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Preface

This volume is a collection of abstracts of presentations at ICLA2021: 9th Indian Conference
on Logic and its Applications held online from March 4 to 7, 2021.

The Indian Conference on Logic and its Applications series aims to bring together researchers
from a wide variety of fields that formal logic plays a significant rôle in, along with mathematicians,
philosophers, computer scientists, linguists and logicians studying foundations of formal logic in
itself. A special feature of this conference comprises of studies in systems of logic in the Indian
tradition, and historical research on logic. The biennial conference is organized by the Association
for Logic in India.

The papers in the volume span a wide range of themes. We have contributions to algebraic logic
and model theory and philosophical logic. Modal logics, with applications to computer science
and game theory, are discussed.

Like the previous conferences (the last one at IIT-Delhi in March 2019), the ninth conference
also manifested the confluence of several disciplines of logic. As in the previous years, we were
fortunate to have a number of highly eminent researchers giving plenary talks. It gives us great
pleasure to thank Maria Aloni (University of Amsterdam), Nick Bezhanishvili (University of Am-
sterdam), Agata Ciabattoni (TU Wien), Adnan Darwiche (University of California, Los Angeles),
Hans van Ditmarsch (LORIA), Julia Knight (University of Notre Dame), Marta Kwiatkowska
(University of Oxford) and Thomas Schwentick (TU Dortmund) for agreeing to give invited talks
at ICLA 2021.

In addition, the conference featured two very interesting Panel Discussions, one on Logic
education, moderated by Serafina Lapenta (University of Salerno) and the other titled Logic and
experimental studies: A new paradigm or contradiction in terms?, moderated by Torben Braüner
(Roskilde University). The former panel discussed a range of issues in teaching logic at various
levels, from high school to the university, and tools for teaching logic. The latter addressed
the question of how logic fits together (or does not fit together) with empirical studies. We
thank the moderators of these panels as well as the panelists Viviane Durand-Guerrier (Université
de Montpellier), Nina Gierasimczuk (Technical University of Denmark), Paula Quinon (Warsaw
University of Technology), François Schwarzentruber (IRISA, Rennes), John Slaney (Australian
National University) and Niels Taatgen (University of Groningen) for their participation. The
discussions were thoughtful, and presented varied perspectives on content and practice of logic.

Since this was an online event, in a departure from the past, ICLA decided to experiment
with a different mode of contributed papers, inviting short extended abstracts, rather than
full papers, including on-going research work. A selection of papers from the conference will
constitute a special issue of the Journal of Logic, Language and Information, constituting formal
post-proceedings of the conference.

We express our gratitude to all members of the Programme Committee for their help in putting
together the entire programme as well as reading the submitted extended abstracts and selecting
the ones included in this volume.

Despite the pandemic, we have managed to hold our discussions in the community. We are
grateful to the Zoom platform for enabling this online conference in troubled times, and the social
platform gather.town for supporting informal chats.

Sujata Ghosh
(Indian Statistical Institute, Chennai)

R. Ramanujam
(Institute of Mathematical Sciences, Chennai)

March 2021
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A logic for pragmatic intrusion

Maria Aloni

ILLC - University of Amsterdam
Science Park 107

1098 XG Amsterdam
The Netherlands
M.D.Aloni@uva.nl

Abstract

In a state-based modal logic, formulas are interpreted with respect to sets of possible
worlds rather than individual worlds. In my talk I will present a bilateral version of a
state-based modal logic motivated by linguistic phenomena at the semantics-pragmatics
interface, including phenomena of free choice.

In free choice inferences conjunctive meanings are derived from disjunctive sentences
contrary to the prescriptions of classical logic:

You may eat pizza or pasta =⇒ You may eat pizza and you may eat pasta

Free choice inferences present a challenge to the canonical divide between semantics
and pragmatics. They are not validities in classical modal logic and although they are
derivable by conversational principles, they lack other characteristic properties of canonical
pragmatic inferences, they are often non-cancellable, they are sometimes embeddable and
their processing time has been shown to equal that of literal interpretations.

In my bilateral state-based modal logic free choice and related inferences are derived
by allowing pragmatic principles intrude in the recursive process of meaning composition.
Contrary to most existing accounts where free choice inferences are viewed as special cases
of quantity implicatures, the relevant pragmatic principle in our logic-based approach will
be a version of Grice’s Maxim of Quality.
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Polyhedral modal logic

Nick Bezhanishvili

Institute for Logic, Language and Computation
University of Amsterdam

P.O. Box 94242
1090 GE Amsterdam

The Netherlands
N.Bezhanishvili@uva.nl

Abstract

Spatial logic studies various spatial structures though the prism of logic. The celebrated
McKinsey-Tarski theorem states that if we interpret modal diamond as closure and hence
modal box as interior, then S4 is the modal logic of any dense-in-itself metric space. In
particular, this implies that the modal logic of each Euclidean space is S4. However, we
can distinguish the logics of Euclidean spaces of different dimensions by restricting the
valuation to polyhedral subsets, resulting in polyhedral semantics of modal logic.

In this talk I will discuss this semantics in detail including some recent axiomatization
and completeness results. I will also review some applications of this approach.

10



Normative reasoning in Mīmām. sā: A deontic logic

approach

Agata Ciabattoni

Inst. of Logic and Computation
Technische Universität Wien

Wien, Austria
agata@logic.at

Abstract

Normative statements, which involve concepts such as obligation and prohibition, are
enormously important in a variety of fields—from law and ethics to artificial intelligence.
Reasoning with and about them requires deontic logic, which is a quite recent area of
research. By contrast, for more than two millennia, one of the most important systems of
Indian philosophy focused on analyzing normative statements. Mīmām. sā, as it is called,
looks at these statements found in the Vedas, the sacred texts of Hinduism, and interprets
them by explaining precisely what course of action they require. In my talk I will discuss
connections and synergies between Mīmām. sā and deontic logic. The results I am going to
present arise from a collaboration between logicians, sanskritists and computer scientists.

11



Reasoning about what was learned

Adnan Darwiche

368B Engineering 6
Computer Science Department

University of California
Los Angeles, CA 90095-1596

USA.
darwiche@cs.ucla.edu

Abstract

The traditional role of logic in AI has been to represent and reason with categorical
knowledge about the world, putting it in competition with other formalisms such as prob-
abilistic reasoning that deals with uncertainty and machine learning that relies on learning
from data instead of explicit knowledge. The landscape has been changing recently with
logic playing a broader role that complements these formalisms. For example, logic and
symbolic manipulations have been providing a computational foundation for probabilistic
reasoning and new approaches have been emerging for learning from a combination of cat-
egorical knowledge and data. In this talk, I will briefly review these additional roles and
then focus on the use of logic for meta reasoning about what was learned. This role of
logic has been facilitated by new advances that compile the input-output behavior of some
machine learning systems into logical representations, allowing one to explain the decisions
made by these systems, reason about their robustness and validate some of their properties
(e.g., whether they are biased or monotonic).

12



Dynamic epistemic logic for distributed computing:

asynchrony and concurrency

Hans van Ditmarsch

LORIA
BP 239

54506 Vandoeuvre-lès-Nancy
France

hans.van-ditmarsch@loria.fr

Abstract

We will present some recent work on asynchrony and concurrency in dynamic epistemic
logics (DEL), building on foundations in distributed computing and combining threads in
dynamic logics and temporal epistemic logics. One way to model asynchrony in DEL is to
reasoning over histories of actions of different length. Within DEL there has been work
on asynchronous protocol-generated forests along different depths of trees (older work by
Witzel and others, recent work by Pinchinat and others), and hovering in between DEL
and PDL there is more recent work applied to gossip protocols by Apt and others, and van
Ditmarsch and others.

An entirely different emerging thread involving histories of different length is within
combinatorial topology, namely DEL-motivated modellings of algorithms in distributed
computing such as the immediate snapshot algorithm, by Rajsbaum and others.

A different kind of DEL asynchrony involves separating in the logical language the
sending and receiving of messages, such as announcements. We present recent proposals
by Knight and others, and Balbiani and others. Topics of interest there are axiomatization,
reduction (elimination of dynamic modalities) and complexity, and also generalizations to
communications between intersecting subgroups of agents building on older work involving
Mukund and Ramanujam.

A modelling solution wherein knowing a proposition is identified with acknowledging
receipt can be demonstrated by, what else, the Muddy Children problem. Finally, the
Muddy Children problem also perfectly illustrates issues with concurrency in DEL: the
action of n muddy children not stepping forward because none of them know whether
they are muddy, is always modelled as the public announcement of a conjunction with n
conjuncts. Should this not be a concurrent action with n components?

13



Describing structures and classes of structures

Julia Knight

Department of Mathematics
University of Notre Dame

255 Hurley Bldg
Notre Dame, IN 46556

USA.
j1knight@nd.edu

Abstract

The talk will provide an overview of notions and results related to the following:

• describing a specific countable structure, up to isomorphism,

• describing a class of countable structures, closed under isomorphism,

• classifying the members of a given class, giving invariants that distinguish the mem-
bers from each other, up to isomorphism.

The notions and results will all be illustrated with examples involving familiar kinds of
mathematical structures: groups, fields, graphs.

14



Probabilistic model checking for strategic equilibria-based

decision making

Marta Kwiatkowska

Department of Computer Science,
University of Oxford

Wolfson Building
Parks Road

OXFORD OX1 3QD
UK.

Marta.Kwiatkowska@cs.ox.ac.uk

Abstract

Software faults have plagued computing systems since the early days, leading to the
development of methods based on mathematical logic, such as proof assistants or model
checking, to ensure their correctness. The rise of AI calls for automated decision making
that incorporates strategic reasoning and coordination of behaviour of multiple autonomous
agents acting concurrently and in presence of uncertainty. Traditionally, game-theoretic so-
lutions such as Nash equilibria are employed to analyse strategic interactions between mul-
tiple independent entities, but model checking tools for scenarios exhibiting concurrency,
stochasticity and equilibria have been lacking. This lecture will focus on a recent exten-
sion of probabilistic model checker PRISM-games, which supports quantitative reasoning
and strategy synthesis for concurrent multiplayer stochastic games against temporal logic
that can express coalitional, zero-sum and equilibria-based properties. Game-theoretic
models arise naturally in the context of autonomous computing infrastructure, including
user-centric networks, robotics and security. Using illustrative examples, this lecture will
give an overview of recent progress in probabilistic model checking for stochastic games
and highlight challenges and opportunities for the future.

15



Dynamic Complexity: Basics and recent directions

Thomas Schwentick

Technische Universität Dortmund
Fakultät für Informatik Otto-Hahn-Str. 12

44227 Dortmund
Germany

thomas.schwentick@cs.tu-dortmund.de

Abstract

In most real-life databases data changes frequently and thus makes efficient query an-
swering challenging. Auxiliary data might help to avoid computing query answers from
scratch all the time. One way to study this incremental maintenance scenario is from the
perspective of dynamic algorithms with the goal to reduce (re-) computation time.

Another option is to investigate it from the perspective of logic. Since first-order logic
corresponds to the core of the standard database query language SQL, one naturally arrives
at the question which queries can be answered/maintained dynamically with first-order
predicate logic (DynFO) [1,2]. This approach has been termed dynamic complexity in the
literature [1].

The talk gives an introduction into dynamic complexity and presents and discusses old
and recent methods and results [3,4,5,6,7,8].

References

[1] Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity class. J. Comput.
Syst. Sci., 55(2):199–209, 1997.

[2] Guozhu Dong and Jianwen Su. Incremental and decremental evaluation of transitive closure by
first-order queries. Inf. Comput., 120(1):101–106, 1995.

[3] Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, Thomas Zeume: Reacha-
bility Is in DynFO. J. ACM 65(5): 33:1-33:24 (2018)

[4] Thomas Schwentick, Nils Vortmeier, Thomas Zeume: Dynamic Complexity under Definable
Changes. ACM Trans. Database Syst. 43(3): 12:1-12:38 (2018)

[5] Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, Thomas Zeume: A Strategy
for Dynamic Programs: Start over and Muddle through. ICALP 2017.

[6] ] Samir Datta, Anish Mukherjee, Nils Vortmeier, Thomas Zeume: Reachability and Distances
under Multiple Changes. ICALP 2018: 120:1-120:14

[7] Thomas Schwentick, Nils Vortmeier, Thomas Zeume: Sketches of Dynamic Complexity. SIGMOD
Rec. 49(2): 18-29 (2020)

[8] Jonas Schmidt, Thomas Schwentick, Till Tantau, Nils Vortmeier, Thomas Zeume: Work-sensitive
Dynamic Complexity of Formal Languages. CoRR abs/2101.08735 (2021), to appear in FoSSaCS
2021.
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Panel on logic education

Viviane Durand-Guerrier (Université de Montpellier)
Serafina Lapenta (University of Salerno), Moderator

François Schwarzentruber (IRISA, Rennes)
John Slaney (Australian National University)

Abstract

The discussions in the logic education panel will centre on the place of logic in the
university. This will include several themes:

• familiarising students from mathematics, philosophy, computer science and AI to
topics and techniques in logic, attracting them to research in logic.

• identifying areas of relevance of logic to mathematics, the sciences and the social
sciences.

• the use of tools in teaching logic (theorem provers, sat solvers etc).

• the place of logic in school curricula and advocacy for logic at school.

The presentations

1. Viviane Durand-Guerrier
The place of logic in school curricula and advocacy for logic at school

A common view is that the learning of mathematics at school is sufficient to develop
the logical skills required by advanced mathematics studies. However there is research
based-evidence that it is not the case. On another side, several authors acknowledge that
teaching logic in separate module does not necessarily improve students’ mathematical
reasoning. This lead to introduce elements of logic inside the mathematics curriculum
and to propose activities aiming to make students experience the intertwining between
mathematics contents and logical skills. I will provide some examples of such activities,
for class and for teacher training.

2. Francois Schwarzentruber
Use of tools in teaching logic

Logic is the root of computer science and has many direct applications: database, pro-
gram design and verification, architecture, constraint solving, theorem proving, machine
learning, etc. In this talk, we will make a tour on existing tools that shows the applica-
bility of logics, and thus could motivate students to study logic. We then show how tools
can be used for students to grasp theoretical foundations of logic. We will then discuss
some guidelines for the future of tools for teaching logic.

3. John Slaney
Introductory logic: opportunity and challenge

This is a talk from my personal perspective, drawing on the experience of teaching ele-
mentary logic to university students. One of the main pedagogic difficulties we face is the
diversity of backgrounds of our students: it is hard to pitch the course simultaneously

19



to philosophy, mathematics and computing majors, and with the increasing popularity of
logic this diversity of backgrounds is also increasing. The online tool ’Logic for Fun’ is
intended to appeal to students across the range of disciplinary backgrounds, introducing
them to the art of using the resources of first order logic to express and solve problems.
I describe the tool and report briefly on the experience of using it over ten years of
introductory logic courses.

20



Panel on logic and experimental studies:

A new paradigm or contradiction in terms?

Torben Braüner (Roskilde University), Moderator
Nina Gierasimczuk (Technical University of Denmark)
Paula Quinon (Warsaw University of Technology)

Niels Taatgen (University of Groningen)

Abstract

The main idea is to discuss how logic fits together (or doesn’t fit together) with em-
pirical studies. By empirical studies we mean scientific studies modeled after experimental
natural sciences like physics (not natural sciences of a more historical nature, like geology).
Standard textbooks on the philosophy of science give demarcation criteria like verifiability
and falsifiability. Cognitive psychology and cognitive science clearly tries to live up to such
ideals inherited from natural science.

When we say paradigm we are not only referring to Thomas Kuhn (1962) in its original
grandeur, but also to weaker notions of paradigm that might be more descriptive. The
relation between logic and psychology has been discussed extensively since Frege, and
is still continuing to play a role in our understanding of normative vis-a-vis descriptive
enterprises. The natural questions one can ask: what would be an empirically informed
logical formalism, or what would be a formalism informed experiment. In recent days,
attempts have been made towards answering these questions: to this end, one could ask
for a systematic study of these attempts in order to answer the query we put forward.

The presentations

1. Nina Gierasimczuk
Approximate number sense and semantic universals: an experimental simulation study

Languages vary in their systems of categories but the variation is constrained by several
well-defined properties called universals. Explanations thereof have been sought in univer-
sal constraints of human cognition, communication, complexity, and pragmatics. In this
walk we examine whether the perceptual constraints of approximate number sense (ANS)
contribute to the development of two universals in the semantic domain of quantities:
monotonicity and convexity. Using a state-of-the-art multi-agent language-coordination
model, with the perceptual layer of agents substituted by the ANS, we evolve communica-
tively usable quantity terminologies. We compare the degrees of convexity and monotonic-
ity of languages evolving with and without ANS. The results suggest that ANS supports
the development of monotonicity and, to a lesser extent, convexity.

This is a joint work with Dariusz Kalociński, Franciszek Rakowski and Jakub Uszyński.
It was generously supported by N.G.’s National Science Centre Poland grant no.
2015/19/B/HS1/03292.

2. Paula Quinon
The core cognitive paradigm and foundations of logic, arithmetic, and computation

21



Spelke in Core knowledge (2000) put forward the idea that complex cognitive skills and
concepts can be based on a set of “building block” systems (called also “core knowledge”
or “core cognition” systems) that emerge early in human ontogeny, play an important
role in phylogeny of concepts, and are detected in non-human animals. Humans combine
representations from these systems and build new complex concepts. I call the “core
cognition paradigm” a framework that commits to the view that the conceptual content
of a concept is scaffolded on core cognition.

The concept of natural number has been studied extensively within this paradigm and
it has been established that the ability to subitize up to four elements, the ability to
approximate quantities without counting, and the counting routine, play important roles
in the formation and acquisition of the concept of natural number. A similar endeavor
is currently being undertaken with respect to logically complex representations (such as
logical connectives, logical rules, or quantifiers) and to computational representations
(such as computable functions).

Regardless of which building blocks will be disclosed as playing a role in the formation of
mature complex representations, both in logic and in computation, it will be interesting
to answer the question of whether the core cognition paradigm can in any way help in
understanding the nuances of formal concepts.

3. Niels Taatgen
Cognitive architectures and predictive models

Cognitive architectures are formal systems that allow building simulations of human in-
telligent behavior. They encompass constraints derived from human cognition, such as
memory, attention and decision making. Cognitive architectures are used to build cogni-
tive models of particular cognitive phenomena, either to explain existing empirical data,
or to make predictions about new data. I will illustrate this with an example in which we
successfully predicted a bottleneck in human multitasking.
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Abstract

We prove that the class K containing all Heyting algebras with distinguished atoms
and coatoms is complete with respect to effective dimensions. This implies that there is no
simple syntactic characterization of computably categorical members of K (i.e. structures
from K possessing a unique computable copy, up to computable isomorphisms). This
contrasts with Remmel’s result that gives a simple algebraic characterization of computably
categorical Boolean algebras with distinguished atoms.

1 Introduction

The paper studies algorithmic properties of countable Heyting algebras. Working within the
framework of computable structure theory [2, 6], we consider computable copies of Heyting
algebras. A structure S is computable if its domain dom(S) is a (Turing) computable subset of
the set of natural numbers ω, and the signature operations and predicates of S are uniformly
computable.

A lot of familiar countable algebraic structures have computable isomorphic copies. A stan-
dard example of a computable structure is the semiring of natural numbers (ω; +, ·). Another
typical example is provided by the ordered field of rationals (Q; +, ·,≤) — one can build a
computable copy of the field by effectively encoding irreducible fractions via natural numbers.
Another class of examples comes from group theory: a finitely presented group G has a com-
putable copy if and only if the word problem for G is decidable.

From the point of view of the classical algebra, isomorphic copies of the same structure S
have the same algebraic properties. Nevertheless, in computable structure theory, two isomor-
phic computable copies of S can exhibit strikingly different algorithmic behavior. One of the
first examples of this phenomenon was witnessed by Fröhlich and Shepherdson [8]: they proved
that there exist isomorphic computable fields F and K such that F has a splitting algorithm,
but G has no splitting algorithm.

Motivated by these kinds of phenomena, Mal’tsev [13] introduced the notion of computable
categoricity. A computable structure S is computably categorical (or autostable) if for every
computable copy A of S, there is a computable isomorphism f (i.e. an isomorphism, which is
also a computable function) from A onto S. Roughly speaking, if a structure S is computably
categorical, then all computable copies of S have similar algorithmic behavior. More formally,
one can say that S possesses a unique computable copy, up to computable isomorphisms.

Since the works of Mal’tsev [12, 13], the following classification problem has been one of
the main driving forces behind the developments of computable structure theory: Obtain a
description of computably categorical structures from familiar algebraic classes.

∗The work is supported by RFBR, project number 20-31-70006.
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We give several examples of known results in this line of research. A computable linear
order is computably categorical if and only if it has only finitely many pairs of adjacent ele-
ments [10, 17]. A computable Boolean algebra is computably categorical if and only if its set of
atoms is finite [10, 16]. In general, it is impossible to provide a nice algebraic characterization of
computably categorical structures: the paper [5] proves that the index set of computably cate-
gorical graphs is m-complete Π1

1. Informally speaking, this means that there is no simpler way
to syntactically describe computable categoricity than the original definition given by Mal’tsev.

A Boolean algebra with distinguished atoms is a structure of the form (B,At), where B is a
Boolean algebra, and the unary predicate At is precisely the set of atoms of B. Remmel [15]
(see also Theorem 5.16 of [18]) proved that a computable Boolean algebra with distinguished
atoms (B,At) is computably categorical if and only if B is isomorphic to a finite product of the
following Boolean algebras: the countable atomless algebra, the algebra of finite and cofinite
subsets of ω, and finite algebras.

In this extended abstract, we consider the class of Heyting algebras with distinguished atoms
and coatoms, denoted by HAAtCoat. We sketch the proof of the following result (to be explained
in Section 2):

Theorem 1. The class HAAtCoat is complete with respect to effective dimensions.

The proof of this theorem implies that the result of [5] mentioned above can be transferred
into our setting: the index set of computably categorical members of HAAtCoat is m-complete
Π1

1. This contrasts with the result of Remmel [15] above (to be elaborated in Remark 2.1).
Informally speaking, Theorem 1 shows that the class of Heyting algebras provides a richer
computability-theoretic environment than the class of Boolean algebras.

2 Preliminaries and Discussion

We refer the reader to [2, 6] for the background on computable structure theory. Let S be a
computable structure, and let d be a Turing degree. The d-computable dimension of S, denoted
by dimd(S), is the number of computable copies of S, up to d-computable isomorphisms. If
d = 0, then we omit the prefix d- and talk about computable dimension.

A class of structures K is complete with respect to effective dimensions if for every com-
putable structure S, there exists a computable structure AS ∈ K such that for any Turing
degree d, we have dimd(AS) = dimd(S).

Heyting algebras are treated as algebras in the signature σHA = {∨,∧,→, 0, 1}. The signa-
ture of Boolean algebras is equal to σBA = {∨,∧, ( ), 0, 1}. For the preliminaries on Heyting
algebras, we refer to the book [7]. Structures from the class HAAtCoat are considered in the
signature σ0 = σHA ∪ {At,Coat}.

Remark 2.1. Note that any nontrivial Boolean algebra B satisfies the following: an element
a is a coatom of B if and only if its complement (a) is an atom of B. This implies that the
structure (B,At,Coat) is computably categorical if and only if (B,At) is computably categorical.
Using the result of Remmel [15], one can deduce that the index set I of computably categorical
Boolean algebras with distinguished atoms and coatoms is arithmetical. Clearly, I cannot be
Π1

1-complete.

One can recover another computability-theoretic difference between Boolean algebras and
Heyting algebras. Recall that Goncharov [9] proved that for any natural number n ≥ 2, there
is a computable structure having computable dimension n. Therefore, Theorem 1 implies that
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computable structures from the class HAAtCoat can have arbitrary finite computable dimension.
On the other hand, Alaev (Corollary 2 of [1]) showed the following. Consider a computable
structure C, which is obtained by enriching a Boolean algebra B by unary predicates for some
ideals — I1, I2, . . . , Ik, and for the sets of atoms with respect to these ideals — At1,At2, . . . ,Atk.
Then the computable dimension of C is either one, or ∞.

We note that a modification of the proof of Theorem 1 provides a stronger computabi-
lity-theoretic result: one can show that the class HAAtCoat is HKSS-complete (see [11] and
Section 4.3 of [14] for the formal definition of HKSS-completeness). Nevertheless, for the sake
of clarity of exposition, here we focus only on effective dimensions. More technical details
can be recovered in a way similar to the papers [3, 4], which consider some natural classes of
enrichments of Boolean algebras.

3 Proof Sketch for Theorem 1

Here we concentrate on a more “algebraic” part of the proof. The omitted “computability-the-
oretic” details are somewhat technical, but still pretty straightforward.

Let G be a computable, undirected (i.e. symmetric and irreflexive) graph with domain ω.
By Edge we denote the edge relation inside G. We build a Heyting algebraHG, our construction
proceeds in three stages.

Stage 1. We define a poset R[G] as follows. The domain of R[G] equals:

dom(R[G]) = {ai : i ∈ ω} ∪ {bi,j , ci,j , di,j , ei,j : i < j, i, j ∈ ω}.

The ordering � on dom(R[G]) is obtained as the least partial order, which contains the following
relations: for all i < j,

� we have ai ≺ bi,j , aj ≺ bi,j , bi,j ≺ ci,j ≺ ei,j , bi,j ≺ di,j ≺ ei,j ;

� if G |= Edge(i, j), then we additionally set ci,j ≺ di,j .
Recall that a closure algebra is a structure (B,Cl), where B is a Boolean algebra, and the

closure operator Cl : B → B satisfies the following axioms: Cl(0) = 0, and for all a, b ∈ B, we
have a ≤ Cl(a), Cl(Cl(a)) ≤ Cl(a), and Cl(a ∨ b) = Cl(a) ∨ Cl(b).

For a closure algebra (B,Cl), the interior operator Int : B → B is defined as follows: Int(a) :=

(Cl(a)). An element a ∈ B is open if Int(a) = a.
For a set X, by P (X) we denote the set of all subsets of X.
Stage 2. Given the poset R[G], we define a closure algebra C[G].

It is known that the algebra CCl = (P (dom(R[G])),∪,∩, ( ), ∅,dom(R[G]),Cl�), where

for a set X ⊆ dom(R[G]), Cl�(X) = {y : y � x for some x ∈ X},

is a closure algebra (see, e.g., Proposition 2.2.8 of [7]). Note that CCl has cardinality continuum.
Let B be the Boolean algebra containing all finite and cofinite subsets of dom(R[G]). We

prove that B is closed with respect to the operation Cl�. In order to establish this, it is sufficient
to show the following: for any element x ∈ R[G], the set Cl�({x}) is finite. If x = ai for some i,
then clearly Cl�({x}) = {x}. Otherwise, x belongs to {bi,j , ci,j , di,j , ei,j} for some i < j. Then
Cl�({x}) ⊆ {ai, aj , bi,j , ci,j , di,j , ei,j}, and Cl�({x}) is finite.

Hence, we deduce that (B,Cl�) is a closure subalgebra of CCl. We put C[G] := (B,Cl�).
Stage 3. Now we are ready to define the desired Heyting algebra HG. This is the algebra

of all open elements of the closure algebra C[G] (see, e.g., Proposition 2.2.4 of [7]). Its Heyting
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operations are the standard set-theoretic union ∪ and intersection ∩, and the implication is

defined as follows: a→ b = Cl(a ∩ (b)).
A straightforward computability-theoretic analysis of the construction shows that there is

a uniform procedure, which given a computable graph G, produces a computable copy of the
Heyting algebra HG. Thus, without loss of generality, we may assume that the algebra HG
itself is computable.

Recall that every element of HG is either finite or cofinite subset of dom(R[G]). It would
be useful to keep this intuition in mind. Let D denote the set dom(R[G]).

Lemma 3.1. Suppose that v is either finite or cofinite subset of D.

1. v ∈ HG if and only if v is upwards �-closed, i.e.

v = {y ∈ R[G] : x � y for some x ∈ v}. (1)

2. An element v ∈ HG is an atom if and only if v = {ei,j} for some i < j.

3. An element v ∈ HG is a coatom if and only if v = D \ {ai} for some i ∈ ω.

For reasons of space, the proof of Lemma 3.1 is omitted.
Lemma 3.1 implies that the structure H∗G := (HG,At,Coat) is computable. Note that

item (3) of Lemma 3.1 says the following: the set {D \ {ai} : i ∈ ω} is definable inside H∗G via
the quantifier-free formula Coat(z). Hence, it is natural to consider the following (informal)
encoding: a node i from the original graph G is encoded by the coatom D \ {ai} of Heyting
algebra HG.

The next lemma clarifies the properties of this encoding. It shows that inside the structure
H∗G, our encoding induces an isomorphic copy of the graph G. The copy is definable via both
existential and universal formulas (without parameters).

Lemma 3.2. There are existential σ0-formulas ψ0(u, v) and ψ1(u, v) (without parameters) such
that for all i < j, we have:

G |= Edge(i, j) ⇔ H∗G |= ψ0(D \ {ai}, D \ {aj}) ⇔ H∗G |= ¬ψ1(D \ {ai}, D \ {aj}). (2)

Proof. First, we note the following: for an atom m = {ei,j}, its pseudocomplement m → ∅
is the ⊆-greatest among upwards �-closed sets that do not contain ei,j . Hence, (m → ∅) =
D \ {ai, aj , bi,j , ci,j , di,j , ei,j}.

The argument above implies that for any i < j, there is a unique atom m such that D \
{ai, aj} ⊇ (m→ ∅). This m equals D \ {ai, aj , bi,j , ci,j , di,j , ei,j}. Consider a half-open interval
I := ](m→ ∅);D \ {ai, aj}] inside our Heyting algebra. It is not hard to see the following:

� If G |= Edge(i, j), then I is a chain containg four elements.

� If G 6|= Edge(i, j), then I is isomorphic to the finite Boolean lattice with two atoms.

Hence, we define:

ψ0(u, v) = ∃m∃w1∃w2∃w3[At(m) & (m→ ∅) ⊂ w1 ⊂ w2 ⊂ w3 ⊂ u ∩ v],

ψ1(u, v) = ∃m∃w1∃w2∃w3[At(m) & (m→ ∅) ⊂ w1 ⊂ w2 ⊂ u ∩ v&w1 ⊂ w3 ⊂ u ∩ v
& (w2 and w3 are incomparable w.r.t. ⊆)].

It is not difficult to show that these formulas satisfy (2).
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Lemma 3.2 provides a nice first-order interpretation of G inside H∗G. After that, a techni-
cal argument shows the following: for any Turing degree d, we have dimd(H∗G) = dimd(G).
Since the class of undirected graphs is complete with respect to effective dimensions (see, e.g.,
Theorem 3.1 of [11]), the proof of Theorem 1 is complete.
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[8] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans. Roy. Soc.
London Ser. A, 248(950):407–432, 1956.

[9] S. S. Goncharov. Problem of the number of non-self-equivalent constructivizations. Algebra Logic,
19(6):401–414, 1980.

[10] S. S. Goncharov and V. D. Dzgoev. Autostability of models. Algebra Logic, 19(1):28–37, 1980.

[11] D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko. Degree spectra and computable
dimensions in algebraic structures. Ann. Pure Appl. Logic, 115(1–3):71–113, 2002.

[12] A. I. Mal’tsev. Constructive algebras. I. Russ. Math. Surv., 16(3):77–129, 1961.

[13] A. I. Mal’tsev. On recursive abelian groups. Sov. Math. Dokl., 3:1431–1434, 1962.

[14] A. Montalbán. Computability theoretic classifications for classes of structures. In S. Y. Jang, Y. R.
Kim, D.-W. Lee, and I. Yie, editors, Proceedings of the International Congress of Mathematicians
— Seoul 2014. Vol. II, pages 79–101, Seoul, 2014. Kyung Moon Sa.

[15] J. B. Remmel. Recursive Boolean algebras with recursive atoms. J. Symb. Log., 46(3):595–616,
1981.

[16] J. B. Remmel. Recursive isomorphism types of recursive Boolean algebras. J. Symb. Log.,
46(3):572–594, 1981.

[17] J. B. Remmel. Recursively categorical linear orderings. Proc. Am. Math. Soc., 83(2):387–391,
1981.

[18] J. B. Remmel. Recursive Boolean algebras. In J. D. Monk and R. Bonnet, editors, Handbook of
Boolean algebras, Vol. 3, pages 1097–1165. North-Holland, Amsterdam, 1989.

29



Aggregating Relational Structures

Harshit Bisht1 and Amit Kuber2

1 Independent Researcher
harshitbiitk@gmail.com

2 Indian Institute of Technology, Kanpur
Uttar Pradesh, India
askuber@iitk.ac.in

1 Introduction

How to “fairly” aggregate information/preferences from multiple sources into a collective opin-
ion/preference? How to define fairness, and are some definitions of it unattainable?

With the seminal result in [1], Arrow introduced the problem of aggregating voters’ pref-
erences into a collective preference ordering over a set of alternatives (candidates) and showed
that no such aggregation could satisfy a reasonable sounding definition of fairness, laying the
foundations for social choice theory. There have been numerous extensions of the result, all
fundamentally attempting to (re)define “fairness” over a new/broader problem. Results in this
domain are typically either of:

• Negative results that prove a certain definition of fairness is unattainable.

• Positive results that propose new aggregation algorithms and prove their properties.

As computational tools make it easy to survey and assess data, summarisation and aggre-
gation tools will be required to make inferences or decisions based on observed relationships
such as planning city routes given access to graphs corresponding to each pedestrian’s activity.
As examples of applied research taking note from social choice theory, in [2] and [8] we see
aggregation arising as a key concern in group recommender systems and parsing user review
data. [3] gives historical context on the aggregation problem and summarises some current
applications.

Some important negative results for aggregating partial orders and equivalence relations are
given in [7] and [5] respectively. In [4], the impossibility result is established for the general
binary relation/graph setting - significant progress from results for specific relations such as
linear orders or equivalence relations. However, not all information worth aggregating can be
adequately represented with binary relations. Consider the relationship of “knowing” someone
on a social network inferred from being tagged in the same picture, a group of three friends
in the same photo carries more information than all combinations of pairs and can be best
expressed by a 2-simplex. It is thus valuable to extend the result to mathematical domains that
allow representing more social choice scenarios. Attempts to extend the result to the setting of
aggregating committees, i.e., subsets as preferences are made in [6]. With a similar motivation
of addressing problems beyond binary relations, we attempt to prove the result for relations of
arbitrary arity, which differs from the subset setting by being sensitive to permutation of tuples
of “candidates” to be aggregated.
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2 Aggregating k-ary Relations

Consider the predicate language L consisting of a single predicate symbol R of arity k ≥ 3.
Also fix a non-empty finite set A of candidates. We will deal with models of some L-theory T ,
to be specified later, with universe A. We denote the collection of models of the theory T by
M(A).

A social choice situation over the pair (L, A) consists of the following. Let I denote a set
of voters/individuals. Each voter chooses Ai ∈ M(A). An aggregation rule (also known as
a social welfare function) is a map σ : D ⊆ M(A)I → M(A) that satisfies some desirable
properties, where D is the set of allowed ballots or profiles. By appropriately choosing T and
the properties of the aggregation rule, we will prove that the only legitimate choice of the
aggregated structure is either a filtered product or an ultraproduct of {Mi}i∈I ; the latter case
corresponds to a “dictatorship” when I is finite.

In order to describe the properties of k-ary relations we begin by setting up some notations.

• We refer to arbitrary tuples of length k as āk = (a1, ..., ak).

• (āk)+ī,−j̄
r for ī = (i1, ..., iv) and j̄ = (j1, ..., jw), refers to the set of subsequences of āk of

length r with elements ai1 , ..., aiv necessarily present and elements aj1 , ..., ajw necessarily
absent. In a slight abuse of notation, when i or j are single-membered they will simply
be referred to as (āk)+i,−j

r .

• (āk+1)−j | b refers to the singleton element in (a1, ..., aj , b, aj+1, ..., ak)−jk , essentially re-
placing the jth element of the tuple by b.

• For a permutation τ (τ on āk is just a bijective map from {1, ..., k} to itself), āτk refers to
the tuple (aτ(1), ..., aτ(k)).

Now we define some desirable properties of k-ary relations that will constitute theory T . A
k-ary relation R is called

• connected if, for each pairwise-distinct āk ∈ A, there is a permutation τ of {1, ..., k}
such that āτk ∈ R.

• exclusive if for each pairwise-distinct āk ∈ A, there is a permutation τ of {1, ..., k} such
that āτk 6∈ R.

• simplicial transitive if for each sequence of pairwise-distinct elements āk+1 for each
j ∈ {1, ..., k + 1} if (āk+1)+j

k ⊆ R then (āk+1)−jk ∈ R.

Below we present natural aggregation scenarios to justify that our choice of properties is
not arbitrary.

• Moderate Voters Consider a collection of voters and a group of electoral candidates.
Each voter interprets the political inclination of each candidate as left or right leaning
compared to the others resulting in a total order over the set of candidates. If each voter
prefers the moderate candidate in a group of 3 candidates, then this voting behaviour can
be captured by a “betweenness” relation, with (a, b, c) ∈ Ri ↔ (c, b, a) ∈ Ri representing
the ith voters preference for b over a and c. This relation is connected, exclusive as well
as simplicial transitive.
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• Seating along a circular table Consider a party of dinner guests to be seated on circular
table in groups of 4 (any cyclic arrangement is fine) and preferences over how every subsets
of 4 people should be seated. This quaternary relation R on the party of dinner guests is
such that if (a, b, c, d) ∈ R then all cyclic permutations (b, c, d, a), (c, d, a, b), (d, a, b, c) ∈ R
and no other permutation of {a, b, c, d} is in R. This relation also is connected, exclusive
and simplicial transitive.

With the motivation and notation in place, we can define relevant properties for the aggre-
gation rule and state our first result.

(UD) ∀a1, ..., ak ∈ A.∀p ∈M({a1, ..., ak+1})I .∃q ∈ D.q|a1,...,ak = p

(P) ∀āk ∈ Ak.∀p ∈ D.(∀i ∈ I.pi |= R[āk])⇒ σ(p) |= R[āk]

(IIA) ∀āk ∈ Ak.∀p, q ∈ D.(∀i ∈ I.pi |= R[āk]⇔ qi |= R[āk])⇒ (σ(p) |= R[āk]⇔ σ(q) |= R[āk])

(D) ∃i ∈ I.∀āk ∈ Ak.∀p ∈ D.(pi |= R[āk]⇔ σ(p) |= R[āk])

Theorem 1. Let (A, I,D, σ) be a social choice situation over k-ary relation R language L with
|A| ≥ k + 1, satisfying UD, P, and IIA where R is simplicial/path transitive, exclusive, and
connected. Then for finite I, it also satisfies D.

3 Metaproperties for k-ary relations

The above result relies on the specific definitions of properties that we started with, restricting
its usefulness in applications. Two ways this has been previously addressed are:

• In [6], the authors establish a framework using a SAT solver to assist with the proof,
making it easier to establish the result for variations of the original definitions.

