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Abstract 

 

This thesis addresses the issues of single microphone based noise estimation technique for speech 

recognition in noise environments. A lot of researches have been performed on the environmental 

noise estimation, however most of them require voice activity detector (VAD) for accurate estimation 

of noise characteristics. I propose two approaches for efficient noise estimation without VAD. The 

first approach aims at improving the conventional quantile-based noise estimation (QBNE). I fostered 

the QBNE by adjusting the quantile level (QL) according to the relative amount of added noise to the 

target speech. Basically, we assign two different QLs, i.e., binary levels, according to the measured 

statistical moment of log scale power spectrum at each frequency. The second approach is applying 

dual mixture parametric model in computing likelihoods of speech and non-speech classes. I used 

dual Gaussian mixture model (GMM) and Rayleigh mixture model (RMM) for the likelihoods. From 

the assumption that speech is generally uncorrelated to the environmental noises, the noise power 

spectrum can be estimated by using each mixture model parameter of speech absence class. 

I compared the proposed methods with the conventional QBNE and minimum statistics based 

method on a simple speech recognition task in various signal-to-noise ratio (SNR) levels. Based on 

the experimental results, the proposed methods are shown to be superior to the conventional methods. 
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1. Introduction 

 

Due to recent advances in technology, the use of ASR is extremely increased by spread of using 

smart devices. Although there are several important factors to enhance speech recognition rate, purity 

of speech is regarded as most crucial one. Unfortunately, the speech is always exposed to numerous 

acoustic background noises in recoding environment. The service suppliers such as wireless 

telecommunication companies or application providers for smart devices should take care of handling 

various background noises, since we commonly use the devices in outdoors.  

So far, a lot of noise suppression algorithms are proposed, and they are mostly based on spectral 

subtraction that is first introduced by Boll in 1979 [1]. It assumes that additive noise changes slowly 

over time and uncorrelated with speech and approximates the PSD of the noise signal by an average 

in non-voice periods. Most conventional methods depend on VAD which can detect speech presence. 

However it is not easy to distinguish speech or noise, its performance varies a lot in accordance with 

types and the amount of additive noises. 

 

 

Figure 1.1 Single microphone based noise suppression system 

 

So, severe methods based on spectral subtraction are proposed recently to eliminate VAD. MS based 

noise estimation [2] is notable for VAD independent method. It tracks noise power spectrum through 

taking minimum value of smoothed PSDs of noisy speech. QBNE [3] is another wide use method that 

is not required VAD. The basic concept of QBNE succeeded to MS based method but it assumes that 

the noise PSD is contained for significant percentage of noisy speech PSD instead taking minimum 

value. However, due to intrinsic assumptions of the noise characteristics, both methods suffer from 

performance variation in different noise conditions. Since minimum statistics based method is biased 

to minimum value of PSD, it cannot eliminate noise appropriately in highly noisy environment. On 
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the other hand, quantile based method estimates noise power spectrum using fixed QL in the 

distribution of the noisy signal. So it tends to suppress speech when the amount of additive noise is 

very small, i.e., high SNR conditions. 

A novel of first approach is not only remedying the shortcomings of MS and QBNE, but also 

eliminating the need for VAD. Based on observed log PSD of stationary noise and speech, I can 

aware that the distribution of a stationary noise is close or peakier than Gaussian (super-Gaussian), 

while a speech signal is spreader than Gaussian (sub-Gaussian). Therefore, I impose binary quantile 

levels according to the measured statistical moments of the log PSD at each frequency.  

A contrast function is used to decide the super-Gaussian (positive) and the sub-Gaussian (negative) by 

distance of the given distribution [4], and I adjusted higher quantile level when the distribution is 

Gaussian or super-Gaussian. 

The second approach is started from speech presence likewise VAD problem. I estimated the noise 

power spectrum by likelihood of speech absence class. Dual GMM and RMM are used for likelihoods 

and low mean and sigma parameter are used for noise power estimation, respectively. 

After the estimation, a time-domain Wiener filter suppressing the found noise PSD is derived from 

the noise estimate and applied to the input noisy speech signal. ASR experiments are carried out on 

speech separation challenge database [5] to verify improvement of proposed methods. The proposed 

method shows stable performance over various SNR conditions, while the conventional methods 

show degraded performance in high or low SNRs. 

The deployment of this thesis is as follows; short explanation for single microphone based noise 

suppression techniques in Chapter 2 and Chapter 3 is for conventional noise estimation methods 

which are independent for VAD. Our proposed noise estimation methods are described in Chapter 4, 

and Chapter 5 summarizes experimental results of speech recognition. And finally, Chapter 6 

concludes this thesis with future extensions.  
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2. Single microphone based noise suppression 

 

Single microphone can be used to estimate and effectively suppress the stationary noise without 

compromising voice quality. In a single microphone environment, the same microphone will be used 

to capture voice and noise. The noise in signal is suppressed by severe algorithms that examine the 

frequency spectrum and segment it into many frames. Each frame is analyzed by its amplitude 

characteristics. So far, a lot of single microphone based noise reduction methods have been proposed 

in the field of noise reduction. Most of them are based on Boll’s spectral subtraction [1], which is first 

introduced in 1979, because it has powerful advantages such as robustness and low complexity. 

