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Abstract

A recent paper by Daubechies et al. claims that two independent component analysis (ICA) algorithms, Infomax and
FastICA, which are widely used for functional magnetic resonance imaging (fMRI) analysis, select for sparsity rather than
independence. The argument was supported by a series of experiments on synthetic data. We show that these experiments
fall short of proving this claim and that the ICA algorithms are indeed doing what they are designed to do: identify
maximally independent sources.
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Introduction

Independent component analysis (ICA) [1–4] is a widely used

signal processing approach that has been applied to areas

including speech separation, communications, and functional

magnetic resonance (fMRI) data analysis. Given a set of linearly

mixed observations, recovering the underlying components is an

ill-defined problem. However, the assumption of independence

among the sources turns out to be surprisingly powerful and

effective for a wide range of problems in various practical domains.

Sparsity is another commonly imposed assumption that arises

naturally from the principle of parsimony: the simplest explanation

is preferred. Sparsity is also motivated by evidence of neuronal

coding efficiency and sparse coding in the nervous system. Sparse

representations can help avoid the problem of overfitting while

also leading to solutions that are easier to interpret. Applications of

sparse signal processing methods include dictionary learning [5],

speech separation [6], and feature learning [7].

Daubechies et al. [8] claims that ICA for fMRI optimizes for

sparsity rather than independence. This is established by first

noting that Infomax and FastICA are two algorithms widely used

for fMRI analysis and then showing that they separate sparse

components better than independent ones on a synthetic dataset.

Recreating the synthetic dataset and conducting additional

experiments shows that the FastICA and Infomax algorithms

indeed do what they are designed to do. Both ICA algorithms can

separate sources with either high or low degrees of sparsity, as long

as the distributional assumptions of the algorithms are approxi-

mately met. To understand the conditions under which these

algorithms work requires correct interpretation of what the sources

are in an ICA formulation. We examine exactly what the sources are

in the examples given in Daubechies et al. [8] and show that there

is an important mismatch between the concept of source therein

and what an ICA source actually is, which is ultimately at the

heart of the unsupported conclusions presented in Daubechies

et al. [8].

Review and Critique of the Presented Evidence

We now briefly review the evidence presented in Daubechies

et al. [8] to support the claim that Infomax [3] and FastICA [9]

select for sparsity and not independence. Following Daubechies

et al., we refer to the versions of the two algorithms with their

default nonlinearities, sigmoid for Infomax, which is a good match

for sources with super-Gaussian distributions, and the high kurtosis

nonlinearity for FastICA. Daubechies et al. [8] exhibits experi-

mental results in which 1) ICA algorithm performance suffers

when the assumptions on the sources are violated, and 2) ICA

algorithms can separate sources in certain cases even if the sources

are not strictly independent. The two points above, both of which

were already widely known in the ICA community at the time, are

not sufficient evidence to support the claim that ICA selects for

sparsity and not independence. In addition, Daubechies et al. [8]

presents a case in which the sources are somewhat dependent but

also very sparse, and Infomax and FastICA do well. This result is

used to claim that it is sparsity rather than independence that

matters. We augment this experiment with new evidence which

shows that the same ICA algorithms perform equally well in the

case of both minimum and maximum sparsity (using the definition

of sparsity in Daubechies et al. [8]), suggesting that the role of

sparsity (if any) is minor in the separation performance.
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Additional evidence in Daubechies et al. [8] involves a

discussion of sparsity in which it is claimed that ICA can separate

Gaussian sources (See Legend of Fig.8 in Daubechies et al. [8])

which are also sparse (utilizing a definition of sparsity different

from the one initially provided in Daubechies et al. [8]). If true,

such a result would support their claim about the role of sparsity in

ICA, since it is well established that blind ICA algorithms are not

able to separate two or more Gaussian sources. However, as we

show, in that example the sources as they are generated are highly

non-Gaussian, and the sparsity mentioned in Daubechies et al. [8]

does not actually refer to the sources. Rather, it refers to vectors

that span parts of both sources. This renders their statement

incorrect and hence, does not support the claim being made (see

Section ‘‘Sparsity and sources that are mixture of Gaussians’’ for

details).