• In [4], the authors attempt to characterize sufficient conditions on the definitions for
the proof to go through, reducing the burden of proof to establishing that the problem
definitions satisfy certain “metaproperties”.

We rely on the second approach, adapting [4]’s definitions to our setting and getting inspi-
ration on the definition of metaproperties.

On the fixed set A, we talk about k-ary relations R ⊆ Ak. Since such relations can be
aptly described as uniform directed k-hypergraphs, we interchangeably call them Uk-graphs,
for short. Any property P of k-ary relations can be identified with the collection of all relations
satisfying the property, i.e., a subset P of P(Ak).

The generalizations to Uk-graphs of properties of aggregation rules described in [4], namely
unanimity, groundedness, independecne of irrelevant alternatives (IIE), and collective rational-
ity with respect to a property P of k-ary relations are straightforward.

It is also natural to extend the definitions of contagious, implicative, and disjunctive prop-
erties to Uk-graph properties P . We also show that simplicial transitivity is contagious and
implicative and that connectedness is disjunctive.

This set-up allows us to prove the following k-ary analogue of the dictatorship theorem
[4, Theorem 16].

Theorem 2. For |A| ≥ k + 1, any unanimous, grounded, and IIE aggregation rule for k-ary
relations that is collectively rational with respect to a contagious, implicative, and disjunctive
property must be dictatorial on pairwise distinct tuples.
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4 Future directions

A lot of applications model relationships as simplicial complexes with bounded dimension.
Apart from aggregating social relationships, simplicial complexes are also useful in diverse areas
including rendering 3D-graphics. Such aggregation problems could arise naturally in decentral-
ized computing setups when each unit produces a simplicial complex built on a predetermined
grid of points.
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1 Introduction

Hybrid logic extends standard modal logic so it can refer to worlds. It does so using nominals,
a second kind of propositional symbol, usually written i, j, and k, to distinguish them from
the p, q, and r used for ordinary propositional symbols. Nominals are true at one and only
one world in any model, so a nominal is an atomic ‘propositional term’ that names a world (or
time, or state, or. . . ); here we call such symbols standard nominals. Arthur Prior introduced
early forms of hybrid logic in the 1950s and 60s; see [4] for background.

Sometimes, rather than introducing nominals as a second kind of propositional symbol,
Arthur Prior would create them using the Q operator: Qp, the result of prefixing the ordinary
propositional symbol by Q operator, converted p to a nominal. As Prior put it in [6], page 237:

For ‘p is an individual’ (or an instant, or a possible total world-state) we write Qp.
If we have propositional quantifiers, we can define Qp thus:

Qp = 3p ∧ ∀q(2(p→ q) ∨2(p→ ¬q))
Here the 2 and 3 are the box and diamond forms of the universal modality : 2 means true at
all worlds and 3 means true at some world. Thus one way of reading this definition is that
Qp says that p is both possible and maximal : p is true somewhere and in addition p strictly
implies every proposition q or its negation. Read this way — taking the quantifier as ranging
across all sets of world — Qp is a standard nominal.

But Prior’s definition is ambiguous: there are two mathematically well understood ways of
interpreting a propositional quantifier like ∀q. The first is to interpret it as quantifying across
all subsets of the set of possible worlds (that is: as quantifying across all propositions). This
is called the standard interpretation, and it is the standard interpretation that gives rise to
standard nominals. But we can also interpret propositional quantifiers as ranging over a pre-
selected set of subsets of worlds. These are usually called the admissible subsets or the admissible
propositions. This interpretation traces back to Leon Henkin’s pioneering work on higher-order
logic in the 1950s, and is often called the general semantics; this alternative interpretation
became important in modal logic in in 1972, when S. K. Thomason introduced general frames
as part of his work on incomplete modal logics.

The distinction between the standard and the general semantics is of direct relevance to
Prior’s definition of the Q operator: when interpreted standardly we get standard nominals, but
when interpreted according to the general semantics, we get something interestingly different;
here we call them non-standard nominals. In this note we explore this distinction by working
with a basic hybrid language enriched with propositional quantifiers. Thus we will have standard
nominals and — because of the propositional quantifiers — we will be able to define Prior’s Q
operator and hence non-standard nominals too.
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2 Syntax and semantics

The language we shall use in this paper is called LBHPQ. Choose (disjoint) countably infinite
sets PROP = {p, q, r, . . .} and NOM = {i, j, k, . . .}, the propositional symbols and standard
nominals respectively. The formulas of LBHPQ are:

ϕ ::= p | i | ¬ϕ | ϕ ∧ ϕ | �ϕ | @iϕ | ∀pϕ

where p ∈ PROP and i ∈ NOM. Other booleans are defined as usual, and 3ϕ and ∃pϕ
are defined as ¬�¬ϕ and ¬∀p¬ϕ respectively. Note that standard nominals are used in two
syntactically distinct ways: if i appears as a subscript to @, then we say it occurs in operator
position and if it occurs as an atomic symbol, then we say it occurs in formula position.1 We
assume the usual distinction between free and bound symbols. When we later discuss universal
instantiation we shall write φ[χ/q] for the result of substituting a formula χ for free occurrences
of a propositional symbol q in a formula φ we assume that all such substitutions are carried out
sensibly (that is: avoiding accidental binding).

So much for the syntax; let us turn to the formal semantics. We shall interpret LBHPQ with
a Henkin-style semantics where the propositional quantifiers need not range over all subsets of
the set of worlds. Accordingly, the semantics is given using S.K. Thomason’s general semantics,
which makes use of general frames and general models.

Definition 1. A general frame is a triple 〈W,R,Π〉 where W is a non-empty set (worlds), R
is a binary relation on W (the accessibility relation) and Π is a non-empty collection of subsets
of W (the admissible subsets) closed under the following operations:

� relative complement: if X ∈ Π, then W −X ∈ Π

� intersection: if X,Y ∈ Π, then X ∩ Y ∈ Π

� modal projection: if X ∈ Π, then {w ∈W : ∀v(wRv → v ∈ X)} ∈ Π

Note that when we work with a general frame with Π = P(W ), then we are in effect working
with a standard frame; general semantics contains the standard semantics as a special case.
However, we do not need to work with all possible subsets, just with collections of subsets of
worlds with ‘enough logical structure’. This is what the closure conditions ensure.

Definition 2. A general model M based on a general frame 〈W,R,Π〉 is a tuple 〈W,R,Π, N, V 〉
where N : NOM→W and V : PROP→ Π. The truth conditions are as follows:

M, w |= p iff w ∈ V (p) where p ∈ PROP
M, w |= i iff w = N(i)

M, w |= ¬ϕ iff it is not the case that M, w |= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= �ϕ iff for all v ∈W such that wRv,we have M, v |= ϕ
M, w |= @iϕ iff M, N(i) |= ϕ
M, w |= ∀pϕ iff for all M′ = 〈W,R,Π, N, V ′〉such that V ′(q) = V (q)

whenever q 6= p, we have M′, w |= ϕ

Apart from occasional side remarks, in what follows we shall confine our attention to uni-
versally related general frames, that is, to general frames 〈W,R,Π〉 where R = W ×W . We
will say that a formula ϕ is a general validity on a general (universally related) frame 〈W,R,Π〉

1A formula of the form @iϕ says that ϕ is true at one particular world, namely the world the standard
nominal i refers to, and similarly for j, k and so on.
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iff for any model 〈W,R,Π, N, V 〉 and any w ∈W we have that 〈W,R,Π, N, V 〉, w |= ϕ, and we
will say it is a general validity iff it is valid on all such frames. Similarly, we will say that a
formula ϕ is a standard validity on a standard (universally related) frame 〈W,R,Π〉 iff for any
model 〈W,R,Π, N, V 〉 and any w ∈W we have that 〈W,R,Π, N, V 〉, w |= ϕ, and we will say it
is a standard validity iff it is valid on all such frames.

3 Fine’s formula

In this section we shall make some semantic remarks centered around a formula noted by Kit
Fine in an important early paper on modal logic with propositional quantifiers [5].

(∗) ∃p(p ∧ ∀q(q → �(p→ q))).

This is relevant here because (1) it is a standard validity, (2) it is not a general validity, (3) it
is a general validity on any general frame satisfying a discreteness property, (4) is also general
validity on any general frame satisfying an atomicity property and (5) it is closely related to
the formula Prior used to define Q. Let’s look a little closer at all five claims.

First, Fine’s formula (*) is true at any world in any standard model at all (whether uni-
versally related or not). For let w be the world of evaluation. Let the outermost existential
quantifier pick out the singleton set {w}; the truth of (*) follows immediately. As w was
arbitrary, we can never falsify this formula on (any) standard model.

Second, Fine’s formula can be falsified on some general models (so it is not a general
validity). We won’t prove this, but point the reader to the second general frame in Example
5.67, page 307 in [2], which falsifies (*) on a general frame when we interpret 2 and 3 using
W ×W . This is actually an instructive example of a general frame with an element that does
not belong to an atom, namely the element ∞, because any admissible set containing ∞ is
co-finite, meaning that a smaller admissible set containing ∞ can always be found.2

Third, Fine’s formula is valid on any discrete general frame, that is, on general frames where
all singleton sets of worlds are admissible (that is, where for any w ∈ W , we have {w} ∈ Π).3

This is easy to see — just use the argument used in our first observation above.
Fourth — as Fine points out in his paper — (*) says that the set of propositions must be

atomic over the set of worlds; we won’t prove this here, but we will explain the terminology.
A general frame is atomic when every w ∈ W belongs to some minimal non-empty element
of Π. Clearly standard frames and discrete frames are atomic as {w} is the required minimal
non-empty element of Π in both. The more interesting point is that in some atomic frames
atoms may contain multiple worlds, and such atomic frames are not discrete.4

Lastly, Fine’s formula is closely related to the formula Prior used to define Qp:

(∗∗) 3p ∧ ∀q(2(p→ q) ∨2(p→ ¬q))
but whereas Fine’s formula (*) says that the world of evaluation belongs to an atom in Π, Prior’s
formula (∗∗) says that the denotation of p is an atom in Π. If we are working with a standard

2So the inclusion ATOMIC ⊂ GENERAL is proper.
3 Obviously any standard frame is discrete — but there are also plenty of discrete frames that are not

standard. This is not so obvious — any discrete non-standard frame must be infinite. This is because, if we
have all singleton sets of a finite set, then we can generate all of its subsets simply by taking intersections and
complements, which means that finite discrete frames are standard. However if we try to generate all subsets of
an infinite set in this way, we end up with a general frame in which Π contains just the finite and co-finite sets,
rather than all elements of P(W ); see page 30 of [2] for the relevant definitions.

4So to sum up: STANDARD ⊂ DISCRETE ⊂ ATOMIC. The class of standard frames is included in the class
of discrete frames, which in turn is included in the class of atomic frames. Both inclusions are proper: there are
discrete frames which are not standard (see Footnote 3) and there are also atomic frames which are not discrete
(we will see a simple example in Section 4).

36



model (or a discrete model) then condition (∗∗) obviously boils down to the denotation of p
being a singleton set, and we are have standard nominals. And in fact, Kit Fine on pages 339–
340 of [5], considers the Q operator in connection with the formula

(∗ ∗ ∗) ∃p(p ∧Qp).

It is straightforward to show that the formulas (∗∗∗) and (∗) are equivalent in any (universally
related) general frame. That is: Fine’s formula can be defined using Prior’s Q; both say
something about atomicity.

4 Universal instantiation

To make the differences between our two species of nominals concrete, it will help to have a
proof system. There are several we could have used for this purpose (see [3] for a general
introduction to the proof-theory of hybrid logic) and we are currently focussing on tableau and
Hilbert-style systems. Here we will make some comments on the universal instantiation rules
used in our tableaux system (the full system can be found in [1]).

@i∀pϕ

@iϕ[ψ/p]†

¬@i∀pϕ

¬@iϕ[q/p]∗

† : where ψ is free for p in ϕ and ψ does not contain any standard nominal in
formula position.
∗ : where q is a new propositional symbol.

The ¬∀ rule is easy: suppose we have ¬@i∀pϕ. This says it is false at the i-world i that
∀pϕ. But then there is some proposition — call it q — which witnesses this falsehood. So,
throwing away the quantifier, and substituting the new symbol q for the newly-freed occurrence
of p, we deduce that it is false at the i-world that ϕ[q/p], or to put it another way, we deduce
¬@iϕ[q/p].

And now for the crucial ∀ rule, universal instantiation. The basic idea is straightforward:
suppose we are given @i∀pϕ. This is a universal claim: it says that at the i-world, ∀pϕ is true.
Hence we should be able to pick any formula ψ, throw away the ∀p, and substitute ψ inside ϕ.
Now, the first part of the † side-condition simply prevents accidental symbol binding (defined
in the usuak way). But what about the second part of the restriction † side-condition? This is
where the distinction between the standard and non-standard nominals becomes important.

First we observe that (unrestricted) universal instantiation is sound with respect to the
standard semantics — this is easy to check, and we leave it to the reader. On the other hand,
(unrestricted) universal instantiation is not sound with respect to the general semantics is less
clear. We can see this as follows. Consider the general frame where W = {a, b}, R = W ×W
and Π = {∅,W}. It is straightforward to check that Π satisfies the closure properties: the
relative complement and intersection properties are immediate, and as for the modal projection
condition, we have that:

{w ∈W : ∀v(wRv → v ∈W )} = W
{w ∈W : ∀v(wRv → v ∈ ∅)} = {w ∈W : ¬∃v(wRv)} = ∅

So: Π has propositional structure and thus we have a genuine general frame. Now, extend the
general frame to a general model by choosing some valuation V , letting N(i) = a. Then the
formula @i∀q(q → 2q) is true: if V ′(q) = ∅, then the implication q → 2q is trivially true at a,
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and if V ′(q) = W , then the implication is true at a since q is true at both a and b. On the other
hand, if the rule ∀ is applied to @i∀q(q → 2q) with the substitution [i/q], then the resulting
formula @i(i → 2i) is false at a since i is not true at b. So we have falsified an instance of
unrestricted universal instantiation on a general model, and shown that the (unrestricted) rule
is not sound for the general semantics.5

We next observe that the restricted universal instantiation rule is sound with respect to the
general semantics: if there are no nominals in formula position, then all formulas are either
propositional symbols or of the form ¬ϕ, ϕ ∧ ψ, 2ϕ, ∀pϕ or @iϕ.The denotation of all such
formulas (with the exception of those of the form @iϕ) are guaranteed to be in Π because of
the way valuations are defined and the three properties imposed on Π. What about formulas
of the form @iϕ? Well — first note that all such formulas are either true everywhere (that
is, have denotation W ), or false everywhere (that is, have denotation ∅). But both ∅ and W
are admissible sets in any general model, so these are fine too. We are currently working on a
completeness proof for the proof-system.

Lastly we observe that the unrestricted universal instantiation rule is sound with respect to
discrete general frames. So: discreteness guarantees the soundness of (unrestricted) universal
instantiation. This is easy to check, and we leave it to the reader.6

In the table below we map out the different classes of frames considered in the present note:
there is a column for each class and results associated with it.

STANDARD DISCRETE ATOMIC GENERAL
Restricted UI sound

Formula (∗) valid Formula (∗) invalid
Unrestricted UI sound Unrestricted UI unsound

? ?

Formula (∗) is Kit Fine’s formula displayed in Section 3. As indicated earlier, the frame
classes in the top row are strictly included in each other, read from left to right. Note that
the observation regarding the unrestricted UI rule can easily be turned into a formula valid on
discrete frames, but invalid on atomic ones, namely the formula @i∀q(q → 2q)→ @i(i→ 2i),
cf. the counterexample to soundness we gave in Section 4.7 The two question marks indicate
future work, where we are considering formulas/proof-rules distinguishing the two classes of
frames.
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5Indeed, we have done something a little stronger. The model just defined is atomic — note that W is a
minimal non-empty set for both worlds a and b, thus W itself is a (rather unusual!) atom. Thus we have also
shown that the (unrestricted) rule is unsound on the class of atomic general frames. Incidentally, it’s worth
explicitly noting that while this frame is atomic, it is not discrete, as neither {a} nor {b} is a proposition. Thus
this example also shows that the class inclusion DISCRETE ⊂ ATOMIC is proper, as claimed in Footnote 4.

6But we cannot loosen the discreteness requirement: Any non-discrete general frame can be extended to a
general model in which the formula ∀p∃q2(q ↔ p) is true, but the instance ∃q2(q ↔ i) is false.

7Note by the way that it is hybrid-logical machinery that enables building a formula that distinguishes
between discrete and atomic frames: As indicated in [5], page 338, one can identify indistinguishable worlds in
an atomic model, that is, the worlds that belong to the same propositions in Π, such that a discrete model is
obtained. However, in the context of hybrid logic, such an identification cannot be carried out without possibly
identifying the denotation of different nominals.
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Abstract

We consider a first-order logic with linear constraints which can be interpreted nat-
urally in both a pointwise or continuous way over timed words. We show that the two
interpretations of this logic coincide in terms of expressiveness. As a consequence it follows
that the pointwise and continuous semantics of the logic TPTL with the since operator
also coincide. We also exhibit a useful normal form for formulas in these logics.

1 Introduction

Several real-time logics proposed in the literature have been interpreted over timed behaviours
in two natural ways which have come to be known as the “pointwise” and “continuous” in-
terpretations. In the pointwise semantics, formulas may be asserted only at points where an
action occurs (the so called “action points”), while in the continuous semantics formulas may
be asserted at arbitrary time points. To illustrate these semantics, consider the popular timed
temporal logic Metric Temporal Logic (MTL) [8, 1, 9], which extends the U operator of classical
LTL with an interval index, to allow formulas of the form θUIη which says that, with respect
to the current time point, there is a future time point where η is satisfied and which lies at a
distance that falls within the interval I, and at all time points in between θ is satisfied. Consider
a timed word σ in which the first action is an a at time 2, followed subsequently by only b’s.
Then the MTL formula 3(3[1,1]a) is satisfied in σ in the continuous semantics, but not in the
pointwise semantics since there is no action point at time 1.

The Timed Propositional Temporal Logic (TPTL) of Alur and Henzinger [2] is a well-
known timed temporal logic for specifying real-time behaviors. The logic is interpreted over
timed words and extends classical LTL with the “freeze” quantifier x.θ which binds x to the
value of the current time point, along with the ability to constrain these time points using linear
constraints of the form x ∼ y + c. For example the formula x.(3y.(a ∧ y = x + 2)) says that
with respect to the current time point, an action a occurs exactly two time units later. Then
the TPTL formula 3x.(3y.(a ∧ y = x + 1)) is satisfied in the example timed word σ in the
continuous semantics, but not in the pointwise semantics, since there is no action point at time
1. It is not difficult to see that for a typical timed temporal logic the continuous semantics is
at least as expressive as the pointwise one, since one can ask for a time point to be an action
point by asserting

∨
a∈Σ a at each quantified time point.

There have been several results in the literature which show that for the logic MTL and
its variants, the continuous semantics is in fact strictly more expressive than the pointwise one

*Work done while at Indian Institute of Science, Bangalore
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[3, 5, 10]. Thus the logics MTL, MTLS (MTL with the “since” operator S), MTLSI
(MTL with

the SI operator), and MITL (MTL restricted to non-singular intervals), are all strictly more
expressive in the continuous semantics than their pointwise counterparts. Ho and others [6]
further point out differences in the pointwise and continuous versions of MTL and also show an
expressive completeness result, a la Kamp [7], for a variant of MTL in the pointwise semantics.

In this paper we consider the expressiveness of the pointwise and continuous interpretations
of a natural first-order logic with linear constraints which is similar in flavour to TPTL. Thus
the logic allows atomic predicates of the form a(x) which says that an a-event occurs at time
point x, and constraints of the form x < y+ c. The interpretation of the quantifier ∃x depends
on the pointwise or continuous semantics: in the pointwise it is interpreted as “there exists
an action point x”, while in the continuous semantics it is interpreted as “there exists a time
point x.” As an example the FO(<+) formula ∃x.∃y.(a(y) ∧ y = x + 1) is satisfied in the
example timed word σ in the continuous interpretation while it is not satisfied in the pointwise
semantics.

Our main result in this paper is that the expressiveness of the logic in these two semantics
coincides.

The main proof idea is to show that we can go from an arbitrary sentence in FO(<+) to a
sentence in FO(<+) which uses only “active” quantifiers. We say a subformula of the form ∃xϕ
is an actively quantified formula if ϕ is of the form a(x)∧ψ for some action a and formula ψ; and
say it is “passively” quantified otherwise. A sentence in which all quantifiers are active, is clearly
equivalent to a pointwise formula. Thus, we show how to eliminate passively quantified variables
using only actively quantified ones. As an example, the formula ∃x(1 ≤ x∧∃y(b(y)∧x+1 ≤ y))
has x passively quantified. We can eliminate x from it, by giving the equivalent actively
quantified formula ∃y(b(y) ∧ 2 ≤ y).

As a corollary, we easily obtain that the pointwise and continuous interpretations of the
logic TPTL with the Since operator have the same expressive power. A detailed version of this
paper is available online in [4] at www.csa.iisc.ac.in/~deepakd/papers/icla-long.pdf.

2 Preliminaries

We begin with some preliminary definitions. Let R≥0 denote the set of non-negative real
numbers, Q denote the set of rational numbers, and N denote the set of non-negative integers.
We use the standard notation to represent intervals, which are convex subsets of R. For example
[1,∞) denotes the set {t ∈ R | 1 ≤ t}.

For an alphabet A we denote by Aω the set of infinite words over A. Let Σ be a finite
alphabet of actions, which we fix for the rest of this paper. An (infinite) timed word σ over
Σ is an element of (Σ × R≥0)ω of the form (a0, t0)(a1, t1) · · · , satisfying the conditions that:
for each i ∈ N, ti < ti+1 (monotonicity), and for each t ∈ R≥0 there exists an i ∈ N such
that t < ti (progressiveness). For convenience, we will also assume in this paper that t0 = 0.
We will sometimes represent the timed word σ above as a pair (α, τ), where α = a0a1 · · · and
τ = t0t1 · · · . Thus α(i) and τ(i) denote the the action and the time stamp respectively, in σ at
position i. We write TΣω to denote the set of all timed words over Σ.

We now introduce the linear constraints we use in this paper, and some notations for manip-
ulating them. We assume a supply of variables Var = {x, y, . . .} which we will use in constraints
as well as later in our logics. We use restricted linear constraints of the form x ∼ y+ c or x ∼ c,
where x and y are variables in Var , ∼ is one of the relations {<,≤,=,≥, >}, and c is in Q.
We call these constraints simple constraints. In general, we will allow constraints to be boolean
combinations of simple constraints.
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An interpretation for variables is a map I : Var → R. For t ∈ R and x ∈ Var we will use
I[t/x] to represent the interpretation which sends x to t, and agrees with I on all other variables.
For an interpretation I and a constraint δ, we write I |= δ to mean that the constraint δ is
satisfied in the interpretation I, and defined in the expected way.

Consider the conjunction and/or disjunction of simple constraints of the form e ≺ x with
≺∈ {<,≤}. For an interpretation I, they define a left boundary of all the possible values
of x. Similarly, the conjunction and/or disjunction of simple constraints of the form x ≺ e
define a right boundary of all the possible values of x for a given interpretation. Consider the
conjunction of left boundary of x and right boundary of x. For an interpretation it defines an
interval in the real line. For any interval π, Ltx(π) denote the left boundary and Rtx(π) denote
the right boundary. So π(x) can be written as Ltx(π) ∧ Rtx(π).

Given two intervals π1(x) and π2(x), it is possible to identify an interval which is a combi-
nation of left and right boundaries of these intervals and nonemptyness of these intervals can
specify some property of the intervals π1(x) and π2(x). To illustrate, if left boundary of π2(x)
begins after the right boundary of π1(x), then the interval ¬Rtx(π1) ∧ ¬Ltx(π2) will not be
empty. Similarly, if π1(x) begins before π2(x), then the interval Ltx(π1)∧¬Ltx(π2) will not be
empty.

3 The FO(<+) logic

We now define our first order logic with simple constraints FO(<+), which is interpreted over
timed words over the alphabet Σ. The formulas of FO(<+) are given by:

ϕ ::= a(x) | g | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃xϕ,
where a ∈ Σ, x ∈ Var , and g is a simple constraint.

We now define the continuous semantics for FO(<+). Let ϕ be a formula in FO(<+). Let
σ = (α, τ) be the timed word over Σ, and let I be an interpretation for variables. Then the
satisfaction relation σ, I |=c ϕ (read “σ satisfies ϕ in the interpretation I in the continuous
semantics”) is inductively defined as:

σ, I |=c a(x) iff ∃i : α(i) = a and τ(i) = I(x)
σ, I |=c g iff I |= g
σ, I |=c ¬ν iff σ, I 6|=c ν
σ, I |=c ν ∧ ψ iff σ, I |=c ν and σ, I |=c ψ
σ, I |=c ν ∨ ψ iff σ, I |=c ν or σ, I |=c ψ
σ, I |=c ∃xν iff ∃t : t ∈ R≥0 such that σ, I[t/x] |=c ν.

A variable x is said to occur free in a formula ϕ if it is occurs outside the scope of a quantifier
∃x. A sentence is a formula in which there are no free occurrences of variables. Again, the
satisfaction of a sentence is independent of an interpretation for variables.

The timed language defined by an FO(<+) sentence ϕ in the continuous semantics is given
by Lc(ϕ) = {σ ∈ TΣω | σ |=c ϕ}. We denote this continuous version of the logic by FOc(<+).

We can similarly define the pointwise version of the logic FO(<+), where the quantification
is over action points in the timed word. The satisfaction relation σ, I |=pw ϕ, read “σ satisfies ϕ
in the interpretation I in the pointwise semantics”, is defined as above, except for the ∃ clause
which is interpreted as follows:

σ, I |=pw ∃xν iff ∃i ∈ N : σ, I[τ(i)/x] |=pw ν.
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The timed language defined by a sentence ϕ in the pointwise semantics is given by Lpw (ϕ) =
{σ ∈ TΣω | σ |=pw ϕ}. We denote the pointwise version of the logic by FOpw (<+).

4 A normal form for FO sentences

In this section we exhibit a normal form for FO(<+) sentences which will be useful in our proofs.
We begin with a normal form for formulas of the form ∃xϕ. An FO(<+) formula is said to be in

∨
∧,¬

∃x

∧

a(x)
∧ ∧

¬∃q

∃y

∧

g(x)

∃p

g(p)g1(q)

g(y)

g2(q)b(p)

∃-normal form if it is of the form

∃x(a(x) ∧ π(x) ∧ ν),

where a ∈ Σ, π(x) is a conjunction of simple constraints each
containing x, and ν is a conjunction of formulas of the form ψ
or ¬ψ, where each ψ is again in ∃-normal form. In addition, we
allow any of the components a(x) and ν to be absent. The figure
alongside depicts a formula in normal form.

Theorem 4.1. Any FO(<+) sentence can be written as a boolean combination of sentences
which are in ∃-normal form.

5 Equivalence of FOc and FOpw semantics

In this section our aim is to show that the logics FOpw (<+) and FOc(<+) are expressively
equivalent. It is easy to translate an FOpw (<+) sentence ϕ to an equivalent FOc(<+) sentence
by simply replacing every ∃xϕ′ subformula, by ∃x(

∨
a∈Σ a(x) ∧ ϕ′′), where ϕ′′ is obtained by

similarly replacing ∃ subformulas in ϕ′.
In the converse direction, let us call an FOc(<+) formula ϕ actively quantified (or simply

active) if every ∃ subformula is of the form ∃x(a(x)∧ϕ′), for some action a ∈ Σ and formula ϕ′.
Then, an active FOc(<+) formula clearly defines the same language of timed words, regardless
of the semantics being pointwise or continuous. Hence, our aim in the rest of this section is to
show how we can go from an arbitrary formula in FOc(<+) to an equivalent active formula.

An arbitrary formula in the continuous semantics has the obvious advantage of being able
to associate any value in R≥0 to its variables, whereas an actively quantified variable can be
asserted only at the action points in a timed word. For e.g., consider the language of all timed
strings over a and b, where for every b in the interval [1,2], there is an a in [0,1] which is exactly
at a distance of one time unit from that of the b. This can be written easily in FOc, as shown
below:

¬∃x((¬a(x) ∧ 0 ≤ x ∧ x ≤ 1 ∧ ∃y(b(y) ∧ y = x+ 1)) (1)

But if we restrict x to be actively quantified, then the above formula does not recognize the
same language. This formula is not in the ∃-normal form and the normalization of this formula
yields a disjunction of four formulas ψ1, ψ2, ψ3, ψ4, where x is the only variable which is passively
quantified. If we can eliminate x from ψ1, ψ2, ψ3, ψ4, without introducing any new passively
quantified variables, the disjunction of these actively quantified formulas recognizes the required
language. The subformula involving x in each of ψi-s looks like ∃x(π(x) ∧ ∃y(b(y)∧y = x+1)).
It is possible to remove x from such formulas using the Fourier-Motzkin elimination method.

Consider another example where x is passively quantified.

∃x(0 ≤ x ∧ x ≤ 1 ∧ ∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2)). (2)
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The above formula is true, iff there is a point in [0,1], from which there is an action a at
a distance which lies in [1,1.2]. Equivalently, (2) is true iff there is an action a in the interval
[1,2.2]. So the equivalent active formula is:

∃y(a(y) ∧ 1 ≤ y ∧ y ≤ 2.2). (3)

As an another example, consider the following modified formula:

∃x(0 ≤ x ∧ x ≤ 1 ∧ ¬∃y(a(y) ∧ x+ 1 ≤ y ∧ y ≤ x+ 1.2)) (4)

0 1 2
π2(x)

π1(x) a(y1)

a(y2)

Figure 1:

To eliminate the passively quantified variable x from this formula, first consider “all” inter-
vals of x in [0,1] which satisfy (2) in the given model (the bracketed region in Fig. 1.). (4) is
true iff there are some “gaps” where formula (2) is not satisfied. There can be the following
four types of gaps.

� No x satisfies (2), so the whole of [0,1] is a gap.

� Gap from 0 to the beginning of the first interval of x satisfying (2).

� Gap between two consecutive intervals of x satisfying formula (2).

� Gap from the end of the last interval of x satisfying (2) to 1.

The formula (4) can be satisfied iff any of the above gaps exist. We show that it is possible to
identify those gaps using the syntax of FOc(<+).

Theorem 5.1. Let ν̂ be an active formula which is the conjunction of formulas in the ∃-normal
form or in negated ∃-normal form. Consider the formula ψ = ∃x(π ∧ ν̂) where x is the only
passive variable. It is possible to get an equivalent formula ψ′ =

∨
i(µ̂iZ∃xπi(x)), where each µ̂i

is active and independent of x and πi(x) is an interval function of free variables and positively
quantified variables of µ̂i. Further, ψ is satisfied at x = t if and only if ψ′ is satisfied for some
i at x = t.

Corollary 5.2. Let ν̂ be an active formula which is the conjunction of formulas in the ∃-normal
form or in negated ∃-normal form. Consider the formula ψ = ∃x(π ∧ ν̂) where x is the only
passive variable. It is possible to get an equivalent formula ψ′ =

∨
i(µ̂i), where each µ̂i is active

and independent of x.

Proof. By Theorem 5.1, it is possible to get an equivalent formula of ν̂ which is of the form∨
i(µ̂
′
i Z ∃xπi(x)) where µ̂′i is active and independent of x. But we can use the Fourier-Motzkin

elimination method to get equivalent formulas of the form µ̂i = µ̂′i Z FMEx(πi) for each i. The
new formula is ν̂ =

∨
i µ̂i where each µ̂i is independent of x.

Theorem 5.3. It is possible to translate any FOc formula to an equivalent formula which
defines the same language in the pointwise semantics.

As a corollary it follows that the logic TPTL with the Since modality [2] has the same
expressive power in the pointwise and continuous semantics.
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Abstract

After introducing the infinitary logic IRL defined in [2], we characterize its Lindenbaum-
Tarski algebra (build upon a set of variables of cardinality κ) as the algebras of Baire-
measurable functions in [0, 1][0,1]

κ

. Furthermore, working in the infinitary variety RMVσ

– that provides the algebraic semantics of IRL – we discuss the so-called the Marra-Spada
duality in this framework. Some of the results presented are included in [3], which is a
work submitted for publication.

One of the most investigated many-valued logics is certainly  Lukasiewicz logic, with the
main reason being found in the fact that its algebraic semantics, the variety of MV-algebras,
proved to be a very malleable class of algebras that carries many underlying relations with
other areas of mathematics or theoretical computer science. One can see the appendixes of [6]
to grasp the broad collection of tools and techniques from different fields that one can use to
carry out state-of-art research on the topic.

A major contribution to the widespread of MV-algebras is undoubtedly their celebrated
categorical equivalence with lattice-ordered groups with a strong unit, D. Mundici’s equivalence,
that dates back to 1986. This result led the way for an investigation of MV-algebras inspired
by the theory of groups, and one of the outcomes of this point of view has been the definition
of the class of Riesz MV-algebras. These algebras stand to MV-algebras like vector spaces over
R stand to groups, see [4].

Riesz MV-algebras have proven to be a quite interesting and useful class of algebras in
themselves. They provide the semantics for a conservative expansion of  Lukasiewicz logic, but
more importantly they are successful in overcoming some of the limitations of MV-algebras.

In this presentation we will not deal with the totality of Riesz MV-algebras. Indeed, our
starting point will be the class of algebras considered in [2]: the infinitary variety of σ-complete
Riesz MV-algebras, denoted by RMVσ. These algebras have a quite concrete representation,
since they can be thought as intervals of some Banach lattices. A Banach lattice is a lattice-
ordered vector space over R which is norm-complete. In the special case of a vector space
with a strong order unit, one can consider the class of those Banach lattices that are complete
with respect to a norm that is induced by the strong unit. These spaces turned out to be all
R-valued algebras of continuous functions over compact and Hausdorff topological spaces. Any
Dedekind σ-complete lattice-ordered vector space with a strong order unit is norm-complete,
and therefore, when in addition one requires suitable topological properties, these algebras of
functions turn out to be equivalent “à la Mundici” to σ-complete Riesz MV-algebras.

The focus of this presentation is to discuss the infinitary variety RMVσ from two points of
view: description of its free objects and categorical dualities.

After introducing the needed preliminary notions, we dive into characterizing the free objects
of RMVσ in the case of an arbitrary set of generators. We denote by IRL(X) the algebra
of term functions p : [0, 1]X → [0, 1] in the language of σ-complete Riesz MV-algebras. By
the results of [2] (mainly the fact that RMVσ is the infinitary variety generated by [0, 1]) and
standard results in universal algebra, it is easily seen that IRL(X) is the Lindenbaum-Tarski
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algebra of IRL build upon |X|-propositional variables, and it is also isomorphic with the free
|X|-generated σ-complete Riesz MV-algebra. We call its elements IRL-polynomials.

Moreover, if we consider the hypercube [0, 1]X endowed with its natural product topology,
by Baire set we mean a subset of the σ-algebra generated by the zeroset of the continuous
functions f : [0, 1]X → [0, 1]. In symbols, B is a Baire set if, and only if, there exists a
continuous f : [0, 1]X → [0, 1] such that B = f−1({0}). A function p : [0, 1]X → [0, 1] is
Baire-measurable if the preimage of a Baire set of [0, 1] is a Baire set of [0, 1]X .

With these definitions, the following holds.

Proposition 1. For every set X, Baire sets and zerosets of IRL-polynomials in [0, 1]X coincide.

Theorem 2. For an arbitrary non-empty set X, IRL(X) is the algebra of all [0, 1]-valued and
Baire-measurable functions defined over [0, 1]X .

Furthermore, applying the well-known Lebesgue-Hausdorff theorem (see e.g. [5, Appendix
4A3K]), if X is countable we recover the results of [2].

Corollary 3. For a countable set X, IRL(X) is the algebra of all [0, 1]-valued and Borel-
measurable functions defined over [0, 1]X

We recall that the Borel σ-algebra of [0, 1]X is the sigma-algebra generated by the open
sets, and that Borel-measurable functions are defined analogously to Baire functions.

After having obtained this characterization of the free algebra in RMVσ, we will focus of
obtaining a categorical duality of special classes of σ-complete Riesz MV-algebras.

In [1] the authors prove a very general dual adjunction between the category of (presented)
algebras (in an arbitrary variety, even infinitary) and subsets of powers of a fixed algebra A in
the variety at hand, with term functions as main characters. We briefly describe the adjunction
in our setting, with A = [0, 1], and we obtain dualities for presented and finitely presented
σ-complete Riesz MV-algebras.

For any subset S ⊆ [0, 1]X , we denote by I(S) the ideal of IRL-polynomials vanishing on S,
that is

I(S) = {p ∈ IRL(X) | p(x) = 0 for any x ∈ S}.
Given a set J of IRL-polynomials in IRL(X), we denote by V(J) the zeroset of J , that is

V(J) = {x ∈ [0, 1]X | p(x) = 0 for any p ∈ J} =
⋂

p∈J
V({p}).

These operators give a Galois connection between subsets of points and subsets of polyno-
mials. Moreover, following [1, Section 4], we get the following categories and functors.

1. The category RMVp
σ whose objects are presented σ-complete Riesz MV-algebras and

whose arrows are σ-homomorphisms of Riesz MV-algebras. More precisely, an object
is a pair (IRL(X), I), where I is an ideal in the free algebra IRL(X). Intuitively,
this pair represents the quotient algebra IRL(X)/I. Consequently, each morphism
h : (IRL(X), I) → (IRL(Y ), J) between pairs is induced by a unique homomorphism
hp : IRL(X)→ IRL(Y ) such that hp(I) ⊆ J .

2. The category Hyper, whose objects are subsets of hypercubes of type [0, 1]X , for an
arbitrary X, and arrows are tuples of IRL-polynomials, that is, an arrow in Hyper is a
map η = (ηy |S )y∈Y : S ⊆ [0, 1]X → T ⊆ [0, 1]Y , where each ηy belongs to IRL(X). We

remark that this definition implies that each η : S → T is the restriction of a tuple of
IRL-polynomials η̃ : [0, 1]X → [0, 1]Y .
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3. The functor V : RMVp
σ → Hyper, defined by

• V (IRL(X), J) = V(J);

• for h : (IRL(X), J)→ (IRL(Y ),K), V(h) : V(K)→ V(J) is defined as follows. For
any x ∈ X, take px ∈ hp(πx), and note that px ∈ IRL(Y ). Now, for (vy)y∈Y ∈ V(K),
V(h)((vy)y∈Y ) = (px((vy)y∈Y ))x∈X ∈ V(J).

4. The functor I : Hyper→ RMVp
σ , defined by

• for S ⊆ [0, 1]X , I(S) = (IRL(X), I(S)),

• for η = (ηy)y∈Y : S ⊆ [0, 1]X → T ⊆ [0, 1]Y , I(η) : I(T ) → I(S) is the map given by
f ∈ IRL(Y ) 7→ f ◦ η ∈ IRL(X) .