 

 

Figure 2.1 Single microphone based noise suppression model 

 

2.1. Spectral subtraction 

 

Basically, the spectral subtraction method is performed by deducting noise spectrum from noisy 

speech spectrum. The noise reduction problem with a single microphone input is formulated by 

 

)()()( nvnsny += ,                               (1) 

 

where y(n), s(n) and v(n) are noisy input, clean speech and additive noise signals respectively. And it 

is assumed that speech signal and noise are uncorrelated. So the autocorrelation ( )tyyR  of input 

signal can be expressed as 
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where, ( )tssR  and ( )tvvR  are autocorrelation function of clean speech and noise. By forcing Fourier 

transform to both sides of equation (2), we can represent it in spectral domain, because 
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autocorrelation function and power spectrum are Fourier transform pair. 

 

( ) ( ) ( )www vsy PPP +=                               (3) 

 

( )wyP , ( )wsP  and ( )wvP  are power spectrum of input signal, clean speech and noise, respectively. 

From equation (3), we can obtain estimated speech power spectrum as 

 

( ) ( ) ( )www vys PPP ˆˆ -=                              (4) 

 

where, ( )wsP̂  and ( )wvP̂  are estimated power spectrum of speech and noise. Now, equation (3) can 

be rewritten as equation (4) for the magnitudes of signal. 

 

( ) ( ) ( )222
www VSY +=                            (5) 

 

( )wY , ( )wS  and ( )wV  are Fourier transform of )(ny , )(ns  and )(nv , respectively. And we can also 

rewrite equation (4) as, 
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Figure 2.2 Half wave rectification for non-negative value 

 

where, ( )
2

ˆ wV  is the estimated power spectrum of )(nv . And it takes zero when estimated speech 

signal is less than 0 for half wave rectification. Finally, we can obtain noise suppressed speech )(ˆ ns  

from taking inverse DFT after square rooting RHS of equation (6). 
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The phase of the noisy speech is not changed, since human does not sensitive with phase difference. 

Uppers can be expressed in time domain filter coefficient )(nh  as Figure 2.1. Estimated speech 

signal can be modeled in spectral domain as follows 

 

( ) ( ) ( )www YHS =ˆ                              (8) 

 

where, ( )wH  is spectral filter coefficient for spectral subtraction. 
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Taking inverse DFT equation (9), finally we are able to acquire impulse response )(nh . 
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Like this, the principle of spectral subtraction is very simple but it can apply only for stationary noises, 

as mentioned before. However most noises are generally non-stationary in real world, musical noises 

are often remained after the filtering. Hence we overestimate the noise power spectrum density 

occasionally to suppress more noise. 
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Where a  is overestimation factor which is experimentally determined. However overestimation 

sometimes leads signal distortion because it not only suppresses noise, but also eliminates speech 

elements. 
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2.2. Wiener filter 

 

In time domain filtering, we can obtain estimated speech as 
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The definition of the error difference between clean speech signal and estimated speech signal is 

equivalent to equation (13) and it can represent graphically as Figure 2.3.. 
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Figure 2.3 Definition of the error between clean and estimated speech 

 

The impulse response ( )nh  of the filter is derived in the MMSE sense by minimizing cost function 

J  which is mean squared error. 
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To obtain optimal ( )nh , we take partial differential to J  with regarding to )(th  as follows. 
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Where )(tsyR  is correlation between clean and noisy speech. Equation (16) is called “Wiener-Hopf 

equation”. As we assumed before, speech and noise are uncorrelated, and speech and noisy speech are 

WSS, the autocorrelation function of )(ny  can be rewrote as 
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In the same manner, correlation between clean and noisy speech can be changed as (18). 
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Substituting the result of equation (17) and (18) to equation (16), we can obtain, 
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Taking DFT to both sides of equation (19), the frequency response )(wH  can be acquired.  
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As spectral subtraction did, Wiener filter is prohibited for negative value and can also perform in time 

domain by taking inverse DFT on equation (20).  
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3. Noise estimation 

 

Spectral subtraction based noise suppression techniques need good noise power spectrum estimator 

as we derived in equation (9), (20). Most conventional noise estimation methods use VAD to estimate 

background noise. The VAD updates estimated noise whenever speech is absent. However short 

pause detection is difficult and the performance of the VAD varies according to the kinds and 

conditions of noise [6]. On the other hand, [2], [3] and [8] proposed noise estimators which 

continuously track noise power spectrum for each frequency band regardless of existence of speech. 

