lies on exactly one cell of the edge and its location can be
obtained by computing the number of cells relative to the
start node. For instance, objectα lies on the edge(N1, N2)
and there are two cells away fromN1 along the edge. There-
fore, its position can be expressed by(N1, N2, 2).

The motion of an object is represented as some (time,
location) information. Representing such information of a
moving object as a trajectory is a typical approach [20]. In
the GCA model, the trajectory of a moving object can be
divided two types: the in-edge trajectory for the object’s
movement in one edge (CA) and the global trajectory for
the object that may move cross several edges (CAs) dur-
ing its movement. The in-edge trajectory of an object is a
polyline in two-dimensional space (one-dimensional rela-
tive distance, plus time), which can be defined as follows:

Definition 4 The in-edge trajectory of a moving object in
a CA of lengthL is a piece-wise functionf : T → N,
represented as a sequence of points(t1, l1), (t2, l2), . . . ,
(tn, ln)(t1 < t2 < . . . < tn, l1 < l2 < . . . < ln ≤ L).

When an object moves across multiple edges, its global
trajectory is defined as functions mapping the time to the
edge and relative distance.

Definition 5 The global trajectory of a moving ob-
ject in different CAs is a piece-wise functionf :
T → (E,N), represented as a sequence of points
(t1, e1, l1), . . . , (ti, ej , lk), . . . , (tz, em, ln)(t1 < t2 <

. . . < tz).

In the sequel, we will be interested by deterministic paths
in the GCA i.e., path with source nodes of out degree 1. The
successive CAs in a deterministic path can be then seen as
a unique CA.

Let i be an object moving along an edge. Letv(i) be
its velocity,x(i) its position,gap(i) the number of empty
cells ahead (forward gap), andPd(i) a randomized slow-
down rate which specifies the probability it slows down. We
assume thatVmax is the maximum velocity of moving ob-
jects. The position and velocity of each object might change
at each transition as shown definition 6 adapted from [12].

Definition 6 At each transition of the GCA, each object
changes velocity and position in a CA of lengthL according
to the rules below:

1. if v(i) < Vmax andv(i) < gap(i) thenv(i) ← v(i)+1

2. if v(i) > gap(i) thenv(i) ← gap(i)
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Figure 2: Transition of the GCA

3. if v(i) > 0 andrand() < Pd(i) thenv(i) ← v(i) − 1

4. if (x(i) + v(i)) ≤ L thenx(i) ← x(i) + v(i)

The first rule represents linear acceleration until the ob-
ject reaches the maximum speedVmax. The second rule
ensures that if there is another object in front of the current
object, it will slow down in order to avoid collision. In the
third rule, thePd(i) models erratic movement behavior. Fi-
nally, the new position of objecti is given by the fourth rule
as the sum of the previous position with the new velocity if
it is in the CA. Note that it is easy to extend the definition
of transition to deterministic paths. Because of determinis-
tic path, the objects move to a new position in a subsequent
CA. Figure 2 shows the simulated movement of objects on
a cellular automaton of the GCA in two consecutive times-
tamps. We can see that at timet, the speed of the objecta
is smaller than the gap (i.e. the number of cells between the
objecta andb). On the other hand, the objectb will reduce
its speed to the size of the gap. According to the fourth rule,
the objects move to the corresponding positions based on
their speeds at timet + 1.

However, objects in real traffic have different desired
speed. With the transitions of the GCA of one lane CA
mentioned above, it can be found that slow objects being
followed by faster ones, and the average speed reduced to
the free-flow speed of the slowest object [11]. In view of
this, we extend the one lane GCA to two lane GCA in which
a CA consists of two parallel single lane. Therefore, each
cell in two lane GCA is composed of two parallel single
lane and each lane may contain one symbol namely a mov-
ing object. The functionµ in a GCA instanceI will change
to the 1-2 mapping accordingly.

For the transition of GCA with one lane, we extend it to
the two lane by attaching an additional rule that models the
changing of lanes of the object. Suppose the objects move
only sideways, the transition of GCA happens on both lanes
according to the previous four rules and then the exchange
of objects between two lanes is checked according to the
additional conditions for changing lane as follows:

5. objecti changes lane with probabilityPc if

gap(i) < p, gapo(i) > p1, andgapo,b(i) > po,b

wheregap(i) is the number of empty cells ahead in
the same lane,gapo(i) is the forward gap on the other

p=3, po=3, po,b =5

a b c d

e

Figure 3: An example of changing lane in transition of the two
lane GCA

lane,gapo,b(i) is the backward gap on the other lane,
p, po andpo,b are the parameters which decide how far
the object looks ahead on the current lane, ahead on
the other lane, and back on the other lane, respectively.