Proposition 4. [1, Corollary 4.8] The above defined functors I and V are an adjoint pair
between the categories (RMVp

σ)op and Hyper.

Thus, after sketching these preliminary notions, our goal will be to describe the fixed points
on both sides of the adjunction and obtain dualities. To do this, we start by recalling that each
algebra in A ∈ RMVσ is semisimple as an MV-algebra, which implies the intersection of all
maximal ideals of A is 0, in symbols

⋂
Max(A) = {0}. Adapting the notion to our framework,

we denote by Idσ(A) the set of all σ-complete ideals of A and we get the following.

Definition 5. An algebra A ∈ RMVσ is called σ-semisimple if

⋂
{M |Max(A) ∩ Idσ(A)} = {0}.

Thus, on one side of the adjunction, we decribe fixed point via the following proposition.

Proposition 6. An algebra IRL(X)/J ∈ RMVσ is σ-semisimple if, and only if, J = I(V(J)).

On the other side, using Proposition 1, we infer the following.

Theorem 7. Let S be a subset of [0, 1]X . Then V(I(S)) is the intersection of all Baire subsets
of [0, 1]X containing S. Thus, V(I(S)) = S if, and only if, S is an intersection of Baire sets.

Calling such intersections of Baire sets IRL-algebraic varieties, the duality is described as
follows.

Corollary 8. The adjunction (I,V) restricts to a duality between the full subcategory ssRMVp
σ

of RMVp
σ whose objects are σ-semisimple algebras, and the full subcategory IRL of Hyper

whose objects are IRL-algebraic varieties.

Furthermore, the duality can be restricted to finitely presented objects, as follows.

Corollary 9. The adjunction (I,V) restricts to a duality between the category RMVfp
σ of

finitely presented σ-complete RMV -algebras and full subcategory Baire of Hyper whose objects
are Baire subsets of the hypercubes.

Summarizing, in this presentation we shall start from the infinitary logic IRL and describe
its Lindenbaum-Tarski algebra in terms of Baire measurable functions. Subsequently we will
build on this description and the work in [1] to obtain categorical dualities for special classes
of σ-complete Riesz MV-algebras.
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[2] A. Di Nola, S. Lapenta and I. Leuştean, Infinitary logic and basically disconnected compact Haus-
dorff spaces, Journal of Logic and Computation 28(6) (2018) 1275–1292.

[3] A. Di Nola, S. Lapenta and G. Lenzi, Dualities and algebraic geometry of Baire functions in
Non-classical Logic, Submitted for publication.
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1 Introduction

The aim of the paper is to present Epistemic Separation Logic with Action Models (ESLAM),
that can be seen as a generalization of Public Announcement Separation Logic (PASL [3]). The
general context of this work is the study of extensions of Separation logics with modalities
in order to manage various dynamic aspects and mainly here from Dynamic Epistemic Logic
(with factual change) [1, 9, 8]. Let us remind that Separation Logics (SL) refer to a class
of logics based on (intuitionistic) Logic of Bunched Implications (BI) or its classical counter-
part Boolean BI (BBI) [6]. They combine both additive (∧, →, ∨) and multiplicative (∗, −∗)
connectives in the language, the latter expressing the concept of resource separation (or com-
position), and resource update [6]. Among extensions of Separation Logics with dynamics we
mention Dynamic Modal BI (DMBI [2]) and Epistemic Resource Logic (ERL [4]). The first
one is a BBI extension with the modalities 2, 3, and a dynamic modality 〈a〉, that allows
us to investigate how resource properties change over dynamic processes taking place, with an
emphasis on concurrent processes. The second one is a BBI extension with epistemic modali-
ties, as well as a differentiation between ambient resource and local resources (assigned to each
agent), and their compositions. A recent work on resource semantics to model updates and/or
epistemic reasoning, lead to PASL, which extends BBI with a knowledge operator Ka, and a
public announcement modality. The strenghts of this logic lie in its ability to model knowledge
acquisition and information change over the course of truthful public communication [5].

In this paper we generalize the dynamic aspects of PASL, by defining Epistemic Separation
Logic with Action Models (ESLAM), in which we replace public announcements with action
models [1], motivated by their ability to model factual change, and instances of a more nuanced,
private communication. A keypoint about integrating dynamic logics with BBI is that the
available resources and the resource composition operator are based on the monoidal structure,
which entails inclusion of a neutral element (neutral, or unit resource). As dynamic processes
are carried out it is vital that – in any case – the structure of our updated model still contains
the neutral element, so the monoidal structure is preserved. In PASL, possible worlds are
considered resources and hence the issue was solved by a refinement semantics [7], that ensures
that after an announcement of ϕ, all relations are severed between the states where ϕ is true,
and the states where ϕ is false, but no state is ever removed from the model. In ESLAM, the
relationship between states and resources is more implicit, as we define a resource function r,
mapping every state (or several states) to a resource. Moreover, the updated epistemic resource
model – obtained after action model execution – ensures that all state-to-resource mappings
are preserved. We also require that an action model is covering, so a state assigned to a neutral
resource is always part of the updated model domain.

In Section 2, we define ESLAM syntax, semantics, and associated structures. In Section 3,
we propose a set of ESLAM reductions for elimination of the action model modality. In Section
4, a modelling example is presented, in which we can compare PASL and ESLAM with regard
to their abilities to model public and private communications. In Section 5, we mention future
works, as well as possible modifications of ESLAM to be investigated.
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2 Epistemic Separation Logic with Action Models

The logic ESLAM is based on BBI, extended with a knowledge modality Ka and a dynamic
modality [Ee] for action execution. Given a set of agents A and a set of propositional variables
P , the language of ESLAM, LK∗, is defined as follows, where a ∈ A and p ∈ P :

ϕ ::= p | ⊥ | I | ¬ϕ | ϕ ∧ ϕ | ϕ→ ϕ | Kaϕ | ϕ ∗ ϕ | ϕ −∗ ϕ | [Ee]ϕ
Expression Kaϕ means that agent a knows that ϕ. There are two multiplicative connectives

(∗ and −∗) referring to the separation respectively composition of resources. Expression [Ee]ϕ
stands for ‘after execution of action Ee, ϕ is true. Such actions Ee will be defined below.

Definition 1 (Resource monoid). A partial resource monoid (or resource monoid) is a struc-
ture R = (R, •, n) where R is a set of resources containing a neutral element n ∈ R, • :
R × R → R is a resource composition operator that is associative and commutative, that may
be partial, and such for all r ∈ R, r • n = n • r = r. If r • r′ is defined we write r • r′ ↓ and if
r • r′ is undefined we write r • r′ ↑. Whenever writing r • r′ = r′′ we assume that r • r′ ↓.
Definition 2 (Epistemic resource model). An epistemic frame (frame) is a structure (S,∼)
such that S is a set of states and ∼ : A→ P(S×S) is a function that maps each agent a to an
equivalence relation ∼(a) denoted as ∼a. Given a resource monoid R = (R, •, n), an epistemic
resource model is a structureM = (S,∼, r, V ) such that (S,∼) is an epistemic frame, surjection
r : S → R is a resource function, that maps each state to a resource and where we write rs for
r(s), and V : P → P(S) is a valuation function, where V (p) denotes the set of states where
variable p is true. Given s ∈ S, the pair (M, s) is a pointed epistemic resource model, also
denoted Ms.

Definition 3 (Action model). Given a logical language L, an action model E is a structure
E = (E,≈, pre, post), such that E is a finite domain of actions, ≈a an equivalence relation on E
for all a ∈ A, pre : E → L is a precondition function, and post : E → P 6→ L is a postcondition
function that is a partial function: its domain is a finite set of variables Q ⊆ P . Given e ∈ E,
a pointed action model (or epistemic action) is a pair (E , e), denoted Ee. An action model is
covering if

∨
e∈E pre(e) is a validity of the logic of L.

Definition 4. Given an epistemic resource modelM = (S,∼, r, V ) and a covering action model
E = (E,≈, pre, post), the updated epistemic resource model M⊗E = (S′,∼′, r′, V ′) is defined
as

S′ = {(s, e) | Ms |= pre(e)}
(s, e) ∼′a (t, f) iff s ∼a t and e ≈a f
(s, e) ∈ V ′(p) iff Ms |= post(e)(p)
r′(s,e) = rs

Definition 5 (Satisfaction relation). Let s ∈ S. The satisfaction relation |= between pointed
epistemic resource models Ms, where M = (S,∼, r, V ), for resources R = (R, •, n), and for-
mulas in LK∗⊗(A,P ), is defined by structural induction as follows:

Ms |= p iff s ∈ V (p)
Ms |= ⊥ iff false
Ms |= I iff rs = n
Ms |= ¬ϕ iff Ms 6|= ϕ
Ms |= ϕ ∧ ψ iff Ms |= ϕ and Ms |= ψ
Ms |= ϕ→ ψ iff Ms 6|= ϕ or Ms |= ψ
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Ms |= ϕ ∗ ψ iff there are t, u ∈ S such that rs = rt • ru,Mt |= ϕ and Mu |= ψ
Ms |= ϕ −∗ ψ iff for all t ∈ S such that rs • rt ↓ and Mt |= ϕ

there is u ∈ S such that ru = rs • rt and Mu |= ψ
Ms |= Kaϕ iff Mt |= ϕ for all t ∈ S such that s ∼a t
Ms |= [Ee]ϕ iff Ms |= pre(e) implies (M⊗E)(s,e) |= ϕ

A formula ϕ is valid on modelM (notation: M |= ϕ) iff for all s ∈ S, Ms |= ϕ, and ϕ is valid
(notation: |= ϕ) iff ϕ is valid on all models M.

Note that M⊗ E is again an epistemic resource model for the monoid (R, •, n). For each
resource r in R there is a state s in S such that rs = r (r was required to be a surjection). As
the action model is covering, for each state s there is an action e such that M, s |= pre(e), so
that (s, e) ∈ S′. As r(s,e) = rs = r, M⊗E is again a resource model for (R, •, n).

The semantics for ∗ and −∗ are different from their standard semantics in BBI. This is
because they are not formulated directly in terms of resource but only indirectly by way of
states mapped to resources. As different states can be mapped to the same resource, this
obliges us to choose where the semantics for ∗ and −∗ is defined in terms of all such states or
some such states (there is an extra quantifier that can be universal or existential). We also
consider other semantics, for example, for −∗:

Ms |= ϕ −∗ ψ iff for all t, u ∈ S such that ru = rs • rt,Mt |= ϕ implies Mu |= ψ

We are exploring such alternatives in view of their theoretical properties (does a reduction
exist?) and their applicability (which typical BBI modelling challenges or benchmarks under
partial observation are best described by which version of the semantics?).

3 Eliminating Dynamic Modalities

We now define a set of ESLAM validities for action model modality elimination. To the
well-known reduction axioms for Action Model Logic with factual change [8] we add two novel
reductions for ∗ and −∗. At this stage we have proved such reduction for ∗ and −∗ for the
diamond version of the action model modality but not yet for the box version. Therefore the
system is given with the diamond modality as the primitive.

1. 〈Ee〉p↔ (pre(e) ∧ post(e)(p)) 4. 〈Ee〉Kaψ ↔ (pre(e) ∧∧
e∼af

Ka〈Ef 〉ψ)

2. 〈Ee〉(ψ ∧ ϕ)↔ 〈Ee〉ψ ∧ 〈Ee〉ϕ 5. 〈Ee〉(ϕ ∗ ψ)↔ (pre(e) ∧∨
f,g∈E(〈Ef 〉ϕ ∗ 〈Eg〉ψ))

3. 〈Ee〉¬ψ ↔ (pre(e) ∧ ¬〈Ee〉ψ) 6. 〈Ee〉(ϕ −∗ ψ)↔ (pre(e)∧∧
f∈E(〈Ef 〉ϕ −∗

∨
g∈E〈Eg〉ψ))

We have shown that the above validities are reduction rules using a complexity measure
taken from [9], where it was used to show the reduction for public announcement logic. In [9], the
complexity of a formula with public announcement is calculated as follows: c([ϕ]ψ) = (4+c(ϕ))·
c(ψ). For our current purposes this is generalized to: c([Ee]ψ) = (4+c(E))·c(ψ). The complexity
of a pointed action Ee does not depend on the point, which is why we see c(E) on the right-hand
side and not c(Ee), as maybe expected. Then, c(E) = |E|2 + max{c(pre(f)), c(post(f)(p)) | f ∈
E , p ∈ P, p ∈ D(post(f))} (where E is the domain of E).
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4 Library example revisited

In this section we reconsider the modelling example of PASL [3] and illustrate what ESLAM
allows us to express. The set of agents A is {A1, A2} and the set of atoms (variables) P is
{P1, P2, C}. The epistemic model M = (S,∼, r, V ) is now such that: S = {(i, j) | i, j ∈
{0, 1, 2}}; (i1, j1) ∼A1

(i2, j2) iff i1 = i2 and (i1, j1) ∼A2
(i2, j2) iff j1 = j2 ; r(i,j) = (i, j) ;

and V (C) = {(i, j) | i + j ≤ 2}, V (P1) = {(1, 0)}, V (P2) = {(0, 1)}. The atoms P1 and P2

express agents A1 and A2 (respectively) requesting one book each from a librarian, whereas C
expresses that the librarian is capable of carrying the requested books. The partial resource
monoid R = (S, •, n), considered has as neutral element n = (0, 0), and a composition operator
• defined as:

(i1, j1) • (i2, j2) =

{
↑ if i1 + i2 ≥ 2 or j1 + j2 ≥ 2

(i1 + i2, j1 + j2) otherwise

We present two modelling examples for the library setting. The action model E ′ emulates
public announcement (equivalent to one defined for PASL [3]) and the action model E , defined
with ESLAM which, compared to PASL, enables private communication. In both cases we
model an action of the librarian telling either: both agents (by means of E ′), agent A1 only (in
E) that they can carry the books.

Public announcement action model: Private announcement action model:

E ′ = {E′,≈′a, pre′, post′}, where: E = {E,≈a, pre, post}, where:
E′ = {e, f} E = {e, f}
≈′A1

= {(e, e), (f, f)} ≈A1= {(e, e), (f, f)}
≈′A2

= {(e, e), (f, f)} ≈A2
= {(e, f), (f, e), (e, e), (f, f)}

pre′(e) = C pre(e) = C
pre′(f) = ¬C pre(f) = ¬C
post′(e) and post′(f) have empty domain post(e) and post(f) have empty domain

As presented above, the difference between the two lies in the definition of ≈a. In E ′ all
librarian’s announcements are heard by both agents and their uncertainty is equally reduced
as action model is executed. This is represented by the identity relation. In E , the librarian
addresses A1 privately, that is why A1 can tell Ee and Ef apart, but as A2 is excluded from
this communication, although A2 can observe the communication taking place, A2 cannot make
that distinction.

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

Figure 1: In the center, the initial model. On the left, the result a public announcement E ′e. On
the right, the result of a private announcement E ′e. More explanations are found in the text.

Assume each agent wants one book, which corresponds to state (1, 1). Let us compare
two model updates: the librarian telling both agents they can carry the books (E ′e), and the
librarian telling just A1 that they can carry the books (Ee). (In ESLAM, as in PASL, a
public announcement is a two-event action model, because of the requirement that the action
is covering.)
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(1, 1) |=M 〈E ′e〉(KA1C ∧KA2C) (1, 1) |=M 〈Ee〉(KA1C ∧ ¬KA2C)
⇔ ⇔
(1, 1) |=M C (1, 1) |=M C
and and
((1, 1), e) |=(M⊗E′) KA1C ∧KA2C ((1, 1), e) |=(M⊗E) KA1C ∧ ¬KA2C

In the center of Figure 4 we see the initial model of knowledge. Dashed links - - - represent the
relation ∼A2

. Solid links — represent the relation ∼A1
. We assume reflexivity and transitivity.

Grey means “cannot be carried”. On the left in the figure we see the update of the model
with E ′e. On the right in the figure we see the update of the model with Ee. After the public
announcement is made, both agents stopped considering the scenarios where the number of
books requested exceeds the librarian’s limit. This is illustrated by all links between gray and
white areas in the graph disappearing. After the private announcement this is the case only
for A2. This example shows that with ESLAM, compared to PASL, we can define instances of
not only public announcement, but also private, more nuanced announcements as well as other
forms of partial observation.

5 Conclusions

We have presented Epistemic Separation Logic with Action Models, where the relationship
between resources and Kripke semantics is based on the resource function, mapping each state
to a resource. Future works will be developed in different directions: defining an additional
action resource model monoid, allowing composition and separation of action points, as well as
modelling sequential action point execution, achieved by means of action composition operator.
Moreover we will investigate the optimal semantics for ∗ and −∗, taking into account the duality
between these operations.
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1 Introduction
Common knowledge has been studied extensively in various areas [9, 4, 7, 3]. Intuitively, a proposition
is common knowledge among a group, if the proposition is true, everyone knows that, everyone knows
everyone knows that, everyone knows everyone knows everyone knows that, and so on, ad infinitum.1

As the definition suggests, common knowledge is defined based on the notion of ‘knowing that’.
Beyond ‘knowing that’, recent years have witnessed a growing interest in other types of knowledge,

such as ‘knowing whether’, ‘knowing how’, ‘knowing why’, ‘knowing who’, see [13] for an overview.
Among these notions, ‘knowing whether’ is the one most closely related to ‘knowing that’ and it is
used frequently to specify knowledge goals and preconditions for actions [8, 11, 10]. It corresponds to
the philosophical notion of non-contingency [2]. An agent knows whether a proposition ϕ, if the agent
knows that ϕ is true, or the agent knows that ϕ is false; otherwise, the agent is ignorant about ϕ [5].

It is therefore natural to ask what the notion of ‘commonly knowing whether’ is in contrast to the
notion of common knowledge based on ‘knowing that’. These two notions are not equivalent. For
instance, suppose you see two people chatting beside a window but you cannot look outside yourself.
Then you know that they commonly know whether it is sunny outside, but you do not know that they
commonly know that it is sunny since you do not see the weather. There has been no unanimous agree-
ment yet on the formal definition of ‘commonly knowing whether’. As we will show, there are at least
five definitions for this notion, which are not logically equivalent over various frame classes.

In this extended abstract, Section 2 gives five formal definitions for ‘commonly knowing whether’
and the logical relations among them. Section 3 provides an axiomatization and sketches its sound-
ness and completeness. Section 4 explores the relative expressivity of one of the five definitions, by
distinguishing two classes of models. All proofs can be found in https://arxiv.org/pdf/2001.03945.pdf.

2 Definitions of ‘Commonly Knowing Whether’
This section presents five definitions of ‘commonly knowing whether’. We fix a denumerable set of
propositional atoms P and a nonempty finite set of agents G. Let G+ denote the set of finite nonempty
sequences consisting of only agents from G. The language involved in this section is defined by the
following BNF:

CCw ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kwiϕ | Ewϕ | Cϕ | Cwϕ

where p ∈ P and i ∈ G. Intuitively, Kwiϕ is read “agent i knows whether ϕ”, Ewϕ is read “everyone
knows whether ϕ”, Cϕ is read “the group G commonly knows that ϕ”, and Cwϕ is read “the group G

∗The authors are greatly indebted to Yanjing Wang for many insightful discussions and helpful comments on earlier versions
of the paper. Jie Fan acknowledges the financial support of the project 17CZX053 of National Social Science Fundation of China.

1This so-called ‘iterative approach’, attributed to Lewis [7], is a common view of common knowledge. It is compared to the
‘fixed-point approach’ and the ‘shared-environment approach’ in Barwise’s paper [1].
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commonly knows whether ϕ”. As a basis for ‘commonly knowing whether’, we can give two possible
definitions of ‘everyone knowing whether’.

Definition 1. Ew1ϕ := Eϕ ∨ E¬ϕ Ew2ϕ :=
∧
i∈G Kwiϕ

It is easy to check that Ew1 is stronger than Ew2 over K-frames.
Let us now give five possible definitions of ‘commonly knowing whether’. The first one, Cw1, is

neither based on ‘everyone knowing whether’ nor on ‘knowing whether’, but others are.

Definition 2. Cw1ϕ := Cϕ ∨ C¬ϕ
The definition of Cw1 is structurally similar to that of ‘knowing whether’. It says that a group

commonly knows whether ϕ iff the group has common knowledge of ϕ or common knowledge of ¬ϕ.
This definition fits well to the type of ‘commonly knowing whether’ in the sunny weather example in
the introduction. Cw1 also fits to question-answer contexts. Suppose that Sue attends a lecture and asks
the speaker: “Is p true or false?” No matter whether the speaker says ‘Yes’ or ‘No’, all attendees will
commonly know whether p after hearing the answer since the answer amounts to a public announcement
whether p [12] (depending on the truth value of p), which leads to common knowledge of p or of ¬p.

Definition 3. Cw2ϕ := CEwϕ

According to the above definition, a group commonly knows whether ϕ, if it is common knowledge
that everyone knows whether ϕ. Since there are two different definitions of Ew, we also have two
different definitions of Cw2, that is, Cw21ϕ := CEw1ϕ and Cw22ϕ := CEw2ϕ.

Definition 4. Cw3ϕ :=
∧
k≥1(Ew)kϕ

The above definition follows the iterative approach: a group commonly knows whether ϕ iff every-
one knows whether ϕ, everyone knows whether everyone knows whether ϕ, everyone knows whether
everyone knows whether everyone knows whether ϕ, and so on, ad infinitum. Again, we have two
different definitions of Cw3, namely, Cw31ϕ :=

∧
k≥1(Ew1)kϕ and Cw32ϕ :=

∧
k≥1(Ew2)kϕ.

Definition 5. Cw4ϕ :=
∧
i∈G Cw1Kwiϕ, that is, Cw4ϕ :=

∧
i∈G(CKwiϕ ∨ C¬Kwiϕ)

According to the above definition, a group commonly knows whether ϕ iff for every member it
is common knowledge that they know whether ϕ or it is common knowledge that they do not know
whether ϕ.

Definition 6. Cw5ϕ :=
∧
s∈G+ Kwsϕ, where Kwsϕ := Kws1 . . .Kwsnϕ if s = s1 . . . sn is a nonempty

sequence of agents.

The above definition is inspired by the hierarchy of inter-knowledge of a group given in [9]: ‘com-
monly knowing whether’ amounts to listing all the possible inter-‘knowing whether’ states for every
nonempty sequence of group members.

2.1 Relations among the different definitions of ‘commonly knowing whether’
Over different classes of frames, the logical relations among the above five types of ‘commonly knowing
whether’ Cw1, . . . , Cw5 are distinct. In Figures 1 and 2, a one-way arrow from one operator O to
another O′ means that for all ϕ, Oϕ strictly logically implies O′ϕ. The arrow relation is transitive.

Theorem 1. Over K and KD45-frames, the logical relationships among Cw1, Cw21, Cw22, Cw31,
Cw32, Cw4, and Cw5 are as in Fig. 1. Over T and S5-frames, the logical relationships are as in Fig. 2.

The fact that Cw1, Cw2, Cw3 and Cw5 boil down to the same thing once the frame is reflexive can be
attributed to agents’ agreements on the value of ϕ. In contrast, in caseM is not reflexive, it is possible
thatM, s |= Kiϕ ∧ Kj¬ϕ.
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Cw1
// Cw21

//

��

Cw22

�� %%

// Cw4

Cw31 Cw5 Cw32

Figure 1: Over K and KD45-frames

Cw1

��

oo // Cw21OO

��

oo // Cw31
oo //

OO

��

// Cw5

Cw4 Cw22 Cw32

Figure 2: Over T and S5-frames

3 Axiomatization
As mentioned above, over S5-frames, the five definitions of ‘commonly knowing whether’ are logically
equivalent except for Cw4. One can also verify that Ew1 and Ew2 are logically equivalent over S5-
frames. In this section, we axiomatize Cw over S5-frames based on Cw1. The language Cw can be
defined by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kwiϕ | Cwϕ,

The semantics of Cw is defined over Kripke models of the formM = 〈W, {Ri | i ∈ G}, V 〉. We
use→ to denote the union of Ri for all i ∈ G, and � to denote the reflexive-transitive closure of→.
The truth conditions of Cw-formulas are as follows (only nontrivial clauses are shown).

M, w � Kwiϕ ⇐⇒ for all u and v, if wRiu and wRiv, then (M, u � ϕ ⇐⇒ M, v � ϕ).
M, w � Cwϕ ⇐⇒ for all u and v, if w � u and w � v, then (M, u � ϕ ⇐⇒ M, v � ϕ).

3.1 Proof system CwS5
The proof system CwS5 is an extension of the axiom system of the logic of ‘knowing whether’ CLS5
from [5] with axioms and rules concerning Cw.

Definition 7. CwS5 consists of the following axiom schemas and inference rules:
(TAUT) All instances of tautologies (Kw-T) Kwiϕ ∧ Kwi(ϕ→ ψ) ∧ ϕ→ Kwiψ
(Kw-↔) Kwiϕ↔ Kwi¬ϕ (Kw-DIS) Kwiϕ→ Kwi(ϕ→ ψ) ∨ Kwi(¬ϕ→ χ)
(wKw-5) ¬Kwiϕ→ Kwi¬Kwiϕ (Kw-CON) Kwi(χ→ ϕ) ∧ Kwi(¬χ→ ϕ)→ Kwiϕ
(Cw-Mix) Cwϕ→ Ewϕ ∧ EwCwϕ (Cw-DIS) Cwϕ→ Cw(ϕ→ ψ) ∨ Cw(¬ϕ→ χ)
(Cw-↔) Cwϕ↔ Cw¬ϕ (Cw-CON) Cw(χ→ ϕ) ∧ Cw(¬χ→ ϕ)→ Cwϕ
(Cw-Ind) Cw(ϕ→ Ewϕ)→ (ϕ→ Cwϕ) (Cw-T) Cwϕ ∧ Cw(ϕ→ ψ) ∧ ϕ→ Cwψ
(Kw-NEC) from ϕ infer Kwiϕ (C-NEC) from ϕ infer Cwϕ
(Kw-RE) from ϕ↔ ψ infer Kwiϕ↔ Kwiψ (Cw-RE) from ϕ↔ ψ infer Cwϕ↔ Cwψ
(MP) from ϕ and ϕ→ ψ infer ψ

Theorem 2. CwS5 is sound with respect to S5.

3.2 Completeness of CwS5
It is easy to observe that the logic of Cw over S5-frames is not compact. We therefore set out to prove
the weak completeness of CwS5 over S5-frames. Given a formula ϕ consistent with CwS5, we will
construct a finite model of ϕ, within the closure of ϕ (see Definition 8). The definition of the canonical
model, including the definition of the canonical relation, is inspired by the completeness proof for the
contingency logic CLS5 in [5]. Observe that Lemma 1 makes a finite version of the truth lemma (Lemma
2) go through for formulas of the form Cwψ.
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Definition 8. The closure of ϕ, denoted as cl(ϕ), is the smallest set satisfying the following conditions:

1. ϕ ∈ cl(ϕ).
2. if ψ ∈ cl(ϕ), then sub(ψ) ⊆ cl(ϕ).
3. if ψ ∈ cl(ϕ) and ψ is not itself of the form ¬χ, then ¬ψ ∈ cl(ϕ).
4. if Kwiψ, Kwiχ ∈ cl(ϕ), and ψ, χ are not themselves conditionals, then Kwi(χ→ ψ) ∈ cl(ϕ).
5. if Cwψ ∈ cl(ϕ), then {Kwiψ | i ∈ G} ⊆ cl(ϕ).
6. if Cwψ ∈ cl(ϕ), then {KwiCwψ | i ∈ G} ⊆ cl(ϕ).

Definition 9. Let Φ be cl(ϕ). We define the canonical model based on Φ as:
Mc = 〈W c, {RTi | i ∈ G}, V c〉, where:

1. W c = {Σ | Σ is maximal consistent in Φ}.
2. For each i ∈ G, let RTi be the reflexive closure of Rci , where ΣRci∆ iff there exists a χ such that :

(a) χ is not a conditionals and ¬Kwiχ ∈ Σ;
(b) for all Kwiψ ∈ cl(ϕ) : if Kwiψ, Kwi(χ→ ψ) ∈ Σ, then ψ ∈ ∆.

3. V c(p) = {Σ ∈W c | p ∈ Σ}
Lemma 1. In the canonical modelMc, l = 〈Σ,Γ1, · · · ,Γn,∆〉 is a ψ-path if Σ � ∆ and for each
Γi ∈ l, Σ � Γi and ψ ∈ Γi. If Cwψ ∈ Φ, then Cwψ ∈ Σ iff every path from Σ is a ψ-path or every
path from Σ is a ¬ψ-path.

Lemma 2. (Finite Truth Lemma) For any Cw-formula ψ ∈ Φ, for all Σ ∈W c,Mc,Σ |= ψ iff ψ ∈ Σ.

Theorem 3. The logic CwS5 is weakly complete with respect to S5.

4 Expressivity
In this section, we will compare the expressivity of Cw5 with that of common knowledge, since both
notions are inspired by the hierarchy of inter-knowledge of a group given in [9]. The two languages are:

Cw5 ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kwiϕ | Cw5ϕ C ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Cϕ
Although Kwi can be defined using the classical operator Ki, surprisingly, Cw5 is not expressible in
C. We prove this by constructing two series of models between which no C-formula can distinguish,
whereas some Cw5-formula can. To construct these two classes of models, we first define two series of
sets of possible worlds.

Definition 10. For every n ≥ 1, we inductively define two sets of possible worlds Tn and Zn as follows:

• T0 = {t00} and Z0 = {z0};
• If ti ∈ Tn, then ti0 ∈ Tn+1 and ti1 ∈ Tn+1; if zi ∈ Zn, then zi0 ∈ Zn+1 and zi1 ∈ Zn+1;
• Tn and Zn have no other possible worlds,

where |j| denotes the length of the subscript sequence j in each tj and zj .
Then we define two series of models : M = {Mn = 〈Wn, Rn, Vn〉 | n ∈ N+} and N = {Nn =

〈W ′n, R′n, V ′n〉 | n ∈ N+}, where

• Wn = Tn ∪ {r, t0},
• Rn = {(ti, ti0), (ti, ti1) | ti ∈ Tn} ∪ {(r, t0), (t0, t00)},
• Vn(p) = Wn \ {t0i}, where |i| = n+ 1 and i is a finite sequence of 0s,
• W ′n = Wn ∪ Zn,
• R′n = Rn ∪ {(zi, zi0), (zi, zi1) | zi ∈ Zn} ∪ {(r, z0)},
• V ′n(p) = Vn(p) ∪ (Zn \ {z0i}), where |i| = 1 and i is a finite sequence of 0s.
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Since any C-formula ϕ has a finite modal depth n, we can prove that ϕ cannot distinguish between
Mn ∈ M and Nn ∈ N . Therefore, no C-formula can distinguish betweenM and N . But there exists
a Cw5-formula, namely, KwiCw5p, which is satisfied on all models inM, and falsified on all models in
N . In other words, KwiCw5p distinguishes betweenM and N .

On the other hand, C is not expressively weaker than Cw5. Consider two models M1 and M2,
where (M1, s1) can only reach a single p-world by R1, and (M2, s2) can only reach a single ¬p-world
by R1. SoM1, s1 � K1p butM2, s2 2 K1p, which implies that C can distinguish the pair of pointed
models. However, these two pointed models cannot be distinguished by any Cw5-formula.

Theorem 4. Over K, Cw5 and C are incomparable in expressivity.

5 Conclusion and Related Literature
We defined five possible notions of ‘commonly knowing whether’ and studied how they are related
to one another. On S5-frames four of the five notions collapse. We prove the soundness and weak
completeness of a ‘commonly knowing whether’ logic on that class of frames. Finally, we study the
expressivity of one of the proposed languages with respect to the standard common knowledge modal
language on K-frames. Herzig and Perrotin [6] also recently established an alternative axiomatization
of the same logic for ‘commonly knowing whether’ on S5-frames, based on a novel proof system for
common knowledge.

There remains a lot of future work to be done. The axiomatizations overKD45-frames would induce
the logic of so-called commonly believing whether. And the operator Cw5 sheds light on a possible
formalization of the notion of ultimate ignorance, i.e., IGϕ :=

∧
s∈G+ ¬Kwsϕ.
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Formal concept analysis (FCA) [13, 4] has been a subject of intense study for the past
several decades. The central objects of FCA are contexts and concepts. A context is a triple
K := (G,M, I), where G,M are sets of objects and properties respectively, and I ⊆ G×M . For
g ∈ G, I(g) := {m ∈ M : gIm} and for m ∈ M , I−1(m) := {g ∈ G : gIm}. Based on the
relation I, two operators, with the same notation ′, are defined on G and M as follows. For
any A ⊆ G and B ⊆M ,
A′ := {m ∈M | for all g ∈ G(g ∈ A =⇒ gIm)}, and
B′ := {g ∈ G | for all m ∈M(m ∈ B =⇒ gIm)}.

A concept (A,B) of a context K := (G,M, I) is a pair of sets satisfying the conditions
A′ = B and B′ = A. The set of all concepts of a context K is denoted by B(K). A relation
≤ is defined on B(K) as follows: for all (A,B), (C,D) ∈ B(K), (A,B) ≤ (C,D), if and only if
A ⊆ C (equivalently, D ⊆ B). ≤ is a partial order on B(K), and (B(K),≤) forms a complete
lattice.

To develop a mathematical model for conceptual knowledge, Wille introduced negation in
FCA in [14]. Simply considering the complements of the sets involved does not work in defining
the negation of a concept, and he defined the notions of semiconcepts and protoconcepts. Let
A,C ⊆ G and B,D ⊆M .

Definition 1. [15] A semiconcept of the context K is a pair (A,B) such that A′ = B or A = B′.
A protoconcept of the context K is a pair (A,B) such that A′′ = B′.

The set of all protoconcepts of the context K is denoted by P(K) and that of all semiconcepts
is denoted by H(K). Note that, H(K) ⊆ P(K). A relation v is defined on the set P(K) as
follows. For (A,B), (C,D) ∈ P(K), (A,B) v (C,D) if and only if A ⊆ C and D ⊆ B. v
is a partial order on P(K). Further, the following operations are defined on P(K). For any
(A1, B1), (A2, B2), (A,B) ∈ P(K),
(A1, B1) u (A2, B2) := (A1 ∩A2, (A1 ∩A2)

′
), (A1, B1) t (A2, B2) := ((B1 ∩B2)

′
, B1 ∩B2),

¬(A,B) := (Ac, Ac′), y(A,B) := (Bc′, Bc), > := (G, ∅) and ⊥ := (∅,M).
The set P(K) of protoconcepts of the context K fails to form a lattice but leads to a rich

algebraic structure, P(K) := (P(K),u,t,¬, y,>,⊥), called the algebra of protoconcepts. The
set H(K) of semiconcepts forms a subalgebra H(K) of the algebra P(K) of protoconcepts. On
abstraction of properties of P(K) and H(K), Wille defined double Boolean algebras and pure
double Boolean algebras respectively.

Definition 2. [15] A double Boolean algebra (dBa) is an abstract algebra D := (D,t,u,¬, y,>,⊥)
which satisfies the following properties. For any x, y, z ∈ D.

∗This work is supported by the Council of Scientific and Industrial Research (CSIR) India - Research Grant
No. 09/092(0950)/2016-EMR-I
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(1a) (x u x) u y = x u y
(2a) x u y = y u x
(3a) x u (y u z) = (x u y) u z
(4a) ¬(x u x) = ¬x

(1b) (x t x) t y = x t y
(2b) x t y = y t x
(3b) x t (y t z) = (x t y) t z
(4b) y(x t x) =yx

(5a) x u (x t y) = x u x
(6a) x u (y ∨ z) = (x u y) ∨ (x u z)
(7a) x u (x ∨ y) = x u x
(8a) ¬¬(x u y) = x u y
(9a) x u ¬x = ⊥
(10a) ¬⊥ = > u>
(11a) ¬> = ⊥

(5b) x t (x u y) = x t x
(6b) x t (y ∧ z) = (x t y) ∧ (x t z)
(7b) x t (x ∧ y) = x t x
(8b) yy(x t y) = x t y
(9b) xtyx = >
(10b) y> = ⊥ t⊥
(11b) y⊥ = >

(12) (x u x) t (x u x) = (x t x) u (x t x)

where x ∨ y := ¬(¬x u ¬y), and x ∧ y :=y(yxtyy).

A dBa D is called pure if for all x ∈ D, either x u x = x or x t x = x.

A relation v is defined on D by

x v y :⇐⇒ x u y = x u x and x t y = y t y.

v is a quasi-order on D. As intended, for any context K := (G,M, I), we get

Theorem 1. [15]
(i) P(K) := (P(K),u,t,¬, y,>,⊥) is a dBa.

(ii) H(K) := (H(K),u,t,¬, y,>,⊥) is a pure dBa.

It is clear that any Boolean algebra is also a pure dBa.
Let us recall the sets Du := {x ∈ D : x u x = x} and Dt := {x ∈ D : x t x = x}. When

D = P(K), one has the following.

Observation 1. [15] Let A ⊆ G and B ⊆M .
(i) (A,B) ∈ P(K)u if and only if (A,B) = (A,A′).

(ii) (A,B) ∈ P(K)t if and only if (A,B) = (B′, B).

It is known that the sets Du and Dt form Boolean algebras Du := (Du,u,∨,¬,⊥,¬⊥) and
Dt := (Dt,t,∧, y,>, y>). In particular, for the Boolean algebras formed by P(K)u and
P(K)t, it is shown that

Theorem 2. [15]
(i) The power set Boolean algebra (P(G),∩,∪,c , G, ∅) is isomorphic to the Boolean alge-
bra P(K)u := (P(K)u,u,∨,¬,⊥,¬⊥), where any A(⊆ G) is mapped to (A,A′) ∈ P(K)u.

(ii) The power set Boolean algebra (P(M),∪,∩,c ,M, ∅) is anti-isomorphic to the Boolean
algebra P(K)t := (P(K)t,t,∧, y,>, y>), where any B(⊆ M) is mapped to (B′, B) ∈
P(K)t.
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The above features of the Boolean algebras P(K)u and P(K)t play a role in our work, as we
shall see in the sequel.

FCA has been established as a useful tool for data analysis. On the other hand, another
well-established area of study that has been extensively used in data analysis is Rough set
theory, founded by Pawlak [11]. There have been several studies linking and comparing the
two theories, e.g. in [16, 9, 7, 3, 17, 8, 5, 6, 12]. The basic notions in rough set theory [10]
are approximation spaces and the approximation operators defined on them. In this paper,
we work with generalized rough set models [18], instead of the classical Pawlakian ones. An
approximation space in a generalized rough set model is a pair (W,E), where W is a set and
E a binary relation on W . For x ∈ W , E(x) := {y ∈ W : xRy}. The lower and upper
approximations of any A(⊆W ) are defined respectively as follows.