These methods have advantage for reducing errors from VAD. 

Usually the noisy signal )(ny  is processed frame by frame for STFT, and each frame length is 

proper to set 10-30ms for processing. It is assumed that for the duration of a frame, )(ns  and )(nv  

can be considered to be WSS process. We can represent equation (1) to equation (21) in frequency 

domain. 

 

),(),(),( tVtStY www +=                           (21) 

 

Where t  is current time index and ),( tY w , ),( tS w  and ),( tV w  are STFT versions of )(ny , )(ns  

and )(nv  respectively. 

 

3.1 Minimum statistics based noise estimation 

 

Martin proposed a noise power spectrum estimator based on minimum statistics and optimal power 

spectrum smoothing. This method was founded on two reasonable factors. One of them is 

independency between speech and noise. It means that summation of clean speech and noise power 

spectrum is equivalent to noisy speech power spectrum. And it can be represented as 

 

222
),(),(),( tVtStY www += .                       (22) 

 

Another factor is that noisy speech power spectrum becomes noise power spectrum occasionally 

when speech is absent. Hence we can obtain estimated noise power spectrum by tracking the 

minimum of the noisy speech for each frequency component. 

 

3.1.1 Principle of the minimum statistics method 
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As mentioned before, it is assumed that the power spectrum of noisy speech is summation of 

speech and noise power spectrum. So, noise variance was estimated by tracking the minimum of 

noisy speech power spectrum over a fixed buffer length. The buffer length has to be chosen enough 

for mixing speech and noise signal. It was experimentally found out that approximately 0.8-1.4s gave 

good results. 

For searching the minimum a first-order recursive version of the noisy speech power spectrum was 

used: 

 

( ) 2
),(1)1,(),( tYtPtP wbwbw -+-=                     (23) 

 

Where b  is a constant smoothing constant which is typically set between 0.9 to 0.95. To enhance 

the performance of the minimum statistics based method following procedures were added. 

1. Replacing the constant smoothing factor in equation (23) with time-frequency dependent 

smoothing factor. 

2. Deriving a bias factor for the noise estimate since the minimum tracking was biased towards lower 

values. 

3. Improving tracking speed of the algorithm for increasing noise levels. 

 

3.1.2 Deriving optimal time-frequency dependent smoothing factor 

The smoothing parameter used in equation (23), had to be low value to follow the noise faster. On 

the other hand, it had to be close to one to keep the power of the minimum tracking as small as 

possible. Hence time and frequency dependent smoothing factor is needed in place of a fixed factor. 

This was derived for speech absent region. The requirement was that the smoothed power spectrum 

),( tP w  had to be equal to the noise power 2
),( tV w  during speech pauses. Hence the smoothing 

parameter was derived by minimizing the conditional mean squared error between 2
),( tV w  and 

),( tP w  as follows, 
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Note that in equation (25) time-frequency dependent smoothing factor ( )t,wb  was used instead of 

fixed factor as defined in (23). Substituting equation (25) to (24) and setting the first derivative to 

zero gave the optimal value for ( )t,wb : 
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But in real time implementation, the value of estimated noise variance 
2

),(ˆ tV w  lags behind true 

noise variance. Hence some correction factor ( )tcb  was calculated using the ratio of averaged 

smoothed periodogram to estimated noise power. The final smoothing factor with the correction 

parameter was given as 
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where maxb is typically 0.96. 

 

3.1.3 Bias factor 

Since minimum is biased to low values, the bias factor for compensating the minimum of noisy 

speech power spectrum was derived using the statistics of minimum of the correlated PSD estimates 

of noisy speech. It was stated that since the distribution of ),( tP w  was scaled by 2
),( tV w , the 

minimum statistics of the short term estimates ),(min tP w  was also scaled by 2
),( tV w . Thus the bias 

term was derived by finding the mean of minimum PSD for some 1),(
2
=tV w  which after 

simplification gave 
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where D  is the window length over which the minimum is found and ),(
~

tQeq w  called “equivalent 

degrees of freedom”, is function of smoothed periodogram, and the previous noise variance. The 

unbiased noise estimate is finally obtained as 

 

),(),(),(ˆ
minmin

2
tPtBtV www =                        (29) 

 

3.2 Quantile based noise estimation 

 

MS based algorithm has advantage for tracking noise power continuously. However the minimum 

is sensitive for outliers. For more reliable estimation, Stahl proposed QBNE which takes q-th quantile 

of the noisy speech spectrum. QBNE assumes that the noise power for each frequency band is 

contained for significant percentage of noisy speech segment.  

