36 research outputs found

    Internet-based solutions to support distributed manufacturing

    Get PDF
    With the globalisation and constant changes in the marketplace, enterprises are adapting themselves to face new challenges. Therefore, strategic corporate alliances to share knowledge, expertise and resources represent an advantage in an increasing competitive world. This has led the integration of companies, customers, suppliers and partners using networked environments. This thesis presents three novel solutions in the tooling area, developed for Seco tools Ltd, UK. These approaches implement a proposed distributed computing architecture using Internet technologies to assist geographically dispersed tooling engineers in process planning tasks. The systems are summarised as follows. TTS is a Web-based system to support engineers and technical staff in the task of providing technical advice to clients. Seco sales engineers access the system from remote machining sites and submit/retrieve/update the required tooling data located in databases at the company headquarters. The communication platform used for this system provides an effective mechanism to share information nationwide. This system implements efficient methods, such as data relaxation techniques, confidence score and importance levels of attributes, to help the user in finding the closest solutions when specific requirements are not fully matched In the database. Cluster-F has been developed to assist engineers and clients in the assessment of cutting parameters for the tooling process. In this approach the Internet acts as a vehicle to transport the data between users and the database. Cluster-F is a KD approach that makes use of clustering and fuzzy set techniques. The novel proposal In this system is the implementation of fuzzy set concepts to obtain the proximity matrix that will lead the classification of the data. Then hierarchical clustering methods are applied on these data to link the closest objects. A general KD methodology applying rough set concepts Is proposed In this research. This covers aspects of data redundancy, Identification of relevant attributes, detection of data inconsistency, and generation of knowledge rules. R-sets, the third proposed solution, has been developed using this KD methodology. This system evaluates the variables of the tooling database to analyse known and unknown relationships in the data generated after the execution of technical trials. The aim is to discover cause-effect patterns from selected attributes contained In the database. A fourth system was also developed. It is called DBManager and was conceived to administrate the systems users accounts, sales engineers’ accounts and tool trial monitoring process of the data. This supports the implementation of the proposed distributed architecture and the maintenance of the users' accounts for the access restrictions to the system running under this architecture

    A novel granular approach for detecting dynamic online communities in social network

    Get PDF
    The great surge in the research of community discovery in complex network is going on due to its challenging aspects. Dynamicity and overlapping nature are among the common characteristics of these networks which are the main focus of this paper. In this research, we attempt to approximate the granular human-inspired viewpoints of the networks. This is especially helpful when making decisions with partial knowledge. In line with the principle of granular computing, in which precision is avoided, we define the micro- and macrogranules in two levels of nodes and communities, respectively. The proposed algorithm takes microgranules as input and outputs meaningful communities in rough macrocommunity form. For this purpose, the microgranules are drawn toward each other based on a new rough similarity measure defined in this paper. As a result, the structure of communities is revealed and adapted over time, according to the interactions observed in the network, and the number of communities is extracted automatically. The proposed model can deal with both the low and the sharp changes in the network. The algorithm is evaluated in multiple dynamic datasets and the results confirm the superiority of the proposed algorithm in various measures and scenarios

    Combining rough and fuzzy sets for feature selection

    Get PDF

    Multigranulation Super-Trust Model for Attribute Reduction

    Get PDF
    IEEE As big data often contains a significant amount of uncertain, unstructured and imprecise data that are structurally complex and incomplete, traditional attribute reduction methods are less effective when applied to large-scale incomplete information systems to extract knowledge. Multigranular computing provides a powerful tool for use in big data analysis conducted at different levels of information granularity. In this paper, we present a novel multigranulation super-trust fuzzy-rough set-based attribute reduction (MSFAR) algorithm to support the formation of hierarchies of information granules of higher types and higher orders, which addresses newly emerging data mining problems in big data analysis. First, a multigranulation super-trust model based on the valued tolerance relation is constructed to identify the fuzzy similarity of the changing knowledge granularity with multimodality attributes. Second, an ensemble consensus compensatory scheme is adopted to calculate the multigranular trust degree based on the reputation at different granularities to create reasonable subproblems with different granulation levels. Third, an equilibrium method of multigranular-coevolution is employed to ensure a wide range of balancing of exploration and exploitation and can classify super elitists’ preferences and detect noncooperative behaviors with a global convergence ability and high search accuracy. The experimental results demonstrate that the MSFAR algorithm achieves a high performance in addressing uncertain and fuzzy attribute reduction problems with a large number of multigranularity variables