(i) AE := {x ∈W : E(x) ⊆ A}.
(ii) A

E
:= {x ∈W : E(x) ∩A 6= ∅}.

If the relation is clear from the context, we shall omit the subscript and denote AE by A, A
E

by A. The following are easy consequences.

Proposition 1.
(i) A = ((Ac))c, A = ((Ac))c.

(ii) W = W .

(iii) A ∩B = A ∩B,A ∪B = A ∪B.

(iv) A ⊆ B implies that A ⊆ B,A ⊆ B.

Düntsch and Gediga [2] defined property oriented concept lattices based on modal style op-
erators determined by a context. Object oriented concept lattices have been defined by Yao [16],
using the same operators. The present authors introduced negation into the study by defining
the notions of object oriented semiconcepts and object oriented protoconcepts [6]. Furthermore,
in [5], semitopological dBas were proposed. The present work is a continuation of this direction
of study. We modify the algebraic structure of a semitopological dBa and propose a double
Boolean algebra with operators.

Definition 3. A double Boolean algebra with operators (dBao) is a structure O := (D,t,u,¬, y,>,
⊥, I, C) such that

(i) (D,t,u,¬, y,>,⊥) is a dBa.

(ii) I, C are monotonic operators on D such that for all x, y ∈ D the following are
satisfied.

1a I(x u y) = I(x) u I(y)

2a I(¬⊥) = ¬⊥
3a I(x u x) = I(x)

1b C(x t y) = C(x) t C(y)

2b C(y>) =y>
3b C(x t x) = C(x)

Observe that any Boolean algebra with operators [1] is a dBao. We shall give another class
of examples of dBao. For that, we have been motivated by the notions of lower and upper
concepts approximations of any pair of sets in a context, defined by Saquer and Deogun in [12].
The definitions are based on rough set theory. It may be remarked here that approximations of
concepts based on rough set theory were first introduced by Kent [8]. The work in [12] differs
from that of Kent in choosing the “indiscernibility” relations. Kent considers an indiscernibility
relation on the set G of objects which is externally given by some agent, whereas Saquer and
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Deogun consider a relation that is determined by the given context. The latter defined relations
E1, E2 on the set G of objects and the set M of properties of a given context K := (G,M, I),
as follows.

(a) For g1, g2 ∈ G, g1E1g2 if and only if I(g1) = I(g2).

(b) For m1,m2 ∈M , m1E2m2 if and only if I−1(m1) = I−1(m2).

For A ⊆ G, the lower concept approximation of A has been defined by the formal concept

((AE1
)′′, (AE1

)′) and the upper concept approximation of A by ((A
E1

)′′, (A
E1

)′).
Similarly for B ⊆ M , the lower and upper concept approximations of B have been defined

by ((BE2
)′, (BE2

)′′) and ((B
E2

)′, (B
E2

)′′) respectively. Let us illustrate these notions by an
example. The following context is a subcontext of a context given by Wille [4] with some
modifications.

A Context
a b c g

Leech * * *
Bream * * *
Frog * * * *
Dog * * *
Cat * * *

where a:= needs water to live, b:= lives in water, c:= lives on land, g:=can move around.
Now observe that the properties a and g are indiscernible by objects, where as Leech and
Bream are indiscernible by properties. Therefore the induced approximation spaces are,
(G, {{Leech,Bream}, {Frog}, {Dog,Cat}}) and (M, {{a, g}, {b}, {c}}), where G := {Leech,
Bream,Frog,Dog, Cat} and M := {a, b, c, g}.
LetA := {Leech,Bream,Dog}. Then the lower concept approximation ofA is ({Leech,Bream,
Frog}, {a, b, g}). IfB := {a, c}, the upper concept approximation ofB is ({Frog,Dog,Cat}, {a, g, c}).

We now introduce the following.

Definition 4. A Kripke context based on a context K := (G,M, I) is a triple KC :=
((G,R), (M,S), I), where R,S are relations on G and M respectively.

We would like to expand the algebra of protoconcepts of K to a dBao, for which we need
to find two “interior and closure type” operators I, C on P(K) satisfying 1a-3a and 1b-3b
respectively of Definition 3. In particular, one focusses on 1a and 1b. For the Kripke frame
(G,R), an interior-type operator is the map −R : P(G)→ P(G) defined as −R(A) := AR for all
A ∈ P(G). This makes (P(G),∩,∪,c , G, ∅,−R) a Boolean algebra with operators with respect
to −R. Similarly for the Kripke frame (M,S), one has the operator −S : P(M) → P(M)
defined by −M (B) := BS for all B ∈ P(M). Now from Theorem 2, we get the isomorphism
f : P(G) → P(K)u given by f(A) := (A,A′) for all A ∈ P(G) and the anti-isomorphism
g : P(M) → P(K)t given by g(B) := (B′, B) for all B ∈ P(M). Utilizing f,−R on the one
hand, one gets a candidate for I in the form of the unary operator fR given below. On the
other hand, using the anti-isomorphism g and the operator −S , we get a candidate for C as the
unary operator fS . For any (A,B) ∈ P(K),

• fR((A,B)) := (AR, (AR)′),

• fS((A,B)) := ((BS)′, BS).
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fR, fS are well-defined, as (AR, (AR)′) and ((BS)′, BS) are both semiconcepts and hence pro-
toconcepts. In Theorem 3 below, we show that the above choices for fR, fS indeed work for
our purpose.

Notation 1. Let fδR, f
δ
S denote the operators on P(K) that are dual to fR, fS respectively. In

other words, for each x := (A,B) ∈ P(K),

fδR(x) := ¬fR(¬x) = ¬fR((Ac, Ac′)) = ¬(AcR, (A
c
R)′) = ((AcR)c, (AcR)c′) = (A

R
, (A

R
)′), by

Proposition 1(i).

Similarly fδS(x) :=yfS(yx) = (B
S′
, B

S
).

Again, note that fδR(x) = (A
R
, (A

R
)′) and fδS(x) = ((B

S
)′, B

S
) are semiconcepts.

An immediate example of a Kripke context based on K := (G,M, I) is KC := ((G,E1), (M,E2), I),
where E1 and E2 are the equivalence relations defined in (a) and (b) above. Moreover, for any
A ⊆ G and B ⊆ M , we observe that the lower concept approximations of A and B are ex-
pressible using the operators fE1

and fE2
respectively. Indeed, fE1

((A,A′)) t fE1
((A,A′)) =

(AE1
, (AE1

)′) t (AE1
, (AE1

)′) = ((AE1
)′′, (AE1

)′).
On the other hand, fE2

((B′, B)) u fE2
((B′, B)) = ((BE2

)′, (BE2
)′′).

Similarly the upper concept approximations of A and B can be expressed using fδE1
and fδE2

respectively.

Now we arrive at a class of examples of dBao.

Theorem 3. Let KC := ((G,R), (M,S), I) be a Kripke context based on the context K :=
(G,M, I). Then P+(KC) := (P(K),t,u,¬, y,>,⊥, fR, fS) is a dBao.

Proof. It was mentioned earlier that (P(K),t,u,¬, y,>,⊥) is a dBa. To show monotonicity
of fR, fS , let (A,B) v (C,D). Then, by definition of v, A ⊆ C and D ⊆ B, and by using
Proposition 1(iv), AR ⊆ CR which will imply (CR)′ ⊆ (AR)′. Hence fR((A,B)) v fR((C,D)).
Similarly, one can show monotonicity of fS .
Let (A,B) and (C,D) belong to P(K). Using Proposition 1(iii),
fR((A,B)u(C,D)) = fR(A∩C, (A∩C)′) = ((A ∩ C)

R
, ((A ∩ C)

R
)′) = (AR∩CR, (AR∩CR)′) =

(AR, (AR)′) u (CR, (CR)′) = fR((A,B)) u fR((C,D)) and
fS((A,B)t(C,D)) = fS((B∩D)′, B∩D) = (((B ∩D)

S
)′, (B ∩D)

S
) = fS((A,B))tfS((C,D)).

Let (A,B) ∈ P(K). Then fR((A,B)u (A,B)) = fR((A,A′)) = (AR, (AR)′) = fR((A,B)). Now
fR(¬⊥) = fR((G,G′)) = (GR, (GR)′) = (G,G′) = ¬⊥, by Proposition 1(ii). Similarly, one
can show that fS((A,B)t (A,B)) = ((BS)′, BS) and fS(y>) =y>. Therefore, by Definition 3,
(P(K),t,u,¬, y,>,⊥, fR, fS) is a dBao.

The definitions of fR, fS could also be given on the set H(K) of semiconcepts. As H(K)
forms a pure dBa, Theorem 3 would then yield an example H+(KC) of a pure dBao (a dBao
based on a pure dBa) corresponding to any Kripke context. Following the nomenclature used
in modal logic [1], we call P+(KC) the full complex algebra of the Kripke context KC. Any

subalgebra of P+(KC) is called a complex algebra of KC, and H+(KC) is an instance of such
an algebra.

Directions of ongoing study

Representation results related to dBas have been well-studied in literature. It has been
shown that any dBa is quasi-embeddable into the algebra of protoconcepts of some context K,
while any pure dBa is embeddable into the algebra of semiconcepts of K. We expect that, in
the lines of the proof of the representation theorem for Boolean algebras with operators, one
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will obtain a representation of dBao in terms of the dBao P+(KC) and for a pure dBao, a

representation in terms of the pure dBao H+(KC), for some Kripke context KC.
We have formulated modal systems corresponding to dBao and pure dBao – the last, a system
with hypersequents. We expect that, apart from the algebraic semantics, a semantics based on
the class of Kripke contexts can be imparted to these systems.
The Kripke context KC := ((G,R), (M,S), I) was defined with arbitrary binary relations R,S
and I. As in modal correspondence theory, one may impose various conditions on the rela-
tions. We are exploring the resulting properties of the complex algebras P+(KC), H+(KC), the
corresponding classes of dBao and modal systems.
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Abstract

This work introduces a notion of generalised geometric logic. Connections of generalised
geometric logic with L-topological systems and L-topological spaces are established.

1 Introduction

This work is motivated by S. Vickers’s work on topology via logic [17]. To show the connection
of topology with geometric logic, the notion of topological system [17] played a crucial role.
Topological system is an interesting mathematical structure, which unifies the concepts of
topology, algebra, logic in a single framework. In our earlier work [1], we had introduced a
notion of fuzzy geometric logic to answer the question viz. “From which logic can fuzzy topology
be studied?”. For this purpose first of all we introduced the notion of fuzzy topological system
[6]. J. Denniston et al. introduced the notion of lattice valued topological system (L-topological
system) by considering frame valued relation between X and A. In [3], a categorical relationship
of Lattice valued topological space (L-topological space) with frame was established using the
categorical relationships of them with L-topological systems. Moreover categorical equivalence
between spatial L-topological systems with L-topological space was shown. In this paper the
main focus is to answer the question viz. “From which logic can L-topology be studied?”. From
[1], it is clear that the satisfaction relation |= of fuzzy topological systems reflects the notion
of satisfiability (sat) of a geometric formula by a sequence over the domain of interpretation
of the corresponding logic. Hence we considered the grade of satisfiability from [0, 1]. As for
the L-topological system the satisfaction relation is an L (frame)-valued relation, the natural
tendency is to consider the grade of satisfiability from L. Keeping this in mind, generalised
geometric logic is proposed to provide the answer of the raised question successfully.

2 Generalised Geometric Logic

Generalised geometric logic may be considered as a generalisation of fuzzy geometric logic and
consequently of so called geometric logic. Detailed studies on fuzzy logic, geometric logic and
fuzzy geometric logic may be found in [1, 4, 9, 10, 11, 12, 14, 15, 16, 17].

The alphabet of the language L of generalised geometric logic comprises of the connectives
∧,

∨
, the existential quantifier ∃, parentheses ) and ( as well as: countably many individual

constants c1, c2, . . . ; denumerably many individual variables x1, x2, . . . ; propositional constants
>, ⊥; for each i > 0, countably many i-place predicate symbols pij ’s, including at least the

2-place symbol “=” for identity; for each i > 0, countably many i-place function symbols f ij ’s.

Definition 2.1 (Term). Terms are recursively defined in the usual way. Every constant symbol
ci is a term; every variable xi is a term; if fj is an i-place function symbol, and t1, t2, . . . , ti are
terms then f ij t1t2 . . . ti is a term; nothing else is a term.

∗This research work is supported by Department of Science & Technology, Government of India under Women
Scientist Scheme (reference no. SR/WOS-A/PM-52/2018).
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Definition 2.2 (Geometric formula). Geometric formulae are recursively defined as follows:
>, ⊥ are geometric formulae; if pj is an i-place predicate symbol, and t1, t2, . . . , ti are terms
then pijt1t2 . . . ti is a geometric formula; if ti, tj are terms then (ti = tj) is a geometric formula; if
φ and ψ are geometric formulae then (φ∧ψ) is a geometric formula; if φi’s (i ∈ I) are geometric
formulae then

∨{φi}i∈I is a geometric formula, when I = {1, 2} then the above formula is
written as φ1 ∨ φ2; if φ is a geometric formula and xi is a variable then ∃xiφ is a geometric
formula; nothing else is a geometric formula.

Definition 2.3 (Interpretation). An interpretation I consists of

• a set D, called the domain of interpretation;

• an element I(ci) ∈ D for each constant ci;

• a function I(f ij) : Di −→ D for each function symbol f ij ;

• an L-fuzzy relation I(pij) : Di −→ L, where L is a frame, for each predicate symbol pij i.e.

it is an L-fuzzy subset of Di.

Definition 2.4 (Graded Satisfiability). Let s be a sequence over D. Let s = (s1, s2, . . . ) be a
sequence over D where s1, s2, . . . are all elements of D. Let d be an element of D. Then s(d/xi)
is the result of replacing i’th coordinate of s by d i.e., s(d/xi) = (s1, s2, . . . , si−1, d, si+1, . . . ).
Let t be a term. Then s assigns an element s(t) of D as follows:

• if t is the constant symbol ci then s(ci) = I(ci);

• if t is the variable xi then s(xi) = si;

• if t is the function symbol f ij t1t2 . . . ti then

s(f ij t1t2 . . . ti) = I(f ij)(s(t1), s(t2), . . . , s(ti)).

Now we define grade of satisfiability of φ by s written as gr(s sat φ), where φ is a geometric
formula, as follows:

• gr(s sat pijt1t2 . . . ti) = I(pij)(s(t1), s(t2), . . . , s(ti));

• gr(s sat >) = 1L;

• gr(s sat ⊥) = 0L;

• gr(s sat ti = tj) =

{
1L if s(ti) = s(tj)

0L otherwise;

• gr(s sat φ1 ∧ φ2) = gr(s sat φ1) ∧ gr(s sat φ2);

• gr(s sat φ1 ∨ φ2) = gr(s sat φ1) ∨ gr(s sat φ2);

• gr(s sat
∨{φi}i∈I) = sup{gr(s sat φi) | i ∈ I};

• gr(s sat ∃xiφ) = sup{gr(s(d/xi) sat φ) | d ∈ D}.

Throughout this article ∧ and ∨ in L will stand for the meet and join of the frame L
respectively. The expression φ ` ψ, where φ, ψ are wffs, is called a sequent. We now define
satisfiability of a sequent.
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Definition 2.5. 1. s sat φ ` ψ iff gr(s sat φ) ≤ gr(s sat ψ).
2. φ ` ψ is valid in I iff s sat φ ` ψ for all s in the domain of I.
3. φ ` ψ is universally valid iff it is valid in all interpretations.

Theorem 2.6. Let I be an interpretation and t be a term. If the sequences s and s′ are such
that they agree on the variables occurring in the term t then s(t) = s′(t).

Proof. By induction on t.

Theorem 2.7. Let I be an interpretation and φ be a geometric formula. If the sequences s and
s′ are such that they agree on the free variables occurring in φ then gr(s sat φ) = gr(s′ sat φ).

Proof. By induction on φ.

A rule of inference for generalised geometric logic is of the form
S1, S2, . . . , Si

S
, where each

of the S1, S2, . . . , Si and S is a sequent. The sequents S1, S2, . . . , Si are known as premises and
the sequent S is called the conclusion. It should be noted that for a rule of inference the set of
premises can be empty also.
The rules of inference for generalised geometric logic are as follows.

1. φ ` φ,

2.
φ ` ψ ψ ` χ

φ ` χ ,

3. (i) φ ` >, (ii) φ ∧ ψ ` φ, (iii) φ ∧ ψ ` ψ, (iv)
φ ` ψ φ ` χ

φ ` ψ ∧ χ ,

4. (i) φ ` ∨
S (φ ∈ S), (ii)

φ ` ψ all φ ∈ S∨
S ` ψ ,

5. φ ∧∨
S ` ∨{φ ∧ ψ | ψ ∈ S},

6. > ` (x = x),

7. ((x1, . . . , xn) = (y1, . . . , yn)) ∧ φ ` φ[(y1, . . . , yn) | (x1, . . . , xn)],

8. (i)
φ ` ψ[x | y]

φ ` ∃yψ , (ii)
∃yφ ` ψ

φ[x | y] ` ψ ,

9. φ ∧ (∃y)ψ ` (∃y)(φ ∧ ψ).

The soundness of a rule means that if all the premises are valid in an interpretation I then the
conclusion must also be valid in the same interpretation I. Satisfaction relation being many-
valued, the validity of a sequent has a meaning different from that in the classical geometric
logic. In this subsection we will show the soundness of the above rules of inference.

Theorem 2.8. The rules of inference for generalised geometric logic are universally valid.

Let us consider the triplet (X, |=, A) where X is the non empty set of assignments s, A is
the set of geometric formulae and |= defined as gr(s |= φ) = gr(s sat φ).

Theorem 2.9. (i) gr(s |= φ ∧ ψ) = gr(s |= φ) ∧ gr(s |= ψ).
(ii) gr(s |= ∨{φi}i∈I) = supi∈I{gr(x |= φi)}.
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Definition 2.10. φ ≈ ψ iff gr(s |= φ) = gr(s |= ψ) for any s ∈ X and φ, ψ ∈ A.

The above defined “≈” is an equivalence relation. Thus we get A/≈.

Definition 2.11 (L-topological space). Let X be a set, and τ be a collection of L-fuzzy subsets
of X i.e., Ã : X → L, where L is a frame, s.t.

1. ∅̃ , X̃ ∈ τ , where ∅̃(x) = 0L, for all x ∈ X and X̃(x) = 1L, for all x ∈ X;

2. Ãi ∈ τ for i ∈ I implies
⋃
i∈I Ãi ∈ τ , where

⋃
i∈I Ãi(x) = supi∈I(Ãi(x));

3. Ã1 , Ã2 ∈ τ implies Ã1 ∩ Ã2 ∈ τ , where (Ã1 ∩ Ã2)(x) = Ã1(x) ∧ Ã2(x).

Then (X, τ) is called an L-topological space. τ is called an L-topology over X.

Elements of τ are called L-open sets of L-topological space (X, τ).

Definition 2.12 (L-topological system). [3] An L-topological system is a triple (X, |=, A),
where X is a non-empty set, A is a frame and |= is an L-valued relation from X to A (|=:
X ×A→ L) such that

1. if S is a finite subset of A, then gr(x |= ∧
S) = inf{gr(x |= s) | s ∈ S};

2. if S is any subset of A, then gr(x |= ∨
S) = sup{gr(x |= s) | s ∈ S}.

For our convenience |= (x, a) will be expressed as gr(x |= a) throughout this article. It is to
be noted that

∧
S is either a1 ∧ a2 ∧ · · · ∧ an if S = {a1, a2, . . . , an} and is > if S = ∅. Note

that if L = [0, 1] then the triple is known as fuzzy topological system [1].

Definition 2.13 (Spatial). An L-topological system (X, |=, A) is said to be spatial if and only
if (for any x ∈ X, gr(x |= a) = gr(x |= b)) imply (a = b), for any a, b ∈ A.

Theorem 2.14. [3] Category of spatial L-topological systems, for a fixed L, is equivalent to
the category of L-topological spaces.

Theorem 2.15. (X, |=′, A/≈) is an L-topological system, where |=′ is defined by gr(s |=′ [φ]) =
gr(s |= φ).

Proposition 2.16. In the L-topological system (X, |=′, A/≈), defined above, for all s ∈ X,
(gr(s |=′ [φ]) = gr(s |=′ [ψ])) implies ([φ] = [ψ]).

Proof. As gr(s |=′ [φ]) = gr(s |=′ [ψ]), for any s, we have gr(s |= φ) = gr(s |= ψ), for any s.
Hence φ ≈ ψ and consequently [φ] = [ψ].

Theorem 2.17. Let (X, |=, A) be an L-topological system. Then (X, ext(A)), where ext(A) =
{ext(a)}a∈A such that ext(a)(x) = gr(x |= a) for each x ∈ X, is an L-topological space.

From Theorem 2.15 and Theorem 2.17 we arrive at the conclusion that (X, ext(A/≈)) is an L-
topological space. Proposition 2.16 indicates that (X, |=′, A/≈) is a spatial L-topological system
and hence from Theorem 2.14 we arrive at the conclusion that (X, |=′, A/≈), (A, ext(A/≈)) are
equivalent to each other. That is, (X, |=′, A/≈) and (X,∈, ext(A/≈)) represent the same L-
topological system.

Let X be an L-topological space, τ is its L-topology. Then the corresponding generalised
geometric theory can be defined as follows:
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• for each L-open set T̃ , a proposition PT̃

• if T̃1 ⊆ T̃2, then an axiom
PT̃1
` PT̃2

• if S is a family of L-open sets, then an axiom

P⋃
S `

∨

T̃∈S
PT̃

• if S is finite collection of L-open sets, then an axiom

∧

T̃∈S
PT̃ ` P⋂

S

All other axioms for the (propositional) generalised geometric logic will follow from the above
clauses.

If x ∈ X, then x gives a model of the theory in which the truth value of the interpretation
of PT̃ will be T̃ (x).

Hence one may study L-topology via generalised geometric logic.

3 Conclusion

In summary, the notion of generalised geometric logic is introduced and studied in details. Using
the connection between L-topological system and L-topological space, the strong connection
between the proposed logic and L-topological space is established. The interpretation of the
predicate symbols for the generalised geometric logic are L (frame)-valued relations and so the
proposed logic is more expressible. That is, the proposed logic has the capacity to interpret the
situation where the truth values are incomparable. Generalising the proposed logic considering
graded consequence relation is in future agenda.
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In this article, we explore the construction of models for non-classical set theories. In
particular, we build (1) algebra-valued models that validate a paraconsistent logic and a set
theoretic axiom system which is classically equivalent to ZF. Moreover, (2), we develop the
respective quotient models, by defining equivalence classes on the algebra-valued models. The
procedure behind (1) follows the presentation of [1] and its extension to non-classical contexts
as in [4], [2], [5] etc. On the other hand, the methodology corresponding to (2) is new and it
extends the classical construction of Tarskian models from Boolean-valued models as described
in detail in [6]. We plan to extend this line of work to algebra-valued models of paraconsistent
set theory and thus present here for the first time a class of quotient models for paraconsistent
set theory.

The novelty of these results consists in being able to build proper models of paraconsistent set
theory and not only algebra-valued models, which, however, are a proper definable class in the
universe of all sets. The key ingredient of this construction is represented by the construction of
equivalence classes, which offer a well-behaved semantics for set theory, because of the validity
of the Leibniz’s law of indiscernibility of identicals. The results of this paper thus are an
improvement of those of [3], where for the first time it was shown that there are algebra-
valued models of paraconsistent set theory that validate a classically equivalent form of ZF and
Leibniz’s law of indiscernibility of identicals. Morevoer, this paper also generalizes the class of
algebras from [3], for which these constructions can be performed.

Definition 1. Let A = (A,∧,∨,1,0) be a bounded lattice, where 1 and 0 are the top and bottom
elements, respectively. A set D ⊂ A is said to be a designated set on A if it is a filter on A, i.e.
1) 1 ∈ D and 0 /∈ D; 2) if x ∈ D and x ≤ y, then y ∈ D; and 3) for any x, y ∈ D, x ∧ y ∈ D.

Definition 2. Let A = (A,∧,∨,⇒,∗ ,1,0) be an algebra and D be a designated set on A. We
say that (A, D) is an MTV-algebra if

(i) (A,∧,∨,1,0) is a complete distributive lattice,

(ii) A has a unique atom and a unique co-atom1,

(iii) the two algebraic operators ⇒ and ∗ are defined as follows:

a⇒ b =





0, if a 6= 0 and b = 0;

1, otherwise;

1The necessity of having a unique atom and a unique co-atom in the definition of MTV-algebra will be
discussed at the time of presentation.
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a∗ =





0, if a = 1;

a, if a ∈ D \ {1};
1, if a /∈ D.

Notice that in the structure of any complete distributive lattice L, if we add one top element
and one bottom element, associated with a designated set D together with the two operators⇒
and ∗ defined as in Definition 2, then the new structure becomes an MTV-algebra. For example,
MTV-algebra include all totally ordered algebras from [2], whose negation and implication are
defined in terms of Hyting and co-Hyting negations2.

Theorem 3. The logic of any MTV-algebra (A, D), is a paraconsistent logic, i.e., there exist
formulas ϕ and ψ such that ψ cannot be derived from {ϕ,¬ϕ}.

Now, we are in a position to define the algebra-valued models. Let us consider a model V
of ZF and an algebra A, which is a complete distributive lattice associated with two operators
⇒ and ∗. Then, by transfinite recursion, we define the following set-theoretic universe:

V(A)
α = {x : x is a function and ran(x) ⊆ A

and there is ξ < α with dom(x) ⊆ V
(A)
ξ } and

V(A) = {x : ∃α(x ∈ V(A)
α )}.

Let L be the language of ZF and LA be its extension, constructed by adding constant symbols
corresponding to every element in V(A). A mapping J·KPA is recursively defined from the
collection of all closed well-formed formulas in LA into A as follows.

Definition 4. For any pair of elements u, v ∈ V(A),

Ju ∈ vKPA =
∨

x∈dom(v)

(
v(x) ∧ Jx = uKPA

)
,

Ju = vKPA =
∧

x∈dom(u)

(
(u(x)⇒ Jx ∈ vKPA) ∧ (Jx ∈ vK∗PA ⇒ u(x)∗)

)

∧
∧

y∈dom(v)

(
(v(y)⇒ Jy ∈ uKPA) ∧ (Jy ∈ uK∗PA ⇒ v(y)∗)

)
;

then, the map J·KPA is extended to the non-atomic formulas: for any two closed well-formed
formulas ϕ and ψ,

Jϕ ∧ ψKPA = JϕKPA ∧ JψKPA,
Jϕ ∨ ψKPA = JϕKPA ∨ JψKPA,

Jϕ→ ψKPA = JϕKPA ⇒ JψKPA,
J¬ϕK = JϕK∗PA,

J∀xϕ(x)KPA =
∧

u∈V(A)

Jϕ(u)KPA, and

2For this reason it could be interesting to investigate the connection between topologically defined algebras
and MTV-algebras. We thank an anonymous referee for raising this issue.
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J∃xϕ(x)KPA =
∨

u∈V(A)

Jϕ(u)KPA.

Definition 5. A sentence ϕ of LA is said to be valid in V(A) with respect to the assign-
ment function J·KPA and a designated set D, whenever JϕKPA ∈ D. We denote this fact by
V(A, J·KPA) |=D ϕ.

The main difference between the assignment functions used in this paper (viz. J·KPA) and the
assignment functions J·K used in the study of Boolean-valued models, Heyting-valued models,
generalized algebra-valued models etc. (cf. [1], [4], [2]) is the algebraic expression of Ju = vK:
in the latter cases, for any two elements u, v ∈ V(A), we define

Ju = vK =
∧

x∈dom(u)

(u(x)⇒ Jx ∈ vK) ∧
∧

y∈dom(v)

(v(y)⇒ Jy ∈ uK).

If A is a Boolean algebra, then J·K = J·KPA. However, these two assignment functions may not
be identical if A is not a Boolean algebra. For any non-Boolean and non-Heyting reasonable
implication algebra A, defined in [4], which were used to build algebra-valued models of non-
classical set theories, the relation = becomes an equivalence relation in V(A) with respect to
the assignment functions J·K. Hence, we can have the quotient space V(A)/ =. But the major
problem in using the assignment function J·K is that in V(A), it does not satisfy the Leibniz’s
law of indiscernibility of identicals:

∀x∀y
(
(x = y ∧ ϕ(x))→ ϕ(y)

)
(LLϕ)

for all formulas ϕ(x). On the other hand, we can overcome this problem by using the assignment
function J·KPA.

Theorem 6. Let (A, D) be an MTV-algebra. Then, the Leibniz’s law of indiscernibility of
identicals holds in V(A, J.KPA), i.e., V(A, J.KPA) |= LLϕ, for all formulas ϕ in the language LA.

Notice that the Axiom of Extensionality is not valid in V(A, J.KPA), where (A, D) is an MTV-
algebra. Let us consider the following sentence:

∀x∀y∀z
(
((z ∈ x↔ z ∈ y) ∧ (¬z ∈ x↔ ¬z ∈ y))→ x = y

)
. (ExtensionalityP )

Let ZFP be the axiom system consisting of the axioms of ZF, where ExtensionalityP is taken
instead of the Axiom of Extensionality, i.e.,

ZFP := ZF− Axiom of Extensionality + ExtensionalityP .

It can be observed that ZFP and ZF are classically equivalent.

Theorem 7. For any MTV-algebra (A, D), V(A, J·KPA) |=D ZFP .

Hence, we have found algebra-valued models of a class of paraconsistent set theories, which
satisfy the Leibniz’s law of indiscernibility of identicals. Let (A, D) be an MTV-algebra. We
define a class relation ∼ in V(A) as u ∼ v iff V(A, J·KPA) |=D u = v, for all u, v ∈ V(A). It can
be proved that ∼ is an equivalence relation and hence we have the quotient space V(A)/ ∼.
Then we go on and define the validity of formulas in the quotient model based on the validity
of those formulas in the respective algebra-valued model. This ensures us that the resulting
quotient model does validate the ZFP axioms.
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Theorem 8. For any MTV-algebra (A, D), V(A)/ ∼ |= ZFP .

Theorem 9. Let (A, D) be an MTV-algebra and let V(A)/ ∼ be the respective quotient space.

Then for a sequence ~[u] = ([u1], [u2], ...) in V(A)/ ∼ we have the following.

(i) V(A)/ ∼ |= (ϕ→ ψ)( ~[u]) iff V(A)/ ∼ 2 ϕ( ~[u]) or V(A)/ ∼ |= ψ( ~[u]).

(ii) V(A)/ ∼ |= (ϕ ∧ ψ)( ~[u]) iff V(A)/ ∼ |= ϕ( ~[u]) and V(A)/ ∼ |= ψ( ~[u]).

(iii) V(A)/ ∼ |= (ϕ ∨ ψ)( ~[u]) iff V(A)/ ∼ |= ϕ( ~[u]) or V(A)/ ∼ |= ψ( ~[u]).

(iv) if V(A)/ ∼ 6|= ϕ( ~[u]), then V(A)/ ∼ |= ¬ϕ( ~[u]).

(v) V(A)/ ∼ |= ∀xkϕ( ~[u]) iff V(A)/ ∼ |= ϕ( ~[u], d/k), where ~[u](d/k) is identified with the
sequence ([u1], ..., [uk−1], d, [uk+1]), for any d ∈ V(A)/ ∼.

(vi) V(A)/ ∼ |= ∃xkϕ( ~[u]) iff V(A)/ ∼ |= ϕ( ~[u], d/k) for some d ∈ V(A)/ ∼.

There are quotient models which are paraconsistent, i.e., there are MTV-algebra (A, D) and
there exist sentences ϕ and ψ in the language of set theory such that V(A)/ ∼ |= (ϕ∧¬ϕ)→ ψ.
In conclusion, we have found quotient models for a class of paraconsistent set theory which
validate ZFP . These models seem intriguing because they extend the class of Boolean quotient
models and so open up the possibility of carrying out forcing constructions beyond the limits
of classicality.
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Abstract

Self-organization has been introduced to multi-agent systems as an internal control pro-
cess or mechanism to solve difficult problems spontaneously. When the system is deployed
in an open environment, agents can enter or exit the system as they want, which might
bring the system to an undesired state. We propose a framework to reason about the
robustness of self-organizing multi-agent systems under the change of participating agents.

1 Introduction

Self-organization is a process where a stable pattern is formed by the cooperative behavior between parts
of an initially disordered system without external control or influence. It has been introduced to multi-
agent systems as an internal control process or mechanism to solve difficult problems spontaneously,
especially if the system is operated in an open environment thereby having no perfect and a priori
design to be guaranteed [10][8][9]. When the system is deployed in an open environment, agents can
enter or exit the system as they want, which might bring the system to an undesired state. Because in
a self-organizing multi-agent system local rules work as guidance for agents to behave thus leading to
specific outcomes, we can see the set of local rules as a mechanism that we implement in the system.
A mechanism is a procedure, protocol or game for generating desired outcomes. If we want to know
whether we can design a set of local rules to ensure desired outcomes, we then enter the field of
mechanism design [7]. In the area of model checking, some work has been done to verify a multi-agent
system from the perspective of mechanism design [6][2]. In [6], Max Knobbout, et al assume agents to
have some preferences, which might be unknown to the system designers, and use a solution concept of
Nash equilibrium for decision-making. A formal framework is developed to verify whether a normative
system implements desired outcomes no matter what preferences agents have. In [2], Nils Bulling
and Mehdi Dastani formally analyze and verify whether a specific behavior can be enforced by norms
and sanctions if agents follow their subjective preferences and whether a set of norms and sanctions
that realize the effect exists at all. In this paper, we verify the correctness of a mechanism from the
perspective of robustness. In our framework of self-organizing multi-agent systems, agents follow their
local rules to communicate with other agents in order to make their next moves, giving rise to the
dependence relation between agents. Based on the dependence relation, we provide formal properties
that can be used to verify whether a self-organizing multi-agent system is robust under the change of
participating agents.

2 Framework

The semantic structure of this paper is concurrent game structures (CGSs). It is basically a model
where agents can simultaneously choose actions that collectively bring the system from the current
state to a successor state. Compared to other kripke models of transaction systems, each transition in
a CGS is labeled with collective actions and the agents who perform those actions.Formally,

77



Definition 2.1. A concurrent game structure is a tuple S = (k,Q, π,Π, ACT, d, δ) such that:

� A natural number k ≥ 1 of agents, and the set of all agents is Σ = {1, . . . , k}; we use A to denote
a coalition of agents A ⊆ Σ;

� A finite set Q of states;

� A finite set Π of propositions;

� A labeling function π which maps each state q ∈ Q to a subset of propositions which are true at
q; thus, for each q ∈ Q we have π(q) ⊆ Π;

� A finite set ACT of actions;

� For each agent i ∈ Σ and a state q ∈ Q, di(q) ⊆ ACT is the non-empty set of actions available
to agent i in q; D(q) = d1(q) × . . . × dk(q) is the set of joint actions in q; given a state q ∈ Q,
an action vector is a tuple 〈α1, . . . , αk〉 such that αi ∈ di(q);

� A function δ which maps each state q ∈ Q and a joint action 〈α1, . . . , αk〉 ∈ D(q) to another
state that results from state q if each agent adopted the action in the action vector, thus for each
q ∈ Q and each 〈α1, . . . , αk〉 ∈ D(q) we have δ(q, 〈α1, . . . , αk〉) ∈ Q.

Note that the model is deterministic: the same update function adopted in the same state will
always result in the same resulting state. A computation over S is an infinite sequence λ = q0, q1, q2, . . .
of states such that for all positions i ≥ 0, there is a joint action 〈α1, . . . , αk〉 ∈ D(qi) such that
δ(qi, 〈α1, . . . , αk〉) = qi+1. For a computation λ and a position i ≥ 0, we use λ[i] to denote the ith state
of λ. More elaboration of concurrent game structures can be found in [1].

Self-organization has been introduced into multi-agent systems for a long time to solve various
problems in multi-agent systems [12][4]. It is a mechanism or a process which enables a system to
finish a difficult task by the cooperative behavior between agents spontaneously [3]. In this paper, we
argue that the cooperative behavior is defined by prescribed local rules that agents are supposed to
follow with communication between agents as a prerequisite. Therefore, we can define a self-organizing
multi-agent system as a concurrent game structure together with a set of local rules for agents to follow.
For example, in ant colony optimization algorithms, ants are required to record their positions and the
quality of their solutions (lay down pheromones) so that in later simulation iterations more ants locate
better solutions. An internal function returns the information that is provided by participating agents
themselves for communication at a particular state, which is referred to as an agent type and thus
might be different from agent to agent. We thus define it as a function mi : Q → Lprop that maps a
state q ∈ Q to a propositional formula. We use M = {mi | i ∈ Σ} to denote the set of internal functions
for all the participating agents. Depending on the application, we might have different interpretation
on mi(q). For example, vehicles in a busy traffic situation are required to communicate their urgencies,
and robots sensors in a self-deploy sensing network are required to communicate their sensing areas.
Given an agent a, an abstract local rule for agent a is defined as a tuple 〈τa, γa〉: it consists of two parts:
the first part τa(q) states the agents with whom agent a is supposed to communicate in state q, and
the second part γa(Ma(q)) states the action that agent a is supposed to take given the communication
with agents in τa(q) for their internals. We see local rules not only as constraints but also guidance on
agents’ behavior, namely an agent does not know what to do if he does not communicate with other
agents. Therefore, we exclude the case where agents get no constraint from their respective local rules.
We use notation out(q,ΓA) is the set of computations starting from state q where agents in coalition
A follow their respective local rules in ΓA to behave. Now we are ready to define a self-organizing
multi-agent system. Formally,

Definition 2.2 (Self-organizing Multi-agent Systems). A self-organizing multi-agent system (SOMAS)
is a tuple (S,M,Γ), where S is a concurrent game structure, M is the set of internal functions and Γ
is a set of local rules for agents in the system to follow.

Example 1. Consider a CGS scenario in [5][11] as Figure.1 where there are two trains, each controlled
by an agent, going through a tunnel from the opposite side. The tunnel has only room for one train,
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and the agents can either wait or go. Starting from state q0, if the agents choose to go simultaneously,
the trains will crash, which is state q4; if one agent goes and the other waits, they can both successfully
go through the tunnel without crashing, which is q3. Local rules are prescribed for both trains to follow:
both agents communicate with each other for their urgencies u1 and u2 in state q0; the one who is more
urgent can go through the tunnel first and the other one has to wait for it; after that the agent who
waits before can go. Therefore, if a1 is more urgent than a2 with respect to u1 and u2, the desired state
q3 is reached along with computation q0, q2, q3 . . .; if a1 is less urgent than a2 with respect to u1 and u2,
the desired state q3 is reached along with computation q0, q1, q3 . . ..

Figure 1: A CGS example.