In order to estimate noise power spectrum, firstly, observed power spectrum frames 

DmtY m ,...,0,),(
2

=w  are sorted for a frequency band w  as below equation where D is fixed window 

length. 
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The noise power spectrum for each frequency band can be estimated by taking q -th quantile as 

follows. 

 

         ë û( )22
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For instance, q = 1 yields the maximum, q = 0 yields the minimum and q = 0.5 the median. Stahl et al 

experimentally found that  is optimal quantile level for estimating noise power. 

 

5.0»q
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Figure 3.1 Quantiles of PSD at 300Hz, 1.5kHz and 3kHz in speech signal of the TIMIT corpus 

 

The QBNE method has very simple concept and can track noise power spectrum without reference to 

speech presence as MS based method. However estimated noise power will be close to speech power 

component when little amount of noise is added. In that case, speech can be eliminated as well as 

additive noise when performing Wiener filtering. As a result, output signal will be distorted by 

overestimation of noise power spectrum and it leads low recognition rate. 

 

3.3 Histogram based noise estimation 

 

Hirsch proposed histogram based noise estimation approach [7]. It based on following observed 

statistical characteristics of distribute density function. 

 

1. If SNR of noisy speech is low, magnitude spectrum is distributed to large value. On the other hand, 

magnitude spectrum is distributed to low value in high SNR environment.  

2. If SNR of noisy speech is low, the distribution of magnitude spectrum gets broad. In other words, 

variance of distribution increases according to decreasing SNR. 

 

From the observations, noise spectrum can be estimated by taking maximum frequency number of the 

histogram. This method is less affected by the signal SNR and doesn’t need to identify whether 

speech or not, as MS and QBNE also did. 
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(a) 10 dB              (b) 5 dB               (c) 0 dB 

Figure 3.2 Speech signal, magnitude spectrum and histogram at 2 kHz according to change of SNR 

 

We can practically find out those characteristics as Figure 3.2. The noisy speech data in Figure 3.2 

is corrupted NOISEUS database by AURORA noise database. Figure 3.2-(a), (b) and (c) are speech 

signal, magnitude spectrum and the histogram of 10 dB, 5 dB and 0 dB, respectively. Comparing 

three different noisy speeches, we can easily know that the magnitude spectrum of noiseless speech is 

distributed around zero and the average of spectrum is less than others. To put it shortly, the less SNR 

of noisy speech, the more magnitude spectrum moves higher value. Finally, noise power estimated by 

taking maximum position of the histogram. And we can also observe that the variance gets bigger and 

bigger according to decreasing SNR. 
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4. Proposed methods 

 

In this section, we introduce two different approaches for noise power estimation. The first 

approach remedies the weakness of QBNE in various SNR condition. The concept is that it adjusts 

QL according to estimated SNR instead using fixed QL. Another approach is regarding to dual 

mixture model based noise estimation. Each mixture is used for likelihood function of speech 

presence or absence class. And noise power can be estimated by taking long term average of the 

speech absence class. After the noise estimation, it is substituted to Wiener filter, i.e. equation (20), 

for noise reduction. Both approaches also take advantage that they can estimate noise power spectrum 

without using VAD like as conventional methods. 

 

4.1 Binary quantile level based noise estimation 

 

QBNE is good for tracking noise power spectrum without suffering outlier effect on the contrary to 

MS based method. Stahl et al proposed that taking median is the best way to estimate noise spectrum. 

However, in general cases, corruption level of noisy speech is different, applying fixed QL is not 

suitable for speech enhancement. Especially, in high SNR condition, speech power can be presumed 

as noise power and it leads to increase distortion of output signal. In practice, I simulated 5-different 

SNR levels from 0 dB to 20 dB noisy signal by adding AURORA2 noise sources [7] to speech signal 

from TIMIT corpus. And I experimentally found appropriate QLs for each SNR level by checking 

similarity between clean speech and filtered output. Table 4.1 shows the optimal quantile level for 

each SNR with a number of synthetic mixtures. There is significant correlation between appropriate 

QL and noise power. 

 

SNR q  

0 dB 0.63 

5 dB 0.44 

10 dB 0.31 

15 dB 0.22 

20 dB 0.15 

Table 4.1 Suitable quantile level according to various SNR conditions 

 

One of the representative characteristics of stationary noise is that its power spectrum does not vary 

too much along time [8]. For example, Figure 4.1-(a), (b) and (c) show the histograms for 2 kHz log-

scale power spectrum of the airport, babble and restaurant noise from AURORA-2 database, 
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respectively. As shapes of distributions, the histograms of noises are near to Gaussian distribution or 

super-Gaussian. On the other hand, as we discussed [8] [4], speech varies much faster than noise and 

power is spread broadly. This phenomenon makes a shape of log scale histogram deviate from 

Gaussian. Figure 4.1-(d) shows such shape of log-scale histogram which is much broader than 

Gaussian.  

