278 research outputs found

    An efficient optimized independent component analysis method based on genetic algorithm

    Get PDF
    Three simulation experiments are designed to evaluate and compare the performance of three common independent component analysis implementation algorithms – FastICA, JADE, and extended-Infomax. Experiment results show that the above three algorithms can’t separate the mixtures of super-Gaussian and sub-Gaussian precisely, and FastICA fails in recovering weak source signals from mixed signals. In this case an independent component analysis algorithm, which applies genetic algorithm to minimize the difference between joint probability and product of marginal probabilities of separated signals, is proposed. The computation procedure, especially the fitness evaluation when signals are in discrete form, is discussed in detail. The validity of the proposed algorithm is proved by simulation tests. Moreover, the results indicate that the proposed algorithm outperforms the above three common algorithms significantly. Finally the proposed algorithm is applied to separate the mixture of rolling bearing sound signal and electromotor signal, and the results are satisfied

    Orthogonal Extended Infomax Algorithm

    Full text link
    The extended infomax algorithm for independent component analysis (ICA) can separate sub- and super-Gaussian signals but converges slowly as it uses stochastic gradient optimization. In this paper, an improved extended infomax algorithm is presented that converges much faster. Accelerated convergence is achieved by replacing the natural gradient learning rule of extended infomax by a fully-multiplicative orthogonal-group based update scheme of the unmixing matrix leading to an orthogonal extended infomax algorithm (OgExtInf). Computational performance of OgExtInf is compared with two fast ICA algorithms: the popular FastICA and Picard, a L-BFGS algorithm belonging to the family of quasi-Newton methods. Our results demonstrate superior performance of the proposed method on small-size EEG data sets as used for example in online EEG processing systems, such as brain-computer interfaces or clinical systems for spike and seizure detection.Comment: 17 pages, 6 figure

    Independent Component Analysis for Brain fMRI Does Indeed Select for Maximal Independence

    Get PDF
    A recent paper by Daubechies et al. claims that two independent component analysis (ICA) algorithms, Infomax and FastICA, which are widely used for functional magnetic resonance imaging (fMRI) analysis, select for sparsity rather than independence. The argument was supported by a series of experiments on synthetic data. We show that these experiments fall short of proving this claim and that the ICA algorithms are indeed doing what they are designed to do: identify maximally independent sources

    Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing

    Full text link
    [EN] Conventional partial correlation coefficients (PCC) were extended to the non-Gaussian case, in particular to independent component analysis (ICA) models of the observed multivariate samples. Thus, the usual methods that define the pairwise connections of a graph from the precision matrix were correspondingly extended. The basic concept involved replacing the implicit linear estimation of conventional PCC with a nonlinear estimation (conditional mean) assuming ICA. Thus, it is better eliminated the correlation between a given pair of nodes induced by the rest of nodes, and hence the specific connectivity weights can be better estimated. Some synthetic and real data examples illustrate the approach in a graph signal processing context.This research was funded by Spanish Administration and European Union under grants TEC2014-58438-R and TEC2017-84743-P.Belda, J.; Vergara Domínguez, L.; Safont Armero, G.; Salazar Afanador, A. (2019). Computing the Partial Correlation of ICA Models for Non-Gaussian Graph Signal Processing. Entropy. 21(1):1-16. https://doi.org/10.3390/e21010022S116211Baba, K., Shibata, R., & Sibuya, M. (2004). PARTIAL CORRELATION AND CONDITIONAL CORRELATION AS MEASURES OF CONDITIONAL INDEPENDENCE. Australian New Zealand Journal of Statistics, 46(4), 657-664. doi:10.1111/j.1467-842x.2004.00360.xShuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Processing Magazine, 30(3), 83-98. doi:10.1109/msp.2012.2235192Sandryhaila, A., & Moura, J. M. F. (2013). Discrete Signal Processing on Graphs. IEEE Transactions on Signal Processing, 61(7), 1644-1656. doi:10.1109/tsp.2013.2238935Ortega, A., Frossard, P., Kovacevic, J., Moura, J. M. F., & Vandergheynst, P. (2018). Graph Signal Processing: Overview, Challenges, and Applications. Proceedings of the IEEE, 106(5), 808-828. doi:10.1109/jproc.2018.2820126Mazumder, R., & Hastie, T. (2012). The graphical lasso: New insights and alternatives. Electronic Journal of Statistics, 6(0), 2125-2149. doi:10.1214/12-ejs740Chen, X., Xu, M., & Wu, W. B. (2013). Covariance and precision matrix estimation for high-dimensional time series. The Annals of Statistics, 41(6), 2994-3021. doi:10.1214/13-aos1182Friedman, J., Hastie, T., & Tibshirani, R. (2007). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441. doi:10.1093/biostatistics/kxm045Peng, J., Wang, P., Zhou, N., & Zhu, J. (2009). Partial Correlation Estimation by Joint Sparse Regression Models. Journal of the American Statistical Association, 104(486), 735-746. doi:10.1198/jasa.2009.0126Belda, J., Vergara, L., Salazar, A., & Safont, G. (2018). Estimating the Laplacian matrix of Gaussian mixtures for signal processing on graphs. Signal Processing, 148, 241-249. doi:10.1016/j.sigpro.2018.02.017Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430. doi:10.1016/s0893-6080(00)00026-5Chai, R., Naik, G. R., Nguyen, T. N., Ling, S. H., Tran, Y., Craig, A., & Nguyen, H. T. (2017). Driver Fatigue Classification With Independent Component by Entropy Rate Bound Minimization Analysis in an EEG-Based System. IEEE Journal of Biomedical and Health Informatics, 21(3), 715-724. doi:10.1109/jbhi.2016.2532354Liu, H., Liu, S., Huang, T., Zhang, Z., Hu, Y., & Zhang, T. (2016). Infrared spectrum blind deconvolution algorithm via learned dictionaries and sparse representation. Applied Optics, 55(10), 2813. doi:10.1364/ao.55.002813Naik, G. R., Selvan, S. E., & Nguyen, H. T. (2016). Single-Channel EMG Classification With Ensemble-Empirical-Mode-Decomposition-Based ICA for Diagnosing Neuromuscular Disorders. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(7), 734-743. doi:10.1109/tnsre.2015.2454503Guo, Y., Huang, S., Li, Y., & Naik, G. R. (2013). Edge Effect Elimination in Single-Mixture Blind Source Separation. Circuits, Systems, and Signal Processing, 32(5), 2317-2334. doi:10.1007/s00034-013-9556-9Chi, Y. (2016). Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization. IEEE Journal of Selected Topics in Signal Processing, 10(4), 782-794. doi:10.1109/jstsp.2016.2543462Pendharkar, G., Naik, G. R., & Nguyen, H. T. (2014). Using Blind Source Separation on accelerometry data to analyze and distinguish the toe walking gait from normal gait in ITW children. Biomedical Signal Processing and Control, 13, 41-49. doi:10.1016/j.bspc.2014.02.009Wang, L., & Chi, Y. (2016). Blind Deconvolution From Multiple Sparse Inputs. IEEE Signal Processing Letters, 23(10), 1384-1388. doi:10.1109/lsp.2016.2599104Safont, G., Salazar, A., Vergara, L., Gomez, E., & Villanueva, V. (2018). Probabilistic Distance for Mixtures of Independent Component Analyzers. IEEE Transactions on Neural Networks and Learning Systems, 29(4), 1161-1173. doi:10.1109/tnnls.2017.2663843Safont, G., Salazar, A., Rodriguez, A., & Vergara, L. (2014). On Recovering Missing Ground Penetrating Radar Traces by Statistical Interpolation Methods. Remote Sensing, 6(8), 7546-7565. doi:10.3390/rs6087546Vergara, L., & Bernabeu, P. (2001). Simple approach to nonlinear prediction. Electronics Letters, 37(14), 926. doi:10.1049/el:20010616Ertuğrul Çelebi, M. (1997). General formula for conditional mean using higher order statistics. Electronics Letters, 33(25), 2097. doi:10.1049/el:19971432Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation, 11(2), 417-441. doi:10.1162/089976699300016719Cardoso, J. F., & Souloumiac, A. (1993). Blind beamforming for non-gaussian signals. IEE Proceedings F Radar and Signal Processing, 140(6), 362. doi:10.1049/ip-f-2.1993.0054Hyvärinen, A., & Oja, E. (1997). A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Computation, 9(7), 1483-1492. doi:10.1162/neco.1997.9.7.1483Salazar, A., Vergara, L., & Miralles, R. (2010). On including sequential dependence in ICA mixture models. Signal Processing, 90(7), 2314-2318. doi:10.1016/j.sigpro.2010.02.010Lang, E. W., Tomé, A. M., Keck, I. R., Górriz-Sáez, J. M., & Puntonet, C. G. (2012). Brain Connectivity Analysis: A Short Survey. Computational Intelligence and Neuroscience, 2012, 1-21. doi:10.1155/2012/412512Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2), 298-305. doi:10.21136/cmj.1973.101168Merris, R. (1994). Laplacian matrices of graphs: a survey. Linear Algebra and its Applications, 197-198, 143-176. doi:10.1016/0024-3795(94)90486-3Dong, X., Thanou, D., Frossard, P., & Vandergheynst, P. (2016). Learning Laplacian Matrix in Smooth Graph Signal Representations. IEEE Transactions on Signal Processing, 64(23), 6160-6173. doi:10.1109/tsp.2016.2602809Moragues, J., Vergara, L., & Gosalbez, J. (2011). Generalized Matched Subspace Filter for Nonindependent Noise Based on ICA. IEEE Transactions on Signal Processing, 59(7), 3430-3434. doi:10.1109/tsp.2011.2141668Egilmez, H. E., Pavez, E., & Ortega, A. (2017). Graph Learning From Data Under Laplacian and Structural Constraints. IEEE Journal of Selected Topics in Signal Processing, 11(6), 825-841. doi:10.1109/jstsp.2017.272697