In order to study how a self-organizing multi-agent system behaves under the change of participating
agents, we first need to characterize the independence between agents in terms of their contributions to
the system behavior. In this paper, it is characterized from two perspectives: a semantic perspective
given by the underlying game structure and a structural perspective derived from abstract local rules.
Similar to ATL [1], our language is interpreted over a concurrent game structure S that has the same
propositions and agents as our language. It is an extension of classical propositional logic with path
quantifiers and temporal cooperation modalities. A formula of the form 〈A〉ψ means that coalition of
agents A will bring about the subformula ψ by following their respective local rules in ΓA, no matter
what agents in Σ\A do. Our formulas are evaluated over a self-organizing multi-agent system (S,M,Γ)
and a state q ∈ Q in the form of S,M,Γ, q |= 〈A〉ψ. Agents in the system follow their respective local
rules to communicate with other agents and behave based on the communication results, which means
that a local rule in this paper has agents’ communication its prerequisite. Different participating agents
might have different internal functions, making the communication results and thus the actions that are
required to take different. Hence, even though we have S,M,Γ, q |= 〈A〉ψ, the computations out(q,ΓA)
that coalition A ensures to bring about ψ might be different, which shows coalition A self-organizes to
bring about ψ in state q.

Example 2. According to the local rules in the two-train example, the train who is more urgent can go
through the tunnel first and the other one has to wait for him. We have that one train by itself cannot
bring about the result of passing through the tunnel without crash through following the local rule, which
can be expressed:

S,M,Γ, q0 6|= 〈a1〉3no crash,

S,M,Γ, q0 6|= 〈a2〉3no crash.

Instead, both trains have to cooperate to bring about the result. Thus, we have that both agents by
themselves can bring about the result of passing through the tunnel without crash through following the
local rules, which can be expressed:

S,M,Γ, q0 |= 〈a1, a2〉3no crash.

Notice that we have this formula when both trains follow their local rules to cooperate for the cases where
a1 is more urgent than a2 and a2 is more urgent than a1. Interestingly, 3no crash is ensured along
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the computation q0, q2, q3 . . . for the former case, while 3no crash is ensured along the computation
q0, q1, q3 . . . for the latter case.

3 Changing Participating Agents

As we have already highlighted in the introduction, when a self-organizing multi-agent system is de-
ployed in an open environment, different types of agents participate in the system and their internals
might be unknown to system designers. Therefore, it is important to verify whether the set of local
rules still generates desired outcomes, more generally how the system behaves, under the change of
participating agents. As in the two-train example, if both trains have the same urgency, they will
wait and thus get stuck in state q0 forever and cannot go through the tunnel by following their local
rules, showing that the local rules are not robust to handle this case. Because in this paper an internal
function mi(·) is interpreted as an agent type, changing participating agents can be done by simply
replacing internal functions.

Definition 3.1 (Change of Participating Agents). Given a SOMAS (S,M,Γ), a new SOMAS under
the change of participating agents is denoted as (S,M ′,Γ), where there exists an agent a ∈ Σ and a
state q ∈ Q such that ma(q) 6= m′

a(q).

As we can see from the definition, what we meant by replacing internal functions is that in the new
system there exists at least an agent’s internal function such that given the same state its output is
different from the one in the original system. Except the internal functions, the underlying concurrent
game structure and the set of local rules remain the same. When we change participating agents in the
system, some properties that hold in the original system might become false in the new system. The
reason is that the change of agents’ internal function might change the actions that agents are allowed
to take by their local rules thus causing the new system to run along a computation that might be
different from the original system. Accordingly, we use out′(q,ΓA) to denote the set of computations
where agents in coalition A follow their respective local rules to behave in the new system. Therefore,
local rules have to be well designed in order to ensure that desired properties remain unchanged under
the change of participating agents. That gives rise to the notion of robustness.

Definition 3.2 (Robustness of Local Rules). Given a CCG S, a set of local rules Γ is robust w.r.t.
a temporal formula ψ under the change of participating agents M ′ iff for q ∈ Q and A ⊆ Σ if ψ is
ensured by A in SOMAS (S,M,Γ) then ψ is also ensured by A in SOMAS (S,M ′,Γ).

In words, we define the robustness of a set of local rules with respect to a temporal formula in the
sense that the satisfaction of the temporal formula is persevered under the change of participating agents
M ′. Intuitively, we can verify the robustness of local rules w.r.t. ψ through checking S,M,Γ, q |= 〈A〉ψ
and S,M ′,Γ, q |= 〈A〉ψ. However, sometimes it is difficult to enumerate all the possible internal
functions of participating agents. Therefor, a more practical approach is to provide the conditions for
internal functions with which desired properties remain the same in the new system. Before exploring
it, we use out(q,ΓA)[i] to denote a set of states, each of which is the ith state of any computation in
out(q,ΓA). That is, out(q,ΓA)[i] = {q′ ∈ Q | ∃λ ∈ out(q,ΓA) : q′ = λ[i]}.

Proposition 3.1. Given a SOMAS (S,M,Γ) and a new SOMAS (S,M ′,Γ) under the change of
participating agents, Γ is robust w.r.t. a temporal formula ψ if and only if for q ∈ Q and A ⊆ Σ if
S,M,Γ, q |= 〈A〉ψ then one of the following statements should be satisfied:

1. ∀a ∈ A, λ ∈ out(q,ΓA), q′ ∈ λ : ma(q′) = m′
a(q′);

2. if ∃i, a ∈ A, λ ∈ out(q,ΓA), q′ ∈ λ : mi(q
′) 6= m′

i(q
′) and i ∈ τa(q′) then γa(Ma(q′)) = γa(M ′

a(q′));

3. S,M ′,Γ, q |= 〈A〉ψ.

Proof. Because S,M,Γ, q |= 〈A〉ψ, by its semantics, we have that ψ holds in every computation in
out(q,ΓA). Next, we need to inductively prove that out′(q,ΓA) in the new system contains the same
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computations as out(q,ΓA) in the original system. Firstly, computations from both out′(q,ΓA) and
out(q,ΓA) start from state q. Secondly, suppose out(q,ΓA)[i] = out′(q,ΓA)[i]. For the first and the
second statement:

1. Because for any a ∈ A and q′ ∈ out(q,ΓA)[i] it is the case that ma(q′) = m′
a(q′), τa(q′) returns

the same set of agents from which agent a gets input information and thus γa(·) returns the same
action in both systems in state q′.

2. Because even though there exists i, a ∈ A, q′ ∈ out(q,ΓA)[i] : mi(q
′) 6= m′

i(q
′) and i ∈ τa(q′) it is

the case that γa(Ma(q′)) = γa(M ′
a(q′)), which means that γa(·) returns the same action in both

systems in state q′.

Hence, out(q,ΓA)[i+1] = out′(q,ΓA)[i+1]. So we can conclude that out′(q,ΓA) = out′(q,ΓA). Because
ψ holds in every computation in out(q,ΓA),ψ also holds in every computation in out′(q,ΓA). Therefore,
if one of the statements is satisfied, we have S,M ′,Γ, q |= 〈A〉ψ.

In other words, a set of local rules is robust under the change of participating agents if and only
if for any coalition if it ensures a temporal formula, then either the internal functions of any agents in
that coalition return the same values in both systems, or γ returns the same action for any agent in
that coalition along in both systems, or the coalition ensures the temporal formula in the new system.
As we can see, the first statement is the most demanding one because the values of internal functions
are not allowed to change, and the second statement allows the values of internal functions to change
but γ should return the same action, and the third statement is the least demanding because it relaxes
the first and the second statements, which might result different computations compared to the original
system and thus the formula should be checked again.

Example 3. In the two-train example, suppose a1 is more urgent than a2 in state q0. According to
the local rules, both trains can go through the tunnel along with computation q0, q2, q3 . . .. Now two
new trains enter the system. The internal function of each agent returns the same value with all states
as before except state q4. In this case, both trains can go through the tunnel along with computation
q0, q2, q3 . . . because for any states in computation q0, q2, q3 . . . and any agent the internal function
returns the same value as before, which satisfies the first statement in Proposition 3.1. Next, suppose
the two trains have new urgencies but it is still the case that a1 is more urgent than a2 in state q0,
which satisfies the second statement in Proposition 3.1, both trains can go through the tunnel along
with computation q0, q2, q3 . . .. If a1 is less urgent than a2, γ1(M ′

1(q0)) returns action wait for a1
and γ2(M ′

2(q0)) returns go for a2, which leads to computation q0, q1, q3 . . .. It is different from the
original system and satisfies the third statement in Proposition 3.1. However, if both trains have the
same urgency, they will choose to wait according to their local rules, resulting in the undesired state
q0 forever. As we can see, the local rules cannot ensure that the system will reach a desired state no
matter what kind of agents participate in the system.

4 Conclusion

When a self-organizing multi-agent system is deployed in an open environment, agents can enter or
exit the system as they want, which might bring the system to an undesired state. Therefore, it is
of great importance to verify the behavior of a new system under the change of participating agents.
In this paper, we develop a framework of a self-organizing multi-agent system, where agents follow
their local rules to communicate with other agents in order to make their next moves. Based on the
dependence relation between agents, we provide formal properties that can be used to verify whether a
self-organizing multi-agent system is robust under the change of participating agents. In the future, we
will generalize our notion of robustness such that it allows us to verify not only agents’ contributions
but also more general system properties. As we can use a directed graph to represent the dependence
relation between agents in terms of communication, we will investigate whether graph theory can be
applied to facilitate the verification of robustness.
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1 Introduction
Metric Interval Temporal Logic (MITL) (cf. [2]) is a popular temporal logic for specifying quantitative
timing properties of real-time systems. The key to solving the satisfiability and model-checking prob-
lem for MITL is the construction of a “monioring automaton”. A monitoring automaton for an MITL
formula ϕ is a timed automatonA along with a constraint g over the configurations ofA, that satisfies
the following property: for every timed word σ, A should have a unique accepting run over σ, and the
constraint g should “monitor” the truth of ϕ along this run, in the sense that g is satisfied at a point in
the run iff ϕ is true in σ at that point. From a monitoring automaton for a formula, one can easily obtain
a formula automaton for the formula that accepts precisely the (initial) models of the given formula.

In this paper we present an inductive monitoring automaton construction for MITL formulas which
is similar in spirit to the one in [7] but with some key differences. Firstly, the construction we propose is
more efficient in the usage of clocks and it typically uses one clock less than the constructions in [2, 7] for
the timed modalities like 	I . Secondly, our construction handles the full fragment of MITL, including
open/closed intervals and past operators (this is in contrast to [7] which handles only closed intervals
among other restrictions). Finally, our constructions are carried out in the framework of hierarchical
timed Büchi automata (HTBA’s) which we introduce in this paper.

An important aspect of our construction is that it is provably optimal in the number of clocks it uses
in the component automaton for each operator in the inductive construction. We prove this using a novel
lower bound argument that shows that any monitoring automaton for a formula of the form	(l,r)a must
use at least 2n + 1 clocks. The complete details are available in a technical report [4].

2 Preliminaries
We assume the definitons of N, Z, R≥0, and Q≥0. An infinite timed word [1] over an alphabet Σ is an
infinite word over Σ × R≥0 of the form (a0, t0)(a1, t1) · · · , satisfying the following conditions: for each
i ∈ N we have ti < ti+1 (monotonicity); and for each t ∈ R≥0 there exists an i ∈ N such that t < ti
(progressiveness). We denote the set of all infinite timed words over Σ by TΣω. Alternatively, an infinite
timed word σ = (a0, t0)(a1, t1) · · · can be viewed as a function χσ : R≥0 → Σ ∪ {δ} given by χσ(t) = ai

if there exists an i such that t = ti and δ otherwise, where δ denotes “time elapse” or “no action.”
For a finite alphabet Σ, the syntax of an MITL formula over Σ is given by: ϕ ::= a ∈ Σ | ¬ϕ | ϕ ∨

ϕ | ϕ ∧ ϕ | ϕUIϕ | ϕS Iϕ, where I ∈ IQ and is not of the form [l, l]. Let σ ∈ TΣω, a ∈ Σ, and t ∈ R≥0.
Then the satisfaction relation σ, t |= ϕ is given as follows: σ, t |= a iff a = χσ(t), σ, t |= ψUIη iff ∃t′ >

*Work done while at Indian Institute of Science, Bangalore
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t : σ, t′ |= η, t′ − t ∈ I, and ∀t′′ : t < t′′ < t′, σ, t′′ |= ψ, and σ, t |= ψS Iη iff ∃t′ < t : σ, t′ |= η, t − t′ ∈
I, and ∀t′′ : t′ < t′′ < t, σ, t′′ |= ψ, with boolean operators handled in the expected way.

We say that a timed word σ satisfies an MITL formula ϕ, written σ |= ϕ, if and only if σ, 0 |= ϕ, and
set L(ϕ) = {σ ∈ TΣω | σ |= ϕ}. We will make use of the standard temporal abbreviations of U ≡ U(0,∞)

and S ≡ S (0,∞), as well as 	Iψ ≡ ⊤UIψ, �Iψ ≡ ¬	I¬ψ, �Iψ ≡ ⊤S Iψ, and �Iψ ≡ ¬�I¬ψ. In
the sequel we will use the following expressively equivalent syntax for MITL (see [6, 5]): ϕ ::= a ∈
Σ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ψUη | ψS η | 	Iϕ | �Iϕ.

3 Hierarchical Timed Büchi Automata
We now introduce hierarchical timed Büchi automata which run over timed words. We fix an alphabet
Σ for the rest of this section. Let C be a finite set of clocks. A valuation for the clocks in C is a map
v : C → R≥0. We denote the set of valuations for C by VC . A clock constraint g over C is a boolean
combination of atomic constraints of the form x Z c, where x is a clock in C, Z∈ {<,≤,=, >,≥}, and c
is a rational constant. We denote the set of clock constraints over C by Φ(C).

A timed edge Büchi automaton (TBA) A over Σ is a structure of the form (Q,Σ,C, E, S , F, tcp)
where Q is a finite set of states, C a finite set of clocks, E ⊆ Q × (Σ ∪ {ǫ}) × Φ(C) × 2C × Q a finite
set of edges, S ⊆ E a set of initial edges, F ⊆ E a set of final edges, and tcp : Q → Φ(C) a “time can
progress” condition on states.

A run of A over an infinite timed word σ = (a0, t0)(a1, t1) · · · is a tuple of the form (ρ, ν) where
ρ : R≥0 → Q∪E and ν : R≥0 → Φ(C), where ρ and ν satisfy the following conditions: let T = {t0, t1, . . .}.
Then (1) there exists a set of non-negative points U = {u0, u1, . . .} such that the following holds: (a)
0 ≤ u0 < u1 . . . and T ⊆ U, (b) for all t ∈ R≥0, ρ(t) ∈ E iff t ∈ U and if ρ(t) is of the form (q, ai, g, X, q′)
iff t = ti and is of the form (q, ǫ, g, X, q′) iff t ∈ U − T , (c) let ρ(ui) = (qi, a′i , gi, Xi, q′i) for each i ∈ N.
Then the valuation of the clocks is defined as follows: for all x ∈ C and ∀t ∈ R≥0 ν(t)(x) = 0 if t = 0,
t if t ∈ (0, u0], t − ui if t ∈ (ui, ui+1] and x ∈ Xi and ν(ui)(x) + t − ui if t ∈ (ui, ui+1] and x ∈ C − Xi.
(2): if ρ(u0) = (q, a′, g, X, q′) then ρ(t) = q if t ∈ [0, u0). And for all i > 0 if ρ(ui) = (q, a′, g, X, q′) then
ρ(t) = q if t ∈ (ui−1, ui), and ρ(t) = q′ if t ∈ (ui, ui+1). (3): ∀t ∈ R≥0 if t < U then ν(t) |= tcp(ρ(t)) and (4):
ρ(u0) ∈ S . The run (ρ, ν) is called accepting if ρ(t) ∩ F , ∅ for infinitely many t. We denote by L(A)
the set of all timed words on whichA has an accepting run. We sayA is universal if L(A) = TΣω, and
unambiguous if there is at most one accepting run over any timed word σ ∈ TΣω.

Let L = [Bn, . . . ,B1] be a list of timed edge Büchi automata where eachBi is of the form (Qi,Σ,Ci, S i, Ei, Fi, tcpi).
Then a joint configuration of Bn, . . . ,B1 is a tuple of the form ((rn, νn), . . . , (r1, ν1)) where ri ∈ Qi ∪ Ei

and vi ∈ VCi for each 1 ≤ i ≤ n. A configuration constraint w.r.t. L is a boolean combination of atomic
constraints of the form Bi.r or Bi.x ⊲⊳ c where r ∈ Qi ∪ Ei, x ∈ Ci for 1 ≤ i ≤ n and c ∈ Q≥0. We denote
the set of all configuration constraints w.r.t. L by G(L). A configuration constraint is evaluated over a
joint configuration of Bn, . . . ,B1. Let (rn, νn), . . . , (r1, ν1) be a joint configuration of Bn, . . . ,B1. Then
the atomic constraints are interpreted as follows: (1): ((rn, νn), . . . , (r1, ν1)) |= Bi.r iff ri = r, and (2):
((rn, νn), . . . , (r1, ν1)) |= Bi.x ⊲⊳ c iff νi(x) ⊲⊳ c.

A hierarchical timed Büchi automaton (or HTBA) H is a structure of the form [Cn, . . . ,C1], where
each Ci is of the form (Bi,Gi) with Bi = (Qi,Σ,Ci, Ei, S i, Fi, tcpi) a timed edge Büchi automaton and
Gi : Qi ∪ Ei → G([Bi, . . . ,B1]) a labelling of edges and states of Bi with “level i” configuration
constraints.

Fig. 1 shows an example of an (edge) TBA. In the figures which appear in this paper we use the
following conventions. Edges can be thick (initial) or thin (non-initial), and non-dashed (final) or dashed
(non-final). An edge from a state p to a state q labelled “e : h, g, a, X” represents a transition (p, a, g, X, q)
named e, with the external guard h. By convention, a missing component of h or g means “⊤” in the
respective positions, a missing X component means “{}”, and a missing action means Σ ∪ {ǫ}. Further,
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on each state p with tcp condition h, we assume a self-loop labelled h,Σ, {}. The tcp condition is written
inside the state (or given by a tcp condition table with the figure). An omitted tcp condition is to be
interpreted as “⊤”. Thus, the edge e1 in the figure is an initial and non-final edge, e3 is a non-initial,
final edge, and e2 and e4 are non-initial, non-final edges. The tcp condition of the state p is ⊤ while
the tcp(q) = x < 1. The language accepted by the automaton, L(B), is the set of all timed words which
begin with an a occurring at exactly one time unit and which have infinitely many b’s. In addition to
that if σ ∈ L(B) then for every a that occurs in σ there exists a b one time unit later and vice-versa.

Example 1. Fig. 2 shows an example HTBA Hunit with two component automata C1 and C2. In C1
only the edge eb is initial so C2, even though both its edges are initial, is forced by C1 to take f2 as the
initial transition. In C1 only ea is final while in C2 both the edges are final. The language accepted by
the automaton is the set of all timed words of the form (b, t0)(a, 1)(b, t1)(a, 2)(b, t2)(a, 3) · · · .

e1 : a, (x = 1), {x}

e3 : b, (x = 1), {x}

p q

tcp(q) = (x < 1)

e4 : c e2 : c

Figure 1: Edge TBA B.

f1 : C1.ea ∧ (C1 .x = 1)

f2 : C1.eb

C1 :

C2 : q r

p

ea : a, {x}

eb : b

Figure 2: HTBAHunit.

Let σ ∈ TΣω. Then a run of H over σ is a joint run of Bn, . . . ,B1 except that on each tran-
sition the configuration constraints have to be satisfied. Formally, a run ρ of H over σ is a tuple
((ρn, νn), . . . , (ρ1, ν1)) satisfying the following conditions: (1): each (ρi, νi) is a run of Bi on σ, and (2):
for all t ∈ R≥0 we require that ((ρn(t), νn(t)), . . . , (ρ1(t), ν1(t))) |= ∧n

i=1 Gi(ρi(t)). Thus, at each time point
t the external edge constraints and tcp conditions are to be satisfied. We will sometimes write (ρ, ν) to
represent a run ((ρn, νn), . . . , (ρ1, ν1)) over H , and for a point t ∈ R≥0 we use (ρ(t), ν(t)) to denote the
tuple ((ρn(t), νn(t)), . . . , (ρ1(t), ν1(t))) in the rest of the paper.

A run ((ρn, νn), . . . , (ρ1, ν1)) of H is called accepting if each (ρi, νi) is an accepting run of Bi. A
timed word σ is accepted by H if H has an accepting run over σ. We define L(H), the language
accepted byH , to be the set of all timed words accepted by H . We say H is universal if L(H) = TΣω

and unambiguous ifH has at most one accepting run over every timed word.
Let H = [Cn, . . . ,C1], where each Ci is of the form (Bi,Gi), be an HTBA. Then we define a

configuration constraint overH to be a configuration constraint over the list of automata Bn, . . . ,B1.

Definition 1. Let ϕ be an MITL formula over Σ. LetH be an HTBA over Σ and let g be a configuration
constraint over H . Then (H , g) is called a monitoring HTBA for ϕ iff for every timed word σ ∈ TΣω

the following conditions are satisfied. (1): there exists a unique accepting run ofH over σ. We denote
this run by (ρσ, νσ). (2): the guard g monitors the truth of the formula along (ρσ, νσ) in the sense that
∀t ≥ 0 : σ, t |= ϕ ⇐⇒ (ρσ(t), νσ(t)) |= g.

We note that such an HTBA H is necessarily unambiguous and universal. We define a monitoring
TBA (A, g), whereA is a TBA and g is a constraint over the configurations ofA, analogously.
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4 Monitoring Automaton Construction for MITL

Theorem 1. For a formula ϕ we can effectively construct a monitoring HTBA (Hϕ, gϕ) for ϕ.

We proceed by induction on the structure of the MITL formula. We consider only the main case,
the operator 	(l,r), here. We will use the following notations and conventions. If H = [Cn, . . . ,C1]
and H ′ = [Dm, . . . ,D1] are lists of timed edge Büchi automata and C is a timed edge Büchi au-
tomaton then by [C,H] we mean the HTBA [C,Cn, . . . ,C1] and by [H ,H ′] we mean the HTBA
[Cn, . . . ,C1,Dm, . . . ,D1]. In the automata we write the edge labels on the transitions only if they are
necessary for the discussion.

Consider a formula ϕ of the form 	(l,r)ψ where 0 < r − l ≤ l < r < ∞. Let n = ⌈l/(r − l)⌉. We
will use a pair of automata C1 and C2 to guess and verify the intervals in which ϕ is false. C1 resets
a pair of clocks (x and y in that order) non-deterministically to guess each interval in which ϕ is false
and C2 verifies that C1’s guesses are indeed correct by resetting a clock z as soon as y turns l and then
verifying that ψ is false through out the interval (x > l) ∧ (y < l) and (y ≥ l) ∧ (z < r − l). So we are able
to reuse the clocks x and y as soon as they become l as opposed to [2, 7] where clock y is active till it
turns r. When the next clock x′ turns l the clock z would have turned r − l, so we can reuse z when x′

becomes l by latest. Thus we need only 2n + 1 clocks when compared to 2n + 2 clocks required by the
constructions in [2, 7].

s

q2p2

e1 : {x1 , y1 } e2 : {x1 }

y1 ≥ r − l, {x2}y1 ≥ r − l, {x2 , y2 }
{y1 }

{y2 }

p1 q1

yn−1 ≥ r − l, {xn , yn }

pn qn

qn−1pn−1

yn−1 ≥ r − l, {xn }
{yn−1 }

{yn }

yn ≥ r − l, {x1 , y1 } yn ≥ r − l, {x1 }

Figure 3: C1.

Let (Hψ, gψ) be a monitoring HTBA for ψ. Let C1 and C2 be the
component automata shown in Fig. 3 and Fig. 4 respectively. Let H =
[C2,C1,Hψ] and g = C1.s ∨ ∨n

i=1 C1.pi. Then (H , g) is a monitoring au-
tomaton for ϕ.

Let us now explain the roles the states play in C2 in general. The truth
value of the formula ψ in the interval [0, l) in σ does not have any bearing
on the truth of the formula ϕ in σ. So, the automaton elapses time in the
state s′ until z turns l. The states u and v verify that the first interval in
which the formula ϕ is guessed to be true by C1 does not have sub intervals
of size r − l such that ψ is false everywhere in the sub interval with the help
of their tcp conditions. The state r sees to it that that once x1 becomes l
there is no point where ψ is true until y becomes l while the state w makes
sure that ψ remains false for a further r − l time units. Thus, together these
two states (along with the transition between them) ensure that the interval
in which ϕ is guessed to be false (by C1) is indeed correct. Other states play
similar roles to validate the guesses of C1.

Correctness of the construction: We now give a sketch of proof of correctness of our construction
for the formula ϕ = 	(l,r)ψ when 0 < r − l ≤ l < r < ∞. Let σ ∈ TΣω and let (ρ, ν) be the unique
accepting run of Hψ over σ. For an i ∈ {1, . . . , n} let j = i − 1 if i > 1 and n otherwise, and k = i + 1
if i < n and 1 otherwise. Suppose there exist runs (π1, ν1) of C1 and (π2, ν2) of C2 over σ such that
((π2, ν2), (π1, ν1), (ρ, ν) is a run of H over σ. Then we observe the following: Observation 1: let
ti
0 < ti

1 < ti
2 < . . ., etc. be the points where the clock xi is reset successively in (π1, ν1) and let ui

0 < ui
1 <

ui
2 < . . . etc. be the points where yi is reset successively in (π1, ν1). Then ti

0 ≤ ui
0 < ti

1 ≤ ui
1 < · · · and

t1
0 < t2

0 < · · · < tn
0 < t1

1 < t2
1 < · · · . Thus a yi reset always follows an xi reset either immediately or

sometime after it. Also the x clocks in C1 are reset cyclically, i.e. if we ignore the resets of the y clocks
then always x j is reset before xi and if at all a clock is reset after xi is reset then it is xk. Similarly the
resets of y clocks are also cyclical. Observation 2: the distance between successive resets of xi is at
least l because of the following: (a): n = ⌈l/(r − l)⌉; (b): the x clocks are reset cyclically; and (c): in C1
the time elapsed in p states are at least r− l so the distance between the resets of consecutive y j and xi is
at least r− l and so, ti

d+1 ≥ ti
d +n · (r− l) ≥ ti

d + l. Similarly the distance between successive resets of yi is
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u gψ ∧ (C1 .s ∨ (¬C1 .s ∧ (x1 < l)))
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vi ¬gψ ∧ (z < r − l) ∧ (xi , l)
ri ¬gψ ∧ (yi , l)
ti ¬gψ ∧ (z < r − l)

c1
i gψ ∧ (xi , l)

c2
i gψ ∧ (xi , l), {z}

Figure 4: C2.

at least l. Observation 3: since C1 ensures that the distance between the consecutive resets of y j and xi

is at least r − l, the clock z in C2, which is reset when y j becomes l, turns r − l on or before xi turns l for
the next time. Observation 4: note that in both C1 and C2 none of xi’s and yi’s are compared against a
value which is greater than l (recall that r − l ≤ l by assumption). This enables us to reuse these clocks
as soon as they become l, which helps to make our the construction clock optimal. It can now be proved
that (H , g) is indeed a monitoring HTBA for ϕ. Due of lack of space we omit the proof.

5 Optimality of the Construction for 	 〈l,r〉ψ
We show that any inductive construction of a monitoring automaton for the operator 	〈l,r〉, where l, r ∈
N, requires at least 2n+ 1 clocks. This we do by first constructing a timed word σ from a given formula
ϕ = 	〈l,r〉a and then show that any monitoring TBA for ϕ will require at least 2n + 1 clocks to monitor
the truth of ϕ along σ.

Theorem 2. Any monitoring TBA with integer guards for a formula of the form 	〈l,r〉a, where l, r ∈ N,
needs at least 2n + 1 clocks.

Due to lack of space we give the proof of this theorem in Appendix. A.
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A Optimality of the Construction for 	 〈l,r〉ψ
We show that any inductive construction of a monitoring automaton for the operator 	〈l,r〉, where l, r ∈
N, requires at least 2n+ 1 clocks. This we do by first constructing a timed word σ from a given formula
ϕ = 	〈l,r〉a and then show that any monitoring TBA for ϕ will require at least 2n + 1 clocks to monitor
the truth of ϕ along σ.

Consider the formula ϕ = 	(l,r)a where l, r ∈ N and r − l ≤ l. Let k be the least positive integer such
that r − l divides l + k and let ǫ be an irrational number such that 0 < ǫ < k/2n. Let σ = (a, t0)(a, t1) · · ·
where: (a) t0 = r + ǫ; (b) ∀i ∈ N, t2i+1 = t2i + ǫ; and (c) ∀i ∈ N, t2i+2 = t2i+1 + r − l + ǫ. Observe that no
two action points lie at an integer distance from each other.

Fig. 5 illustrates the timed word σ when l = 2.5 and r = 3.5. For convenience we have taken ǫ to be
0.5 (which does not meet the prescribed condition).

t3 = 6.5 t4 t5 t6 t7

a a a a a a a a

0

	(2.5,3.5)a

σ

t0 = 4 t1 = 4.5 t2 = 6

Figure 5: Timed word σ with l = 2.5, r = 3.5 and ǫ = 0.5.

Let (A, g) be a monitoring TBA for ϕwhich uses only integer constants. We recall thatA is universal
and unambiguous by the definition of a monitoring automaton. Let C be the set of all the clocks inA.

Let us fix the unique accepting run (ρ, ν) ofA over σ for the rest of the section. Let u be one of the
action points in σ and let t ∈ R≥0 such that t < u. Then we define the set IDiffu(t) to be the set of all
clocks in C whose last reset before t along the run (ρ, ν) lies at an integer distance from u. Formally, we
define IDiffu(t) = {x ∈ C | u − (t − ν(t)(x)) ∈ N}.

Let X ⊆ C and let h be a conjunctive guard over X. Then we denote by h(X) the guard h restricted
to clock constraints over X. For example if h = (1 < x < 2) ∧ (0 < y < 2) and X = {x} then
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h(X) = (1 < x < 2).
As the first step to show that our construction for 	(l,r)a is clock optimal we now prove that ∀i ∈

D0 : ∀t ∈ (ti − r, ti) : IDiffti (t) , ∅ and ∀ j ∈ D1 : ∀t ∈ (t j − l, t j) : IDifftj (t) , ∅. Suppose there exists
an i ∈ D0 and a point b ∈ (ti − r, ti) such that IDiffti(b) = ∅. Then, in the following series of lemmas we
prove thatA is not an unambiguous automaton (the other case when j ∈ D1 can be handled similarly).

Let T0 be the set of all time points where the automaton has made a transition in the interval [0, b)
in the run (ρ, ν) and let T1 be the set of points where a clock is either reset or turns an integer in the
interval [0, b). Let λ = min{t2 − t1 | t1, t2 ∈ T0 ∪ T1 and t1 < t2} and let δ be a real number such that
0 < δ < min{λ, ǫ}. Let D0 = {2i | 0 ≤ i ≤ n} and D1 = {2i − 1 | 1 ≤ i ≤ n}. Then

Lemma 1. For all i ∈ D0 there exists a clock that is reset at ti − r or turns integer at ti − r in (ρ, ν).
Similarly for all j ∈ D1 there exists a clock that is reset at ti − l or turns integer at ti − l in (ρ, ν).

Proof. Suppose there exists an i ∈ D0 such that no clock is reset or turns integer, at ti − r in (ρ, ν). Note
that the truth value of ϕ changes from false to true at ti − r. Since g monitors ϕ along (ρ, ν) its truth must
also change from false to true at ti − r. By assumption no clock is integral at this point, so there must be
a transition at ti − r for the truth value of g to change. Since there is no action at this point it must be an
ǫ-transition with an edge guard say h and no resets.

Consider the run (ρ′, ν′) where ρ′ is identical to ρ except that the transition ρ(ti−r) is taken at ti−r−δ
in ρ′. We claim that (ρ′, ν′) is also an accepting run ofA over σ. Firstly, ρ stays in the same state in the
interval [ti − r − δ, ti − r) due to the choice of δ. Secondly, since no clock turns integer at ti − r we have
that ∀h ∈ Φ(C) : (ρ(ti− r), ν(ti− r)) |= h ⇐⇒ (ρ′(ti− r−δ), ν′(ti− r−δ)) |= h. Finally, as no clocks were
reset at ti − r we also have that ∀t ≥ ti − r : ∀h ∈ Φ(C) : (ρ(t), ν(t)) |= h ⇐⇒ (ρ′(t), ν′(t)) |= h. Hence
(ρ′, ν′) is also an accepting run of A over σ. This contradicts the assumption that A is unambiguous.
The proof for the other case is similar and the lemma follows. �

Let (ρ′, ν′) be obtained from (ρ, ν) by advancing (or “preponing”) by δ all the transitions before b
which reset a clock at an integer distance from ti. Note that by lemma 1 there exists a clock that is
reset at an integer distance from ti in (0, b), so (ρ′, ν′) and (ρ, ν) are different. Also, observe that if t is a
transition point in (ρ, ν) such that t is at an integer distance from ti then t cannot be an action point due
to the properties of σ. So ρ(t) must be an ǫ-transition. Then

Lemma 2. Let h be a guard with integer constants and let t ∈ T0. Then, (ρ(t), ν(t)) |= h ⇐⇒ (ρ′(t −
δ), ν′(t − δ)) |= h if ti − t ∈ N and (ρ(t), ν(t)) |= h ⇐⇒ (ρ′(t), ν′(t)) |= h otherwise.

Proof. Let X = {x | ν(ti)(x) ∈ N} and Y = C − X. Depending on the relative distance of t from ti there
are two different cases.

• t is at an integer distance from ti. Then we have two subcases:

– x ∈ X: then the point of previous reset of x lies at an integer distance from ti. Since all the
clock resets in [0, b) which are at integer distance from ti have been advanced by δ in ρ′ it
follows that (ρ(t), ν(t)) |= g(x) ⇐⇒ (ρ′(t − δ), ν′(t − δ)) |= g(x).

– y ∈ Y: then ν(t)(y) < N. And because of the way δ was chosen we have ν(t − δ)(y) < N and
[ν′(t−δ)(y)] = [ν(t)(y)] as well. Therefore (ρ(t), ν(t)) |= g(y) ⇐⇒ (ρ′(t−δ), ν′(t−δ)) |= g(y).

• t is not at an integer distance from ti. Again there are two subcases.

– x ∈ X: once again due to the choice of δ we can show that ν′(t)(x) < N and [ν′(t)(x)] =
[ν(t)(x)]. Therefore (ρ(t), ν(t)) |= g(x) ⇐⇒ (ρ′(t), ν′(t)) |= g(x).
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– y ∈ Y: since the resets of all clocks in Y coincide in both the runs in the interval [0, b) it
follows that (ρ(t), ν(t)) |= g(y) ⇐⇒ (ρ′(t), ν′(t)) |= g(y).

�

Lemma 3. (ρ′, ν′) is an accepting run ofA over σ.

Proof. Let t ∈ [0, b) and let ρ(t) be a transition in A. Then from lemma 2 we can infer that (ρ′(t −
δ), v′(t − δ)) |= g if t is at a integer distance from ti, and (ρ′(t), v′(t)) |= g otherwise. Since IDiffti (b) = ∅
there exists a point t ∈ T0 such that t is at a non integer distance from ti and x has not been reset in
the interval (t, b). But this implies that if A were to describe the run (ρ′, ν′) in [0, b) on σ then the
configuration reached byA at b on (ρ, ν) and (ρ′, ν′) coincide. As (ρ′, ν′) and the run (ρ, ν) ofA over σ
coincide from b onwards it follows that (ρ′, ν′) is a valid run ofA over σ. �

Therefore we conclude that

Lemma 4. ∀i ∈ D0 : ∀t ∈ (ti − r, ti) : IDiffti (t) , ∅ and ∀ j ∈ D1 : ∀t ∈ (t j − l, t j) : IDifftj (t) , ∅.
Lemma 5. Let γ(i) = r if i ∈ T0 and γ(i) = l if i ∈ T1. Let i, j ∈ T0 ∪ T1 with i , j. Then
IDiffti (t) ∩ IDifftj (t) = ∅ for all t ∈ (ti − γ(i), ti) ∩ (t j − γ( j), t j).

Proof. Suppose there exists a clock x such that x ∈ IDiffti (t)∩IDifftj (t). Then we have (ti−(t−v(t)(x)) ∈ N
and (t j − (t − v(x)(x)) ∈ N. But this implies |t j − ti| ∈ N which, by the construction of σ, is not true. �

Since ǫ < k/2n we observe that there exists a t ∈ ⋂i∈T0
(ti − r, ti)∩⋂i∈T1

(ti− l, ti). Then ∀i ∈ T0∪T1 :
IDiffti (t) , ∅ by lemma 4. As |T0∪T1| = 2n+1 lemma 5 implies thatAmust have at least 2n+1 clocks.
This completes the argument for the case r − l ≤ l.

Note that as open/closed interval was of no consequence in the proof we can also conclude that any
monitoring automaton for the formula of the form 	〈l,r〉ψ requires at least 2n + 1 clocks. Similarly, we
can also show that any monitoring automaton for 	〈l,r〉a when 0 < l < r − l < ∞ will require at least 3
clocks, and any monitoring automaton for the cases l = 0 or r = ∞ (except when l = 0 and r = ∞) will
require at least 1 clock. Therefore

Theorem 3. Any monitoring TBA with integer guards for a formula of the form 	〈l,r〉a, where l, r ∈ N,
needs at least 2n + 1 clocks.

Now to discharge the integer assumption on A as well as on l and r we observe the following. For
a TBA A and a guard g, and a positive rational constant c, let c · A and c · g be the automaton and the
guard obtained by multiplying the constants in A and g by c respectively. Then it is easy to see that if
(A, g) is a monitoring TBA for a formula of the form 	〈l,r〉a then (c · A, c · g) is a monitoring TBA for
the formula	〈c·l,c·r〉a. Now, if there a monitoring TBA (A, g) for an MITL formula of the form 	〈l,r〉a,
where l and r are rational constants, that uses at most 2n clocks then we can get the monitoring TBA
(c ·A, c · g), where c is the least common multiple of the denominators of l, r and the constants inA, for
the formula 	〈c·l,c·r〉a [3] (with brackets matching with the brackets in 	〈l,r〉a) with at most 2n clocks
which contradicts Theorem 3.

Theorem 4. Any monitoring TBA for a formula of the form 	〈l,r〉a needs at least 2n + 1 clocks.