Finally, the paper [8] is focused on showing cases where

FastICA and Infomax perform well or poorly, and from these

cases the claim is made that this applies to ICA of fMRI in general.

There is mention that a more general algorithm [10] does not

work for fMRI, but there is no evidence presented to support this

claim. As we later discuss in Section ‘‘On the application of ICA to

fMRI,’’ other ICA algorithms had indeed been used on fMRI data

with success, at the time of the publication [8]. Since then, more

flexible ICA algorithms have been applied to fMRI data and noted

to demonstrate even better performance than the widely used

Infomax and FastICA [11]. Hence, while emphasizing that

Infomax and FastICA are not the only two algorithms that have

been applied to fMRI analysis, we also note that the prevalence of

the use of these two is largely due to the availability of the code for

these algorithms and their default use in toolbox implementations

for fMRI analyses. Since most of the fMRI community does not

specialize in the development of blind source separation

algorithms, they have since opted in general for the use of

these two implementations. And although they do perform

reasonably well on fMRI data, sparsity is not the major driver of

this success.

Experiments on Synthetic Data: Boxes

We now describe the synthetic dataset used in the original

paper [8]. Two components C1 and C2 are generated as

follows: Ci vð Þ~IVi
vð Þxi

vz 1{IVi
vð Þ½ �yi

v, i~1, where the Vi,

i~1, are different subsets of V , and IVi
vð Þ denotes the indicator

function for v[Vi; the variables xi,yi are independent random

variables and v is the sample index. In Example 1 [8], the

Figure 1. The excess kurtosis of a source Ci as a function of the relative size of the active region. A Gaussian has zero excess kurtosis.
Here Wx~ 1ze2 2{uð Þ� �{1

as in Example 2 of the original paper [8]. The four vertical lines at correspond to the relative sizes of the small box, the
medium box, the large box, and a very large box corresponding to the maximal kurtosis case. Note that the medium and large box experiments have
near zero excess kurtosis, i.e., kurtosis value matching that of a Gaussian. In addition, the pdfs of these sources are bimodal (see inset figures), ensuring
that ICA algorithms designed for unimodal super-Gaussian distributions such as Infomax and FastICA with standard parameter settings, will likely fail.
At the bottom of the figure are the ISI values (see Equation (2)) for the various algorithms at those four points (see Table 1 for full list). Also note the
best separation performance of Infomax and FastICA for the maximum kurtosis case, which corresponds to almost the lowest level of sparsity.
doi:10.1371/journal.pone.0073309.g001
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cumulative distribution functions (CDFs) of xi are identical and

given by Wx uð Þ~ 1

1ze2{u
, i.e., logistic distributions with mean 2

and scale parameter 1 (the standard deviation is p=
ffiffiffi
3
p

). In

Example 2 [8], Wx uð Þ~ 1

1ze2 2{uð Þ (logistic with mean 2, scale

parameter 0.5, and standard deviation p= 2
ffiffiffi
3
p� �

). Here, xi

correspond to the activations. Similarly, the CDFs of yi are

identical and given by Wy uð Þ~ 1

1ze{1{u
, i.e., logistic distribu-

tions with mean –1 and scale parameter 1 (the standard deviation

is p=
ffiffiffi
3
p

), where yi correspond to the background. The mixtures

are given by: X1 vð Þ~0:5C1 vð Þz0:5C2 vð Þ and X2 vð Þ~
0:3C1 vð Þz0:7C2 vð Þ. We have V~ 1, . . . ,100f g| 1, . . . ,100f g,
and in the case of ‘‘medium boxes’’, V1~ 11, . . . ,40f g
| 21, . . . ,70f g and V2 að Þ~ 31za, . . . ,80zaf g| 41za, . . . ,f
80zag, a~{15 . . . 15. Furthermore, for Example 2 [8], in the

case of ‘‘small boxes’’, the sample support sets are

V1~ 41, . . . ,60f g| 31, . . . ,50f g and V2 að Þ~ 57za, . . . ,81zaf g
| 46za, . . . ,65zaf g, and in the case of ‘‘large boxes’’,

V1~ 1, . . . ,48f g| 1, . . . ,100f g and V2 að Þ~ 25za, . . . ,74zaf g
| 1, . . . ,100f g, a~{10 . . . 20. In all cases, a controls the relative

position of the boxes, and a~0 gives statistical independence

between C1 and C2.

