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Consistency of the Blind Source Separation Computed

With Five Common Algorithms for

Magnetoencephalogram Background Activity

Javier Escudero1,∗, Roberto Hornero2, Daniel Abásolo2

Abstract

Blind source separation (BSS) is widely used to analyse brain recordings like

the magnetoencephalogram (MEG). However, few studies have compared

different BSS decompositions of real brain data. Those comparisons were

usually limited to specific applications. Therefore, we aimed at studying the

consistency (i.e., similarity) of the decompositions estimated for real MEGs

from 26 subjects using five widely used BSS algorithms (AMUSE, SOBI,

JADE, extended-Infomax and FastICA) for five epoch lengths (10 s, 20 s,

40 s, 60 s and 90 s). A statistical criterion based on Factor Analysis was

applied to calculate the number of components into which each epoch would

be decomposed. Then, the BSS techniques were applied. The results indicate

that the pair of algorithms ‘AMUSE–SOBI’, followed by ‘JADE–FastICA’,

provided the most similar separations. On the other hand, the most dissimi-
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lar outcomes were computed with ‘AMUSE–JADE’ and ‘SOBI–JADE’. The

BSS decompositions were more similar for longer epochs. Furthermore, ad-

ditional analyses of synthetic signals supported the results of the real MEGs.

Thus, when selecting BSS algorithms to explore brain signals, the techniques

offering the most different decompositions, such as AMUSE and JADE, may

be preferred to obtain complementary, or at least different, perspectives of

the underlying components.

Keywords: Algorithm comparison, Blind Source Separation (BSS),

Consistency, Independent Component Analysis (ICA),

Magnetoencephalogram (MEG)

1. Introduction1

The electroencephalogram (EEG) and the magnetoencephalogram (MEG)2

are the only techniques that measure the synchronous oscillations of the cor-3

tex directly and non-invasively. Whereas the former records the electrical4

brain activity, the latter reflects the corresponding magnetic fields [1]. These5

signals have slightly different characteristics. For instance, MEG is only af-6

fected by current flows oriented parallel to the scalp and it is less distorted7

than the EEG by extra-cerebral tissues [1]. Despite these subtle differences,8

similar problems are faced when analysing both recordings. Firstly, the sig-9

nals acquired at a particular sensor are a weighted linear mixture of the10

underlying brain activity [2]. Therefore, the isolation and analysis of the elec-11

tromagnetic activity generated by a specific source of interest is a complex12

task [2]. Moreover, the brain activity is usually recorded together with un-13

desired signals (i.e., artefacts) of physiological or environmental origin [2, 3].14
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Blind Source Separation (BSS) is useful to overcome some difficulties15

encountered in EEG and MEG analysis [2, 3]. The BSS estimates the con-16

stituent sources (or components) of the observations assuming a linear mix-17

ture model [3]. Although the components and the mixing system are un-18

known, they can be estimated thanks to a minimal set of assumptions that19

includes the statistical independence of the sources [2–5].20

BSS has been widely applied to EEG and MEG data [2, 3, 5]. For in-21

stance, diverse methodologies have been used to detect and remove the arte-22

facts [5–9]. BSS is also helpful to isolate brain activity related to specific23

brain functions [3, 4, 10] or to improve the discrimination of demented pa-24

tients against controls [11–13].25

There is a wide variety of BSS techniques available and not all algorithms26

are based on the same principles. For a review see, for example, [3–5]. Theo-27

retical relationships exist among some of the metrics used in the algorithms.28

However, it may be difficult to select a priori the most appropriate algorithm29

for a particular application [6, 8]. These methods are data-driven and, by30

their own nature, exploratory [5].31

In order to try to clarify the relationships between BSS techniques, a32

few studies have compared some algorithms (see [10] and references therein).33

However, most of these analyses were based on synthetic (i.e., artificial) sig-34

nals. For instance, three Higher-Order Statistics (HOS) algorithms were35

compared in [14]. However, basic hypotheses in HOS-BSS were violated in36

the experimental design: some synthetic sources were sub-Gaussian and, in37

some cases, moving sources were simulated [14]. This can limit the relia-38

bility of the results. Moreover, the analysis focused on acoustic signals and39
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the extension of those results to brain recordings is not straightforward [14].40