  

(a) airport noise                        (b) babble noise 

 

(c) restaurant noise                       (d) clean speech 

Figure 4.1 Histogram of log-scale PSD for various noises and clean speech, measured at 2 kHz 

 

In noisy speech problem, I could expect that the more the environment is noisy, the more a 

distribution of logarithm power spectrum nears to super-Gaussian. Figure 4.2 demonstrates same 

histogram with varying SNR levels. The shape approaches to Gaussian as SNR decreases, and 

become broader as SNR increases.  
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(a) SNR: 0dB                            (b) SNR: 5dB 

     

(c) SNR: 10dB                           (d) SNR: 20dB 

Figure 4.2 Histogram of log-scale PSD for various SNR levels, measured at 2 kHz 

 

From those observations, a distribution is getting sharp, SNR of a frequency band is getting low. In 

this case, QL had to be adjusted to higher level. On the other hand, a distribution is getting obtuse 

means that SNR of input signal is getting high, so it needs to choose low QL. So gaussianity is the 

key factor for measuring degree of contamination of the noisy speech as well as selecting QL.  

For example, let ( )t,wb  logarithm power spectrum buffer at current time t. 

 

( ) ( )( ) ( )( ) ( )( )[ ]222
,log,...,1,log,,log, tYDtYDtYt wwww +--=b               (32) 

 

where D is buffer length. I define r̂  which represents gaussianity and segment SNR indirectly as 

equation (33). Input buffer ( )t,wb  needs to force zero mean with unit variance before function ( )×f  

which estimates gaussianity of the distribution is performed. 

 

( ) ( )( )
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÷
ø

ö
ç
ç
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Where bs  is standard deviation of ( )t,wb . And then we need to map r̂  to rqˆ  which is optimal 

quantile level for estimating noise power of segment ( )t,wb  according to the function ( )×f . Finally, 

noise power spectrum can be estimated as following equation. 

 

ë û( )22

ˆ
,),(ˆ

Tqr
tYtV ww =                            (34) 

 

It is important to measure the gaussianity of the distribution, because it is highly correlated with 

amount of additive noise. So, appropriate quantile level can be selected after measuring the 

gaussianity. 

 

 

Figure 4.3 Procedures of binary quantile level based noise reduction 

 

There are several methods for measuring the gaussianity, I employed 3 different measurements. 

The first measurement is kurtosis based gaussianity estimation which can classify sub-Gaussian, 
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Gaussian and super-Gaussian. The second one is negentropy which improved the disadvantage of 

kurtosis. However, it cannot provide information about super-Gaussian or sub-Gaussian. So, I applied 

extended infomax algorithm to overcome a drawback of negentropy. 

 

4.1.1 Kurtosis based gaussianity estimation 

 

One of the classical measurements of gaussianity is kurtosis or the fourth-order cumulant [9]. The 

kurtosis of random variable x is defined by 

 

( ) { }
4

4

Kurt
s

m-
=

x
x

E
,                              (35) 

 

 

Figure 4.4 Kurtosis changes according to the type of standard symmetric distribution 

 

where m  and s  are mean and standard deviation of x, respectively. It can measure not only 

similarity with Gaussian but also distinguish sub-Gaussian or super-Gaussian. Kurtosis is equal to 3 

for Gaussian random variable and also can be less than or larger than 3 for sub-Gaussian or super-

Gaussian. Since the distribution of stationary noises follows super-Gaussian or Gaussian, I 

experimentally obtain binary quantile level as follows 

 

î
í
ì ³

=
otherwise;1.0

3)(Kurt;5.0 x
Kq .                            (36) 

 

Finally, estimated noise power for each frequency band can be obtained as follows, 
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tYtV ww =                            (37) 

 

However, sometimes kurtosis cannot represent gaussianity precisely, because it is very sensitive for 

outlier [4]. 

 

4.1.2 Negentropy based gaussianity estimation 

 

To measure Gaussianity more exactly, Hyvärinen proposed the negentropy based method which 

estimates nongaussianity of a random variable without suffering outlier effect [9].  

