7,111 research outputs found

    Measuring, manipulating and exploiting behaviours of adult mosquitoes to optimise malaria vector control impact.

    Get PDF
    Residual malaria transmission can persist despite high coverage with effective long-lasting insecticidal nets (LLINs) and/or indoor residual spraying (IRS), because many vector mosquitoes evade them by feeding on animals, feeding outdoors, resting outdoors or rapidly exiting from houses after entering them. However, many of these behaviours that render vectors resilient to control with IRS and LLINs also make them vulnerable to some emerging new alternative interventions. Furthermore, vector control measures targeting preferred behaviours of mosquitoes often force them to express previously rare alternative behaviours, which can then be targeted with these complementary new interventions. For example, deployment of LLINs against vectors that historically fed predominantly indoors on humans typically results in persisting transmission by residual populations that survive by feeding outdoors on humans and animals, where they may then be targeted with vapour-phase insecticides and veterinary insecticides, respectively. So while the ability of mosquitoes to express alternative behaviours limits the impact of LLINs and IRS, it also creates measurable and unprecedented opportunities for deploying complementary additional approaches that would otherwise be ineffective. Now that more diverse vector control methods are finally becoming available, well-established entomological field techniques for surveying adult mosquito behaviours should be fully exploited by national malaria control programmes, to rationally and adaptively map out new opportunities for their effective deployment

    Measurements design and phenomena discrimination

    Get PDF
    The construction of measurements suitable for discriminating signal components produced by phenomena of different types is considered. The required measurements should be capable of cancelling out those signal components which are to be ignored when focusing on a phenomenon of interest. Under the hypothesis that the subspaces hosting the signal components produced by each phenomenon are complementary, their discrimination is accomplished by measurements giving rise to the appropriate oblique projector operator. The subspace onto which the operator should project is selected by nonlinear techniques in line with adaptive pursuit strategies

    Driving improvements in emerging disease surveillance through locally-relevant capacity strengthening

    Get PDF
    Emerging infectious diseases (EIDs) threaten the health of people, animals, and crops globally, but our ability to predict their occurrence is limited. Current public health capacity and ability to detect and respond to EIDs is typically weakest in low- and middle-income countries (LMICs). Many known drivers of EID emergence also converge in LMICs. Strengthening capacity for surveillance of diseases of relevance to local populations can provide a mechanism for building the cross-cutting and flexible capacities needed to tackle both the burden of existing diseases and EID threats. A focus on locally relevant diseases in LMICs and the economic, social, and cultural contexts of surveillance can help address existing inequalities in health systems, improve the capacity to detect and contain EIDs, and contribute to broader global goals for development

    An improved mosquito electrocuting trap that safely reproduces epidemiologically relevant metrics of mosquito human-feeding behaviours as determined by human landing catch

    Get PDF
    Background: Reliable quantification of mosquito host—seeking behaviours is required to determine the efficacy of vector control methods. For malaria, the gold standard approach remains the risky human landing catch (HLC). Here compare the performance of an improved prototype of the mosquito electrocuting grid trap (MET) as a safer alternative with HLC for measuring malaria vector behaviour in Dar es Salaam, Tanzania. Methods: Mosquito trapping was conducted at three sites within Dar es Salaam representing a range of urbanicity over a 7-month period (December 2012–July 2013, 168 sampling nights). At each site, sampling was conducted in a block of four houses, with two houses being allocated to HLC and the other to MET on each night of study. Sampling was conducted both indoors and outdoors (from 19:00 to 06:00 each night) at all houses, with trapping method (HLC and MET) being exchanged between pairs of houses at each site using a crossover design. Results: The MET caught significantly more Anopheles gambiae sensu lato than the HLC, both indoors (RR [95 % confidence interval (CI)]) = 1.47 [1.23–1.76], P < 0.0001 and outdoors = 1.38 [1.14–1.67], P < 0.0001). The sensitivity of MET compared with HLC did not detectably change over the course of night for either An. gambiae s.l. (OR [CI]) = 1.01 [0.94–1.02], P = 0.27) or Culex spp. (OR [CI]) = 0.99 [0.99–1.0], P = 0.17) indoors and declined only slightly outdoors: An. gambiae s.l. (OR [CI]) = 0.92 [0.86–0.99], P = 0.04), and Culex spp. (OR [CI]) = 0.99 [0.98–0.99], P = 0.03). MET-based estimates of the proportions of mosquitoes caught indoors (P i ) or during sleeping hours (P fl ), as well as the proportion of human exposure to bites that would otherwise occurs indoors (π i ), were statistically indistinguishable from those based on HLC for An. gambiae s.l. (P = 0.43, 0.07 and 0.48, respectively) and Culex spp. (P = 0.76, 0.24 and 0.55, respectively). Conclusions: This improved MET prototype is highly sensitive tool that accurately quantifies epidemiologically-relevant metrics of mosquito biting densities, behaviours and human exposure distribution