Computational and statistical comparisons among HOS methods were also41

performed with super-Gaussian synthetic signals [4]. The main conclusions42

supported the robustness of HOS techniques under slight violations of the43

assumptions. Additional analysis suggested that different techniques may44

reveal different components when applied to real signals [4].45

Diverse studies have compared BSS algorithms in artefact removal from46

EEGs [8, 15–17]. The independence of the extracted components was checked47

in the removal of ocular artefacts [18, 19]. However, the most commonly48

used algorithms were left out of this analysis and the evaluation was done in49

terms of mutual information [18, 19]. This might bias the analysis in favour50

of those algorithms directly based on this metric. Moreover, the significance51

of the differences among algorithms was not tested [19]. Other analyses have52

evaluated the performance of BSS algorithms regarding the quality of their53

artefact removal [7]. Recently, an extensive study focused on EEG data has54

been published [10]. Nevertheless, it was entirely based on synthetic data55

[10]. The outputs of three common BSS algorithms have also been compared56

against a new BSS approach based on the short-time Fourier transform [20].57

This study suggests that, in the case of spontaneous activity, HOS methods58

tend to focus on the extraction of artefacts whereas a Second-Order Statistics59

(SOS) approach failed since it tended to extract components with very similar60

spectra [20]. However, this analysis was mainly carried out in the specific61

framework of the study of the phase differences between components with62

data from only one subject [20].63

To sum up, most comparisons among BSS algorithms were carried out64
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with simulated signals only or in a very particular context, such as artefact65

removal [6, 8, 16, 17]. This may limit the application of the results to other66

settings. Moreover, a detailed study on the similarity of the decompositions67

for real brain recordings computed with different algorithms is lacking [2].68

Thus, it is important to study the consistency (i.e., similarity) of the69

separations estimated from real electromagnetic recordings. This could lead70

to further understanding of the relationships among BSS techniques and71

to more informed decisions about which algorithms could offer complemen-72

tary perspectives in one particular study. By offering information about73

which BSS methods provide more similar results, the search for appropriate74

techniques for the problem at hand would be facilitated. To achieve this75

goal, real MEG background activity will be decomposed using five widely76

used BSS algorithms in the analysis of EEGs and MEGs: algorithm for77

multiple unknown signals extraction (AMUSE), second-order blind identifi-78

cation (SOBI), joint approximate diagonalisation of eigenmatrices (JADE),79

Lee-Sejnowski’s extended-Infomax algorithm and Hyvärinen-Oja’s FastICA80

algorithm. The results obtained from the real MEG activity will be com-81

plemented by measuring the quality of the BSS in a dataset of synthetic82

signals.83

2. Subjects and MEG Recording84

Twenty-six healthy elderly subjects without past or present mental disor-85

ders participated in this study (9 men and 17 women). Their mean age was86

71.77±6.38 years (mean ± standard deviation, SD). These subjects are part87

of a larger database acquired to study the effects of Alzheimer’s disease in88
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the MEG (see, for instance, [12, 13]). We limited the analyses to the control89

subjects to avoid any bias in the results due to that dementia. All subjects90

gave their informed consent to participate in the current research, which was91

approved by the local ethics committee.92

The MEG recording process was carried out in a magnetically shielded93

room with a 148-channel whole-head magnetometer (MAGNES 2500 WH,94

4D Neuroimaging) located in the MEG Centre Dr. Pérez-Modrego at the95

Complutense University of Madrid (Spain). During this procedure, the sub-96

jects lay on a patient bed with eyes closed in a relaxed state. They were97

asked to stay awake and not to move eyes and head. For each subject, five98

minutes of MEG recording were acquired at a sampling rate of 678.19 Hz.99

Then, the data were decimated to a sampling frequency of fs = 169.55 Hz.100

Afterwards, the recordings were processed with a band-pass FIR filter with101

cut-off frequencies at 0.5 Hz and 60 Hz. Finally, the MEGs were divided into102

epochs of 10 s, 20 s, 40 s, 60 s and 90 s (1695, 3390, 6780, 10170 and 15255103

samples, respectively).104

3. Blind Source Separation (BSS)105

3.1. Linear Mixing Model for BSS106

BSS techniques attempt to represent a set of m measured time-varying107

signals, x (t) = [x1 (t) , x2 (t) , . . . , xm (t)]T, where T denotes transposition,108

as a linear mixture of l latent underlying components (or sources), s (t) =109

[s1 (t) , s2 (t) , . . . , sl (t)]T, given by a full-rank m× l mixing matrix, A [3–5].110

A vector n (t) = [n1 (t) , n2 (t) , . . . , nm (t)]T can also be included in the model111

to account for measurement noise [3, 9, 21, 22]. Hence, the BSS model can112
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be represented as:113

x (t) = As (t) + n (t) . (1)