Finally, we observe that in any inductive construction of a monitoring HTBA for MITL the compo-
nent for the operator 	〈l,r〉 needs at least 2n + 1 clocks. If not, we could flatten the resulting HTBA for
	〈l,r〉a to obtain a monitoring TBA for	〈l,r〉a that uses less than 2n+1 clocks, contradicting Theorem 4.
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1 Background and Motivation

Sometimes philosophers revise their beliefs regarding which principles of logic are correct. For
example, one might come to abandon the law of excluded middle out of constructivist inclina-
tions or reject the material conditional on grounds of irrelevance. Yet this kind of belief revision
cannot be modeled by existing belief revision systems because each system assumes that re-
visions occur within logical frameworks, not between them. Original AGM revision assumes
classical logic [1], subsequent non-classical AGM systems presuppose their various logics, and
even fully general approaches to revision such as that of [2] (which assumes only the Tarskian
postulates) still require that revision occur within a particular logic. To model how belief
revision about logic occurs, a new system is needed.

To motivate the need for a new type of system more concretely, consider the following
instance of belief revision:

(1) On election night I thought Donald Trump would win, but as the mail-in ballots got
counted I came to believe Joe Biden would win.

In traditional AGM, when one wants to revise a belief set K by some proposition p, one first
removes ¬p from K (along with anything that entails it), then adds p to K and closes this new
set under classical consequence (to ensure that the final belief set contains all the consequences
of p). This first part of this process is called “contraction,” written K − p (for some K and p)
and the second part is called “expansion,” written K + p.” Example (1) can be modeled within
this framework by letting d be “Donald Trump will win,” b be “Joe Biden will win” and letting
K be the initial belief set, where d ∈ K. The revision K ∗b can be modeled via the Levi identity
as (K −¬b) + b. Since Biden losing entails Trump winning, contracting by ¬b will ensure that
d 6∈ K − ¬b. Subsequently expanding by b will ensure that b ∈ (K − ¬b) + b.

Now compare example (1) with the following:

(2) I used to think that some instances of modus ponens failed, but after giving it some more
thought I came to believe that modus ponens is unconditionally valid.

This sort of belief revision (i.e. revision about which logical principles are valid) is not uncom-
mon in philosophy. It occurs in the upper echelons of academia when professional philosophers
change their beliefs about the correctness of logical principles (e.g. [4, p. 683, 685]), as well as in
first-year logic and mathematics courses, where students encounter classical reasoning and gain
beliefs about the correctness of inferences they didn’t previously have. A first pass comparison
of (1) and (2) might suggest that the process of belief revision is the same in each example. In
both cases the agent begins with some particular belief(s) (that Trump will win in (1) and that
some instances of MP fail in (2)), but when the agent decides they want to believe something
else (that Biden will win in (1) and that MP is valid in (2)) they remove these initial beliefs
and everything that entails them and then accept the new beliefs.
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However, two main differences between (1) and (2) become clear once we attempt (and fail)
to model example (2) within the context of traditional AGM. To begin with, in traditional AGM
every belief set is closed under classical consequence, and thereby is closed under modus ponens.
Accordingly, we cannot even get off the ground formalizing this example within classical AGM
because we cannot construct a non-trivial belief set for which modus ponens fails. A second
difference between (1) and (2) is that in (1) the objects that belief sets are revised by are
individual sentences (d and b), whereas in (2) this is not the case. Modus ponens is not a
single sentence of some propositional language, but rather a schematic rule. The construction
of traditional AGM revision operators also prevents us from modeling examples like (2), since
traditional revision operators take a belief set and a sentence as input and output a belief set.

Unfortunately, these difficulties cannot be surmounted by existing non-classical AGM sys-
tems because, even if such systems allow for the failure of principles of classical logic, there
are almost always background logical principles that cannot be violated. For example, AGM
systems based on relevant logics (e.g. [3]) allow for failures of irrelevant classical validities but
not relevant ones. Even the extremely general AGM system of [2], which does not assume any
background logic, is still inadequate because it’s revision operators do not allow for change
regarding which logical principles a belief set is closed under. To model belief revision about
logic, we need a new framework with new revision operators.

2 Belief Revision About Logic

2.1 Groundwork

In traditional AGM, revision operators are governed by postulates that appropriately constrain
the behavior of the operators. To develop an appropriate operator that revises beliefs about
logic, we also need some appropriate postulates. A first one is the following:

Closure: When revising their beliefs about logic, an agent’s new collection of beliefs should
be closed under the new logic.

This postulate is necessary if we are to take an agent’s belief set to be an accurate representation
of their beliefs about logic. Without the postulate, an agent could “revise” their beliefs to accept
or reject various principles without this revision being reflected in the formalism. We should
also expect another postulate which makes sure that any beliefs incompatible with these new
principles are omitted from the new belief set. To get such a postulate, we need to be clear
about what “incompatible” means. In traditional belief revision, the most common practice is
to remove any beliefs that, in combination with the new ones, entail triviality. This is a decent
baseline for badness, and when revising logics triviality is something that should be avoided in
all but one situation:

Coherency: An agent’s new collection of beliefs is trivial iff the agent is revising their beliefs
to accept the trivial logic.

This postulate constrains agents in such a way that they will prioritize the avoidance of triviality
over the preservation of non-logical information that will trivialize under the new logic. For
example, it rules out situations like someone preserving inconsistent beliefs through a revision
when moving from a paraconsistent to an explosive logic. This is an idealized assumption
about agents (since such situations certainly happen by mistake), but given the abstractness
of the project this is a reasonable idealization. These two postulates provide two minimum
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requirements we would expect to hold of a revision operator. We should also have a third
postulate that provides an upper bound on what can be contained in a new belief set:

Origin: All an agent’s new beliefs are either non-logical beliefs preserved from the old collection
of beliefs, or consequences of the new logic in combination with these non-logical beliefs.

This postulate ensures that (1) the old logic has no bearing on what the new beliefs are and (2)
there is no junk information from elsewhere that can wind up in the new belief set. Without
this postulate, either of these two things might fail. We might also wish to add a bound on what
can be excluded from the new belief set. Such a postulate would ensure as little information as
possible is removed in the course of the revision. In particular, we would want to ensure that as
much non-logical information as possible is preserved through the revision. One such postulate
would be the following:

Maximality: The only non-logical beliefs excluded from the new belief set are those that must
be excluded on pain of triviality.

This postulate ensures that we do not lose non-logical information we do not need to lose. A
failure of this postulate can result in unnecessary loss of non-logical beliefs (even the loss of all
non-logical beliefs). Collectively, these four postulates provide a decent characterization of how
we would want a revision operator to behave. Closure ensures an agent’s new beliefs about logic
are reflected in their new belief set, Coherency prevents inappropriate irrational revision, Origin
prevents inappropriate information from being contained in the new belief set, and Maximality
ensures as much appropriate information as possible is contained in the new belief sets. We do
not claim that these postulates constitute the best possible characterization of a good revision
operator, but they at least are an interesting and plausible starting point.

With these conceptual preliminaries aside, we can begin the formal work. Firstly, we need
to be clear on what “logics” are. In what follows we identify logics with Tarskian consequence
operators:

Definition 1. Tarskian Operators.
A Tarskian consequence operator (for some language L) is a function Cn : P(L) −→ P(L)
that obeys the following, for arbitrary X,Y ⊆ L:

1. X ⊆ Cn(X) (Inclusion)

2. If X ⊆ Y , then Cn(X) ⊆ Cn(Y ) (Monotonicity)

3. Cn(X) = Cn(Cn(X)) (Idempotency)

This decision is motivated largely by concerns of generality. By working with abstract con-
sequence operators we don’t need to worry about the details of proof theory or semantics,
allowing for consideration of a greater variety of logics. The Tarskian postulates themselves
are motivated by concerns of elegance and interest. The proofs of subsequent results depend
heavily on them, and so dropping these postulates results in a much weaker overall theory.

The next point to be clear on is what “non-logical” beliefs are and how they relate to logical
ones. Belief bases themselves are inadequate for this task, but combinations and subsets of
different belief bases do the trick:1

1Belief bases alone don’t work because they are incompatible with the Coherency requirement. For example,
if {p,¬p} is a belief base for some non-trivial belief set closed under a paraconsistent logic, then if we wished
to revise to an explosive logic, we cannot preserve this whole base through the revision without trivializing the
resulting belief set. It must be split up, with either only p or only ¬p preserved.
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Definition 2. Non-Logical Information.
Given some belief set KL closed under the operator CnL, a belief base for KL is a set B for
which

1. CnL(B) = KL

2. For all φ ∈ B, φ 6∈ CnL(B \ {φ})

The set of all non-logical information for a belief set KL is the set BKL

=
⋃{B : B is a belief

base for KL }

Finally, we need to be clear on what revision operators are:

Definition 3. Let L be the set of all Tarskian consequence operators for some language L. A
revision operator is a partial function ~ : (P(L) × L) × L) −→ P(L), where ~(X,L,L′) is
defined iff X is closed under L.

With these tools in hand we can express the above for postulates precisely:

Definition 4. Postulates for revision

1. KL ~ L′ = CnL′(KL ~ L′) (Closure)

2. KL ~ L′ is trivial iff L′ is the trivial logic. (Coherency)

3. There exists some A ⊆ BKL

such that KL ~ L′ ⊆ CnL′(A). (Origin)

4. For all φ ∈ BKL

, if L′ is not the trivial logic then φ 6∈ KL~L′ iff CnL′((KL~L′)∪{φ})
is trivial. (Maximality)

2.2 Technical Results

Now we can begin constructing operators themselves. To do so we take inspiration from partial
meet contraction in traditional AGM. Central to partial meet contraction is the “remainder
set” for some belief set K and sentence p, and similarly here we require the use of a “remainder
set” for some belief set KL, logic L and logic L′. In traditional AGM a remainder set K⊥p is
effectively a collection of candidate new belief sets that don’t contain p, and we can do something
similar with remainder sets here. A remainder set KL⊥L′ is a collection of candidate new belief
sets, each of which will be closed under the new logic L′ and will preserve non-logical information
from the old belief set KL. More precisely:

Definition 5. Remainder Set.
KL⊥L′ = {CnL′(X) : (1) X ⊆ BKL

, (2) CnL′(X) 6= L, and (3) for all Y such that X ⊂ Y ⊆
BKL

, CnL′(Y ) = L} if such Xs exist, and is equal to {L} otherwise.

The intention of the third clause is to ensure that as much non-logical information as possible
from the old belief set is contained in each new candidate belief set. This is needed if the
resulting revision operator based on this remainder set is to satisfy the Maximality postulate.
One last tool is needed for the construction of revision operators:

Definition 6. Preference Orderings.
≤ is a total, well-founded preorder on P(L). ≤ is said to be semi-strict iff for all X,Y ∈P(L),
if X 6⊆ Y and Y 6⊆ X, then X < Y or Y < X.
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Intuitively, preference orderings tell us which collections of formulas an agent finds plausible.
These preference orderings can be combined with remainder sets to provide us with a basic
revision operator:

Definition 7. Basic Revision.
KL ~ L′ =

⋂
min≤(KL⊥L′)

Breaking this down a bit, the revision process begins by identifying all the candidate new belief
sets, which collectively constitute the remainder set. We then identify all of the most preferable
candidates (via the preference ordering). Finally, the revised belief set KL~L′ is the collection
of beliefs that is common to all of the most preferable candidates. This operator behaves fairly
nicely. In particular:2

Theorem 1. Basic revision satisfies Closure, Coherency, and Origin.

Notably, however, basic revision doesn’t satisfy Maximality. To get this, we need to impose
the further restriction on basic revision that it’s preference ordering ≤ is semi-strict. Call
the resulting operation strong revision. Strong revision not only satisfies Maximality, but is
characterized by the four postulates:3

Theorem 2. A revision operator ~ is a strong revision operator iff ~ satisfies postulates
Closure, Origin, Coherency, and Maximality.

Accordingly, via strong revision we’ve succeeded in our main goal of providing a formal system
that models belief revision about logic. As an example of how revision of this sort might play
out in practice, we can return to example (2) from section 1. Let KL be my initial belief set.
Since at this point the agent believes that modus ponens fails, there will be some instances
of it that are not contained in KL (namely, either for some φ and ψ, either φ, φ → ψ ∈ KL

but ψ 6∈ KL or φ, φ → ψ ∈ KL and ¬ψ ∈ KL). Revising my belief set KL to accept modus
ponens can then be modeled with strong revision to obtain a new belief set KL ~ L′, where
L′ will be a new logic that does validate modus ponens. The resulting belief set will preserve
as much non-logical information as (non-trivially) possible from the old belief set and will be
closed under modus ponens.

As a concluding thought, it’s worth noting that the framework provided above is only one
part of a larger picture. What we have done is provide a framework for how one’s collection
of beliefs as a whole can be appropriately revised when a change of logical principles occurs.
This framework assumes that for every revision, the the new logic L′ is readily available for use.
What we have not considered here is how to start from some logic L and transition from it to
the new logic L′. In effect, the system models revision of beliefs about logic not revision about
logics themselves. An interesting follow up project to the present one would be to construct
a separate system that accomplishes this goal. If this could be accomplished, then (ideally) it
could be integrated with the present system to form a more complete picture: To revise one’s
beliefs about logic, one could begin with one’s initial logic L, revise L directly using this new
framework to obtain a new logic L′, and then use L′ in conjunction with the present system to
revise one’s total collection of beliefs.

2The proof of theorem 1 requires the use of a first lemma for the proof of Coherency: (1) L ∈ KL⊥L′ iff L′

is the trivial logic. With this lemma, the proof of theorem 1 simply involves checking the postulates hold.
3The proof of theorem 2 requires two additional lemmas, where (2) is used in the proof of (3): (2) For

any distinct X,Y ∈ KL⊥L′, X 6⊆ Y and Y 6⊆ X. (3) A basic revision operator ~ satisfies Maximality iff the
ordering ≤ that ~ employs is semi-strict. Then the left-to-right direction of theorem 2 follows from theorem 1
plus this third lemma. For the right-to-left direction, we let ~ be any operator that satisfies the four postulates,
let min≤(KL⊥L′) = {X ∈ KL⊥L′ : KL ~ L′ ⊆ X} and then check that KL ~ L′ =

⋂
min≤(KL⊥L′).
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Abstract

First Order Modal logic(FOML) is a natural language to reason about modal proper-
ties of predicates. In FOML, an example formula would be ∀x∃y 2

(
Q(x, y)

)
. Term modal

logic(TML) was introduced to reason about unboundedly many agents and a typical for-
mula in TML looks like ∀x∃y 2x

(
Q(x, y)

)
. Considering the close similarities between the

two logics, in this paper, we explore their relative expressive powers over K-frames.
We prove that every k-variable TML formula can be expressed as a k-variable FOML

formula. Conversely, every k-variable FOML formula can be expressed as a k + 1-variable
formula in TML. This proves that both the logics have the same expressive power over
unboundedly many variables. On the other hand, for every k we show that the k-variable
fragment of FOML is strictly more expressive than k-variable fragment of TML.

1 Introduction

First Order Modal Logic(FOML)[1] combines the power of first order quantifiers and modalities.
With this combination, FOML can be used to express the de dicto and de re properties in a
natural way as 2∃x.α(x) and ∃x.2α(x) respectively. In FOML, the set of agents (modal indices)
is considered to be finite and fixed in the syntax similar to its propositional counter part.

To model systems with unboundedly many agents, Term Modal Logic (TML) was introduced
in [2]. In TML, the modalities are indexed by terms and we have formulas such as ∃x.2xφ(x).
Thus, TML allows us to quantify over modal indices.

Note that syntactically, the only difference between FOML and TML appears in the index
of the modalities. The modal index in FOML is fixed (of the form 2) but the modal index
in TML are terms (of the form 2x). As expected, the FOML and TML structures differ
only in the description of the accessibility relation. The label of the accessibility relation in
FOML structures is fixed but in TML structures, the labels of the accessibility relation change
dynamically.

Thus, the two logics are closely related with some subtle differences. Hence a natural
question arises about the relative expressive powers of the two logics. In this paper, we explore
this aspect in detail for K frames.

We prove that every k-variable TML formula can be translated as a k-variable FOML
formula. Conversely, every k-variable FOML formula can be expressed as a k + 1-variable
formula in TML. These results together imply that both logics have the same expressive power
over unboundedly many variables. On the other hand, for every k we show that the k-variable
fragment of FOML is strictly more expressive than the k-variable fragment of TML.

The results rely on the fact that the two logics satisfy tree model property over K frames.
To prove these results, we define some natural translations of syntax and mapping of structures
of one logic to the other such that the translated formulas are preseved by the corresponding
structures.

97



2 Syntax and Semantics

Let P be a collection of predicates and let V be a countable set of variables. We use the same
set of predicates and variables for both FOML and TML so that the translations can be viewed
naturally.1

Definition 2.1. The syntax of First order modal logic is given by:

α := Q(x1, . . . , xk) | ¬α | α ∧ α | ∃x α | 3 α

The syntax of Term modal logic is given by:

φ := Q(x1, . . . , xk) | ¬φ | φ ∧ φ | ∃x φ | 3x φ

where Q ∈ P has arity k and x, x1, . . . , xk ∈ V.

The ∨,→ and ∀ are defined in the standard way. The dual of 3 modality for FOML (
similarly 3x for TML) is given by 2α := ¬3¬α ( similarly 2xφ := ¬3x¬φ). Note that the
syntax of the two logics differ only in the index of the modal operator.

Let D be a countable set called potential domain in FOML (called potential agent set in
TML).

Definition 2.2 (FOML and TML structures). An FOML structure is described by the tuple
MF = (W, δ,RF , ρ) and a TML structure is given by MT = (W, δ,RT , ρ) where:

� W is a non-empty countable set called worlds and ρ : (W ×P) 7→ ⋃
k

2D
k

is the valuation

function such that if Q ∈ P has arity k then ρ(w,Q) ⊆ [δ(w)]k

� accessibility relation is given by RF ⊆ (W×W) (in case of FOML) and RT ⊆ (W×D×W)
(in case of TML).

� δ : W 7→ 2D assigns to each w ∈ W a non-empty set called local domain set in FOML
(called local agent set in TML) such that whenever2 (w, v) ∈ RF (similarly whenever
(w, d, v) ∈ RT ) we have δ(w) ⊆ δ(v).

From the definition, it is clear that the structures of FOML and TML differ only in the
description of the accessibility relation. Hence the atomic predicates, negation, conjunction
and quantifiers are evaluated in the same way for both FOML and TML. The semantics differ
only in the evaluation of the modal formulas.

To evaluate formulas on structures, we need a variable assignment σ : V 7→ D. We say that
σ is relevant at w ∈ W (for both FOML and TML) if σ(x) ∈ δ(w) for all x ∈ V.

Definition 2.3 (FOML and TML semantics). Given an FOML structure MF and w ∈ W,
and σ relevant at w, for all FOML formula α define MF , w, σ |= α inductively as follows:

MF , w, σ |= Q(x1, . . . , xn) ⇔ (σ(x1), . . . , σ(xn)) ∈ ρ(w,Q)
MF , w, σ |= ¬α ⇔ MF , w, σ 6|= α
MF , w, σ |= (α ∧ β) ⇔ MF , w, σ |= α and MF , w, σ |= β
MF , w, σ |= ∃x α ⇔ there is some d ∈ δ(w) such that MF , w, σ[x 7→d] |= α
MF , w, σ |= 3 α ⇔ there is some u ∈ W such that

(w, u) ∈ RF and MF , u, σ |= α

1Note that we do not consider constants and function symbols in the vocabulary. Also, we exclude equality
from the syntax.

2The monotonicity condition on the δ function with respect to the accessibility relation in both FOML and
TML are imposed to handle the interpretation of free variables. For more details refer [1, 3].

98



Given a TML structure MT and w ∈ W, and for all TML formulas φ define MT , w, σ |= φ
where the atomic case of predicates, negation, conjunction and quantifiers are evaluated in the
same way as in FOML. For modal formulas,

MT , w, σ |= 3x φ ⇔ there is some u ∈ W such that
(w, σ(x), u) ∈ RT and MT , u, σ |= φ

Let KF , KT be the collections of all FOML and TML structures respectively which are
rooted trees.3

3 Interpreting TML in FOML

Given a TML formula φ, we can obtain an FOML formula by simply ignoring the modal indices.
The index information can be encoded as a new unary predicate.

Definition 3.1 (Embedding TML into FOML). Given a TML formula φ, let E ∈ P be a new
unary predicate not occurring in φ. The translation of φ into an FOML formula is inductively
defined as follows:

Tr1(Q(x1, . . . , xk)) = Q(x1, . . . , xk) Tr1(¬φ) = ¬ Tr1(φ)
Tr1(φ ∧ ψ) = Tr1(φ) ∧ Tr1(ψ) Tr1(∃x φ) = ∃x Tr1(φ)

Tr1(3xφ) = 3
(
E(x) ∧ Tr1(φ)

)

For instance ∃x 2x

(
∀y 3yQ(x, y)

)
is translated to ∃x2

(
E(x) → ∀y 3(E(y) ∧ Q(x, y)

)
.

Note that the translation preserves the number of variables.
For the structures, define the mapping π : KT → KF where every MT ∈ KT is mapped to

MF which is obtained by ignoring the edge labels on the accessibility relation in MT and for
all w, u ∈ W and d ∈ D we have (w, d, u) ∈ MT iff ρ(u,E) = {d}. Since we are considering
only tree models, this mapping is sufficient to preserve the translated formulas. Note that both
MT and π(MT ) have the same world set W.

Theorem 3.2. Let φ be any TML formula, for all TML structures MT ∈ KT and for all
w ∈ W and for all σ we have MT , w, σ |= φ iff π(MT ), w, σ |= Tr1(φ).

Corollary 3.3. Every k-variable TML formula can be translated to a k-variable FOML formula
such that the translated formulas are preserved by the mapping π : KT → KF .

4 Interpreting FOML in TML

Given a FOML formula α, to obtain a TML formula, we need to index the modality with
some variable. This can be done by introducing a new variable that does not occur in α and
existentially quantify the new variable at the outer most level.

Definition 4.1 (Embedding FOML into TML). Given an FOML formula α, let z ∈ V be a
fresh variable not occurring in α. The translation of α into an TML formula is inductively
defined as follows:

3Since we are considering K-frames, every pointed TML structure is bisimilar to its tree unravelling and the
bisimulation preserves the formulas[3]. Similar result holds for FOML also. Hence, we restrict to the class of
structures to be rooted tree models for both the logics.
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Tr2(Q(x1, . . . , xk)) = Q(x1, . . . , xk) Tr2(¬α) = ¬ Tr2(α)
Tr2(α ∧ β) = Tr2(α) ∧ Tr2(β) Tr2(∃x α) = ∃x Tr2(α)
Tr2(3α) = 3z

(
Tr2(α)

)

A sentence α is translated to α′ = ∃z Tr2(α).

For example, ∃x 2

(
∀y 3Q(x, y)

)
is translated to ∃z ∃x2z

(
∀y 3zQ(x, y)

)
. Note that α′

has 1 extra variable compared to α.
To translate the structures, let a0 ∈ D be a special domain element and without loss of

generality assume that for all FOML structures MF ∈ KF (which is a tree) rooted at r, we
have a0 ∈ δ(r).4 Define the mapping µ : KF → KT where every MF ∈ KF is mapped to MT

which has the same underlying tree structure asMF and for all w, u ∈W we have (w, u) ∈ RF

iff (w, a0, u) ∈ RT . In other words, µ(MF ) is the same as MF where all edges are labelled by
a0. Again note that MT and µ(MT ) have the same set of W.

Theorem 4.2. Let α be any FOML formula, for all FOML structure MF ∈ KF and for all
w ∈ W we have MF , w, σ |= α iff µ(MF ), w, σ[z→a0] |= Tr2(α).

Corollary 4.3. Every k-variable FOML formula can be translated to a k + 1-variable TML
formula such that the translated formulas are preserved by the mapping µ : KF → KT .

Corollary 3.3 and 4.3 together concludes that over K-frames, both FOML and TML have the
same expressive power over unbounded number of variables. Now we prove that with bounded
number of variables, FOML is strictly more expressive than TML.

Fix some k. We define two FOML models MF
1 and MF

2 and a formula α with k variables
such that MF

1 , r1 |= α and MF
2 , r2 6|= α. But for all k-variable TML formulas φ both µ(MF

1 )
and µ(MF

2 ) agree on φ at r1 and r2 respectively.

Let Q ∈ P be a unary predicate. DefineMF
1 andMF

2 as shown in Figure 1(with unlabeled
edges). Note that δ1(r1) = δ2(r2) = {a0, a1, . . . ak} and ρ1(r1) = ρ2(r2). Also, every uj in

MF
1 is identical to vj in MF

2 . Clearly, MF
1 , r1 |= ∃x1 . . . ∃xk 2

(∨k
i=1Q(xi)

)
(by picking

a1 . . . ak as witness for x1 . . . xk respectively). But note that b 6∈ δ2(r2). Hence, we have

MF
2 , r2 6|= ∃x1 . . . ∃xk 2

(∨k
i=1Q(xi)

)
.

Now we show that µ(MF
1 ) and µ(MF

2 ) agree on all k variable TML formulas. Note that all
the edges in µ(MF

1 ) and µ(MF
2 ) are labeled with a0. Let µ(MF

1 ) =MT
1 and µ(MF

2 ) =MT
2 .

Figure 1: The FOML models MF
1 and MF

2 have no edge labeling and the translated models µ(MF
1 )

and µ(MF
2 ) have edges labeled with a0. Note that MF

1 , r1 |= ∃x1 . . .∃xk 2
(∨k

i=1Q(xi)
)

but we have

MF
2 , r2 6|= ∃x1 . . .∃xk 2

(∨k
i=1Q(xi)

)

4Suppose a0 6∈ δ(r), since δ(r) 6= ∅, we can rename some d ∈ δ(r) as a0.

100



Lemma 4.4. Let MT
1 and MT

2 be as defined above. Then for all σ : [x1 . . . xk] → [a0 . . . ak]
and for all k-variable TML formulas φ, the following holds:

1. For all 1 ≤ l ≤ k, MT
1 , ul, σ |= φ iff MT

2 , vl, σ |= φ.

2. For all 1 ≤ j ≤ k If aj 6∈ range(σ) then MT
1 , uj , σ |= φ iff MT

2 , w, σ |= φ.

Claim (1) follows since uj and vj are identical. For (2), note that aj , b are accessible to
formulas only via quantification. Moreover, uj is identical to w with aj and b interchanged.
Hence the claim holds.

Lemma 4.5. For all k-variable TML formula φ and for all σ : [x1 . . . xk]→ [a0, a1, . . . ak],
MT

1 , r1, σ |= φ iff MT
2 , r2, σ |= φ.

Proof. We induct on the structure of φ. The atomic predicates, negation, conjunction and
quantifier cases are standard since δ1(r1) = δ2(r2) and ρ1(r1) = ρ2(r2).

For the case 3xiφ, first note that for all σ : [x1 . . . xk] → [a0 . . . ak] and there is some
aj 6∈ range(σ). Also, if σ(xi) 6= a0 then the claim holds trivially (since both models will make
the formula false). So assume that σ(xi) = a0. This implies aj 6= a0.

Now if MT
1 , r1, σ |= 3xi

φ then we have some ul such that MT
1 , ul, σ |= φ and by Lemma

4.4(1) we have MT
2 , vl, σ |= φ. Hence MT

2 , r2, σ |= 3xi
φ.

If MT
2 , r2, σ |= 3xiφ then we have two cases. If there is some vl such that MT

2 , vl, σ |= φ
then by Lemma 4.4(1),MT

1 , ul, σ |= φ. Otherwise we haveMT
2 , w, σ |= φ and by Lemma 4.4(2)

(since aj 6∈ range(σ)) we have MT
1 , uj , σ |= φ. Hence in both cases, MT

1 , r1, σ |= 3xi
φ.

Theorem 4.6. Over K frames, both TML and FOML have same expressive powers with un-
boundedly many variables. But, for every k, the k-variable fragment of FOML is strictly more
expressive than the k-variable fragment of TML.

5 Conclusion

We have discussed the results for K-frames. It needs to be worked out how these translations
behave under various frame restrictions and also for constant domain structures.

The result that the k-variable fragment of FOML is strictly more expressive than the k-
variable fragment of TML is dependent on the mapping µ : KF → KT . Instead of uniformly
labeling all the edges with label a0, there could be other schemes for labeling the edges. We
conjecture that under any mapping µ′ : KF → KT that preserves formulas (under corresponding
formula translation), the k-variable fragment of FOML will be strictly more expressive than the
k-variable fragment of TML. To substantiate the conjecture, note that the 2-variable fragment
of FOML is undecidable but the 2-variable fragment of TML is decidable[3].
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1 Introduction

The problem of dealing with Covid-19, until a vaccine is universally administered, is to decrease
the rate of transmission while getting some social and economic activity going. Infection passes
from one person A to another person B when A is infected and B is susceptible. That is to say
that B is not infected and not yet immune. Social activity also takes place when one person
interacts with another. Perhaps A is a taxpayer and B is a tax consultant. Then filing the tax
return may take the form of the two of them meeting. Much can be done electronically without
such a meeting, but if A is a person who needs a haircut and B is a barber then it seems that
it is necessary for the two to meet in order that A gets his haircut.

Authorities can block infectious encounters through some kind of lockdown. For instance
church services can be banned. Beaches can be closed. At the same time essential services have
to be allowed. You must be allowed to go to a grocery store because after all, you do have to
eat. But non-essential encounters may be blocked so that for instance all barber shops may be
required to be closed. But this has the consequence that someone who needs to get a haircut is
not even allowed to visit a barber who has been infected and is now immune. The ham handed
rule is block one, block all!. It is better if contacts depend on knowledge of risk.

Random graphs: communication in society takes place along a graph. The study of random
graphs begins with a paper by Erdös and Rényi, 1959 in which they looked into the question
of what does it mean to say that a graph is random and what properties do random graphs (in
their sense) have. Others have followed up their work and in addition to the Erdös Rényi graphs
there are also other kinds of random graphs like those due to Watts-Strogatz and Barabási-
Albert. Since human beings are connected in a graph structure (both for infection and for
transmission of knowledge) , it is important to ask what kind of graph we are talking about.

The issue here is the spread of infection in a graph and what we can do to stop or decrease
this spread. Knowing the graph of human encounters is clearly relevant.

Knowledge Based Computation: A knowledge based program could have instructions like
do x if you know that A where it is not necessarily specified how it is known whether A is
true. Such programs were investigated in [4,6]. But such instructions can arise in distributed
computing. The question for us is this. If we do not want blanket instructions like do not go
to the beach or do not go to church, but replace them by go to church only if you know that it
is safe, then we are replacing a blanket instruction by a knowledge based one. And clearly the
person following this instruction needs the knowledge whether it is safe to go to church.

Testing is one way to gather this knowledge but attention needs also to be paid to spreading
that knowledge to those individuals who have to carry out such instructions. Consider for
example the instruction, pay x amount of tax if your bank interest was y. You need to know

∗Thanks to Shirshendu Chatterjee, Laxmi Parida, Paul Pedersen, Jayant Shah and two referees.

102



what y is but you do not and so your bank is required to furnish you with that knowledge.
So filling out your tax return is actually a knowledge based algorithm and others have the
obligation to provide you with the requisite knowledge. Similarly with Covid-19, the burden is
on the state to provide you with information which allows you to decide whether it is safe to
go to your barber. See [3,6] for details of knowledge based computation. See also [5].

The program: If we allowed custom made encounters which are safe, then much more eco-
nomic and social activity could proceed. And here knowledge based programs can come to the
rescue. Suppose everyone follows and is required to follow the two following instructions:

Version A

1. If I know that I am infected then I should not visit someone who, I know, is susceptible.
Ki(I(i) ∧ S(j))→ ¬V (i, j) (and symmetrially)

2. If I know that I am susceptible then I should not visit someone who, I know, is infected.
Ki(S(i) ∧ I(j)→ ¬V (i, j) (and symmetrically)

These two conditions are permissive in case of ignorance. Safer versions of these two condi-
tions are as follows:

Version B

1. If I do not know that I am not infected then I should not visit someone who, for all I
know, is susceptible. ¬Ki(¬I(i) ∧ ¬S(j))→ ¬V (i, j))

2. If I do not know that I am not susceptible then I should not visit someone who, as far as
I know, is infected. ¬Ki(¬S(i) ∧ ¬I(j))→ ¬V (i, j))

Note that in case of ignorance of my status, B1 would forbid me from visiting whereas A1
would allow it. So A1 is more permissive and less safe. But A is compatible with more economic
activity.

If there is a great deal of testing and the results of the tests are generally available, then the
two versions A and B will converge. As more information becomes available, what is allowed
under B would grow and what is allowed under A would shrink. With perfect knowledge they
will coincide.

Also the results need not be made generally available. I need to know that my barber is
safe but I do not need to know about the status of a barber in California. But it is not enough if
only governor Cuomo knows if my barber is safe. I must have that information myself, but only
about my own barber. So there could be a way to balance privacy concerns with knowledge
distribution.

Knowledge based algorithms give us a clear path to balancing safety and liveness. What is
needed is to get the required information about who is infectious, who is susceptible and who is
(currently) immune and make sure that this information is available to those individuals who
need to make decisions about their own activities.

Knowledge based algorithms are implicit in many current activities like testing, or contact
tracing. But since the formal, knowledge based aspect is not made explicit, some insights can
be missed.
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2 Model

Think of the model as consisting of three sets S, I, R (for susceptible, infected and recovered)
which are disjoint and whose union is W (the set of all nodes). At each moment of time t
these sets have certain values S(t), I(t), R(t). From time t to t+1 some changes can take place
in these three sets. Thus a susceptible person may become infected, an infected person may
recover, but a recovered person stays recovered. (As we assume for now). A susceptible person
only becomes infected if there is an edge at time t between it and an infected node. Then an
edge is unsafe if one of its nodes is susceptible and the other one is infected. Now suppose we
have a knowledge base and some of the nodes know whether they or their neighbors are infected
or susceptible or recovered. Then they can carry out algorithm A or B as the case may be.

Under protocol A you can utilize The edge (i, j) provided you do not know that the edge is
unsafe. Under protocol B you only utilize that edge if you know that the edge is safe. Condition
B is more strict. Now utilization of an edge can result in some nodes becoming infected under
protocol A but not under B. At the same time an edge being utilized can result in a certain
positive value from the social activity. So protocol A also has an advantage.

Should we use protocol A or protocol B? If we do not know very much about who is infected
and who is susceptible and so on but we do know that the number of infected nodes is very very
small, then with high probability an edge is safe and therefore protocol A is a good protocol
to use. It will add a lot of value and will not result in much infection. If a large proportion
of nodes are infected then this method A is not safe and then we should go to protocol B.
Also, even if the number of infected nodes is currently small, it could increase and we need to
continue to test to make sure that it remains small. Continuing to make the knowledge base
larger and using protocol A with discretion might be the most benefial method to use.

But protocol B is useful only if you have a lot of knowledge because knowledge is required
for the edge to be used and if there is not enough knowledge then edges will not be used very
much and there will not be enough social activity. Use of protocol B therefore requires a lot of
testing and a dissemination of the results obtained,

There are three kinds of edges between individuals, hard edges like that between husband
and wife living in the same house. These edges are largely involuntary. And there are soft edges
where it is up to the two parties concerned whether they will have an encounter. An activity
edge is either a hard edge which is used for an encounter or a soft edge where two nodes x and
y interact to carry out some activity.

The goal then is to allow activity edges only when it is safe and necessary but to allow as
many of them as possible. Moreover, these permissions can be custom made. If I am recovered
or my barber is not infected then I can get a haircut. If you are susceptible and your barber
might be infected then you cannot get a haircut from him. It is then not necessary to block all
visits to barbers. Such considerations are implicit in seeking testing and in making use of it.
But a formal framework helps to make it explicit.

Algorithm: These considerations bring us to this question. Suppose I am a policy maker, I
know something about the hard edges and the soft edges, I know the size of W more or less
and have a limited capacity to do testing. Say I can test 10% of W. Then how should I best
use my resources? What information shall I gather and to whom shall I convey it? It could
well happen that we come up with an NP-complete problem but it may also be that there are
algorithms which are computationally cheap and which would give me a ballpark idea of how
to proceed. The problem seems sufficiently simple (logically speaking) so that approximate
solutions or scalable solutions would be wihin my grasp.
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Evaluation: Let us make the model richer by representing it asM = (W,R, I, S,E,H) where
H represents the hard edges and E represents the soft edges. The policy maker P knows all
the members of H and if an element e in H has the form (i, j) : i, j ∈ W then both i, j know
that there is such an edge e. The edges are symmetric so there is no difference between (i, j)
and (j, i). The soft edges in E are situational, they may exist at one moment and not at the
next. Both i, j have to agree to the edge e = (i, j) for the edge to be alive. If you want to see
your barber, you may need to call him and make an appointment. He will not agree if he knows
that you are infected, or that you are susceptible and he is infected.

It is not necessary for the policy maker to know all the soft edges. Suppose certain formulas
of the form S(i) or I(i) or R(i) are known to the policy maker. If I am i and I want to make
contact with j then perhaps I can consult a database and find out the status of j. So the total
number of formulas that the policy maker P needs to know are only at most a constant times
the size of W rather than that of W ×W .

Let us suppose that at time t, the disjoiint sets of infected, susceptible and recovered are
I(t), S(t), R(t) respectively.
We asume that I(t) ∪ S(t) ∪R(t) = W . R(t) ⊆ R(t+ 1),
Thus those who are recovered at time t remain recovered.
(This may not be realistic but we assume it for now). S(t+ 1) ⊆ S(t) ∪ I(t+ 1).
Everyone who is susceptible at t remains so, or is infected at t+ 1.
R(t+ 1) ⊆ R(t)∪ I(t) If you are recovered at time t+ 1 then either you were already recovered
or you just recovered.
This is an incomplete set. More conditions need to be added.

Note that if j is in I at time t+ 1 but not in it at time t then there must have been either
a hard edge (i, j) at time t with i infected, or such a live soft edge. You can be infected from
your spouse whether you chose or not, but you can only be infected from your barber if the two
of you chose to meet.

Suppose that P at time t has a knowledge base KB of some formulas of the form
R(i, t), S(i, t), I(i, t) which tells her who is infected, who is susceptible and who is recovered.
She shares these formulas with some members of W or makes them available in case of need.
Then they carry out algorithm B. No new people will be infected but also some people who
were infected recover (or die).

Proposition 2.1. Assume that protocol B is used.

• If H is empty and all members of W observe protocol B, then I(t+ 1) ⊆ I(t). No one is
infected who was not already.

• If H is not empty let Ci be the hard edge component of node i. That is, Ci is the smallest
set such that i ∈ Ci and If (j, k) ∈ H and j ∈ Ci then k ∈ Ci. Then if i is infected, then
assuming no recovery, all of Ci will be eventually infected.

Proof:

• Note that protocol B allows no unsafe soft edges. And since H is empty, there are indeed
no unsafe edges. So no new person gets infected.

• If there are indeed hard edges then infection can spread along a hard edge. But starting
from i, it can only spread inside the component of i. 2
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Note that if some infected people recover sponanteously then it will not be the case that
everyone in Ci will be infected in the limit. Even if there is a chain from i to j of hard edges,
some people in that chain might recover and j might never get infected.

