6,036 research outputs found

    A lower bound on the order of the largest induced forest in planar graphs with high girth

    Full text link
    We give here new upper bounds on the size of a smallest feedback vertex set in planar graphs with high girth. In particular, we prove that a planar graph with girth gg and size mm has a feedback vertex set of size at most 4m3g\frac{4m}{3g}, improving the trivial bound of 2mg\frac{2m}{g}. We also prove that every 22-connected graph with maximum degree 33 and order nn has a feedback vertex set of size at most n+23\frac{n+2}{3}.Comment: 12 pages, 6 figures. arXiv admin note: text overlap with arXiv:1409.134

    Size of the Largest Induced Forest in Subcubic Graphs of Girth at least Four and Five

    Full text link
    In this paper, we address the maximum number of vertices of induced forests in subcubic graphs with girth at least four or five. We provide a unified approach to prove that every 2-connected subcubic graph on nn vertices and mm edges with girth at least four or five, respectively, has an induced forest on at least n−29mn-\frac{2}{9}m or n−15mn-\frac{1}{5}m vertices, respectively, except for finitely many exceptional graphs. Our results improve a result of Liu and Zhao and are tight in the sense that the bounds are attained by infinitely many 2-connected graphs. Equivalently, we prove that such graphs admit feedback vertex sets with size at most 29m\frac{2}{9}m or 15m\frac{1}{5}m, respectively. Those exceptional graphs will be explicitly constructed, and our result can be easily modified to drop the 2-connectivity requirement

    On the size of identifying codes in triangle-free graphs

    Get PDF
    In an undirected graph GG, a subset C⊆V(G)C\subseteq V(G) such that CC is a dominating set of GG, and each vertex in V(G)V(G) is dominated by a distinct subset of vertices from CC, is called an identifying code of GG. The concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given identifiable graph GG, let \M(G) be the minimum cardinality of an identifying code in GG. In this paper, we show that for any connected identifiable triangle-free graph GG on nn vertices having maximum degree Δ≥3\Delta\geq 3, \M(G)\le n-\tfrac{n}{\Delta+o(\Delta)}. This bound is asymptotically tight up to constants due to various classes of graphs including (Δ−1)(\Delta-1)-ary trees, which are known to have their minimum identifying code of size n−nΔ−1+o(1)n-\tfrac{n}{\Delta-1+o(1)}. We also provide improved bounds for restricted subfamilies of triangle-free graphs, and conjecture that there exists some constant cc such that the bound \M(G)\le n-\tfrac{n}{\Delta}+c holds for any nontrivial connected identifiable graph GG

    Drawings of Planar Graphs with Few Slopes and Segments

    Get PDF
    We study straight-line drawings of planar graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on nn vertices has a plane drawing with at most 5/2n{5/2}n segments and at most 2n2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing with three slopes (and three bends on the outerface). In a companion paper, drawings of non-planar graphs with few slopes are also considered.Comment: This paper is submitted to a journal. A preliminary version appeared as "Really Straight Graph Drawings" in the Graph Drawing 2004 conference. See http://arxiv.org/math/0606446 for a companion pape

    Planar graph coloring avoiding monochromatic subgraphs: trees and paths make things difficult

    Get PDF
    We consider the problem of coloring a planar graph with the minimum number of colors such that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem
    • …
    corecore