The Statistical Properties of Synthetic Data in
Daubechies et al. [8]

Daubechies et al. [8] argues, based largely on results from

synthetic datasets using boxes to represent activated regions of a

component (see details above), that it is sparsity rather than

independence that enables the recovery of the components.

However, the case where the algorithms fail is actually due to a

mismatch between the algorithms’ assumptions and the statistical

properties of the simulated data. In addition, we demonstrate a case

where they perform best, which corresponds to almost the lowest

sparsity (i.e., not sparse). To facilitate cross-referencing, in the

results presented herein, we use the first definition of sparsity (#Vi

#V
)

provided in Daubechies et al. [8]. Note, however, that the

quantification of sparsity may be ambiguous: see Section ‘‘On

the definition of sparsity’’ below, and the two definitions of sparsity

in Daubechies et al. [8].

Let us first concentrate on the choice of sources. In Figure 1, we

see the excess kurtosis of the simulated sources changes with the

relative size of the activation region. For medium and large boxes,

the two cases where Infomax and FastICA are noted to fail, the

kurtosis values are close to that of a Gaussian (i.e., zero), almost

corresponding to the two zero-crossings. Moreover, in these cases

the distributions are bimodal, far from the unimodal super-

Gaussian assumptions that underpin the nonlinearities of Infomax

Table 1. Source estimates for the four cases indicated in Figure 1.

Box Size & Properties Results (good is ISI ,0.1)

A. Small: Algorithm Daubechies Amari (ISI)

Unimodal, super-Gaussian sources FastICA 0.0547±0.0150 0.0383±0.0107

Source c1 (excess) Kurtosis [,0.1 is Gauss-like]: 0.8829 Infomax (super) 0.0331±0.0002 0.0228±0.0001

Source c2 (excess) Kurtosis [,0.1 is Gauss-like]: 0.8107 Infomax (sub) 1.049360.0015 0.949960.0004

Mutual Information Between Sources c1 & c2: 0.0920 ICA-EBM 0.0554±0.0066 0.0388±0.0047

Summary: FastICA, Infomax (super), and ICA-EBM perform well

B. Medium: Algorithm Daubechies Amari (ISI)

Bimodal, close-to-Gaussian sources FastICA 0.206860.0662 0.146460.0513

Source c1 (excess) Kurtosis [,0.1 is Gauss-like]: 0.2564 Infomax (super) 0.872260.0651 0.743460.0600

Source c2 (excess) Kurtosis [,0.1 is Gauss-like]: 0.0879 Infomax (sub) 0.159760.0058 0.114460.0041

Mutual Information Between Sources c1 & c2: 0.0929 ICA-EBM 0.0693±0.0105 0.0488±0.0075

Summary: ICA-EBM performs good, Infomax (sub) performs fair

C. Large: Algorithm Daubechies Amari (ISI)

Bimodal, close-to-Gaussian sources FastICA 0.408160.1003 0.310260.0823

Source c1 (excess) Kurtosis [,0.1 is Gauss-like]: 0.0010 Infomax (super) 1.029760.0009 0.923660.0005

Source c2 (excess) Kurtosis [,0.1 is Gauss-like]: 0.0762 Infomax (sub) 0.0401±0.0004 0.0260±0.0004

Mutual Information Between Sources c1 & c2: 0.0892 ICA-EBM 0.0145±0.0008 0.0094±0.0008

Summary: ICA-EBM and Infomax (sub) perform well

D. Very Large (max kurtosis): Algorithm Daubechies Amari (ISI)

Unimodal, super- Gaussian sources. FastICA 0.0263±0.0078 0.0180±0.0057

Source c1 (excess) Kurtosis [,0.1 is Gauss-like]: 5.6432 Infomax (super) 0.0131±0.0003 0.0086±0.0002

Source c2 (excess) Kurtosis [,0.1 is Gauss-like]: 5.6394 Infomax (sub) 1.071160.0014 0.976260.0009

Mutual Information Between Sources c1 & c2: 0.0686 ICA-EBM 0.0218±0.0019 0.0148±0.0014