3 Some questions

• Some elements of temporal logic need to be brought in. For instance if my barber is
infected, how did he get infected? There must have been an encounter between him and
some infected person when the barber was susceptible.

• if we know that someone is infected, we should contact everyone who had contact with
that person.

• as the proportion of people who are not susceptible rises, there will be greater liikelihood
of saturation and the growth of the pandemic will slow down. Such issues need to be
brought into a logical language. See the paper [7] for history based semantics.

• we should pay more attention to those nodes who have high degree, i.e. many contacts.
Examples are busdrivers, prostitutes and waiters.

• We should pay more attention to people who are vulnerable like the elderly and people
with pre-existing conditions.
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Universal logic, as elaborated by Béziau in [1, 2], is the study of structures of the form
(L , |−) where L is a set and |−⊆ P(L )×L . Here P(L ) denotes the power set of L . These
structures, henceforth referred to as logical structures, will be our main object of interest in
this talk.

Before going further, we would like to mention that the term “universal logic” shouldn’t be
confused with “universal logic project” (cf. [4]). The former we have defined already, whereas
the later roughly is all about developing “a general theory of logics considered as mathematical
structures” (cf. [3]). In the later case the mathematical structures under consideration may
not be logical structures at all.

The content of this talk is a contribution to universal logic understood in the former sense.
In mainstream approaches to a general theory of logics, above definition of logical structures is
not considered as it is (cf. e.g., [7, 8, 9, 10, 12, 14, 15, 17]). Although in all these cases one
can show that one is either dealing with a particular type of logical structure, or the structure
under consideration induces a family of logical structures. This ubiquity of logical structures
was a major motivation for considering that particular notion of logical structures. In this
talk, however, we will be concerned with particular types of logical structures. In what follows,
except Definition 1, Definition 4 and Definition 5 all other definitions and results presented here
are new to the best of our knowledge.

We begin with the definition of Tarski-type logical structures and deductively closed sets,

Definition 1 (Tarski-type Logical Structures). Let (L , |−) be a logical structure. Then
(L , |−) is called a Tarski-type logical structure (or, simply Tarski-type) if |− satisfies the follow-
ing properties.

(a) For all Γ ⊆ L and all α ∈ L , if α ∈ Γ then Γ |− α. (Reflexivity)

(b) For all Γ,Σ ⊆ L and all α ∈ L , if Γ |− α and Γ ⊆ Σ then Σ |− α. (Monotonicity)

(c) For all Γ,Σ ⊆ L and all α ∈ L , if Γ |− β for all β ∈ Σ then, Σ |− α implies that Γ |− α.
(Transitivity)

Definition 2 (Deductively Closed Sets). Let (L , |−) be a logical structure and Σ ⊆ L .
Then Σ is called a deductively closed set in L if it satisfies the following properties.

(1) For all Γ ⊆ Σ and all β ∈ L , if Γ |− β then β ∈ Σ.

(2) For all β ∈ Σ, Σ |− β.

It turns out that the existence of deductively closed sets are crucial in characterizing Tarski-
type logical structures. Our result in this regard is the following theorem.

Theorem 3 (Characterization of Tarski-type Logical Structures). Let (L , |−) be
a logical structure. Then the following statements are equivalent.
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(1) (L , |−) is Tarski-type.

(2) For all Γ ⊆ L and all α ∈ L such that Γ 6|− α, there exists a deductively closed Σ ⊆ L
such that Γ ⊆ Σ and Σ 6|− α.

Logics in which one can perform Lindenbaum-like constructions of maximal consistent sets
are of special importance because constructions of this type often help us to obtain an easy
proof of the completeness theorem for the corresponding logic. In the previous theorem, what
we stated can be phrased alternatively as follows: a logical structure (L , |−) is Tarski-type iff
for all Γ ⊆ L and all α ∈ L , whenever Γ 6|− α, there exists a deductively closed extension Σ
such that Σ 6|− α. This statement has a striking similarity with the Lindenbaum Lemma, which
is concerned with the extension of a consistent set to a maximal consistent one. Is there any
relation between these two types of extensions in general? More specifically, is every Tarski-
type logical structure “Lindenbaum-type” in some reasonable sense of the term and vice versa?
To answer these questions, we will need to have a good enough notion of “Lindenbaum-type”
logical structures. Here we talk about one such notion.

Definition 4 (Strongly-Lindenbaum-Type Logical Structures). Suppose that (L , |−)
is a logical structure. Then (L , |−) is called a strongly-Lindenbaum-type logical structure (or,
simply strongly-Lindenbaum-type) if for all Γ ⊆ L and all α ∈ L the set,

TΓα := {Σ : Γ ⊆ Σ and Σ 6|− α}

has a maximal element whenever it is non-empty.

Definition 5 (α-saturated sets). Let (L , |−) be a logical structure. Let Γ ⊆ L and α ∈ L .
Then Γ is called α-saturated in L if Γ 6|− α and for all β ∈ L \ Γ, Γ ∪ {β} |− α.

The definition of α-saturated sets is taken from [13]. With this definition in hand, we have
the theorem:

Theorem 6 (Characterization of Strongly Lindenbaum-type Logical Struc-
tures). Let (L , |−) be a logical structure. Then the following statements are equivalent.

(1) For all Γ ⊆ L and all α ∈ L , if Γ 6|− α then there exists a maximal α-saturated set Σ
such that Γ ⊆ Σ.

(2) (L , |−) is strongly-Lindenbaum-type.

The logical structures defined in Definition 4 were called “Lindenbaum-type” due to the
following considerations:

• For logical structures of the form (L , |−) induced by any Hilbert-style system of clas-
sical propositional logic (where L is the set of wffs and |− is the usual proof-theoretic
consequence relation) α-saturated sets correspond to maximal consistent sets of wffs.

• Consequently, for those logical structures, (1) of Theorem 6 becomes the usual Linden-
baum Lemma.

Till now, we have gradually introduced Tarski-type and strongly-Lindenbaum-type logical struc-
tures. At this point, it is natural to wonder about logical structures which are both Tarski-type
as well as strongly-Lindenbaum-type (abbreviated henceforth as TsL logical structures). Here
is the corresponding characterization theorem:
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Theorem 7 (Characterization of TsL Logical Structures). Suppose that (L , |−) is
a logical structure. Then the following statements are equivalent.

(1) For all Γ ⊆ L and all α ∈ L , there exists a deductively closed α-saturated set Σ ⊆ L
such that Γ ⊆ Σ.

(2) (L , |−)is both Tarski-type and strongly-Lindenbaum-type.

However, we point out that there are Tarski-type structures which are not strongly-
Lindenbaum-type and vice versa. Below we give two such examples.

Example 8 (A Tarski-type Logical Structure that is not Strongly-Lindenbaum–
type). Let X be any infinite set. Define C : P(X)→ P(X) as follows:

C(Γ) :=

{
Γ if Γ is finite

X otherwise

for all Γ ⊆ X. Now let |−C be defined as follows:

For all Γ ⊆ X and α ∈ X, Γ |−C α iff α ∈ C(Γ)

Then (X, |−C) is Tarski-type but not strongly-Lindenbaum-type.

We point out that Kuratowski closure operators (cf. [11]) corresponding to the cofinite
topology on an infinite set always satisfies the above property.

Example 9 (A Strongly-Lindenbaum-type Logical Structure that is not Tarski–
type). Consider any system of classical propositional calculus. Let (CPC, |−CPC) denote
the induced logical structure where CPC denotes the set of wffs and |−CPC the usual proof
theoretic consequence relation. Define a new logical structure, say, (CPC, |=) as follows:

For all Γ ⊆ CPC and all α ∈ CPC, Γ |= α iff Γ \ {α} |−CPC α

Then (CPC, |=) is strongly-Lindenbaum-type but |= is not reflexive. So (CPC, |=) is not
Tarski-type.

Universal logic has deep connections with Suszko’s Thesis (cf. [16]) and many-valued logics
(cf. [5]). Investigations in this line, along with the development of a theory of logical structures,
remains a job for the future. It would be interesting to consider more general sets instead of
{0, 1}. The case of complete lattice, e.g., is examined in some detail in [6]. It would also be
nice to see the graded counterparts of the notions talked about here and their interactions. All
these are left for the future.
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[10] A. Koslow. Structuralist logic: Implications, inferences, and consequences. Logica Universalis,
1:167–181, 2007.

[11] K. Kuratowski. Sur l’opération a de l’analysis situs. Fundamenta Mathematicae, 3:182–199, 1922.

[12] S. Lewitzka. Abstract logics, logic maps, and logic homomorphisms. Logica Universalis, 1:243–276,
2007.
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Abstract

The Feferman-Vaught theorem provides a way of evaluating a first order sentence ϕ on
a disjoint union of structures by producing a decomposition of ϕ into sentences which can
be evaluated on the individual structures and the results of these evaluations combined using
a propositional formula. This decomposition can in general be non-elementarily larger than
ϕ. We show that for FO sentences in prenex normal form with a fixed number of quantifier
alternations, such a decomposition can be obtained in time elementary in the size of ϕ.

Introduction

The Feferman-Vaught theorem from [4] is a classic result from model theory that gives a method
to evaluate a first order (FO) sentence over a generalized product of structures by reducing it to
the evaluation of other first order sentences over the individual structures and the evaluation of a
monadic second order (MSO) sentence over an index structure. One of the simplest generalized
products is disjoint union and here in case of finitely many structures, one can replace the evaluation
of the mentioned MSO sentence, with the evaluation of a propositional formula. One can also
stratify the result by the rank of the FO sentence ϕ being evaluated on the disjoint union, that is,
one can have the sentences in the alluded “decomposition” of ϕ to have the same bound on their
rank as that for ϕ. These results and their generalizations to MSO have a variety of applications
in computer science, such as in showing the decidability of theories, satisfiability checking and
algorithmic meta-theorems (see [14] for a survey).

Computing the Feferman-Vaught decomposition for an FO sentence ϕ over the binary disjoint
union of structures (finite or infinite) takes time that is bounded by an m-fold exponential in
the size of ϕ, where m is the rank of ϕ [14]. This runtime is thus non-elementary in the size
of ϕ, and cannot be improved in general, owing to a non-elementary lower bound for the size
of the decomposition over all finite structures (and hence also arbitrary structures) [1]. The time
complexity can however be improved by considering special classes of finite structures, such as those
of bounded degree, where it takes at most 3-fold exponential time to compute the decomposition
if the degree is at least 3, and 2-fold exponential time if the degree is at most 2 [11].

In this paper, we take a different approach towards getting faster decompositions, by observing
the syntax of the formulae considered. A well-studied normal form for FO sentences is the prenex
normal form (PNF). A prenex sentence is an FO sentence which begins with a string of quantifiers
that is followed by a quantifier-free formula. Every FO sentence is equivalent to a prenex sentence
and can be brought into such a PNF form in time polynomial in the size of the FO sentence [10].
Let Σn and Πn denote the classes of all PNF sentences that contain n � 1 alternations of quan-
tifiers (equivalently, n blocks of quantifiers) in the quantifier prefix, and whose leading quantifier
is existential and universal respectively. It turns out that various properties of interest in com-
puter science can be expressed using Σn or Πn sentences for very low values of n, indeed with
n as just 2. Examples include parameterized problems such as k-Vertex cover, k-Clique and
k-Dominating Set which are all Σ2 expressible (more examples can be found in Appendix A
of [17]). In program verification, the Σ2 fragment is called Effectively Propositional Logic (EPR)
for which there exist practical implementations of DPLL-based decision procedures for checking
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satisfiability [15, 2, 8]. In databases, Π2 sentences are the syntactic form of source-to-target de-
pendencies in the data exchange setting, and also of views in data integration [3, 12]. Again,
over special classes of structures such as those of bounded degree as aforementioned, every FO
sentence is equivalent to a Boolean combination of Σ2 sentences. Thus considering a fixed number
of quantifier alternations is a well-motivated restriction.

Towards the central result of this paper, we consider a “tree” generalization of Σn and Πn

formulae, that we denote TΣn and TΠn. For any FO formula, any root to leaf path in parse tree
of the formula can be seen as a word over the quantifier symbols § and ¦, the logical connectives

�,� and  , the predicate symbols of τ along with “=”, and a set of variables. We define TΣn
as the class of all FO formulae ψ in negation normal form (NNF, where negations appear only at
the atomic level), such that the word corresponding to any root to leaf path in the parse tree of ψ
has the form § � �§��¦����w where the number of quantifier alternations in the word is at most
n � 1, and w contains no quantifiers. Likewise for TΠn, this word has the form ¦ � �¦��§����w
with at most n � 1 quantifier alternations and w as before. Clearly TΣn and TΠn generalize the
Σn and Πn classes of formulae considered in NNF. We can now state the main result of this paper
(cf. Theorem 3.1). Below tower�n, �� denotes the n-fold exponential function, and TΣn�m� and
TΠn�m� respectively denote the classes of TΣn and TΠn sentences of quantifier rank at most m.

Theorem 1.1. For every TΣn�m� or TΠn�m� sentence ϕ, one can compute a Feferman-Vaught
decomposition for ϕ in time tower�n,O��n � 1� � SϕS2��. Further, the FO sentences appearing in
the decomposition of ϕ belong to TΣn�m� if ϕ is a TΣn�m� sentence, and to TΠn�m� if ϕ is a
TΠn�m� sentence.

In other words, computing the Feferman-Vaught decomposition has an elementary dependence
on the size of ϕ when the number of quantifier alternations in the mentioned “tree PNF” form of ϕ
is bounded. Further, this decomposition is stratified (in the sense mentioned earlier) by both the
rank of ϕ as well as the number of quantifier alternations in the tree PNF form. As a consequence,
we obtain that the TΣn�m� theory of the disjoint union of two structures is determined by the
TΣn�m� theories of the individual structures. Likewise for the TΠn�m� theory (cf. Corollary 3.2).
Using a similar reasoning and as a related result, we show that the number of TΣn�m� or TΠn�m�
formulae with a given number of free variables, considered modulo equivalence, is an elementary
function of m when n is bounded (cf. Proposition 3.3). This is in contrast to the non-elementary
lower bound for this number for general FO sentences of rank bounded by m [13, Chapter 3].

Related work: It is known that bounding the number of quantifier alternations allows obtain-
ing finite automata for MSO sentences over words, in elementary time [20], in contrast with general
non-elementary lower bounds in this context [19]. The same restriction on Presburger arithmetic
again yields faster decision procedures [16, 9]. Finally, the two variable fragment of FO also admits
an elementary (doubly exponential) Feferman-Vaught decomposition for disjoint union [6].

Notation and terminology

We assume the reader is familiar with the standard syntax and semantics of FO [13]. Let τ be a
fixed vocabulary that contains only relation symbols. We define the classes TΣn and TΠn of FO
formulae over τ that respectively generalize the Σn and Πn prefix classes over this vocabulary when
the quantifier-free parts of the formulae in the latter classes are in negation normal form (NNF).
We define TΣn and TΠn using simultaneous induction. For the base case of n � 0, the classes
TΣn�0� and TΠn�0� are both equal to the class of all quantifier-free formulae over τ in NNF. So
this class is built up from atomic formulae of the form R�x1, . . . , xk� and x1 � x2 and the negations
of these, where R is a k-ary predicate symbol in τ and x1, . . . , xk are variables, using the Boolean
connectives � and �. Inductively assume TΣn and TΠn have been defined for n C 0. Then:

� A TΣn�1 formula is either a finite conjunction of TΠn formulae, or a formula of the form
§yϕ1 where ϕ1 is a TΣn�1 formula.
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� A TΠn�1 formula is either a finite disjunction of TΣn formulae, or a formula of the form
¦yϕ1 where ϕ1 is a TΠn�1 formula.

We denote respectively by TΣn�m� and TΠn�m�, the classes of all TΣn and TΠn formulae that
have quantifier rank (i.e. quantifier nesting depth) at most m. An example of a TΣ3�4� formula is

ϕ�x� �� §z�¦u1¦v1§w1�E�z, x� ,E�v1,w1� ,E�u1, v1���¦u2�z � u2 - §w2E�w2, u2���

We now recall the notions of reduction sequences and models for these from the literature.
Note that reduction sequences as we present them below are an adaptation of the special case of
2-reduction sequences from [11], and the adaptation follows the ideas in [7].

Let L b FO be a logic. Given numbers r C 0, i > �r� � �1, . . . , r� and j > �2�, let ψi,j be an
L-formula over τ whose free variables are contained in a sequence x̄j of variables. We assume
x̄1 and x̄2 to be disjoint. Let ∆j�x̄j� � �ψ1,j , . . . , ψr,j�. Let Xi,j be a propositional variable,
X � �Xi,j S i > �r�, j > �2��, and β be a propositional formula over the variables of X . We call the
triple D�x̄1, x̄2� � �∆1�x̄1�,∆2�x̄2�, β� an L-reduction sequence.

Let A1 and A2 be τ -structures that are disjoint, and for j > �2�, let āj be a tuple of ele-
ments from Aj . We say that �A1,A2, ā1, ā2� is a model of the L-reduction sequence D�x̄1, x̄2� �
�∆1�x̄1�,∆2�x̄2�, β�, denoted �A1,A2, ā1, ā2� à D�x̄1, x̄2�, if Sāj S � Sx̄j S for j > �2�, and there exists
an assignment µ � X � �0,1� such that µ à β and for i > �r� and j > �2�,

µ�Xi,j� � 1 � �Aj , āj� à ψi,j�x̄j�.

The disjoint union of two τ -structures A1 and A2, denoted A1 < A2, is the τ -structure whose
universe is the union of the universes of A1 and A2, and in which every predicate of τ is interpreted
as the union of its interpretations in A1 and A2. Given an L formula ϕ�x̄1, x̄2� over τ , we say that
an L-reduction sequence D�x̄1, x̄2� is a Feferman-Vaught decomposition of ϕ�x̄1, x̄2� over disjoint
union, or simply a Feferman-Vaught decomposition of ϕ�x̄1, x̄2� if disjoint union is clear from
context, if it holds that for any two disjoint τ -structures A1 and A2, if āj is a Sx̄j S-tuple from Aj
for j > �2�, then

�A1 <A2, ā1, ā2� à ϕ�x̄1, x̄2� � �A1,A2, ā1, ā2� àD�x̄1, x̄2�

A function that will be relevant for us in this paper is tower � N �N � N which is the function
defined as follows: tower�0, k� � k, and tower�n, k� � 2tower�n�1,k�. So tower�n, k� is an n-fold
exponential function of k. Finally, we abbreviate in the standard way the expression ‘if and only
if’ by ‘iff’, and ‘respectively’ by ‘resp.’.

Main theorem

Theorem 3.1. For every m,n C 0 and every TΣn�m� (resp. TΠn�m�) formula ϕ�x̄1, x̄2� over τ ,
there is a TΣn�m�-reduction sequence (resp. TΠn�m�-reduction sequence) D�x̄1, x̄2� such that:

1. D�x̄1, x̄2� is a Feferman-Vaught decomposition of ϕ�x̄1, x̄2� over disjoint union.

2. D�x̄1, x̄2� can be computed from ϕ�x̄1, x̄2� in time tower�n,O��n � 1� � SϕS2�� and the size of
D�x̄1, x̄2� is tower�n,O��n � 1� � SϕS��.

Proof. We show the result by induction on n for ϕ�x̄, ȳ� > TΣn; the proof when ϕ�x̄, ȳ� > TΠn

is similar. The proof of part (1) of the theorem follows the exposition in [7]. The base case is
easy; the details can be found in [18]. Assume as induction hypothesis that the statement of the
theorem holds for all formulae χ that belong to TΠn (and are of any rank) or belong to TΣn�1�m��
for m�

@ m. Assume further that if Dχ � �∆χ
1 ,∆

χ
2 , βχ� is the reduction sequence for χ given by

the theorem, then βχ contains no negations, and if χ contains a leading existential quantifier (i.e.
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such a quantifier at the root of the parse tree of χ), then βχ is a disjunction of conjuncts with
each conjunct being a conjunction of exactly two positive literals, one a variable corresponding to
a formula in ∆χ

1 and the other a variable corresponding to a formula in ∆χ
2 . (This holds in the base

case.) Consider now a formula ϕ�x̄1, x̄2� of TΣn�1�m�, of rank m. We have two cases as below.

(A) The first case is when ϕ�x̄1, x̄2� �� �k>�t� ϕk�x̄1,k, x̄2,k� where t C 1, ϕk is a formula of
TΠn�m� and x̄j,k is a subtuple of x̄j for j > �2� and k > �t�. By induction hypothesis, there exist
reduction sequences Dk�x̄1,k, x̄2,k� � �∆k

1�x̄1,k�,∆
k
2�x̄2,k�, βk� with the properties mentioned in the

hypothesis. Then the desired reduction sequence for ϕ�x̄1, x̄2� is D�x̄1, x̄2� � �∆1�x̄1�,∆2�x̄2�, β�
where ∆j�x̄j� � ∆1

j�x̄j,1� � ∆
2
j�x̄j,2� � . . . � ∆

t
j�x̄j,t� for j > �2�, and β � �k>�t� βk. Here � denotes

concatenation of tuples. It is easy to verify that D�x̄1, x̄2� satisfies the conditions mentioned
in induction hypothesis. (The time taken and the size calculations for D�x̄1, x̄2� can be done
analogously as in the base case.)

(B) The second case is when ϕ�x̄1, x̄2� �� §zϕ1�x̄1, x̄2, z� where ϕ1 is a formula of TΣn�1�m�1�.
We observe that the free variables of ϕ1 can be seen as being amongst the tuple �ȳ1, ȳ2� where either
ȳ1 � x̄1 � z and ȳ2 � x̄2, or ȳ1 � x̄1 and ȳ2 � x̄2 � z. Corresponding to each of these views, we have by
induction hypothesis that there exists reduction sequences D1�x̄1 � z, x̄2� � �∆1

1�x̄1 � z�,∆
1
2�x̄2�, β1�

and D2�x̄1, x̄2 � z� � �∆2
1�x̄1�,∆

2
2�x̄2 � z�, β2� satisfying the properties mentioned in the induction

hypothesis above. Consider βk; writing it as an OR of ANDs, we have that

βk � β�k �� �
l>�Nk�

Ckl where Ckl �� �
i>Sk

l,1

Xk
i,l,1 , �

i>Sk
l,2

Xk
i,l,2 (1)

Above Nk is the number of conjuncts in β�k; the sets Skl,1 and Skl,2 are mutually exclusive and their

union is the set of all literals in Ckl ; and ∆k
j �x̄j� � �ψki,l,j�i>Sk

l,j
, l>�Nk�. We now define the formulae

ξkl,1�x̄1� and ξkl,2�x̄2� for k > �2� and l > �Nk� as below.

ξ1l,1�x̄1� �� §z �
i>S1

l,1

ψ1
i,l,1�x̄1, z�

ξ2l,1�x̄1� �� �
i>S2

l,1

ψ2
i,l,1�x̄1�

ξ1l,2�x̄2� �� �
i>S1

l,2

ψ1
i,l,2�x̄2�

ξ2l,2�x̄2� �� §z �
i>S2

l,2

ψ2
i,l,2�x̄2, z�

(2)

In the event that Skl,j � g, we put ξkl,j�x̄j� �� True. Let Y kl,j be a new propositional variable for
l > �Nk� and j, k > �2�. Consider the reduction sequence D�x̄1, x̄2� � �∆1�x̄1�,∆2�x̄2�, β� where

∆j�x̄j� � �ξ11,j , . . . , ξ
1
N1,j , ξ

2
1,j , . . . , ξ

2
N2,j� ; β �� �

k>�2�

�
l>�Nk�

�Y kl,1 , Y
k
l,2� (3)

We claim that D�x̄1, x̄2� is indeed a reduction sequence for ϕ�x̄1, x̄2� as required by the theorem
statement. This together with the fact that β as constructed above contains no negations and
further is a disjunction of conjuncts of the form mentioned in the induction hypothesis, would
serve to complete the induction. We have two cases: (i) ϕ1 is a finite conjunction of TΠn�m � 1�
formulae, and (ii) ϕ1 is a TΣn�1�m � 1� formula of the form §z�ϕ�1 where ϕ� is a TΣn�1�m � 2�
formula. We give below the proof that D�x̄1, x̄2� is a TΣn�1�m�-reduction sequence for case (ii),
and a sketch of the calculations for the size of D�x̄1, x̄2� and the time taken to compute it for case
(i). The full analysis of both cases can be found in [18].

If ϕ1 is a TΣn�1�m � 1� formula of the form §z�ϕ�1 as described above, then by the induction
hypothesis, ψki,l,j is also a TΣn�1�m � 1� formula, and since ϕ1 contains a leading existential

quantifier, the formula βk can be assumed to be of the form �i>�r�Zki,1 , Z
k
i,2 for some r C 1

where Zki,j corresponds to a formula of ∆k
j for j > �2�. Then βk is already in the OR of ANDs form

so that SSkl,j S � 1 for all the values of j, k, l considered (cf. (1)). Indeed then ξkl,j is a TΣn�1�m�
formula. So that D�x̄1, x̄2� is a TΣn�1�m�-reduction sequence.

If ϕ1 is a finite conjunction of TΠn�m � 1� formulae, then we observe that for k > �2�, if Xk is
the set of variables of βk, then every pair �ξkl,1, ξ

k
l,2� corresponds to a unique subset of Xk. The
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size of this pair is at most twice the sum of the sizes of the formulae of Dk that correspond to
the variables in the mentioned subset of Xk; so the size of the pair is at most twice the size of
the reduction sequence Dk. Also the value of Nk is at most 2SXk S and SXk S is at most the size of
Dk. Using these observations and the induction hypothesis, we can show the following. Below S � S
denotes the size of the parameter, and Time��� denotes the time taken to compute the parameter.

S∆1S � S∆2S B Q
k>�2�

Number of pairs �ξkl,1, ξ
k
l,2� � size of �ξkl,1, ξ

k
l,2�

B 4 � tower�n, c � �n � 1� � Sϕ1S� � tower�n � 1, c � �n � 1� � Sϕ1S�

SβS B Q
k>�2�

Number of pairs �ξkl,1, ξ
k
l,2� � size of �Y kl,1 , Y

k
l,2�

B 6 � tower�n, c � �n � 1� � Sϕ1S� � tower�n � 1, c � �n � 1� � Sϕ1S�
� SD�x̄1, x̄2�S B tower�n � 1, c � �n � 2� � SϕS�

Time�D�x̄1, x̄2�� B Q
k>�2�

Time�Di� �Time taken to write out D�x̄1, x̄2�

B tower�n � 1, c � �n � 2� � SϕS2�

This completes the induction and the proof.

Corollary 3.2. Let L be one of the logics TΣn or TΠn. Given τ -structures A1 and A2 and m > N,
the L�m� theory of A1 <A2 is determined by the L�m� theories of A1 and A2.

The proof of this corollary can be found in [18]. We conclude with a calculation of a bound on
the number of formulae in TΣn and TΠn when the rank and the number of free variables of the
formulae in these classes are bounded. We again refer the reader to [18] for the proof.

Proposition 3.3. Let L be one of the logics TΣn or TΠn. Then upto logical equivalence, for
m, t C 0, the number of formulae in L�m��τ� whose free variables are among a given t-tuple x̄ of
variables, is tower�n� 2, Sτ S � �n� 1� � �m� t�p� where p is the maximum arity of the predicates of τ .

Future work

As directions ahead, we would like to generalize Theorem 3.1 to extensions of FO such as MSO, and
obtain a similar theorem (and extension) for Cartesian products as well. We would also like to apply
Theorem 3.1 to obtain Feferman-Vaught decompositions of general FO sentences over bounded
degree structures given that over these structures, any FO sentence is equivalent to a Boolean
combination of Σ2 sentences, and compare the times taken to produce these decompositions with
those in [11] which are optimal with respect to the tower height. Finally, we are interested in
investigating the model checking problem for TΣn and TΠn over graphs of bounded clique-width.
It is known from [5] that under believed complexity theoretic assumptions, there is in general no
algorithm that can solve the model checking problem for FO sentences ϕ over graphs of bounded
clique-width in time f�SϕS� � nr where n is the number of vertices in the graph, r C 0 and f is an
elementary function of SϕS (this holds over even all finite trees which have clique-width at most
3). Intuitively, it seems that the unrestricted number of quantifier alternations in the input FO
sentence has a role to play in the mentioned result, given the fact that the number of FO sentences
modulo equivalence, of a given rank and arbitrary quantifier alternations, is non-elementary in the
rank. In this light, Proposition 3.3 motivates the following question which we would like to answer.

Problem 4.1. For any fixed k,n C 0, does there exist an algorithm that, given a graph G of clique-
width at most k and a TΣn or TΠn sentence ϕ, decides whether G satisfies ϕ in time f�SϕS� � SGSr

where r C 0 and f is an elementary function of SϕS?

Acknowledgements: We thank the anonymous referees for their helpful comments and for
pointing to related results in the literature.
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Plenitude
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Abstract

Oliver and Smiley’s mid-plural logic is extended with indefinite descriptions.

1 Introduction
Plural logic has become popular, from the extensive literature we cite [14, 1, 3, 27, 8], for a
recent criticism see [9]. Oliver and Smiley wrote a book on the subject [16] which we take for
granted as our base and will frequently refer to. Here is a brief summary of what we require.

The basic idea in their extension of first-order logic to a two-sorted free logic is that vari-
ables are divided into singular (apple) and plural (apples) sorts. Combinations a,b, a.b and
-a exhibit Boolean structure of plurals. The idiosyncratic notation reflects Oliver and Smiley’s
desire to avoid ontological commitment to sets. Plural variables do not come under the scope
of quantification in mid-plural logic [16, Chapter 12], it is shown that there is an expressive-
ness jump both for plural definite descriptions (the apples) and plural quantifiers (∀apples)
rendering axiomatization impossible. By restricting quantification, Oliver and Smiley obtain
completeness for mid-plural logic following a carefully worked out Henkin argument.

Our approach is as follows. When talking of existence, one can say there is only a single x
such that A(x), or there exist exactly two x 6= y such that A(x) and A(y), or there exist exactly
three distinct x, y, z such that A(x), A(y) and A(z), and so on upto some finite number. Then
we start running out of variables to talk. So we suggest Many a, where a is of plural sort, to
describe a large but finite number of singular variables ranging over the elements of a.

Many and Few are indefinite descriptions, they do not stand for a fixed quantity. In a
domestic application one may say there are many apples in the refrigerator, when the number
may be something like a dozen. In a societal application one may say there were many people
in the market, when the number may be something like a thousand. Even in a single discourse,
for the statements that there are many apples in the refrigerator and there were many people
in the market, the magnitude of the two plurals may not be comparable.

There exist Many(a,b), that is, there are many individuals which are among a or b, does
not imply thatMany a or thatMany b. This is discussed below. Many a∧Many -a could be
consistent, for example in a close election. ¬Many a ∧ ¬Few a could be consistent, we do not
insist on having to decide among them. The range inbetween is called a penumbra [6], following
an idea from [18] a predicate BetFew,Many a could be introduced.

Few a ∧ Few -a could be consistent because the domain may have only few elements. But
this reduces to zeroth-order logic where quantifiers are not required. So for simplicity we assume
the plenitude of the domain, that there are many values in the domain.

We follow Philip Peterson’s work [19] which had Few x, Many x and Most x quantifiers
and bound variables ranging over individuals. In his logic Many x A ⊃ Few x A is valid and
Few x A ≡Most x ¬A. We accept that Few is a degree of plenitude lower than Many [23].

Harvey Friedman interpreted there exists a set with many elements as a generalized quan-
tifier : there exists a set of positive measure, and proved a completeness theorem [10, 11, 22].

∗The second author is grateful to the Mathematics department at IISc for visitor facilities.
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The treatment here is not quantified but propositional, linguistically justified by an interest in
finite plurals. This article addresses Open Problem 2.7 of Moss and Raty [15].

2 Syntax
The signature of our logic contains all the symbols in mid-plural logic (which extends first-
order logic) plus the indefinite plural descriptions. Thus there are singular variables for which
we use x, y, . . . , plural variables for which we use a,b, . . . . There are also constants, function
and predicate symbols forming terms of mixed sort for which we use a, b, . . . , exhaustive and
indefinite descriptions, combinations of plurals, connectives ∧,∨,¬,⊃,≡ and quantifiers ∀,∃.

Terms are as in Oliver and Smiley. They include variables and constants, function terms
f (a1, a2, ..., an), exhaustive descriptions x:A—which are not written {x:A} to refrain from
ontological commitment to sets—and plural combinations -a, a.b, a-b and a,b for complement,
intersection, difference and union.

Atomic formulas include predicates P (a1, a2, ..., an), inclusion a 4 b, read as a among b, and
indefinite descriptions Many a, Few a, Most a (the last definable as Few -a) and, if required,
BetFew,Many a.1 A finite number of plenitude degrees (say few,many, plenty), possibly with
penumbral predicates, can be allowed with small changes to the axioms and proofs below.

Atomic formulas equality a = b and constants true and false are definable as two-way
inclusion, x = x, etc. Boolean formulas are as usual. Exhaustive and indefinite descriptions
can define quantifiers, ∃xA as x:A = x:A, ∀xA as x:A = x:true, Many x A as Many(x:A).

A? distributes predicate A over a plural, that is, A?(a) when every x 4 a satisfies A(x).
Using exhaustive description, “There are many apples in the refrigerator” can be written as
Many(x: apple(x) ∧ inFridge(x)). By defining plurals such as apples = x:apple(x), this can
be written as Many(apples.inFridge). “Many apples are red” is Many(apples.red?).

Following Oliver and Smiley, a model has multi-valued interpretation of plural terms. Our
interpretation is richer because it has to be said whether those multi-values are many, are few,
so the interpretation now has degrees “many” or “few” or inbetween. A plural term a.b has
degree many only if both constituents also do. A plural term a,b has degree many if either
constituent does. The lack of the necessity/sufficiency of the conditions makes plurals indefinite.

3 Examples
One might say that there are few continents because one can count them on one’s fingers. We
want to avoid explicit information on counts. Extending this information to plural terms is not
inferential. 8 planets is not many, whereas it appears that 80 planets would be many, a ten-fold
division of many instances may result in each quotient having not many instances. For instance
one may accept the truth of Many apples, Many inOrchard and Many inFridge and of
Many apples.inOrchard, but not of Many apples.inFridge. We accept that Many a.b
implies Many a and Many b.

The pigeonhole principle Many a,b ⊃ (Many a∨Many b) is not deemed valid. (Friedman
had a corresponding axiom, see [22].) This rules out a proof of a König lemma of the form: If
in a tree with many nodes, all nodes have few chldren, then there must be a path in the tree
with many nodes. This is because, beginning with a root with many descendants, an induction
step would come to the few children of a node having many descendants. This is a collective
and non-distributive property of these children [26], it may be that each of 8 (few) children has

1In supervaluations Few a ∨Many a [6], or in subvaluations Few a ∧Many a [13], could serve.
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8 (few) descendants but together they have 64 (many). Multiplication of few by few could yield
a collective many, see Gabbay and Schlechta in the context of non-monotonic logic [12].

To switch to something non-mathematical, there is a lively controversy among astronomers
and the general public on whether there are many planets, hinging on what defines a planet.
Thus, whether there is a planet which goes around the Sun once in 10000 years depends on the
belief that there are many planets, as follows.

The belief that there are many planets is based on the principle that planethood is primarily
determined by size. Other astronomical details such as rigidity and not being a satellite enter
the picture, they are ignored here. Bodies with diameter more than 900 km and not “clearing”
their orbits are called dwarf planets. Ceres and Pluto are dwarf planets. The orbit of Pluto
intersects that of the traditional planet Neptune, but by taking Pluto to be a dwarf planet,
Neptune’s orbit is clearing. It is believed that there are more dwarf planets to be found, since
they are smaller and difficult to observe.

Let the older planets in our solar system (except Pluto) come under the plural

clearing = x: diam(x) > 900 ∧ clear(x),

stating that their size is above 900 km, and they “clear” their orbit of other planets. The new
category of dwarf planets is the plural

dwarf = x: diam(x) > 900 ∧ ¬clear(x).

The state of our solar system is the formula (most planets orbit the Sun in < 300 Earth years):

A = Many dwarf ∧ Few clearing ∧ ∀x(x 4 clearing ⊃ orbit(x) < 300)∧
pluto 4 dwarf ∧ ceres 4 dwarf ∧ orbit(pluto) < 300 ∧ orbit(ceres) < 300.

There are two definitions of planets, planet1 = clearing then implies Few planet1, and
planet2 = dwarf,clearing implies Many planet2. Astronomers are divided on whether to
include the dwarf planets among the planets (see [2] for a popular account):

B = (planet = planet1) ∨ (planet = planet2).

Sedna, discovered on 14 November 2003, is about the size of Ceres, although it is not yet
classified as a dwarf planet because we do not know about its rigidity. Here is what we know.

C = (diam(ceres) > 900 ≡ diam(sedna) > 900) ∧ orbit(sedna) > 10000.

Therefore A,C ` sedna 4 planet2. Since Many planet and Few planet cannot both be true
(this is formalized as an axiom below), we get A,B,C,Many planet ` sedna 4 planet.

By first-order logic, A,B,C,Many planet ` ∃x(x 4 planet ∧ orbit(x) > 10000).

4 Axioms
In addition to the axioms and inference rules in Oliver and Smiley, we add the following. Our
semantics will rely on an intuitive notion of degrees of plenitude.

1. Many (x:true) asserts there are many elements in the domain. This is an assumption.

2. ∀x(x 4 a ⊃ x = a) ⊃ Few a says that singletons are few, so few will end up getting a
lower degree than any other.
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3. a 4 b ⊃ (Many a ⊃ Many b) ∧ (Few b ⊃ Few a) expresses monotonicity of plenitude.
It follows that Many a.b ⊃ Many a and Many a ⊃ Many a,b, and under the same
antecedent a 4 b, that Many -b ⊃Many -a.

4. Few a ⊃ ¬Many a partitions the plural sort into degrees: few, many and the penumbral
BetFew,Many (which could be ruled out by another axiom). Plural terms are created by
exhaustive description of a formula A, so implicitly with every formula there is a degree.

5. ¬Many a ⊃ Many -a relates negation to plenitude. If there are not many individuals
among a, there will be many in the complement given that there are many elements
in the domain. This partitions Many a into three degrees based on the degrees of -a:
Many a ∧Many -a and the remaining two obtained from the previous axiom.

6. ∀x((Few a ⊃ Few a,x∨BetFew,Many a,x)∧(Many a ⊃Many a-x∨BetFew,Many a-x)∧
(BetFew,Many a ⊃ (Few a-x ∨BetFew,Many a-x) ∧ (Many a,x ∨BetFew,Many a,x)))
sets up the degree ordering in the presence of a penumbral predicate.