In fact, the changing lane rule is based on the following
observation: the car looks ahead if some car is in its way;
the car looks on the other lane if it is any better there; the
car looks back on the other lane if it would get in other cars
way. Generally, in the above rule, bothp andpo are essen-
tially proportional to the velocity, whereas looking back de-
pends mostly on the expected velocity of other objects, not
on one’s own. An example of invoking the rule of changing
lane withp = v + 1, po = p, po,b = vmax, Pc = 1 is given
in Figure 3. The objectb with p = 3, po = 3, po,b = 5
changes to the other lane in the GCA due to satisfying the
fifth rule mentioned above.

4 Trajectory Prediction
In the management of moving objects, the trajectory pre-

diction method is usually used to improve the performance
of the location update strategy and to support the predictive
index and queries. In this part, we first review some linear
prediction methods and analyze their problem in handling
moving objects in constrained networks, and finally present
our simulation-based prediction method.

4.1 The Linear Prediction (LP)

Most current index and query processing approaches use
the linear prediction method for its simplicity and capabil-
ity of approximating any curve of free movement by piece-
wise linear segments. Suppose the trajectory function for
an object between timet0 andt1 is

~Xt = ~Xt0 + ~V (t − t0) (t0 ≤ t ≤ t1)

where ~Xt0 denotes the position of the object at timet0 and
~V denotes the velocity of the object, which is assumed to
remain fixed betweent0 to t1.

General LP The general linear prediction method uses the
object’s current position~Xt0 and current velocity~V to pre-
dict its position in the near future. When the prediction is
deemed inaccurate, that is, its deviation from the actual po-
sition is beyond a predefined threshold, we revise our pre-
diction by resetting~Xt0 and~V . In situations where object’s
velocity remains largely constant, this method enables us to
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make future prediction with high precision. However, when
objects move with changing velocity, their trajectory func-
tions have to be revised frequently.

Road Segment Based LPIf objects move in a constrained
environment such as a transportation network, we can use
the road segments of the network to help model the object’s
movement. In other words, we assume objects move at con-
stant speed along a road segment, that is, their trajectory
functions will not change until they move out of a road seg-
ment. When an object enters a new road segment, we re-
set the velocity~V in its trajectory function. The frequency
of revising the trajectory function depends on the average
length of the road segments.

Route Based LP If objects have regular and known routes
in the transportation network (e.g., one takes the same route
from home to work), we can use the routes instead of the
road segments to reduce the number of updates needed to
maintain the objects’ position. If the route is predicted in-
correctly, we simply make an additional update.

However, any real traffic system has a stochastic, dy-
namic and fuzzy nature. The accuracy of linear predic-
tion methods mentioned above is inadequate because linear
methods can hardly reflect the movement of objects con-
strained by road networks. For example, in urban road net-
works, because of traffic conditions, a vehicle may travel
at a constant speed, decelerate to stop, wait, accelerate and
travel again at a constant speed. Vehicles may often repeat
the above movement in modern urban road networks.

We use Figure 4 to demonstrate the inadequacy of the
linear prediction method for real road networks. Figure 4(a)
shows the predicted (linear) trajectory and the actual trajec-
tory of an object. We can see that each time the change of
the object’s velocity is above a certain threshold, an update
is triggered and the trajectory is revised by a new velocity
vector. The frequent changes of the object’s velocity will
incur repeated update and prediction.

4.2 The Simulation-based Prediction (SP)

Considering the simulation feature of the GCA model,
we use GCAs not only to model road networks, but also to
simulate future trajectories of moving objects by the tran-
sitions of GCAs, where objects’ movement follows traffic
rules. Based on the GCA, aSimulation-based Prediction
(SP)method to anticipate future trajectories of moving ob-
jects is proposed. The SP method treats the object’s sim-
ulated results as its predicted positions to obtain its future
in-edge trajectory. To refine the accuracy, based on differ-
ent assumptions on the traffic conditions we simulate two
future trajectories in discrete points for each object on its
edge. Then, by linear regression and translating, the tra-
jectory bounds that contain all possible future positions of
a moving object on that edge can be obtained. When the
object moves to another edge in the GCA or the predicted
position exceeds its actual position above the predefined ac-
curacy, another simulation and regression will be executed
to predict new future trajectory bounds. The process of the
simulation-based prediction can be seen in Figure 5.