The entropy of a random variable x  with probability density )(xf  is defined as  

 

( ) ò-= xxxx dffH )(log)( .                              (38) 

 

An important property of Gaussian distribution is that it has the maximum entropy among all 

distribution over the entire real axis [ ]¥¥- , . And uniform distribution has the maximum entropy 

among all distributions over a finite range. Based on this property, the negentropy is defined as 

 

( ) ( ) ( )xxx HHJ G -=                               (39) 

 

where Gx  is Gaussian random variable of the same mean and variance with x . Since entropy of 

Gaussian is the largest over all random variable, negentropy is always greater than zero, and it is zero 

if and only if x  follows Gaussian random variable. The problem for using negentropy is that it is 

very difficult for computation hence approximations of negentropy are needed. Jones et al proposed 

approximated negentropy as follows 

 

( ) { } ( )2
23 Kurt

48

1

12

1
uuu +» EJ ,                        (40) 

 

where u is a random variable with zero mean and unit variance. However, this approximation is also 

suffers from the non-robustness due to kurtosis function. A better approximation is proposed by 

Hyvärinen as 
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where ik  are some positive constants, and g  is a normal distribution. Although this approximation 

may be not accurate, equation (41) can be used to construct a measure of nongaussianity that is 

consistent in the sense that it is always non-negative, and equal to zero if u follows Gaussian 

distribution. And iG  are some non-quadratic functions such as 
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where 21 ££ a  is suitable constant. Since results of ( ){ }uGE  indicates that how u is close to 

Gaussian distribution, I used it to measure the gaussianity.  

 

 

Figure 4.5 Non quadratic function for measuring gaussianity 

 

In this manner, function ( )×G  is useful for adjusting QLs instead of kurtosis. If distribution u is 

getting sharp, ( ){ }uGE  gets small. It means that SNR of a frequency band is getting low, high QLs 

are more suitable. While ( ){ }uGE  increased, distribution u is getting obtuse. In other words, if SNR 

of input signal is getting high, we need to choose low QLs. We define ir̂  which can estimate 

gaussianity and segment SNR indirectly as follow, 
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where, i is a type of quadratic function and bs  is standard deviation of ( )t,wb . Basically, QBNE 

works well in very noisy condition. As mentioned before, ir̂  which is smaller than or equal to some 

threshold means that the distribution of log scale power spectrum is close to Gaussian, therefore the 

signal is low SNR. Optimal quantile level corresponding to ir̂  is experimentally found as below 

equation. 

 

î
í
ì -<<

=
otherwise

rr
qN

;1.0

692.0ˆor447.0ˆ;5.0 21                        (44) 

 

Finally, estimated noise power for each frequency band can be obtained as follows, 

 

ë û( ) 22
,),(ˆ

TqN
tYtV ww = .                           (45) 

 

4.1.3 Extended infomax algorithm based gaussianity estimation 

 

Negentropy based algorithm has appeared to overcome the disadvantage of kurtosis. However 

negentropy cannot classify the type of Gaussian, such as sub-Gaussian or super-Gaussian, as 

compared with kurtosis. Evaluating type of Gaussian is important because the distribution gets close 

to super-Gaussian means very noisy condition. To complement the shortcoming, we employ extended 

informax algorithm based method. 

 

( ) ( ){ } { } ( ){ }uuuuu tanhsech 22 EEEI -=                     (46) 

 

 ( )( )
ï
î

ï
í

ì

--

-

==

Gaussiansub:1

Gaussian:0

Gaussiansuper:1

sign uIk                     (47) 

 

where u is a random distribution with zero mean and unit variance. The decision factor, k, determines 

the shape of the distribution of u: 1, 0, and -1 for super-Gaussian, Gaussian, and sub-Gaussian, 

respectively. If distribution u becomes peakier, the value of the function I(u) moves along the positive 
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direction. Estimated gaussianity Ir̂  which based on extended infomax algorithm can be defined as 

following equation : 
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Optimal quantile levels corresponding to Ir̂  are found experimentally, which is obtained by the 

following equation:  
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Finally, estimated noise power for each frequency band can be obtained as follows, 
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4.2 Dual mixture model based noise estimation 

 

This section addresses another VAD-free noise estimation approach. As we assumed that speech 

and noise are uncorrelated, the power spectrum of noisy speech can be summation of speech and 

noise power spectrum the long-term average aspect, as represented equation (3). And some frames 

contain speech and noise power, but the others are equivalent to noise power because of the speech 

pause. Therefore we employ a method for detecting the activity of the speech, so that measuring how 

much noise component is contained in a frame. In all of the short-time analysis frames at frequency 

w , they are classified into the following two classes: 
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where ( )w0C  and ( )w1C  are classes for speech presence and absence at frequency w , respectively, 

and ( )w0C  is the complementary of ( )w1C . Using Bayes’s rule, a posteriori probability, which 

discerns presence of the speech, can be denoted by, 
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where { }1,0=j  and 
2

),( tY w  are type of class and marginal probability, respectively. And 

( )( )w0CP  is a priori probability for speech presence and ( )( ) ( )( )ww 01 1 CPCP -=  is for speech 

absence.  