In EEG and MEG analysis, x (t) denotes the recordings, whereas s (t) repre-114

sents either neural activity or interference signals of diverse origins [3].115

Since only the observations x (t) are available, several assumptions are116

needed to estimate A and s (t) [3, 4]. In addition to linearity, it is hypothe-117

sized that m ≥ l and that the mixture is stationary. Moreover, the compo-118

nents are assumed to be mutually independent or, alternatively, decorrelated119

at any time delay [3, 5]. All these hypotheses have been validated for brain120

signals [2–5].121

3.2. BSS Algorithms122

Five BSS algorithms commonly used in the analysis of EEGs and MEGs123

were compared: AMUSE, SOBI, JADE, extended-Infomax and FastICA [2–124

4, 6–8, 12, 13].125

AMUSE [23] and SOBI [24] are time-structure based methods, also known126

as SOS-BSS. They assume that the sources have no spatial-temporal correla-127

tions [3]. Thus, these techniques try to diagonalize a set of cross-covariance128

matrices computed from x (t). AMUSE only considers two time delays –129

usually τ = 0 and τ = 1 sample, which corresponds to τ = 0.0059 s at130

fs = 169.55 Hz [23]. As a result, it orders the components by decreasing131

linear predictability, a criterion closely related to the signal spectral content132

[12, 13]. On the other hand, SOBI uses iterative procedures to simultane-133

ously diagonalise multiple temporal lags [24]. Similarly to [15], SOBI was134

applied with 50 consecutive time lags from τ = 1 sample to τ = 50 samples135
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(τ = 0.2949 s at fs). This choice was supported by the fact that this set of136

delays covered a wide time interval without extending beyond the support of137

the average autocorrelation function of the MEG recordings.138

On the other hand, JADE [25], extended-Infomax [26] and FastICA [4]139

rely on HOS, that is, statistical parameters like negentropy or kurtosis. They140

look for non-Gaussian sources assuming that x (t) are observations of random141

variables where the temporal order is irrelevant [3, 4]. In this study, FastICA142

was applied with the non-linearity tanh (·) and the deflationary approach143

[4]. This function was selected for being a good general-purpose function [4].144

The extended version of Infomax was used in order to estimate both sub- and145

super-Gaussian sources [26]. This version of the algorithm has been widely146

applied to EEG and MEG [8, 15, 16]. The number of each type of components147

was automatically determined [26]. JADE has no input parameters [4, 6, 25].148

All these BSS algorithms are contained in the EEGLAB [27], FastICA149

[28] and ICALAB toolboxes [29].150

3.3. Preprocessing and Model Order Selection151

The implementation of most BSS algorithms assumes a noiseless mixture152

where m = l [3, 4]. However, EEG and MEG are affected by measurement153

noise whose power may not be negligible [9, 21, 22, 30, 31]. Furthermore, the154

number of channels in current EEG and MEG systems can be much larger155

than that of meaningful BSS components (i.e., m > l) [21, 30]. Hence, a156

suitable preprocessing is important to reduce the importance of the measure-157

ment noise and the dimensionality of the input signals of the BSS algorithms158

[3, 9, 21].159

The preprocessing applied before a BSS algorithm is usually based on160
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Principal Component Analysis (PCA) [3]. Nevertheless, this approach has161

some drawbacks as it implies a certain degree of arbitrariness in the estima-162

tion of l. Moreover, it is not clear that the external noise is weak enough at163

all sensors [3, 9, 21]. In contrast to PCA, we apply a preprocessing based on164

factor analysis (FA) that can deal with different noise power at each sensor.165

Moreover, the model order (l) has been estimated with a statistical criterion:166

the Minimum Description Length (MDL) [30]. The preprocessing variables167

are computed for the range of possible l values and, for each of them, the168

value of the statistical criterion MDL is computed. Then, the optimum l is169

selected as the one providing the minimum MDL. A detailed description of170

FA and the MDL can be found in [30] or [9]. This preprocessing was evalu-171

ated in [9] using synthetic data. The results suggested that it provided more172

accurate estimations of l than other commonly used PCA-based approaches.173

Furthermore, other studies have found that FA is more parsimonious when174

estimating the value of l in real EEGs and MEGs than classical PCA schemes175

[21, 22].176

3.4. Comparison of BSS Algorithms177

A completely accurate quantification of the performance provided by a178

BSS algorithm q can only be achieved if either the original mixing matrix, A,179

or set of sources, s (t), is known [11, 32, 33]. This is the case when analysing180

synthetic signals. For real EEG and MEG recordings, these data are not181

available. However, the consistency of various BSS algorithms can still be182

precisely computed [29]. In order to do so, two different BSS algorithms183

(algorithm q and algorithm r) must be applied to the same input data in184

order to estimate the corresponding mixing matrices: Aq and Ar [29]. Then,185
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the columns of these matrices are normalized to unit length vectors and a186

matrix Pqr, whose size is l × l, is computed as:187

Pqr = (Aq)−1 Ar. (2)