Most existing work uses the CA model for traffic flow
simulation in which the parameterPd(i) is treated as a ran-
dom variable to reflect the stochastic, dynamic nature of
traffic system. However, we extend this model for pre-
dicting the future trajectories of objects by settingPd(i) to
values that model different traffic conditions. For exam-
ple, laminar traffic can be simulated withPd(i) set to 0 or
a small value, and the congestion can be simulated with a
largerPd(i). By givingPd(i) two values, we can derive two
future trajectories, which describe, respectively, the fastest
and slowest movements of objects as showed in Figure 5(a).
In other words, the object’s future locations are most prob-
ably bounded by these two trajectories. The value ofPd(i)
can be obtained by the experiences or by sampling from
the given dataset. Our experiments show one of methods to
choose the value ofPd(i). It is proved that 0 and 0.1 are
realistic values ofPd(i) in our cases.

For getting the future trajectory function of an object
from the simulated discrete points, we need to regress the
discrete positions. We find that in most cases the linear
regression (as shown in Figure 4b) fits the prediction well
and at low cost. The OLSE (Ordinary Least Square Estima-
tion) method, for example, can be calculated efficiently with
low data storage cost. Let the discrete simulated points be
(t1, d1), . . . , (ti, di), . . . , (tn, dn), wheredi (i ∈ [1, n]) de-
notes the relative distance in an edge and the average value
be t andd. After regression, the trajectory function of the
moving object is:

D(t) = β̂0 + β̂1 · t

whereβ̂o andβ̂1 are given by:

β̂0 = d − β̂1 · t
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β̂1 =

∑n

i=1
tidi − nt · d

∑n

i=1
t2i − n(t)2

In Figure 5(a), the dashed curves show two future tra-
jectories, which are the slowest and the fastest movements
simulated by using differentPd. Applying the OLSE algo-
rithm to the two trajectories generates two linear functions,
which are shown in solid lines.

fastTrj : D(t) = αf · t + γf

slowTrj : D(t) = αs · t + γs

Finally, in order to find the bounds of the area that
contains all estimated future positions, we translate the
two regression lines, until all estimated future positions
fall within. More specifically, we translate the upper line
(fastest movement) upwards until it touches the point with
the max residual (denotingǫ1 the distance translated up-
ward), and similarly, we translate the lower line (slowest
movement) downwards (denotingǫ2 the distance translated
downward). This minimizes the loss of information and er-
rors brought by the OLSE algorithm.

We now define the two bound lines as the upper bound
and lower bound of objects’ future trajectory.

Definition 7 The upper bound of an object trajectory
upperBound is the upper bound line of its fastest future
trajectory, and the lower boundlowerBound is the lower
bound line of its slowest future trajectory. They are linear
functions of the following form:

upperBound : D(t) = αf · t + λf

lowerBound : D(t) = αs · t + λs

whereλf = γf + ǫ1, λs = γs − ǫ2.

The two bound lines are shown in Figure 5(b). we can
treat the two predicted lines as the bounds of the possi-
ble future positions of one object. The predicted trajec-
tory bounds can be used in the predictive index structure
and query processing in road network to reduce the index
updates and filter unnecessary query results to improve the
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Figure 6: Singe Predicted Future Trajectory

performance of predictive query. For example, given a pre-
dictive range query with the specified regionR during time
interval [t1, t2] in the future, we can filter the objects in the
result during the pre-process phase if the area between their
upper and lower trajectory bounds can not intersect theR

during[t1, t2].

However, for other applications such as the tracking of
moving objects, a single predicted function is needed to ob-
tain the specific future positions of the object. For example,
to lower update frequency from moving objects to server
database, a general principle for location update policies is
as follows: the moving objects equipped by GPS receiver
do not report their locations to the server unless their actual
positions exceed the predicted positions to a certain thresh-
old. Their predicted positions need to be computed by a
single predicted function. In this case, we can also adapt
the SP method to obtain a compact and simple linear pre-
diction function. The process can be seen in Figure 6. After
regressing the two simulated future trajectories to two lin-
ear function denotingL1 andL2 , we compute the middle
straight lineL3, the bisector of the anglea betweenL1 and
L2 as the final predicted functionL(t).

Although the predicted function obtained by the SP
method is a simple linear function, it is different from the
linear prediction in that the SP method not only consid-
ers the speed and direction of each moving object, but also
takes correlation of objects as well as the stochastic behav-
ior of the traffic into account. The experimental results also
show it is a more accurate and effective prediction approach.