Summary: FastICA, Infomax (super), and ICA-EBM perform well

Wx~ 1ze2 2{uð Þ� �{1
as in Example 2 of the original paper [8]. The algorithms behave as one would expect if they are selecting for independence. For the bimodal/

Gaussian-like cases, ICA-EBM and Infomax (sub) do well, and for the unimodal/maximum kurtosis/low sparsity case Infomax-super, FastICA and ICA-EBM all do extremely
well. Numbers in boldface indicate when separation was good.
doi:10.1371/journal.pone.0073309.t001
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and FastICA used in Daubechies et al. [8]. The paper [8] showed

that Infomax with a non-linearity matched to super-Gaussian

sources fails for medium and large boxes, roughly regardless of the

relative position of the box; but it was not noted that the sources Ci

were very close to Gaussian (in the sense of kurtosis) and in

disagreement with the nonlinearity. Both of these facts create very

challenging scenarios for ICA algorithms based on the assumption

Figure 2. The distribution of sources and mixtures for l~30% (M2). We plot (A–C) the distribution of sources, and (D) the contour plot of
mixtures for the case of l~30% (M2). Contrary to the claim made in Daubechies et al., the sources have in fact very peaky and heavy-tailed
distributions and are not at all close to a Gaussian distribution. For comparison purposes we also present Gaussian distribution curves (blue, A–B).
doi:10.1371/journal.pone.0073309.g002

Table 2. Tabulated results for the so-called [8] ICA
‘‘promotional material.’’

Observed Properties and Results (good is ISI ,0.1)

Property Source a (sa) Source b (sb)

Negentropy: 0.2753 0.3708

(excess) Kurtosis: 3.0630 3.5225

Algorithm Daubechies Amari (ISI)

FastICA 0.0154 0.0108

Infomax (super) 0.0076 0.0052

Infomax (sub) 1.0758 0.9899

ICA-EBM 0.0059 0.0039

Both Infomax (super) and FastICA do successfully separate (zero ISI indicates
perfect separation) the super-Gaussian sources sa and sb . Note the excess
kurtosis is more than 3 for both sources. Numbers in boldface indicate when
separation was good.
doi:10.1371/journal.pone.0073309.t002

Figure 3. Sparsity measures for three different coordinate
system origins (z0). Sparsity as measured with respect to different
coordinate system origins (z0), as a function of the relative size of the
active region. Remark that for a relative size of zero, only background
samples are present and, thus, the mean of the mixture model
coincides with the mean of the background (and the two sparsity
measures correspond at this point). An analogous observation can be
made for a relative size of one, now with respect to the activity (signal
samples).
doi:10.1371/journal.pone.0073309.g003

ICA Selects for Independence
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of unimodal, super-Gaussian sources, as is the case in Infomax and

FastICA, and of course sources are not even close to the ‘‘ideal’’

setup for these algorithms, contrary to the claim on p.10418 in

Daubechies et al. [8]. In fact, under these scenarios components

would not be expected to be well separated with either of these

algorithms – because of the mismatch of the distribution (for

Infomax) and an approximately zero kurtosis (for FastICA).

It is noted in Daubechies et al. [8] that the sources are designed

by matching their cumulative distribution function (CDF) to the

nonlinearity of the algorithm, resulting in ‘‘optimal’’ detectability

for Example 1 [8], and (intentionally) enforcing a ‘‘slight

mismatch’’ for Example 2 [8]. First, these two CDFs are actually

the same, except for a scaling factor, which would translate to the

so-called scaling ambiguity in ICA. More importantly though,

there is a mismatch in vocabulary between what is being identified

as the underlying ICA source in Daubechies et al. [8] and what it

actually is in the experiment. Specifically, the nonlinearity matches

solely to the activation part of the components thereby neglecting

the background, whereas the ICA source is to be understood as a

combination of the two, and thus has a distribution that is a mixture

distribution, i.e., a weighted sum of both activation and background

distributions. Hence the claim (p. 10418, 1st column): ‘‘For the

first choice, the parameters of our ICA implementations provide

optimal ‘detectability’ in the sense that the nonlinear function

defined by the parameter setting of the algorithm coincides with

the CDF of the signal source;’’ is incorrect since the source in this

linear source separation framework cannot refer to only a part of

the underlying distribution. As it turns out, in Example 2 [8] there

is actually a large mismatch (rather than a ‘‘slight mismatch’’) with

respect to the algorithm’s nonlinearity in that the source

distributions are essentially bimodal (see Figure 1, medium box

inset).