If the two algorithms q and r provide exactly the same separation, Pqr
188

will be a generalized permutation matrix [4]. Similarly, the closer Pqr is to189

a permutation matrix, the more consistent the separations of the algorithms190

q and r are [29].191

In order to measure the degree to which Pqr is close to a permutation192

matrix, we define the metric F as F = (F1 + F2) /2, with F1 and F2 computed193

as in [11]:194

F1 =
1

l

l∑
i=1

[
1

l − 1

(
l∑

j=1

|pij|
maxk |pik|

− 1

)]
, (3)

and195

F2 =
1

l

l∑
j=1

[
1

l − 1

(
l∑

i=1

|pij|
maxk |pkj|

− 1

)]
, (4)

where pij denotes an element of Pqr and l is the number of components.196

F1 measures the average coupling of other sources into one particular197

component, whereas F2 accounts for the fact that two or more estimated198

components represent exactly the same original source [11]. It is worth not-199

ing that F1 and F2 are normalized so that their values do not depend on200

the dimensions of Pqr. Since F1 and F2 are bounded between 0 (for a per-201

fect generalized permutation matrix) and 1, F also ranges between 0 and 1.202

Hence, the lower the value of F for a pair of algorithms, the more consistent203

they are (i.e., the outcomes of both algorithms are more similar).204
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3.5. Synthetic signals205

For the sake of completeness, synthetic signals are generated to evalu-206

ate the quality of the separations computed with AMUSE, SOBI, JADE,207

extended-Infomax and FastICA. However, it should be borne in mind that208

the reliability of any results computed from simulated data is limited.209

The synthetic signals used in this study were developed in [9]. They210

are composed by 11 inner components. These signals have the same sample211

frequency and were processed with the same filter as the real MEG recordings.212

Fig. 1 depicts one example of each synthetic source including their time plot,213

power spectral density and histogram. Additional details can be found in [9]:214

1. S1 corresponds to a real electrocardiogram representing the cardiac215

artefact.216

2. S2 is an inner white Gaussian noise source.217

3. S3 is a real electrooculogram illustrating ocular activity.218

4. S4 is a sine wave at 50 Hz.219

5. S5 is a real MEG channel selected to have minimal artefactual activity.220

6. S6 is a 1/f noise source.221

7. S7 is a white exponential noise source.222

8. S8 to S11 represented rhythmic activity with main frequencies are 7 Hz,223

14 Hz, 21 Hz and 28 Hz.224

The synthetic signals allow to evaluate how close the mixing matrix com-225

puted with the BSS is to the actual one. In order to do so, the metric F is226

calculated from a matrix Pqr where Aq refers to the known synthetic mixing227

matrix and Ar is estimated with a BSS technique.228
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Figure 1: Example of synthetic sources. The time plot (a), power spectral

density (b) and histogram (c) are shown.
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To avoid any influence of the preprocessing, the number of mixtures is set229

to the number of components (m = l = 11). The synthetic mixing matrix230

is created with a Gaussian process with zero mean and SD equal to one [9].231

In order to study the influence of the synthetic data length, epochs of 2 s,232

4 s, 8 s, 16 s, 32 s and 64 s are considered. For each length, 100 different233

instances of the synthetic signals are created with random delays or phases.234

3.6. Statistical Analysis235

Boxplots are used to visually summarise distributions of data. This dia-236

gram is composed of a box with three horizontal lines at the lower quartile,237

median and upper quartile values. The confidence interval of the median is238

indicated with a couple of notches. The boxplot also has two whiskers to239

show the extent of the rest of the data, which is estimated as 1.5 times the240

interquartile range. Values beyond the end of the whiskers are considered241

outliers and are marked with a ‘+’.242

For the real MEG signals, a one-way ANalysis Of VAriance (ANOVA) is243

used to test whether the means of several groups are all equal. This procedure244

offers the possibility of partitioning the observed covariance in the data into245

components due to diverse explanatory variables (e.g., ‘Pair of algorithms’).246

Additionally, a quantitative predictor (i.e., covariate) can be removed from247

the samples by a regression in order to account for some variability and248

increase statistical power. In this case, the number of components (l) can be249

taken as a covariate. The Scheffé’s correction will be applied in the post-hoc250

multiple comparison procedure. In the case of the synthetic data, it is not251

necessary to consider l as a covariate in the ANOVA since it has a constant252

value.253
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Figure 2: Boxplots showing the number of components (l) estimated for the

real MEG epoch lengths.