 

4.2.1 Dual Gaussian mixture model based noise estimation 

 

Gaussian distribution is common and representative probability density function. Therefore we 

assumed that the likelihood of 
2

),( tY w  given ( )wjC  follows univariate Gaussian density function 

with different mean and variance as 
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where ( )wm j  and ( )ws 2
j  are mean and variance of each likelihood function, respectively. To obtain 

optimal Gaussian parameters, such as ( )( )wjCP , ( )wm j  and ( )ws 2
j , MLE is used as below equation, 
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where N  is the number of samples. Generally, Gaussian parameters are iteratively updated by the 

EM algorithm. The important thing is that the mean ( )wm0  of likelihood ( )( )ww 0
2

),( CtYP  is 

assumed to be always greater than or equal to ( )wm1  for all w , because the power spectrum of noisy 

speech which is composed with sum of noise and speech power is larger than noise power spectrum. 

 

( ) ( )wmwm 01 £                                  (55) 

 

 

Figure 4.6 GMM based likelihoods for speech presence and absence 

 

From this feature, we estimated the power spectrum of noise by taking long-term average of 

( )( )ww 1
2

),( CtYP  which is equivalent to ( )wm1ˆ . 

 

( )

( )wm

www

1

2
1

2

ˆ

),(),(ˆ

=

þ
ý
ü

î
í
ì

÷
ø
öç

è
æ= tYCPEtV

.                       (56) 

 



- 25 - 

 

Figure 4.7 Dual GMM for 0 dB SNR noisy speech with spectral histogram at 2 kHz 

 

4.2.2 Dual Rayleigh mixture model based noise estimation 

 

It is common practice to apply Gaussian probability density function for likelihood, and GMM can 

represent any shape of distribution with less distortion. However, we restricted to dual mixture 

problem, sometimes GMM has a limitation that it cannot optimally approximate the histogram shapes. 

For estimating noise power spectra with little error, Rayleigh probability density function is more 

appropriate than Gaussian distribution. Because the power spectrum is non-negative value and 

Rayleigh distribution also defined to only positive values. Also, the spectral histogram of noisy 

speech is more close to Rayleigh distribution.  

Rayleigh probability density function for random variable x is defined by  
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where s  is a sigma parameter which is different concept with standard deviation. The parameter s  

can be estimated by MLE as follow  
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ŝ .                            (58) 

 



- 26 - 

And the maximum value of the density function is equal to es/1  and is reached when s=x . The 

curve of the distribution is widely spread by increasing s  parameter as below Figure 4.8. 

 

 

Figure 4.8 Rayleigh distribution changes according to sigma parameter  

 

The likelihood of 
2

),( tY w  given ( )wjC  follows Rayleigh density function with different sigma 

parameter as 
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The optimal Rayleigh parameters, such as ( )( )wjCP , ( )ws 2
j , can be updated by below equation, 
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In the same manner with GMM, the sigma parameter ( )ws 2
0  of likelihood ( )( )ww 0

2
),( CtYP  is 

assumed to be always greater than or equal to ( )ws 2
1  for all w , because lager sigma parameter 

indicate that the power spectrum distributed more widely.  
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From this feature, the noise power spectrum is estimated by taking the argument that maximize 

( )( )ww 1
2

),( CtYP  which is equivalent to ( )ws1 . 
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Figure 4.9 Dual RMM for 0 dB SNR noisy speech with spectral histogram at 2 kHz 
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5. Experimental results 

 

To verify improvement, we compared the two types of proposed methods to the QBNE and MS 

based method separately, by ASR experiments on the Speech Separation Challenge (SSC) database 

[5]. The SSC database has clean speech set of 17,000 utterances for training, spoken by 34 different 

speakers. And training set is recorded in quiet condition without any background noise. Each 

utterance consists of 6 words in the format, such as “command-color-preposition-letter-number-

adverb”. For example, “bin-blue-on-A-5-soon”. 

 

Command Color Preposition Letter Number Adverb 

bin 

lay 

place 

set 

white 

blue 

green 

red 

at 

by 

on 

with 

A-Z 

(excluding W) 

0-9 : 

*0 : zero 

again 

now 

please 

soon 

Table 5.1 The utterance format of the SSC database 

 

The acoustic models of the words are built by the hidden Markov model toolkit (HTK). The 

features are extracted to 39 dimension vector which consists of 12 MFCCs plus log energy, plus their 

velocities and accelerations for every 10ms. We also employ separate testing set of 600 utterances 

which is exclusive with training set. 

The proposed methods are evaluated on 8 different noise environments, “airport, babble, car, 

exhibition, restaurant, street, subway and train”, from the AURORA-2 database and noises are added 

to clean speeches. We simulated in 6 different SNR conditions, such as 20, 16, 12, 8, 4 dBs and clean 

speech. All hidden Markov Models (HMMs) are trained by clean speech to verify degree of noise 

reduction. 