Boxes Revisited

In the boxes experiment, there are four quantities that are

varied: the relative position of the boxes (controlling the amount of

overlap), the size of the boxes (small, medium, large), the

distribution of the marginal (i.e., the source Ci), and the joint

distribution. The shift of the box changes the amount of overlap

and, thus, the joint distribution/dependence. The box size controls

the sparsity (small box = high sparsity, large box = low sparsity)

through the proportion of v[Vi, and thus changes the marginal

distribution of the sources Ci. Clearly, there is dependence

between all four quantities, which makes interpretation of the

results ambiguous at the least. This is a side effect of the way the

sources are sampled in Daubechies et al. [8], which is not

independent and identically distributed (i.i.d.) due to the use of the

indicator function to define boxes in the spatial map (the sampling

distribution is not identical but, instead, conditioned on the

location of each sample). With such a design it is very difficult to

understand what causes the experimental differences, which is

contrary to the claim [8] that it is ‘‘easy to change each of these

characteristics separately’’. In addition, in the experiments, a

single fixed mixing matrix is used, which is not an ideal way to

evaluate performance as results are then biased to a specific (and

unjustified) set of mixing matrix parameter choice.

In order to furnish a clear, unbiased interpretation of the effect

of the marginal source distributions (closely related to the box-sizes

in Daubechies et al. [8]) on the performance of ICA algorithms

that exploit non-Gaussianity, we first eliminate the effects of all

other parameters by limiting ourselves to the case of two independent

sources C1 and C2. Then we generate samples directly from

marginal distributions that match those in Daubechies et al. [8].

Since the sources defined in Daubechies et al. [8] have distribu-

tions that are of mixture type, we can write the CDF of each

source Ci as WCi
~qWxz 1{qð ÞWy, where 0vqƒ1 with

q~
#Vi

#V
, and then draw a set of i.i.d. samples. Under these

conditions, the joint distribution of all samples reads:

PC1 1½ �,C2 1½ �,C1 2½ �,C2 2½ �,...,C1 V½ �,C2 V½ � c1 1½ �,c2 1½ �,c1 2½ �,c2 2½ �, . . . ,c1 V½ �,c2 V½ �ð Þ

~ P
Vj j

v~1
PC1 V½ �,C2 V½ � c1 V½ �,c2 V½ �ð Þ~ P

Vj j

v~1
PC1 V½ � c1 V½ �ð ÞPC2 V½ � c2 V½ �ð Þ

~ P
Vj j

v~1
PC1

c1 V½ �ð ÞPC2
c2 V½ �ð Þ, ð1Þ

where v is the sample index and Vj j~#V . The first equality

follows from independent sampling, the second equality from the

independence between components C1 and C2, and the third

equality from the samples being identically distributed (same

distribution regardless of the sample index v). As such, we may

generate all samples using independent samples from the inverse

CDF transforms W{1
Ci

ui v½ �ð Þ, where ui v½ �, i[ 1,2f g, v[ 1,2, . . . ,Vf g
are i.i.d. samples from the independent random variables Ui,

i[ 1,2f g, uniformly distributed on 0,1½ �, and W{1
Ci

is the inverse

CDF of the mixture distribution WCi
ci v½ �ð Þ~qWx ci v½ �ð Þz

1{qð ÞWy ci v½ �ð Þ. Here Wx is the logistic distribution for activation

and Wy is the logistic distribution for background as defined in

Daubechies et al. [8], and q is the relative area of the activation.

To achieve the required visual contrasts – small, medium, large

and very large boxes, at any desired position – we reorder the two-

dimensional samples, never decoupling the realizations of the

sources. The final result, while having a similar visual appearance

as the experiments of Daubechies et al. [8], retains the joint pdf.