4. Results254

Our main objective was to study the consistency of real MEG data decom-255

positions estimated with five common BSS algorithms for five epoch lengths:256

10 s, 20 s, 40 s, 60 s and 90 s. Firstly, the value of l was estimated for257

each case with the MDL [9, 30]. Fig. 2 shows the boxplots representing the258

distributions of l for every epoch length. As it can be expected, l tended to259

increase with the epoch length of the MEG signal.260

Secondly, the MEG recordings were preprocessed with the optimal l value261

estimated for each epoch. These preprocessed signals were decomposed with262

the five BSS methods. Then, the matrices Pqr were computed for each epoch263

and pair of algorithms and characterized with the metric F . In order to264

reduce the amount of data to be analysed, we studied only one matrix, Pqr,265

instead of both Pqr and Prq. This decision was supported by the fact that266

the average absolute differences for the F metric between Pqr and Prq were267
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always lower than 1.2%.268

For each length, the F values obtained for every pair of algorithms were269

averaged. These results are depicted in Fig. 3, where all subplots are repre-270

sented with the colour scale used to represent the data [34]. Lower F values271

are related to more consistent (more similar) pairs of algorithms. For all272

epoch lengths, Fig. 3 suggests that the most consistent pair of algorithms273

was ‘AMUSE–SOBI’ (SOS-based methods), followed by the pair ‘JADE–274

FastICA’, which involve HOS. Moreover, Fig. 3 shows that the general level275

of consistency improved as the length of the real MEG epochs increased.276

This suggests that the separations provided by different algorithms tended277

to converge as larger signals were decomposed.278

For each epoch length, a one-way ANOVA with the Scheffé’s multiple279

comparison procedure, ‘Pair of algorithms’ as the grouping factor and ‘Num-280

ber of estimated components’ (l) as a covariate was used to statistically281

evaluate the differences in the F values.282

For epochs of 10 s, there were significant differences in the F values as283

a consequence of the factor ‘Pair of Algorithms’, the covariate ‘Number of284

estimated components’ and their interaction (p � 0.0001 in all cases). The285

slopes of the regression of F against l were significantly different from 0286

(p < 0.05) for the pairs of algorithms ‘AMUSE–SOBI’, ‘AMUSE–extended-287

Infomax’ and ‘SOBI–extended-Infomax’. In the first case, F slightly in-288

creased with n (a larger number of components made the decompositions289

more different). For the other two pairs, more components produced lower290

F . Finally, the post-hoc multiple comparison procedure confirmed that the291

level of consistency of the ‘AMUSE–SOBI’ pair was significantly lower from292
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Figure 3: Average F values for each pair of BSS algorithms (A: AMUSE, S:

SOBI, J: JADE, eI: extended-Infomax, F: FastICA) and length of the real

MEG epochs: (a) 10 s, (b) 20 s, (c) 40 s, (d) 60 s and (e) 90 s. For the

sake of clarification, the zero-level of the F metric for redundant pairs has

been included in the diagonal of each subplot. The colour scale [34] used to

represent the F values appears in (f).
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Figure 4: Boxplots showing the F values for the pairs of algorithms ‘AMUSE–

SOBI’ (A-S) and ‘JADE–FastICA’ (J-F) and jointly for the other 8 pairs of

algorithms (Others) for real MEG epochs of 10 s.

that of ‘JADE–FastICA’, and that the F values for these two pairs also dif-293

fered significantly from the other eight pairs. Of note is that ‘AMUSE–JADE’294

and ‘SOBI–JADE’ offered the most different separations. To illustrate this295

statistical differences among pairs of algorithms, Fig. 4 shows the boxplots296

of the F values for pairs ‘AMUSE–SOBI’, ‘JADE–FastICA’ and the rest of297

pairs. It can be observed that ‘AMUSE–SOBI’ has the lowest F values,298

followed by ‘JADE–FastICA’.299

The results obtained for epochs of 20 s were very similar to those previ-300

ously reported for 10 s, with the same level of significant differences in the301

grouping factor and covariate. In this case, the regression of F against l was302

significantly positive for ‘JADE–FastICA’ as well as for the cases reported303

for the 10 s case.304

The case of epoch length equal to 40 s presents slight deviations from the305

previous results. The F values varied significantly with ‘Pair of Algorithms’306
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(p� 0.0001), ‘Number of estimated components’ (p = 0.0100) and their in-307

teraction (p� 0.0001). The slopes of the regression for ‘AMUSE–extended-308

Infomax’, ‘AMUSE–FastICA’, ‘SOBI–extended-Infomax’ and ‘SOBI–FastICA’309

decreased with l, whereas the pair ‘JADE–FastICA’ offered less similar sep-310

arations for larger l. Likewise the previous cases, the post-hoc multiple com-311