    A Constrained EM Algorithm for Independent Component Analysis

    Get PDF
    We introduce a novel way of performing independent component analysis using a constrained version of the expectation-maximization (EM) algorithm. The source distributions are modeled as D one-dimensional mixtures of gaussians. The observed data are modeled as linear mixtures of the sources with additive, isotropic noise. This generative model is fit to the data using constrained EM. The simpler “soft-switching” approach is introduced, which uses only one parameter to decide on the sub- or supergaussian nature of the sources. We explain how our approach relates to independent factor analysis

    Multichannel blind deconvolution using a generalized Gaussian source model

    Get PDF
    In this paper, we present an algorithm for the problem of multi-channel blind deconvolution which can adapt to un-known sources with both sub-Gaussian and super-Gaussian probability density distributions using a generalized gaussian source model. We use a state space representation to model the mixer and demixer respectively, and show how the parameters of the demixer can be adapted using a gradient descent algorithm incorporating the natural gradient extension. We also present a learning method for the unknown parameters of the generalized Gaussian source model. The performance of the proposed generalized Gaussian source model on a typical example is compared with those of other algorithm, viz the switching nonlinearity algorithm proposed by Lee et al. [8]. © Association for Scientific Research

    Efficient Noise Suppression for Robust Speech Recognition

    Get PDF
    Electrical EngineeringThis thesis addresses the issues of single microphone based noise estimation technique for speech recognition in noise environments. A lot of researches have been performed on the environmental noise estimation, however most of them require voice activity detector (VAD) for accurate estimation of noise characteristics. I propose two approaches for efficient noise estimation without VAD. The first approach aims at improving the conventional quantile-based noise estimation (QBNE). I fostered the QBNE by adjusting the quantile level (QL) according to the relative amount of added noise to the target speech. Basically, we assign two different QLs, i.e., binary levels, according to the measured statistical moment of log scale power spectrum at each frequency. The second approach is applying dual mixture parametric model in computing likelihoods of speech and non-speech classes. I used dual Gaussian mixture model (GMM) and Rayleigh mixture model (RMM) for the likelihoods. From the assumption that speech is generally uncorrelated to the environmental noises, the noise power spectrum can be estimated by using each mixture model parameter of speech absence class. I compared the proposed methods with the conventional QBNE and minimum statistics based method on a simple speech recognition task in various signal-to-noise ratio (SNR) levels. Based on the experimental results, the proposed methods are shown to be superior to the conventional methods.ope
    corecore