    Computational intelligence techniques for missing data imputation

    Get PDF
    Despite considerable advances in missing data imputation techniques over the last three decades, the problem of missing data remains largely unsolved. Many techniques have emerged in the literature as candidate solutions, including the Expectation Maximisation (EM), and the combination of autoassociative neural networks and genetic algorithms (NN-GA). The merits of both these techniques have been discussed at length in the literature, but have never been compared to each other. This thesis contributes to knowledge by firstly, conducting a comparative study of these two techniques.. The significance of the difference in performance of the methods is presented. Secondly, predictive analysis methods suitable for the missing data problem are presented. The predictive analysis in this problem is aimed at determining if data in question are predictable and hence, to help in choosing the estimation techniques accordingly. Thirdly, a novel treatment of missing data for online condition monitoring problems is presented. An ensemble of three autoencoders together with hybrid Genetic Algorithms (GA) and fast simulated annealing was used to approximate missing data. Several significant insights were deduced from the simulation results. It was deduced that for the problem of missing data using computational intelligence approaches, the choice of optimisation methods plays a significant role in prediction. Although, it was observed that hybrid GA and Fast Simulated Annealing (FSA) can converge to the same search space and to almost the same values they differ significantly in duration. This unique contribution has demonstrated that a particular interest has to be paid to the choice of optimisation techniques and their decision boundaries. iii Another unique contribution of this work was not only to demonstrate that a dynamic programming is applicable in the problem of missing data, but to also show that it is efficient in addressing the problem of missing data. An NN-GA model was built to impute missing data, using the principle of dynamic programing. This approach makes it possible to modularise the problem of missing data, for maximum efficiency. With the advancements in parallel computing, various modules of the problem could be solved by different processors, working together in parallel. Furthermore, a method for imputing missing data in non-stationary time series data that learns incrementally even when there is a concept drift is proposed. This method works by measuring the heteroskedasticity to detect concept drift and explores an online learning technique. New direction for research, where missing data can be estimated for nonstationary applications are opened by the introduction of this novel method. Thus, this thesis has uniquely opened the doors of research to this area. Many other methods need to be developed so that they can be compared to the unique existing approach proposed in this thesis. Another novel technique for dealing with missing data for on-line condition monitoring problem was also presented and studied. The problem of classifying in the presence of missing data was addressed, where no attempts are made to recover the missing values. The problem domain was then extended to regression. The proposed technique performs better than the NN-GA approach, both in accuracy and time efficiency during testing. The advantage of the proposed technique is that it eliminates the need for finding the best estimate of the data, and hence, saves time. Lastly, instead of using complicated techniques to estimate missing values, an imputation approach based on rough sets is explored. Empirical results obtained using both real and synthetic data are given and they provide a valuable and promising insight to the problem of missing data. The work, has significantly confirmed that rough sets can be reliable for missing data estimation in larger and real databases

    Artificial Intelligence and Cognitive Computing

    Get PDF
    Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Data quality issues in electronic health records for large-scale databases

    Get PDF
    Data Quality (DQ) in Electronic Health Records (EHRs) is one of the core functions that play a decisive role to improve the healthcare service quality. The DQ issues in EHRs are a noticeable trend to improve the introduction of an adaptive framework for interoperability and standards in Large-Scale Databases (LSDB) management systems. Therefore, large data communications are challenging in the traditional approaches to satisfy the needs of the consumers, as data is often not capture directly into the Database Management Systems (DBMS) in a seasonably enough fashion to enable their subsequent uses. In addition, large data plays a vital role in containing plenty of treasures for all the fields in the DBMS. EHRs technology provides portfolio management systems that allow HealthCare Organisations (HCOs) to deliver a higher quality of care to their patients than that which is possible with paper-based records. EHRs are in high demand for HCOs to run their daily services as increasing numbers of huge datasets occur every day. Efficient EHR systems reduce the data redundancy as well as the system application failure and increase the possibility to draw all necessary reports. However, one of the main challenges in developing efficient EHR systems is the inherent difficulty to coherently manage data from diverse heterogeneous sources. It is practically challenging to integrate diverse data into a global schema, which satisfies the need of users. The efficient management of EHR systems using an existing DBMS present challenges because of incompatibility and sometimes inconsistency of data structures. As a result, no common methodological approach is currently in existence to effectively solve every data integration problem. The challenges of the DQ issue raised the need to find an efficient way to integrate large EHRs from diverse heterogeneous sources. To handle and align a large dataset efficiently, the hybrid algorithm method with the logical combination of Fuzzy-Ontology along with a large-scale EHRs analysis platform has shown the results in term of improved accuracy. This study investigated and addressed the raised DQ issues to interventions to overcome these barriers and challenges, including the provision of EHRs as they pertain to DQ and has combined features to search, extract, filter, clean and integrate data to ensure that users can coherently create new consistent data sets. The study researched the design of a hybrid method based on Fuzzy-Ontology with performed mathematical simulations based on the Markov Chain Probability Model. The similarity measurement based on dynamic Hungarian algorithm was followed by the Design Science Research (DSR) methodology, which will increase the quality of service over HCOs in adaptive frameworks
    corecore