parison procedure indicated that ‘AMUSE–SOBI’ and ’JADE–FastICA’ of-312

fered the most similar decompositions between algorithms. The analysis also313

suggested that the outcomes of ‘AMUSE–JADE’ and ‘SOBI–JADE’ were the314

most dissimilar.315

When epochs of 60 s were studied, the F values only presented significant316

differences for ‘Pair of Algorithms’ and its interaction with l (p� 0.0001 in317

both cases). The slopes of F against l that are significantly different from zero318

are identical to those indicated in the analysis made for epochs of 40 s. The319

multiple comparison procedure suggested that ‘AMUSE–SOBI’ and ‘JADE–320

FastICA’, in that order, were the most consistent pairs of algorithms. There321

was also a tendency for ‘AMUSE–JADE’ and ‘SOBI–JADE’ to compute the322

least similar decompositions.323

The decompositions of 90 s were also analysed. Only the ‘Pair of Algo-324

rithms’ and its interaction with l had significant p values (p� 0.0001). The325

pairs ‘JADE–FastICA’ and ‘JADE–extended-Infomax’ offered more differ-326

ent separations when l increased (p < 0.05). ‘AMUSE–extended-Infomax’,327

‘AMUSE–FastICA’ and ‘SOBI–extended-Infomax’ had regression slopes sig-328

nificantly (p < 0.05) lower than zero. For this epoch length, ‘AMUSE–JADE’329

and ‘SOBI–JADE’ computed the least consistent separations. On the other330

hand, four pairs of algorithms had significantly different population marginal331
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Figure 5: Boxplots showing the F values for the pairs of algorithms ‘AMUSE–

SOBI’ (A-S), ‘JADE–FastICA’ (J-F), ‘AMUSE–JADE’ (A-J) and ‘SOBI–

JADE’ (S-J) and jointly for the other 6 pairs of algorithms (Others) for real

MEG epochs of 90 s.

means for the F values from the rest of pairs: ‘AMUSE–SOBI’, ‘JADE–332

FastICA’, ‘extended-Infomax–FastICA’ and ‘JADE–extended-Infomax’ (from333

more consistent to more dissimilar). The results for the most consistent and334

dissimilar pairs of algorithms are illustrated with boxplots in Fig. 5.335

Finally, synthetic data were used to complement the previous analyses.336

AMUSE, SOBI, JADE, extended-Infomax and FastICA were used to esti-337

mate the mixing matrix. The metric F was computed from a matrix Pqr
338

where q represented the known synthetic mixing matrix and r referred to339

one of the BSS methods. Hence, F indicated the quality of the decomposi-340

tion, with lower F values accounting for more accurate estimations. For each341

synthetic epoch length, the F values of the 100 instances of the simulated342

data were averaged. These results are illustrated in Fig. 6. Similarly to the343

real recordings, Fig. 6 indicates that the accuracy of the separation increased344
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Figure 6: Average F values for the decompositions of the synthetic data

computed with AMUSE (A), SOBI (S), JADE (J), extended-Infomax (eI)

and FastICA (F) for epochs of 64 s, 32 s, 16 s, 8 s, 4 s and 2 s. The zero-level

of the F metric for a perfect decomposition is also plotted (Ground truth).

The colour scale [34] used to represent the F values appears in (b).

with the epoch length and that AMUSE and SOBI offered similar levels of345

accuracy in the BSS.346

A Scheffé-corrected one-way ANOVA with ‘Algorithm’ as factor was ap-347

plied to assess the differences in the F values of the synthetic signals. For348

all epoch lengths, the differences in the separation accuracy were signifi-349

cant (p� 0.0001) and showed the same pattern in the multiple comparison350

analysis. AMUSE and SOBI provided the best estimations of the synthetic351

mixing matrix. Their level accuracy was significantly different from that of352

HOS-BSS techniques. As for this type of methods, FastICA calculated more353

accurate separations than JADE and extended-Infomax and the quality of354

JADE did not improve with the signal length as much as in the other cases.355

The differences among the three HOS-BSS approaches were significant for all356
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signal lengths.357

5. Discussion and Conclusions358

We compared five BSS algorithms in terms of the similarity between their359

decompositions for the real signals recorded from 26 subjects. We only eval-360

uated one matrix, Pqr, for each pair of algorithms instead of both Pqr and361

Prq as the average differences for the F metric between Pqr and Prq were362

always lower than 1.20%. By taking this decision, we tried to reduce the363

surplus complexity and redundancy of the problem. The results indicated364

that ‘AMUSE–SOBI’ and ‘JADE–FastICA’, in that order, are the pairs of365

algorithms that provide more similar BSS decompositions, while ‘AMUSE–366

JADE’ and ‘SOBI–JADE’ provided the most different outcomes. The sep-367

arations tended to be more simillar for longer epochs. These results were368

supported by a complementary analysis of synthetic signals.369

The preprocessing does not constitute a BSS algorithm itself. It relies on370

the classical projection technique of FA [9, 30, 31]. However, this preprocess-371