This eliminates possible confusion with respect to the influence of

the different box parameters on the results of our experiments. We

then compute our results using four algorithms: 1) Infomax with

the standard sigmoid nonlinearity that assumes a unimodal super-

Gaussian source, called Infomax (super); 2) FastICA with the same

nonlinearity used in Daubechies et al. [8], which is y3; 3) Infomax

with a nonlinearity which assumes a sub-Gaussian source, called

Infomax (sub); and 4) ICA-EBM (ICA by entropy bound

minimization), a much more flexible ICA algorithm [12] able to

deal with both super- and sub-Gaussian sources.

Results are averaged over 100 source realizations (each using a

different random full-rank mixing matrix A) and 10 ICA runs (see

Table 1). We also report two performance metrics, first, using the

metric chosen in Daubechies et al. [8] EI{WAE, which is not

invariant to the scaling and permutation ambiguities inherent to

ICA. Hence, we also report the results using the inter-symbol

interference (ISI), or normalized Moreau-Amari index [13], which

is invariant to the scaling and permutation ambiguities:

ISI Pð Þ~ 1

2L L{1ð Þ
XL

i~1

XL

j~1

Pi j

�� ��
maxk Pi kj j{1

 !
z
XL

j~1

XL

i~1

Pi j

�� ��
maxk Pk j

�� ��{1

 !" #

ð2Þ

Here, pik are the elements of the matrix P~WA, and L is the number of

sources. This performance metric is bounded between 0 and 1 and

the lower the ISI value the better the separation performance (the

performance metric is zero if and only if the model is identified up

to the scaling and permutation ambiguities).

ICA Selects for Independence
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As expected, the most flexible approach, the ICA-EBM

algorithm, performs well (ISI,0.1) in all cases (Table 1). Infomax

(sub) performs well to moderately-well for the large and medium

boxes, both of which are bimodal and have a kurtosis that is close

to that of a Gaussian random variable. Infomax (super) and

FastICA perform marginally well or poorly in those cases but

perform very well for the cases of very large boxes (maximum

kurtosis) and for small boxes. This makes intuitive sense, as high-

kurtosis data matches the underlying assumptions of both Infomax

(super) and FastICA in that the source distributions are unimodal

and strongly super-Gaussian. These results directly contradict the

claim in Daubechies et al. [8] that Infomax (super) and FastICA

select for sparsity, since the maximum kurtosis case also has the

lowest sparsity of the four (again using the first definition of

sparsity in Daubechies et al. [8]).

Sparsity and Sources that Are Mixture of
Gaussians

In the sparsity section in Daubechies et al. [8, p.10421, Fig. 8]

there are several incorrect statements that are important and

require a careful critique. First, Daubechies et al. [8] claims that

the sources in the so-called ‘‘promotional material for ICA’’ are

Gaussian. We show below that they are in fact highly non-

Gaussian. Second, a definition of sparsity different from the one

proposed earlier in the paper [8] is used to claim that the sources

are sparse. We show that this sparsity does not refer to the sources

and in actuality they are not sparse. Finally, we correct several

other statements within that section.

Counter proof to claim of Gaussian sources
To identify the distribution of the sources in this example, it

is sufficient to look along the mixing directions a and b.

Observations are defined as r~cr1z 1{cð Þr2~c a1azb1b½ �
z 1{cð Þ a2azb2b½ �. Reordering the terms gives r~

a ca1z 1{cð Þa2½ �zb cb1z 1{cð Þb2½ �~ a b½ �:s~As, s~ sa sb½ �T ,

sa~ca1z 1{cð Þa2, sb~cb1z 1{cð Þb2. Thus, the sources can

be identified as mixture distributions. Their distributions are given

as psa
~lpa1

z 1{lð Þpa2
and psb

~lpb1
z 1{lð Þpb2

, where l is

the parameter of the Bernoulli distribution of which c are the

realizations. Notice that contrary to what one might expect, a

mixture of Gaussian random variables through a Bernoulli

random variable c as above, in general does not yield a Gaussian

random variable, but rather a random variable whose pdf is a

weighted mixture of two independent Gaussian pdfs. Finally, since

the distributions pa1
, pa2

, pb1
, and pb2

(pa1
~pb2

~p tð Þ) are all

Gaussian and no two distributions in a mixture have the same

variance – e.g., for the choice in Daubechies et al. [8],

pa2
tð Þ~10pa1

10tð Þ, which implies Var a2ð Þ~100Var a1ð Þ~100s2

– the resulting distribution must be non-Gaussian whenever

l 6[ 0,1f g. Hence the statement in Daubechies et al. [8] that

‘‘Each component has a Gaussian distribution’’, is incorrect; the

components are in actuality highly non-Gaussian (see Figure 2 (A–

B)).