    Entomological Surveillance as a Cornerstone of Malaria Elimination: A Critical Appraisal

    Get PDF
    Global capacity for developing new insecticides and vector control products, as well as mathematical models to evaluate their likely impact upon malaria transmission has greatly improved in recent years. Given that a range of new vector control products are now emerging that target a greater diversity of adult mosquito behaviours, it should soon be feasible to effectively tackle a broader range of mosquito species and settings. However, the primary obstacles to further progress towards more effective malaria vector control are now paucities of routine programmatic entomological surveillance, and capacity for data processing, analysis and interpretation in endemic countries. Well-established entomological methods need to be more widely utilized for routine programmatic surveillance of vector behaviours and insecticide susceptibility, the effectiveness of vector control products and processes, and their impacts on mosquito populations. Such programmatic data may also be useful for simulation analyses of mosquito life histories, to identify opportunities for pre-emptively intervening early in the life cycle of mosquitoes, rather than targeting transmission events occurring when they are older. Current obstacles to more effective utilization, archiving and sharing of entomological data largely centre around global inequities of analytical capacity. These prohibitive and unfair imbalances can be addressed by reorienting funding schemes to emphasize south-centred collaborations focused on malaria-endemic countries

    An algorithm for computing the 2D structure of fast rotating stars

    Full text link
    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditionner of the Jacobian matrix.Comment: 40 pages, 12 figures, accepted in J. Comput. Physic

    Supervised machine learning based multi-task artificial intelligence classification of retinopathies

    Full text link
    Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify subtle vascular distortions, which are useful for classifying retinovascular diseases. However, application of AI for differentiation and classification of multiple eye diseases is not yet established. In this study, we demonstrate supervised machine learning based multi-task OCTA classification. We sought 1) to differentiate normal from diseased ocular conditions, 2) to differentiate different ocular disease conditions from each other, and 3) to stage the severity of each ocular condition. Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images. A stepwise backward elimination approach was employed to identify sensitive OCTA features and optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration, diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised machine leaning classifier. The presented AI classification methodology is applicable and can be readily extended to other ocular diseases, holding promise to enable a mass-screening platform for clinical deployment and telemedicine.Comment: Supplemental material attached at the en

    Characterizing, controlling and eliminating residual malaria transmission

    Get PDF
    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) interventions can reduce malaria transmission by targeting mosquitoes when they feed upon sleeping humans and/or rest inside houses, livestock shelters or other man-made structures. However, many malaria vector species can maintain robust transmission, despite high coverage of LLINs/IRS containing insecticides to which they are physiologically fully susceptible, because they exhibit one or more behaviours that define the biological limits of achievable impact with these interventions: (1) Natural or insecticide-induced avoidance of contact with treated surfaces within houses and early exit from them, thus minimizing exposure hazard of vectors which feed indoors upon humans; (2) Feeding upon humans when they are active and unprotected outdoors, thereby attenuating personal protection and any consequent community-wide suppression of transmission; (3) Feeding upon animals, thus minimizing contact with insecticides targeted at humans or houses; (4) Resting outdoors, away from insecticide-treated surfaces of nets, walls and roofs. Residual malaria transmission is, therefore, defined as all forms of transmission that can persist after achieving full universal coverage with effective LLINs and/or IRS containing active ingredients to which local vector populations are fully susceptible. Residual transmission is sufficiently intense across most of the tropics to render malaria elimination infeasible without new or improved vector control methods. Many novel or improved vector control strategies to address residual transmission are emerging that either: (1) Enhance control of adult vectors that enter houses to feed and/or rest by killing, repelling or excluding them; (2) Kill or repel adult mosquitoes when they attack people outdoors; (3) Kill adult mosquitoes when they attack livestock; (4) Kill adult mosquitoes when they feed upon sugar or; (5) Kill immature mosquitoes in aquatic habitats. To date, none of these options has sufficient supporting evidence to justify full-scale programmatic implementation. Concerted investment in their rigorous selection, development and evaluation is required over the coming decade to enable control and, ultimately, elimination of residual malaria transmission. In the meantime, national programmes may assess options for addressing residual transmission under programmatic conditions through pilot studies with strong monitoring, evaluation and operational research components, similar to the Onchocerciasis Control Programme
    • …
    corecore