ing is important for several reasons [4, 5, 9, 21, 30]:372

1. The number of inner meaningful components in real EEGs and MEGs373

may be less than the number of available channels.374

2. A dimensionality reduction may sometimes be necessary to avoid “over-375

fitting”.376

3. A dimensionality reduction may help to reduce the importance of the377

external noise.378

The preprocessing included the estimation of the optimum number of com-379

ponents (l).380
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The dependence of the preprocessing on the signal length was studied for381

real epochs of 10 s, 20 s, 40 s, 60 s and 90 s. As it was expected, l increased382

with the epoch length. This means that longer signals tend to be composed383

of more inner sources or, at least, need to consider more components to384

obtain an optimum decomposition. These results are supported by other385

contributions about the model order selection in EEG and MEG [21, 22].386

These studies investigated the performance of diverse approaches based on387

PCA and FA to estimate the number of BSS components in real EEG and388

MEG. Those results indicated that probabilistic PCA and FA models yield389

estimations of the dimensionality that are more reliable and independent of390

the signal power than commonly used PCA approaches [22]. The estimated391

values of l were about one third of the measurement space dimension [22].392

In our case, the number of components was usually lower than one third393

of channels, specially for the shorter epochs. This suggested that, in the394

case of MEG equipment, more channels do not necessarily reflect more brain395

signals [22]. What is more, the data dimension reduction is supported by the396

statistical properties of the signal and the FA models may offer an appropriate397

description of the brain recordings [21, 22].398

The visual representation of the results provided by Fig. 3 clearly indi-399

cated that the pair ‘AMUSE–SOBI’ provided the most similar decomposition400

of the analysed MEGs. This result was confirmed by the fact that these tech-401

niques computed the most accurate decompositions of the synthetic data.402

The principle beneath these two techniques is the simultaneous diagonalisa-403

tion of several time-delayed cross-covariance matrices [3, 4]. We also found404

that the decompositions of JADE and FastICA are characterized by a high405
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degree of similarity for the real signals. This might be explained by the fact406

that the theoretical principles of both algorithms could be related [4].407

Additionally, the algorithms tended to estimate more similar decomposi-408

tions of the real MEGs as longer epochs were considered. This may be due409

to the fact that, although l increased with the epoch length, the number of410

data samples considered increased more rapidly than the number of elements411

to be estimated in A [2]. This fact is illustrated in Table 1, which depicts the412

number of available data samples and the median of the number of elements413

to be estimated in A for each epoch length. It is clear that, the longer the414

epoch, the larger the number of samples available to estimate each element415

of A. Hence, the decompositions may be considered more reliable for longer416

epochs [2], which could explain the ‘relative similarity’ of the BSS outcomes417

for long real MEG epochs. This result was supported by the analysis of syn-418

thetic data. Table 1 also depicts the number of synthetic samples available to419

compute the BSS. As the number of synthetic components was fixed, longer420

signals offered more accurate decompositions. Yet, it should be noticed that,421

for the synthetic data, the quality of the JADE separation did not improve422

as much as with the other techniques.423

The statistical analysis carried out for every epoch length pointed out the424

statistical significance of the similarity between the decomposition computed425

by ‘AMUSE–SOBI’ and ‘JADE–FastICA’. On the other hand, the pairs426

‘AMUSE-JADE’ and ‘SOBI-JADE’ used to provide the most dissimilar sepa-427

rations of the MEG signals. A relatively consistent pattern was that a larger428

number of components made the outcomes of the separations calculated by429

‘AMUSE-SOBI’ and ‘JADE-FastICA’ slightly more different. Surprisingly,430

23



Table 1: Ratios of the number of data samples for each epoch length divided

by the median value of the number of elements in A for the real MEG

recordings and for the synthetic signals.

Real MEG recordings

Epoch length Data samples Median of l Elements in A (l2) Ratio

10 s 1695 29 841 2.02

20 s 3390 33 1089 3.11

40 s 6780 38 1444 4.67

60 s 10170 41 1681 6.05

90 s 15255 44 1936 7.88

Synthetic signals

Epoch length Data samples Value of l Elements in A (l2) Ratio

2 s 339 11 121 2.80

4 s 678 11 121 5.60

8 s 1356 11 121 11.21

16 s 2713 11 121 22.42

32 s 5425 11 121 44.83

64 s 10851 11 121 89.68
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the pairs ‘AMUSE-extended-Infomax’ and ‘SOBI-extended-Infomax’ com-431