 

SNR None MS QBNE 
Proposed-1 

Kurtosis Neg-1 Neg-2 EI 

Clean 97.56% 97.61% 95.39% 96.83% 96.00% 96.00% 96.61% 

20dB 94.14% 94.83% 92.45% 94.74% 94.61% 94.48% 94.83% 

16dB 89.94% 91.70% 90.19% 92.44% 92.19% 91.99% 92.68% 

12dB 80.46% 84.26% 85.42% 87.36% 87.40% 87.28% 87.87% 

8dB 64.62% 70.47% 75.83% 77.31% 77.65% 77.33% 78.09% 

4dB 45.30% 52.08% 59.33% 60.04% 60.40% 60.31% 60.97% 

Average 78.67% 81.82% 83.10% 84.79% 84.71% 84.57% 85.17% 
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Table 5.2 Results of speech recognition experiment-1 (binary QL based methods) 

 

   

(a) Kurtosis based gaussianity measure        (b) Negentropy(G1) based gaussianity measure 

    

(c) Negentropy(G2) based gaussianity measure      (d) Infomax based gaussianity measure 

Figure 5.1 Recognition rate comparison binary QL based methods under 16 dB SNR 

 

 

    

(a) Kurtosis based gaussianity measure       (b) Negentropy(G1) based gaussianity measure 

 

 

(c) Negentropy(G2) based gaussianity measure      (d) Infomax based gaussianity measure 

Figure 5.2 Recognition rate comparison binary QL based methods under 8 dB SNR 
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SNR None MS QBNE 
Proposed-2 

GMM RMM 

Clean 97.56% 97.61% 95.39% 95.94% 97.11% 

20dB 94.14% 94.83% 92.45% 93.25% 94.81% 

16dB 89.94% 91.70% 90.19% 91.09% 92.97% 

12dB 80.46% 84.26% 85.42% 86.88% 88.88% 

8dB 64.62% 70.47% 75.83% 77.75% 79.60% 

4dB 45.30% 52.08% 59.33% 61.17% 62.82% 

Average 78.67% 81.82% 83.10% 84.35% 86.03% 

Table 5.3 Results of speech recognition experiment-2 (mixture model based methods) 

 

In accordance with type of proposed methods, we separately summarized the results of speech 

recognition experiments in Table 5.2 and 5.3, where “None” column lists the performance results 

without noise suppression. Each row is the average recognition rates over all noise types in specific 

SNRs.  

For first proposed approach, all of the methods, based on kurtosis, negentropy and infomax, are 

about 6.1%, 6.0%, 5.9% and 6.5% better than “None” respectively, whereas QBNE and MS are 4.4% 

and 3.2% better. I found that QBNE and MS have discriminative pros and cons as shown in Figure 

5.1 and 5.2. QBNE performed quite well under severe noisy conditions; on the contrary, the 

performance of MS becomes better as SNR increases, and best in clean condition. The bianry quantile 

level based approaches take both advantages of QBNE and MS. In 12 dB SNR, the performances of 

the proposed methods are similar to MS on the average; in 8 dB SNR, they are slightly better and 

QBNE, and much better than the others. Among the approaches, extended infomax based noise 

estimation leads the best performance and kurtosis based method performs better than negentropy 

based methods. The major reason for better performance can be inferred that infomax algorithm and 

kurtosis can identify sub-Gaussian distribution in compared with negentropy. 

For another type of approaches, which is founded on mixture model, the recognition rates are 

enhanced by approximately 5.7% and 7.4% on average compared with no processing. The 

performance improvement changes are analogous to binary QL noise estimation. RMM based method 

draws better outcome than GMM approach, thus RMM is more appropriate likelihood for power 

spectrum. 

In summary, the speech recognition results prove that the proposed methods are quite stable and 

overcome the limit of conventional methods in various noise types and noise levels regardless of 

types of proposed noise estimation. 
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6. Conclusion 

 

This thesis proposed two noise suppression approaches which do not need to use VAD. The MS 

based method and QBNE are conventional VAD-free methods, however they have drawbacks for 

various SNR environments. To overcome the limitations, I firstly proposed adjusting two different 

QLs based method according to estimated SNR. To apply binary QLs, the shapes of the log power 

spectral densities for individual frequency band are compared to Gaussian by statistical moments. The 

proposed methods employed three different gaussianity measurements, such as kurtosis, negentropy 

and extended infomax algorithm. The second noise estimation approach is based on dual mixture 

model. Dual GMM and RMM are applied to likelihoods of speech presence and absence, and we 

estimate the noise power spectrum by taking average of speech absence likelihood which has low 

mean and low sigma parameter, respectively. After estimating noise power spectrum, we substitute it 

to Wiener filtering for spectral suppression. To evaluate the proposed methods, we performed speech 

recognition experiments on a simple speech recognition task. Experimental results show that the 

proposed methods work well in various SNR conditions compared to conventional methods. Future 

research issues include finding new contrast functions for better approximation of noise presence. 
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