Critique of the claim of sparse components
In the same section there is a claim that the components (i.e.

sources) in this example are sparse: ‘‘Fig. 8 depicts processes with 2

sparse rather than independent components’’. The definition of B-

sparsity in this section regards the number of elements (B) in a

zero-mean random vector that have variance close to zero. Thus,

a 1-sparse 2D random vector means that the variance of one of the

two elements is close to zero. However, B-sparsity in this section

does not refer to the components at all; rather, it refers to parts of

the components together, specifically, the 2D Gaussian vectors

a1b1½ �T and a2b2½ �T , which are 2D, 1-sparse vector processes. In

actuality, however, the components sa and sb are not sparse for the

choice of l~50% and l~30% used in M1 and M2, respectively.

This is because Var sað Þ~s2 99lz1

100
and Var sbð Þ~s2 100{99l

100
are far from 0 for the choices of l in M1 and M2, and both are

typically &0 for l= 0,1f g. Therefore, it cannot be sparsity that is

driving these algorithms towards the solution.

A few additional clarifications
There are two other sentences in the section on sparsity in

Daubechies et al. [8] which require some clarification. First, in the

sentence ‘‘However, in the example given here, is Gaussian;

because ICA methods cannot separate mixtures of independent

Gaussian processes, the successful separation of components by

Infomax and FastICA underscores again their ability to identify

sparse components’’ p tð Þ is not the distribution of the components

s. In addition, the statement instills belief that this example has

only a single mixing process, when in fact it has two: 1) the mixing

of the (Gaussian) ak’s and bk’s through l, which gives the (non-

Gaussian) sources si, and 2) the mixing of sources si through the

mixing matrix A~ ab½ �. The statement suggests Infomax and

FastICA can unmix the Gaussian random variables ak,bk which

constitute the mixture distribution of a source (i.e. the two parts of

a single source si) which is clearly incorrect (they unmix the

sources si, not their subparts). Lastly, the sentence ‘‘Infomax or

FastICA identify the 2 special directions a and b correctly as the

components’’ incorrectly labels a and b as components, when they

actually are the mixing coefficients that make up the A matrix.

ICA of Sources with Mixture of Gaussians
Distribution

The discussion related to the example in Figure 8 of the

original paper [8] initially notes that mixtures of independent

Gaussian random variables cannot be recovered by ICA, which is

true if each source comes from a single Gaussian distribution, and

the algorithms are only based on higher-order statistics, as in the

case of Infomax and FastICA (i.e., the algorithms do not exploit

sample correlation). However, these algorithms (and many

others that have been developed and also applied to fMRI data

[14]) can separate sources whose probability density can be

represented via a Gaussian mixture model, as long as the resulting

distribution itself is not a Gaussian. The latter is the case in the

example presented in Figure 8 of Daubechies et al. [8], which was

incorrectly seen as evidence that sparsity was the driving

force helping ICA to recover Gaussian sources. We showed that

the sparsity mentioned in Daubechies et al. [8] is not related to

the sources. Also, this example utilizes a mixture of Gaussians as

the sources. With the parameters described in Daubechies et al.

[8], the sources are in fact super-Gaussian (i.e. they have

positive excess kurtosis, as shown in Table 2). Infomax and

FastICA with nonlinearities selected to match a super-Gaussian

distribution are expected to successfully separate such sources, as

also is the more flexible ICA-EBM algorithm [12]. Conversely,

Infomax with a nonlinearity selected to be sensitive to sub-

Gaussian sources is expected to exhibit suboptimal performance

(see Table 2). This can also be visualized in Figure 2 where we

show the sources and the mixtures for the case of l~30% as

described in Daubechies et al. [8]. This example again points

to the confusion discussed in the Section ‘‘The statistical

properties of synthetic data in Daubechies et al. [8]’’ with respect
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to the definition of the underlying ICA sources, i.e., what is

actually being simulated and what is assumed in Daubechies

et al. [8].