As the prediction of in-edge trajectory only use the GCA
to simulate the movement of objects in an edge, we have
to consider the cases when objects move across the nodes
in order to make the global trajectory prediction. If the out
degree of a node in the GCA is one, the behavior of the
object in the adjacent edge is the same. However, if the
out degree of the node is bigger than one, we can not trace
the objects cross the different edges. In this case, we could
use the probability of objects changing the edges accord-
ing to the historical data. In this paper, we only predict the
in-edge trajectory of the object moving in one edge of the
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GCA. When the object moves to another edge or its predic-
tion accuracy of the future positions cannot arrive the given
accuracy requirement, we issue another prediction based on
the current traffic conditions.

5 Experimental Evaluation

We evaluate the simulation-based prediction method by
comparing it with the general linear prediction method. Us-
ing two datasets (generated by the CA simulator and by
the Brinkhoff’s Network-based Generator [3]), we measure
their prediction accuracy when applied to predict the near
anticipated future positions in the real map network. We
also study the effect of the choice of different values of the
parameterPd on the simulation-base prediction.

Datasets

We use two datasets for our experiments. The first
is generated by the CA simulator, and the second by the
Brinkhoff’s Network-based Generator [3]. We use the CA
traffic simulator to generate a given number of objects in a
uniform network of size10000 × 10000 consisting of500
edges. Each object has its route and is initially placed at a
random position on its route. The initial velocities of the
objects follow a uniform random distribution in the range
[0, 30]. The location and velocity of every object is updated
at each time-stamp.

The Brinkhoff’s Network-based Generator has been used
as a popular benchmark in the related work of the MOD.
The generator takes a map of a real road network as input
(our experiment is based on the map of Oldenburg includ-
ing 7035 edges). The positions of the objects are given in
two dimensional X-Y coordinates. We transform them to
the form of(edgeid, pos), whereedgeid denotes the edge
identifier andpos denotes relative position on the edge. The
generator places a given number of objects at random posi-
tions on the road network, and updates their locations at
each time-stamp. Each object has its own destination, and
it moves toward its destination along a given route.

Prediction Accuracy and Cost

We compare the precision of the SP method with the LP
method. We measure the prediction accuracy by “average
error” but with different threshold. The threshold represents
the maximum deviation between the predicted locations of
a moving object and its real locations allowed in the predic-
tion. That means when the deviation exceeds the threshold,
we make another prediction. From Figure 8, we observe
that average error will increase when threshold increases.
This is because the larger the threshold is, the larger the de-
viation becomes, which leads to the more errors. This is
tenable in both the LP and SP method. However, the SP
method predicts more accurately than the LP method with
any threshold.
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Figure 7: Prediction Accuracy with Different Threshold
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Figure 8: Prediction Accuracy with DifferentPd

The time complexity of the simulation-based predic-
tion depends on many factors. We compute the average
CPU time when simulating and predicting the movement
of one object along the edge with length 1000 in different
dataset sizes. The results show that the average cost of one
simulation-based prediction is about 0.25ms. This is quite
acceptable.

The Slowdown RatePd

The CA simulation has an important effect on the accu-
racy of the simulation-based prediction. We study the effect
of the choice of differentPd, which determines the two pre-
dicted trajectories corresponding to the fastest and slowest
movement. We test on the Brinkhoff dataset with different
data size and usePd from 0 to 0.5 and measure the average
prediction accuracy by “average error” and “overflow rate”.
The average error is the average absolute error between the
predicted and actual positions, and the overflow rate rep-
resents the probability of predicted positions exceeding the
actual positions. The purpose of this metric is to find the
closest two trajectories binding the actual one as future tra-
jectories. In this way, we can choose thePd both with lower
average error and overflow rate. Figure 8 shows the predic-
tion accuracy of the SP method with different slowdown
rates. We can see that whenPd is set to 0 and 0.1, both
the average error and overflow rate are lower than others.
Therefore, we use the value 0 and 0.1 as slowdown rates
for the fastest movement bound and the slowest movement
bound to obtain better prediction results.
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6 Conclusion
Managing moving objects in a constrained network is a

challenging task as well as of great practical importance in
mobile location-aware applications. It is necessary to rep-
resent and predict the future trajectories of moving objects
more accurate. In this paper, we first combine road network
representation and the movement model of objects in a traf-
fic network to introduce a new model - GCA for network-
constrained moving objects. And then we propose a predic-
tion method, based on the GCA, which predicts with a great
accuracy the future trajectories of moving objects. The ac-
curacy results from the fact that the GCA model exploits
the constraints of the network and models the stochastic as-
pect of urban traffic. Our experimental results performed
on two datasets show that the prediction accuracy of our
simulation-based prediction is higher than the linear predic-
tion used in the predictive indexing and query processing.
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