puted BSS decompositions that were slightly more similar for larger values432

of l.433

A few studies have compared the performance of several BSS techniques434

from different perspectives. For instance, synthetic signals have been used435

to evaluate whether the BSS improved the automatic detection of artefacts436

in the EEG [7] or to assess the quality of the BSS decomposition [10]. Our437

results from simulated data agree with those of [10] in the sense that SOS-438

BSS techniques seemed to calculate more accurate decompositions. SOS-439

BSS methods also performed better than HOS-BSS techniques in a detailed440

analysis of the ocular artefact rejection for EEG [16, 17]. However, in the441

artefact detection problem, Infomax performed better than FastICA and442

SOBI in [7]. Artificially mixed EEG signals have also been analysed in [8]443

to compare the relative performance of a few BSS algorithms to isolate the444

artefacts. The results varied depending on which type of contamination was445

considered [8]. Real MEG signals were decomposed in [6] to evaluate their446

ability to extract artefacts by comparing the contaminated components of447

different algorithms with reference signals. Some of these previous studies448

used small datasets or small numbers of channels and the evaluation of the449

algorithms was frequently based on subjective criteria [10]. Moreover, it450

must be noted that different sets of synthetic data could produce different451

results. In contrast, we analysed the decompositions of real MEG recordings452

from 26 subjects globally to gain insight into the similarities between some of453

the most commonly used BSS algorithms. Instead of comparing a manually454

selected subset of components [6], the entire decomposition was assessed since455
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the metric F [11] was computed from the mixing matrices Aq and Ar.456

It is important to note that the real sources are unknown, hence the term457

blind [5]. Therefore, assessing the performance of the BSS analysis is not458

straightforward at all since the separation cannot be absolutely validated459

for real data [3, 5]. Thus, the analyses of the real signals were exploratory460

and only aimed at measuring the similarity between the results of the BSS461

algorithms and not at evaluating the actual quality of the separation. This462

can only be achieved with some kind of synthetic signals [32, 33]. Yet, our463

complementary analysis of the simulated data supported the results derived464

from the real MEG recordings. This suggests that the results for each pair465

of algorithms are indeed due to the methodology of the BSS techniques and466

not to this particular application. Our study is also limited by the fact that467

only real signals of MEG background activity were studied. Additionally,468

only recordings from elderly people were analysed. Thus, the results might469

be difficult to generalise to younger subjects.470

To sum up, this study evaluated the degree to which diverse BSS tech-471

niques provide similar decompositions for real MEG background activity.472

The most similar separations were computed with ‘AMUSE–SOBI’, followed473

by ‘JADE–FastICA’. The pairs ‘AMUSE–JADE’ and ‘SOBI–JADE’ used to474

provide the most dissimilar outcomes. Finally, the overall level of similarity475

increased as longer signals were decomposed. These results were supported476

by a study based on synthetic signals. Since diverse BSS methods may of-477

fer relatively different perspectives when applied to real signals [4], these478

results should be taken into account when deciding which BSS algorithms479

are to be applied to brain signals. For instance, if only two BSS are to be480
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selected for an exploratory analysis, the algorithms AMUSE and JADE will481

provide relatively different perspectives of the data and minimise the amount482

of redundant information.483
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[28] H. Gävert, J. Hurri, J. Särelä, A. Hyvärinen, FastICA Toolbox,581

website, [online] http://www.cis.hut.fi/projects/ica/fastica/582

(March 2010).583

URL http://www.cis.hut.fi/projects/ica/fastica/584

[29] A. Cichocki, S. Amari, K. Siwek, T. Tanaka, A. Huy Phan,585

ICALAB for Signal Processing, website, [online]586

http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/587

(March 2010).588

URL http://www.bsp.brain.riken.jp/ICALAB/ICALABSignalProc/589

[30] S. Ikeda, K. Toyama, Independent component analysis for noisy data–590

MEG data analysis, Neural Networks 13 (10) (2000) 1063–1074.591

31



[31] J. Cao, N. Murata, S. Amari, A. Cichocki, T. Takeda, A robust approach592

to independent component analysis of signals with high-level noise mea-593

surements, IEEE Transactions on Neural Networks 14 (3) (2003) 631–594

645.595

[32] A. Mansour, M. Kawamoto, N. Ohnishi, A survey of the performance596

indexes of ICA algorithms, in: Proc. of the 21st IASTED Int. Conf.:597

Modelling, Identification and Control (MIC02), 2002, pp. 660–666.598

[33] E. Vincent, R. Gribonval, C. Févotte, Performance measurement in599

blind audio source separation, IEEE Trans. on Audio, Speech and Lan-600

guage Processing 14 (4) (2006) 1462–1469.601

[34] J. McNames, An effective color scale for simultaneous color and gray-602

scale publications, IEEE Signal Processing Magazine 23 (2006) 82–96.603

32