On the Definition of Sparsity

In coding theory, whether in transmission or in storage of a

signal, a trade-off often is necessary between attainable compres-

sion rates and signal restoration error. In this context, sparsity is a

signal property that allows for high compression rates, while

compromising only little in the restoration error. A sparse signal

generally consists of N~#V coefficients of which n%N
coefficients concentrate all information within the signal. Indeed,

under the hypothesis that coding a string of zeroes has little cost in

resources with respect to coding whatever floating/integer

number, all other N{n coefficients could be set to zero without

significant loss of information but with a substantial gain in

compression rate.

A legitimate question now is what about a signal of which all but

1 coefficient differ from a number, say, m. Let that one coefficient

equal zero. Is that signal sparse? Under the above definition, the

signal would not be considered as sparse, since only a single

coefficient could be coded as a zero without introducing a

reconstruction error. However, if we would allow for coding a shift

by m, then coding N{1 coefficients as zero would result in a

reconstruction error e upper bounded by mk k (and we would find

e~0 with probability N{1). It is clear from this very simple

example that it is important to appropriately choose the origin

for the coordinate system (z0) in which one foresees to evaluate

the sparseness of the signal. For the model considered in

Daubechies et al. [8], we plot the sparsity measureffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EZ z{z0ð Þ2
n or �

EZ z{z0j jf g for three different choices of z0.

Here, the ordinary sparsity measure (as understood in Daube-

chies et al. [8]) is taken with respect to z0~{1, i.e., the mean of

the ‘‘background distribution’’, with sparsity decreasing as the

active region size increases (see Figure 3). Note that for fMRI

we typically use zero-mean samples when using ICA, thus

measuring our sparsity with respect to the mean of the mixture

model.

On the Application of ICA to fMRI

We also note that, contrary to the claims in Daubechies et al.

[8], Infomax and FastICA, though the most widely used at the

time – due in large part to their availability in fMRI-friendly

software packages – were not the only ICA algorithms that had

been applied to fMRI analysis with success at the time [15,16].

This trend has continued and in recent years even more flexible

algorithms such as those based on entropy bound minimization

(EBM) or full blind source separation (FBSS) have been used

increasingly to analyze fMRI data, outperforming both Infomax

and FastICA [14,17,18]. In general, we would recommend that

these and other more recent algorithms preferentially be applied to

fMRI, as they are generally more robust to non-super-Gaussian

and/or multimodal distributed sources which can occur in real

fMRI data, observed in the context of certain artifacts. These

algorithms and many others are implemented in the group ICA of

fMRI toolbox (GIFT; http://mialab.mrn.org/software/gift). An

interesting historical note is that before extended Infomax [19] was

introduced, there was confusion as to how ICA of fMRI really

worked when it was applied as temporal ICA and early results

indeed were not convincing – since time courses are more likely to

be sub-Gaussian than super-Gaussian [20], whereas in the spatial

ICA case super-Gaussian sources are more common. Another

important point regarding the real fMRI experiment mentioned

in Daubechies et al. [8] is that each voxel is identified as

belonging to only one underlying source (page 10416, left col,

third paragraph). Such an approach is perhaps a reflection of the

way one might approach an fMRI experiment with a sparsity

focus, but in reality, and more in line with the complexity and

connectivity of the human brain, each voxel typically has a

contribution from multiple components (sources), making this an

ideal case for ICA.

Conclusions

We reviewed the main claim made in Daubechies et al. [8] and

its supporting evidence. We revisit the initial experiments and

present new evidence showing conclusively that the arguments fall

short of supporting the claim that Infomax and FastICA select for

sparsity and not for independence. While pointing out that the use

of other metrics for fMRI analysis such as sparsity – besides

independence, which is widely used – is a reasonable goal, the

claims that are used to justify this desire are misleading at best and

in some cases are simply incorrect. In summary, we show that ICA

algorithms, including FastICA and Infomax, are indeed doing

what they were designed to do, maximize independence.
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