5 Semantics
Recall the semantics given for (x:A) in Oliver and Smiley. Let val be an assignment. It is lifted
to exhaustive descriptions using the clause:

val(x:A) are the individuals val′(x) for every x-variant val′ of val such that val′ |= A.
We add a Tarskian definition. The semantics is intuitive and the axioms try to capture that

intuition. The third clause illustrates how penumbral predicates could be handled.

Definition 5.1. val |= Many a if and only if there are many among val(a).
val |= Few a if and only if there are few among val(a).
val |= BetFew,Many a iff there are more than few and less than many among val(a).

Theorem 5.2 (Completeness). The axiomatization above extending Oliver and Smiley’s is
weakly complete.

Proof. We work with finite theories. The Henkin-style completeness proof for mid-plural logic
in Oliver and Smiley is followed, only the differences introduced by our syntax are specified.

In the Lindenbaum construction of the model from a finite consistent set ∆, when a distinct
singular h 4 a for Henkin constant h is encountered in the enumeration as a possible addition
to a finite consistent set ∆, its consistency with respect to ∆ has to be checked.

SupposeMany a in ∆. Find maximal b under the 4 order such that ∆ ` b 4 a∧¬Many b.
Count distinct singular h 4 a, this must be above the count of distinct singular h 4 b. If
required create many fresh singular witnesses h and add h 4 a, h 4 -b,∃x(x = h) to ∆
(sufficient to cross intermediate degrees and penumbras), and also add the plenitude conditions
h 6= h′ for every two such h, h′. By monotonicity and negation Many(a,h) is consistent when
Many a is.

Suppose Few a in ∆. Find minimal b under the 4 order such that ∆ ` a 4 b ∧ ¬Few b.
Count distinct singular h 4 a, this must be below the count of distinct singular h 4 b and
adding one to the former should preserve the separation of counts.

Suppose a penumbral BetFew,Many a in ∆. Find maximal b and minimal c under the 4
order such that ∆ ` b 4 a∧Few b and ∆ ` a 4 c∧Many c and preserve separation of counts.

Indefinite semantics of Many and Few are used here. What is required for completeness is
that there are choices which lead to a maximal consistent set.
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In the Truth Lemma for the model constructed in Oliver and Smiley [16, Chapter 12, Lemma
9], we have three additional cases to prove. Here is one of the requirements:

The assignment val |= Many a if and only if the formula Many a is one of the truth set ∆.

Starting from the right, if Many a is one of the truth set ∆, by our construction, many h
such that h 4 a are in ∆. By our plenitude conditions they are distinct. So many x-variants val′
of val with x 4 a exist. Since a = x:x 4 a, there are many among val(a) and val |= Many a.

For the other direction, contrapositively, if ¬Many a is one of the truth set ∆, our con-
struction and the partition axiom ensure that at all stages there are not many h such that
h 4 a were added to ∆. Thus there are not many x-variants val′ of val with x 4 a. Since
a = x:x 4 a, there are not many among val(a) and val 6|= Many a.

Remark 5.3. Should one use a Skolem function for quantified formulas like ∀xA(x,a) when the
scope of the free plural a is within the quantifier? Thus in ∀x(Many a ∧ A(x,a)) where a
appears only inside the quantifier, the plenitude of a will depend on the value of x.

6 Discussion
We thank Kit Fine, Anantha Padmanabha, Rohit Parikh, Abhisekh Sankaran, Byeong-Uk Yi
and two anonymous referees for reading our earlier version and commenting on it.

Possible meanings for indefinite descriptions are through comparison classes [21], intervals
[20] or (semi)lattices [14, 4]. The structure of these scales, for example, the two scales of
plenitude in Many(apples.inFridge) ∧Many(apples.inOrchard), is not clear.

Indefinite descriptions can be applied to other areas, we take as our basis Kit Fine’s Rutgers
lectures on vagueness and sorites arguments [7]. For vagueness there have been suggestions
to use nonclassical logics [5, 7], supervaluations [6], games [24, 17], subvaluations [13] and
bounded arithmetic [17]. Our approach extends that of degrees and intervals, anticipating the
problem Fine mentions of “penumbral connection”. Thus, in talking about two colours between
which there is a penumbra, one could use a singular logic with predicates such as Orange(x),
Red(x) and BetOrange,Red(x) over an underlying linear order which may be discrete or dense.2
Supervaluations which make more “precise” valuations correspond to shrinking the range of the
penumbral predicate. In the most “precisified” view the penumbra shrinks to nothing. The
approach of epistemic uncertainty is encompassed by leaving the boundaries between these
various predicates indefinite.

Fine argues for global indeterminacy rather than local, that is, when doing a global “march”
from orange to red, one is forced to choose a boundary. We rely on an irreflexive symmetric
adjacency relationship between predicates [18], allowing an indefinite BetOrange,Red between
adjacent colours, but not BetY ellow,Red between distant colours (there could be applications for
such predicates). The transitive order 4 in this article provides a more global context.

Parikh explains his development of Yessenin-Volpin’s ultrafinitism [25] to show the utility of
vague reasoning irrespective of semantics [17]. This article also seeks to increase expressiveness
of the logical language disturbing the classical framework as little as possible. Whether there
is cognitive access to plenitude [28] is an interesting question.

2For example, the additive 3-byte RGB colour model in computer graphics has values Orange = (255, 128, 0)
and Red = (255, 0, 0).
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Abstract

In this paper we propose a model comprising agent and environment incorporating
action specification and rewards inspired from the Indian philosophy of Mīmāṁsā. The
specification includes atomic instructions as well as composite ones such as instructions
with conjunction, exclusive instructions and instructions in sequence. These instructions
follow a separate logical structure and can be combined with environment in the form of
propositions. The performance of action is evaluated through three values S, V and N ,
which are mapped to rewards from the perspective of agent in the Reinforcement Learning
models. This helps the agent to learn faster and reduce the computational complexity.

This is a work in progress we are working on the various rewarding schemes and value
functions from the perspective of reinforcement learning models.

1 Introduction

In Reinforcement Learning (RL) strategies, an intelligent goal directed agent is employed which
perceives the environment and performs suitable action. The agent in addition to performing
tasks, learns continuously and makes appropriate decision to choose actions. On performing
suitable actions, the agent is programmed to receive rewards, which help to direct the agent
to reach the goal. A number of reward and value functions are available in the literature
[5]. However, these rewards are calculated from the environment region which are connected
through a state-space. The agent perceives the state and performs a single action that effect
the state. There has been some work focusing on specifying multiple tasks through temporal
logic [1], where the tasks are specified through propositions and states.

An alternate 3-valued logical formalism namely Mīmāṁsā Inspired Representation of Actions
(MIRA) has been proposed, which includes the specification of both atomic and composite
actions through instructions [3], [4]. The formalism also provides the evaluation values to
determine whether the action has been performed with the presence of intention of goal.

This paper proposes a model incorporating MIRA formalism to the goal directed agent
model in reinforcement learning. The contribution is two-fold : (i) Instead of single action,
composite actions could be specified and (ii) the reward mechanism is directed from the agent
rather than the environment.

The paper is organized as follows. First, the temporal action based multiple task specifica-
tion and evaluation mechanism is described in Section 2. Then a short description of types of
action and the characteristics of result of performing those from the perspective of Mīmāṁsā are
provided in Section 3. An overview of the formalism of MIRA is presented in Section 4. The
model incorporating MIRA formalism is proposed in Section 5 and the paper concludes in
Section 6.
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2 Related Work

Considerable work has been carried out in Reinforcement Learning models [5]. In the work
of teaching multiple tasks with LTL (Linear Temporal Logic), an approach for specification of
multiple actions and rewards has been proposed [1]. The multiple tasks specification includes
tasks occurring in sequence and tasks that are to be performed in any order. With the semantic
constructs of True and False, the progression of learning is evaluated with LTL specification of
prog(σi, ϕ), where σi is assignment of truth values of LTL proposition ϕ. With this construct
an off policy learning is proposed, which helps the agent to extract sub tasks and learn simulta-
neously. A multitask co-safe LTL specification is defined as a tuple T =< S,A, T,P, L,Φ, γ >.
Here, < S,A, T, γ > are defined as in Markovian Decision Process (S - finite set of states, A -
finite set of actions, γ - discount factor and T -transistion probability). Φ is the set of tasks,
P is the set of proposition symbols and L is the labeling function L : S → 2p which maps each
state to the truth values based on proposition p. The reward function is then introduced such
that if the sequence of states s0, s1, s2, ...sn attain a true value (σ0:n |= ϕ) according to L, then
reward is 1. Else, the value of reward is maintained at 0 as shown in Equation 1.

Rϕ(< s0, s1, ..., sn >) =

{
1 σ0:n−1 1 ϕ and σ0:n |= ϕ

0 otherwise
(1)

The major disadvantage with this method is the labeling function L : S → 2p, which leads to
a state space evaluation of 2p. Moreover, only from the truth values of states the information
of task being performed or not is made available.

To overcome these disadvantages, we plan to adopt the formalism of MIRA which can
be used for multiple task specification. In addition, since the formalism also supports action
evaluation, we intend to use these towards rewarding schemes. The advantage is that it may
provide a stateless approach or reduction in the number of states. The concept of reward for
this paper is inspired from Mīmāṁsā. A brief description of the types of action and rewarding
methods according to Mīmāṁsā are provided in the next section.

3 Karma in Mīmāṁsā

Mīmāṁsā, one of the Indian philosophies provides an extensive method of interpretation of Vedic
injunctions to perform the sacrificial rites [2]. One of the methods of interpretation is explained
through three types of action performance (karma). These are regular duty (nitya karma),
occasional duty (naimittika karma) and desired duty (kāmya karma). While regular duties
are to be performed at all times, Occasional duties are to be performed at certain times. For
example, performing Sandhyavandhana is nitya karma and performing ablutions to ancestors
belong to naimittika karma. kāmya karma is to be performed for any desired objective such as
to bring forth rain [6].

The performance of nitya karma and naimittika karma are specified in two ways.

1. Performance of karma yields good results (karanay abhyudhayam)

2. Non performance of karma yields bad results (akaranay prathyavāya janakam)

The performance of kāmya karma is optional, depending on the intention in achieving some
objective. This structure of yielding results is specified in the formalism of MIRA as the
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evaluation parameters, namely Satisfaction (S), if the action is performed with the intention of
goal; Violation (V), if action is not performed; and no intention of achieving the goal as N. An
overview of this formalism is provided in the next section.

4 Overview of MIRA

A formalism of Mīmāṁsā Inspired Representation of Actions has been proposed [3], [4], where
the specification of instructions and the action performance are indicated through syntax and
semantics, respectively. This is a 3-valued logical formalism given by the values S, V,N . The
language is given by:

Li = (I,R, P,B) (2)

where I = (Iv ∪ In) is a set of imperatives consisting of positive Iv = {i+1 , i+2 , · · · , i+n } and
negative imperatives In = {i+1 , i+2 , · · · , i+n }. R and P are the borrowed from the language of
proposition logic, which are the sets of reasons and purposes defined by {r1, r2, · · · , rn} and
{p1, p2, · · · , pn}, respectively. B indicates binary connectives {∧,∨,→r,→i,→p}. With the
given vocabulary of language, the formula of imperatives Fi is given by:

Fi = i|(i→p p)|(i→p p1) ∧ (j →p p2)|(i→p θ)⊕ (j →p θ)|(ϕ→i ψ)|(τ →r ϕ) (3)

Here, i represents a single instruction, (i →p p) indicates instruction enjoining goal, (i →p

p1)∧(j →p p2) and (i→p θ)⊕(j →p θ) denote instructions that are mandatory, where sequence
of i and j does not matter and exclusive instructions, which indicate either-or type, respectively.
(ϕ →i ψ) represent two instructions in a sequence and (τ →r ϕ) signifies a condition in the
form of proposition formula τ for action(s) to be performed through instructions specified by
ϕ.

The semantics of MIRA is described in terms of action performance, where ϕ ∈ Fi take
the value of S, V or N , E(ϕ) = {S, V,N}; τ ∈ R and θ ∈ P take the value of > (True) and
⊥ (False), E(τ) = E(θ) = {>,⊥}. Use of binary connectives B on {S, V,N,>,⊥} lead to the
output values {S, V,N}.

Thus, instructions that denote actions can be represented using the language Li and can
be evaluated to S, V or N . If the action is performed, the evaluation attains the value of
S indicating Satisfaction, if the action is not performed, the formula attains the value of V
denoting Violation and if there is no intention to reach the goal, the formula evaluates to N .

As an example for instruction specification, the image representing the plan of a building
consisting of five rooms (numbered from 0 to 4) connected through a two-way door can be consid-
ered (Figure 1). The robot can navigate through the doors and move from one room to another.

Figure 1: Image of a build-
ing

Assuming the agent in room 2, to reach the part5, the specifi-
cation according to MIRA formalism can be given as:

(room2→r (goto3→i ((goto1→p room5)⊕ (goto4→p part5))) (4)

The valuation can be done in such a way that the ultimate goal
of the agent is to reach part5 from room2. If the agent proceeds
through room4, then the evaluation results in Equation 5.

(> →r (S →i ((V ⊕ S))) = S (5)
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The specification of this formalism and evaluation of action performance in S,V and N can
be used towards the rewarding mechanisms in a reinforcement learning agent. A prototype of
this model, which is proposed with MIRA formalism is described in the next section.

5 Task Evaluation in terms of rewards

The formalism of MIRA can help to specify actions and compute rewards when performed
correctly in reinforcement learning strategies.

The model of agent and environment can be adapted across MIRA formalism, where the
Environment maps to the sets R and P and the action from agent correspond to I. The agent
and environment interaction according to the Reinforcement Learning model is slightly tweaked
to address the formalism of MIRA as shown in Figure 2.

Figure 2: Agent and Environment with MIRA formalism

At each time-step t = 0, 1, 2, 3, the agent is allowed to perform actions from the inputs of
environment if desirable. The environment at time step t can be an instant of τ ∈ R, which is
sensed by the agent. This sensing is represented by the binary connective (→r). Based on the
policy determined by reinforcement strategies, the particular action(s) is decided by the agent.
The action selection includes composite actions which can be specified with the help of →i, ⊕
and ∧. The effect of actions leads to purposes that reflect in the environment and is represented
by the connective →p.

The rewards as per reinforcement learning is mapped from the environment [5]. As shown in
Equation 1, the reward using LTL is assigned to 1 or 0 through the perception of the sequence
of states.

But through our proposed model, the evaluation of actions in terms of S, V and N can
be mapped towards rewards such that if the tasks performed evaluate to S, then it is marked
against reward. This evaluation occurs at two levels. In the first level, Fi is evaluated to
{S, V,N}. With these values, the reward is evaluated to {1, 0} in the second level.

Definition 1. A reward is mapped to the value of 1, if the evaluation of tasks as per MIRA
formalism attains the value of S and 0 otherwise as given in Equation 6

Rψ =

{
1, if E(ψ) = S

0, otherwise
(6)

where ψ denotes the tasks represented through MIRA formalism.

For example, Equations 4 and 5 provide the specification and evaluation of tasks, respectively
leading to the value of S. The reward to the agent in this case is 1 as per Equation 6.
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Comparing Equations 1 and 6, it can be seen that the sequence of states are not perceived
according to our proposed model, thereby leading to the reduction in state-space.

Moreover, the value of N can help the agent to orient towards goal, which may lead to faster
learning which may be evident from the following scenario. For example, if the agent picks up
the path of room2 → room3 → room4 → room0, the evaluation leads to N indicating the
agent cannot reach the goal of room5 (Equation 7 and 8).

room2→r (goto3→i (goto4→i (goto0→p room0))) (7)

evaluates to > →r (S →i (S →i (S →p N))) = N (8)

This is because, the present RL model based on LTL uses exploratory or exploitable approach
rather than a goal directed one.

Thus the rewards can be triggered from the agent rather than the environment in the
proposed approach, leading to multiple advantages such as lesser state-space and goal directed
learning as opposed to exploratory learning.

6 Conclusion and Future Work

In this work, the formalism of MIRA is introduced for specifying multiple tasks in Reinforcement
Learning model. Multiple task specification includes tasks that can be performed without any
order, tasks to be performed in a sequence and tasks that can be carried out in one way or the
other. In addition, the goal orientation of the agent can be captured through the specification
of i →p θ and the corresponding semantic evaluation value, N . The performance and non-
performance of actions indicated through semantic values S and V , respectively can be mapped
towards the evaluation of rewards.

This work is a preliminary attempt to construct a Reinforcement Learning model through
the principles of Mīmāṁsā. We are currently working to strengthen this model through update
evaluation at regular intervals and by providing different rewarding mechanisms. Our focus is
also to experimentally analyse the model against other benchmark algorithms.
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Abstract

This paper proposes a sequent calculus, denoted by G(C + J), for a combination of the intu-
itionistic propositional logic and the classical propositional logic. Such a combination was studied in
Humberstone (1979) and Del Cerro and Herzig (1996). Our sequent calculus has the following two
features. First, the system, which is based on multi-succedent sequents, is constructed by the idea
of adding the classical implication to Maehara’s multi-succedent sequent calculus of intuitionistic
logic. The context of the right rule for the intuitionistic implication, however, should be restricted to
propositional variables and intuitionistic implications. Second, G(C + J) enjoys the cut-elimination
theorem, which allows us to establish the subformula property. Hence, it is shown proof-theoretically
that G(C + J) is a conservative extension of each of the classical propositional logic and the intu-
itionistic propositional logic.

1 Introduction
This paper studies a combined system of intuitionistic propositional logic and classical propositional
logic from proof-theoretic viewpoints. 1 In particular, this paper proposes a cut-free sequent calculus,
denoted by G(C+J), for a combination of the intuitionistic propositional logic and the classical propo-
sitional logic. As far as the authors know, such a combination was studied so far by [5, 4, 8]. While [1, 2]
also combined the intuitionistic propositional logic and the classical propositional logic, the semantics
given in [1] and the semantics in [2] are different from Kripke semantics given in [5, 4, 8]. This paper
follows the semantic treatment of [5, 4, 8]. The classical negation is also added to other non-classical
logics, i.e., logic of strict implication [6] and subintuitionistic logic [3].

Humberstone [5]’s syntax consisted of classical and intuitionistic negations (¬c, ¬i, respectively),
conjunction and disjunction, where the intuitionistic implication is defined as ¬i(A ∧ ¬cB). Hum-
berstone interpreted the classical implication ¬cA over intuitionistic Kripke model as: w |= ¬cA iff
w 6|= A. He also provided sound and complete natural deduction calculus and proved the completeness
theorem via a canonical model construction.

Del Cerro and Herzig [4] proposed a Hilbert axiomatization of a combined system of intuitionistic
propositional logic and classical propositional logic. They pointed out that a Hilbert-style axiomatiza-
tion could not be obtained by simply combining axioms of the two logics. This is because one of the
intuitionistic axioms A →i (B →i A) (where →i is the intuitionistic implication) becomes invalid
when we add the classical implication to the syntax of the intuitionistic propositional logic. As a re-
sult, they proposed their appropriate axiomatization C + J by employing the idea of conditional logic.
Del Cerro and Herzig proved that C + J is sound and complete for the following Kripke semantics for

1We would like to thank two reviewers for their helpful comments and suggestions. The work of the second author was
partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) Grant Number 19K12113 and JSPS KAKENHI
Grant-in-Aid for Scientific Research (B) Grant Number 17H02258.
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C + J: it is based on the same Kripke semantics as Humberstone [5], where the satisfaction of the clas-
sical implication→c is defined naturally as: w |= A →c B iff w |= A implies w |= B (the addition of
the classical implication breaks the persistency or monotonicity of a formula in Kripke semantics, which
leads to the invalidity of the axiom A →i (B →i A)). Based on this, they showed semantically that
C + J is conservative over intuitionistic propositional logic and classical propositional logic. Moreover,
Del Cerro and Herzig established the decidability of C + J by translating it into modal logic S4.

Lucio [8] provided a sequent calculus, denoted by FO⊃, for the first-order expansion of C + J. It
is noted that the logical connectives of FO⊃ consists of intuitionistic implication, classical implication
and classical negation and universal quantifier. One of the key ideas of [8] consists in employing the
notion of structured single succedent sequent of the form: Γ1; · · · ; Γn ⇒ A, where Γi is a finite
set of formulas. For example, B1, B2;C1, C2, C3;D ⇒ A is a structured sequent and its semantic
interpretation (see [8, Definition 16]) is: for any w1, w2, w3 such that w1 6 w2 6 w3, if w1 |= Bi for
all i, w2 |= Cj for all j and w3 |= D, then w3 |= A. This special notion of sequent enables us to define
sequent rules for both intuitionistic and classical implication without any context restriction. It is noted
that some rule for FO⊃ does not satisfy the subformula property. Lucio [8] proved that FO⊃ is sound
and complete for the intended Kripke semantics.

This paper proposes a cut-free sequent calculus G(C + J) for the combination, studied by Hum-
berstone [5] and Del Cerro and Herzig [4], of the intuitionistic propositional logic and the classical
propositional logic. In particular, the calculus is shown to be equipollent with Del Cerro and Herzig’s
Hilbert axiomatization (see Fact 3, Theorems 1 and Theorem 2). The cut-freeness of G(C + J) (The-
orem 3) leads us to the subformula property, which gives us a purely proof-theoretic argument for that
G(C+J) is conservative over the classical propositional logic and the intuitionistic propositional logic.
Unlike [8], this paper employs the ordinary notion of multi-succeedent sequent, i.e., Γ ⇒ ∆, where Γ
and ∆ are finite multisets. It is remarked that all the inference rules of G(C+J) are analytic, i.e., enjoys
the subformula property, while some rules of FO⊃ are not analytic.

To define G(C+ J), we first observe, within the intuitionistic propositional logic, that the right rule
for the intuitionistic implication

A,Γ⇒ B

Γ⇒ A→i B

can be restricted to the following form without changing the provable sequents:

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B.

On the top of this reformulated multi-succedent sequent calculus of the intuitionistic logic, we add the
ordinary left and right rules of the classical implication. Without this restriction, the invalid formula
A →i (B →i A) in Kripke semantics could be derived. Therefore, this restriction is compatible with
Del Cerro and Herzig [4]’s observation of the impossibility of a simple combination of Hilbert systems
of the classical and intuitionistic logics. To obtain our sequent calculus G(C + J), we do not need to
employ the idea of conditional logic as did in [4], but we need to specify the essential “core” of the right
rule for the intuitionistic implication.

2 Syntax, Kripke Semantics and Hilbert System

This section reviews a Kripke semantics proposed in [5, 4] in term of the following syntax. Our syntaxL
consists of a countably infinite set Prop of propositional variables and the following logical connectives:
falsum⊥, disjunction ∨, conjunction ∧, intuitionistic implication→i, and classical implication→c. We
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denote by LC and LJ the resulting syntax dropping→i and→c from L, respectively. The set Form of
all formulas in our syntax is defined inductively as follows:

A ::= p | ⊥ |A ∨A |A ∧A |A→i A |A→c A,

where p ∈ Prop. We denote by FormC and FormJ the set of all classical formulas and the set of all
intuitionistic formulas, respectively. We define > := ⊥ →i ⊥, ¬cA := A→c ⊥ and ¬iA := A→i ⊥.

Let us move to the semantics for our syntax L. A model is a tuple M = (W,R, V ) where W is
a non-empty set of possible worlds, R is a preorder on W , i.e., R satisfies reflexivity and transitivity,
V : Prop → P(W ) is a valuation function satisfying the following persistency condition: w ∈ V (p)
and wRv jointly imply v ∈ V (p) for all worlds w, v ∈ W . Given a model M = (W,R, V ), a world
w ∈W and a formula A, the satisfaction relation w |=M A is inductively defined as follows:

w |=M p iff w ∈ V (p),
w 6|=M ⊥
w |=M A ∧B iff w |=M A and w |=M B,
w |=M A ∨B iff w |=M A or w |=M B,
w |=M A→i B iff for all v ∈W, (wRv and v |=M A jointly imply v |=M B).
w |=M A→c B iff w |=M A implies w |=M B.

Let us say that A is valid if w |=M A for all models M = (W,R, V ) and all worlds w ∈W . We say that
a formula A is persistent if, for every model M = (W,R, V ) and every w, v ∈ W , w |=M A and wRv
jointly imply v |=M A.

Consider a modelM = (W,R, V ) such thatW = {w1, w2}, R = {(w1, w1), (w1, w2), (w2, w2)}, V (p) =
{w2}. In this model, w1Rw2 and w1 |=M ¬cp holds, but w2 6|=M ¬cp holds. Moreover, w1 6|=M > →i

¬cp. These arguments give us the following propositions.

Proposition 1. A formula ¬cp is not persistent.

Proposition 2. Neither ¬cp→i (> →i ¬cp) nor ¬cp→c (> →i ¬cp) is valid.

Proposition 2 means that an intuitonistic tautology A→i (B →i A) is no longer valid when we add
the classical negation ¬c to the intuitionistic syntax LJ. This is why Del Cerro and Herzig [4] needs to
restrict this axiom scheme (see the axiom Per in Table 1) in their Hilbert system C + J given in Table
1. They established that C + J is sound and complete for Kripke semantics as above.

Table 1: Hilbert System C + J in [4]
(CL) All instances of classical tautologies
(CK) (A→i (B →c C))→c ((A→i B)→c (A→i C))
(ID) A→i A

(CMP) (A→i B)→c (A→c B)
(Per) A→c (B →i A)†

†: every occurrence of→c in A is in the scope of→i.
(MP) From A and A→i B we may infer B

(RCN) From A we may infer B →i A

Fact 3 (Del Cerro and Herzig [4]). For all formulas A, A is valid iff A is a theorem of C + J.

It is remarked that Humberstone [5] showed that his natural deduction system for combinint classical
and intuitionistic logic is sound and complete for the same Kripke semantics.
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3 Multi-Succedent Sequent Calculus

Table 2: Sequent Calculus G(C + J)
Axioms

A⇒ A
(Id) ⊥ ⇒ (⊥)

Structural Rules

Γ⇒ ∆
Γ⇒ ∆, A

(⇒ w) Γ⇒ ∆
A,Γ⇒ ∆

(w ⇒)
Γ⇒ ∆, A,A

Γ⇒ ∆, A
(⇒ c)

A,A,Γ⇒ ∆

A,Γ⇒ ∆
(c⇒)

Γ⇒ ∆, A A,Π⇒ Σ

Γ,Π⇒ ∆,Σ
(Cut)

Propositional Logical Rules

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B
(⇒→i)

Γ1 ⇒ ∆1, A B,Γ2 ⇒ ∆2

A→i B,Γ1,Γ2 ⇒ ∆1,∆2
(→i⇒)

A,Γ⇒ ∆, B

Γ⇒ ∆, A→c B
(⇒→c)

Γ1 ⇒ ∆1, A B,Γ2 ⇒ ∆2

A→c B,Γ1,Γ2 ⇒ ∆1,∆2
(→c⇒)

Γ⇒ ∆, A Γ⇒ ∆, B

Γ⇒ ∆, A ∧B (⇒ ∧)
A,Γ⇒ ∆

A ∧B,Γ⇒ ∆
(∧ ⇒1)

B,Γ⇒ ∆

A ∧B,Γ⇒ ∆
(∧ ⇒2)

Γ⇒ ∆, A

Γ⇒ ∆, A ∨B (⇒ ∨1)
Γ⇒ ∆, B

Γ⇒ ∆, A ∨B (⇒ ∨2)
A,Γ⇒ ∆ B,Γ⇒ ∆

A ∨B,Γ⇒ ∆
(∨ ⇒)

In what follows, we use the ordinary notion of multi-succedent sequent. A sequent is a pair of finite
multisets denoted by Γ ⇒ ∆, which is read as “if all formulas in Γ are true then some formulas in ∆
are true.”

Table 2 provides our multi-succedent sequent calculus G(C+J). Our basic strategy of constructing
G(C + J) is to add classical implication to the multi-succedent sequent calculus mLJ of intuitionistic
propositional logic, proposed by Maehara [9]. However, if the ordinary left and right rules of classical
implication were added to mLJ, the soundness of the resulting calculus would fail, i.e., ¬cp→c (> →i

¬cp) would be derivable, which is not valid by Proposition 2. This is the reason why the original right
rule

A,Γ⇒ B

Γ⇒ A→i B

of intuitionistic implication of mLJ is restricted to the right rule given in Table 2. This restriction is
still sufficient to derive the axiom (Per) in Hilbert System C + J.

Remark 4. If the main connective of each formula in Γ of the above ordinary right rule for intuitionistic
implication is not the classical implication, we can derive the above ordinary right rule for →i. For
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example, let Γ be p ∧ q, C →i D. Then we recover the original rule as follows:

p⇒ p
p, q ⇒ p (w ⇒)

q ⇒ q
p, q ⇒ q (w ⇒)

p, q ⇒ p ∧ q (⇒ ∧)
A, p ∧ q, C →i D ⇒ B

A, p, q, C →i D ⇒ B
(Cut)

p, q, C →i D ⇒ A→i B
(⇒→i)

p ∧ q, C →i D ⇒ A→i B
(∧ ⇒, c⇒)

.

Theorem 1. If A is a theorem of C + J then⇒ A is derivable in G(C + J).

We say that a sequent Γ ⇒ ∆ is valid if, for every model M = (W,R, V ) and every w ∈ W ,
whenever w |=M A for all A ∈ Γ, it holds that w |=M C for some C ∈ ∆.

Theorem 2. If Γ⇒ ∆ is derivable in G(C + J) then Γ⇒ ∆ is valid.

By Fact 3 and Theorems 1 and 2, G(C + J) is semantically complete, i.e., if A is valid then ⇒ A is
derivable in G(C + J). Therefore, C + J and G(C + J) are equipollent.

Let us denote by G−(C + J) a sequent calculus obtained from G(C + J) by removing the rule
(Cut). With the help of a variant of “Mix rule” by Gentzen (“extended cut rule” used in [7, 11]) to take
care of contraction rules, the following cut elimination theorem is obtained.

Theorem 3. If Γ⇒ ∆ is derivable in G(C + J), then Γ⇒ ∆ is derivable in G−(C + J).

By Theorem 3, the subformula property is also obtained. This ensures that G(C + J) is a conservative
extension of both classical propositional logic and intuitionistic propositional logic.

4 Further Direction
To emphasize a merit of our proof-theoretic approach, we are currently working on decidability and
Craig interpolation theorem of G(C + J). The decidability of C + J is already shown by Del Cerro
and Herzig [4] with the help of the translation from C + J into S4. However, decidability argument
(originally due to Gentzen (cf. [10])) of a cut-free sequent calculus could give a more direct argument.
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editors, Advances in Modal Logic, volume 10, pages 114–133. College Publications, 2014.

[3] Michael De and Hitoshi Omori. Classical and empirical negation in subintuitionistic logic. In Lev Beklemi-
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1 Introduction

Inferences involving desire modalities play a significant role in philosophy, logic, linguistics
and artificial intelligence etc. In this paper, we interpret desire from a perspective of instru-
mentalism1. A desire can directly causally affect the preferences that make the agent pleasure.
And we argue that causality is important in evaluating desire modalities. In this way, a
desire-causality model is given and a modal logic based on it is proposed.

The desire modality is usually treated as a certain propositional attitude in logic. In [13],
Hintikka formulated desire by a buletic accessibility relation. This approach is inadequate to
characterize desire, because in those accessible worlds, there may be a proposition that the
agent does not want but still exists. In the BDI model, desires which are simply expressed as
a set of goals represent the motivational state of the agent, like[2, 7], while its nature has not
received much attention. The necessity for an independently semantics motivation to analyze
desire modalities was proposed in [12]. Then some targeted models and semantic analysis
were devised, e.g., [8, 12, 24]. From the perspective of decision theory, a desire behavior is
usually regarded as an outcome of the entanglement of preferences and beliefs. In [14], the
authors proposed a logic of conditional desires based on the ordering relations of preference
and normality respectively. Likewise, [16, 17, 23] give various logical approaches to combine
preference with belief or other informational attitude, and study both their static and dynamic
structure. Different from the qualitative investigation in preference logic, [4, 5] discuss the
desire revision based on the possibilistic framework. In our paper, we try to amplify the
difference between desire and preference, namely we try to illustrate the desire that an agent
has is not necessarily her preference. We also employ a total preorder formalizing the preference
relation in the model, but it alone does not characterize desire. To explain our motivation, let’s
take an example:

Robin was in charge of an important project in the company recently, and the tremendous
pressure made him sleepless every night. Robin is a healthy - conscious person and poor
sleep will make him sluggish the next day which bothers Robin most. So having a good sleep
is what he needs most at the moment. Therefore, on this sleepless night, Robin wants to
take some sleep-helping pills to help him sleep well, even if these pills have some side effects

In this example, Robin’s wanting to take sleeping pills is obviously not for its own sake,
but results from instrumental desire: the desire of taking pills depends on the result that the
pills brings about. The question is how to formalize such a property.

A possible answer to account for Robin’s desire is that the desire of taking pills can be seen
as a result of comparing the actual world (in which the pills are not taken) and a hypothetical

1There is a widely discussion about instrumental desire in philosophy, see [1, 6, 19]
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situation in which the pills are taken: Robin desires taking sleeping pills only if the hypothetical
situation with the pills taken is“more prefered” than the actual world2. However, how to decide
which hypothetical situation should the actual world be compared to? A possible solution is
that we can make use of certain similarity ordering as in [15], such that the actual world is
only compared to the most similar world(s) in which the pills are taken: Robin desires taking
the pills because (i) the most similar world with the pills taken is a possible world in which
Robin has a good sleep after he takes the pills (ii) the possible world in which Robin has a good
sleep after taking the pills is more preferred than the actual world (it is reasonable to consider
a possible world in which Robin takes the pills but still has a bad sleep as a remote possible
world.)

It seems that this approach successfully accounts for Robin’s desire of taking sleeping pills.
However it has some problems. Consider the following example:

Robin’s family is not rich and he cannot afford a sport car. He is thinking about buying a
birthday gift for his daughter.

Consider two possible worlds: in world W1, he is very rich and buys a sport car as a
birthday gift for her daughter; in world W2, he is not rich but still buys a sport car as birthday
gift for her daughter (maybe by borrowing money). If we consider W1 is closer to the actual
world than W2, then according to the previous formalization of desire, Robin desires buying a
sport car as birthday gift for her daughter, because obviously W1 is more preferred than W2 (we
suppose that everyone likes to be rich, and Robin is no exception). But it is unreasonable to say
that ”Robin desires buying a sport car as birthday gift for her daughter” given the situation in
the actual world. Therefore we have to refute that W1 is more similar than W2 compared with
the actual world. However we do not have much reason to justify the claim on the difference
in their similarity.

Causality is needed to account for the examples: In the first example, the pills are desired
because the taking sleeping pills causes a good sleep; In the second example, though a possible
world in which Robin buys a sport car for his daughter as gift is more likely to be possible
world in which Robin is rich, Robin’s being rich is not caused by buying a sport car.

Explicitly embedding causality into account of desire has some benefits. What an object
brings about is crucial for evaluating whether the object is desired by an agent: a key factor of
Robin’s desire of sleeping pills is that taking sleeping pills brings about a good sleep. This is
the core of understanding desire from an instrumental perspective. On the other hand, when
we evaluate an agent’s desire, it is important to assume some factors should keep constant,
see[21, 9]. Causality is important to decide which factors should be constant. In the second
example, an important factor in Robin’s not desiring to buy a sport car is that buying a sport car
cannot make Robin rich (so that the actual world is only compared with a world in which Robin
is not rich but buys a sport car). This factor can only be revealed from a causal perspective.

In a word, in this paper we argue that wanting φ for an agent a means φ can bring about a
certain preference of a. Moreover the desire we are talking about is pleasure-based3, i.e., what
we prefer are things that make us pleasure. So our desire is to realize our happiness. In the
next section, to formalize the instrumental desire we proposed, the syntax and semantics will
be given. And there are some interesting valid inferences under this framework.

2In [12], Heim proposed a way of interpreting desire along this line
3A pleasure-based desire has a widely discussion in philosophy, see [3, 20], etc.
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2 Desire-Causality Model and the Logic ID

We will introduce a ‘desire-causality model’ in this section. In the model, we use a total order
over all the possible worlds to represent the preference. And in order to reflect the underlying
philosophical idea of ‘the preference that makes pleasure’, we set that this order is stable and
this preference is for its own sake. Then to capture the causal relationship, we will adopt
a causal model. Since our approach take s causal affect into account, we make use of the
interventionist approach to causality from [10, 18]. The causal affects can be characterized by
a set of structural functions.

The basic facts will be represented by a set of variables. A signature S = 〈U,V,R〉
characterizes the variables that are taken into account. Following the formalization from
[10, 18], S consists of three parts:

• U = {U1, . . . ,Um} is a finite set of exogenous variables,

• V = {V1, . . . ,Vn} is a finite set of endogenous variables

• R(X) is the non-empty range of the variable X ∈ U ∪V.

After the signature gets fixed, we can define a desire-causality model to formalize instru-
mental desire.

Definition 1 (Desire-Causality Model). Let S = 〈U,V,R〉 be a signature for atomic propositions.
A desire-causality model is a tuple 〈F ,A, <〉.
• F = { fV j | V j ∈ V} assigns, to each endogenous variable V j, is a mapping from all assignments4

toU ∪V \ {V j} to R(V j). F is assumed to be recursive5

• A is the valuation function, assigning to every X ∈ U ∪ V a value A(X) ∈ R(X). For each
V j ∈ V, V j complies with FV j , that is: A(V j) = FV j (AV j ) whereAV j is the partial assignment
inA toU ∪V \ {V j} (for any X ∈ U ∪V \ {V j},A(X) = AV j (X))

• < is a total order over all possible assignments toU ∪V.

The set of exogenous variablesU in S intends to represent S those whose value is causally
independent from the value of every other variable. The set of endogenous variablesU in S
intends to represent those whose value is completely determined by the value of other variables
in the system. The set of structural functionsF represents the (deterministic) causal rules (so it
is only for endogenous variables): for each endogenous variable, the structural function for this
variable tells its value, once given the status of (assignment to) all other variables. A represents
the current state with the assignment to all variables. < represents agents’ preference for its
own sake. Following the traditional approach (e.g. [11, 22, 25]) of representing preference with
an ordering, we read A2 < A1 as the assignment A1 is more preferred than A2 for its own
sake.

For simplicity, we will write X1, ...,Xn as ~X and write a sequence X1=x1, ...,Xn = xn as ~X=~x.
We will also write X1=x1 ∧ ... ∧ Xn=xn as ~X=~x when the context allows,

Definition 2 (Language). Formulas φ of the language L based on S are given by

φ ::= X=x | ¬φ | φ ∧ φ | FP(~X = ~x) | D(~X=~x) | (~X=~x)� φ
4An assignment a to a set of variables S is a mapping from S to

⋃
X∈S R(X) such that for each Z ∈ S, a(Z) ∈ R(Z)

5For the definition of recursiveness, see [10]
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The formula FP(~X=~x) should be read as the variables in ~X are preferred for its own sake
when they were set to the values ~x And D(~X=~x) represents the desire that wanting ~X to be
X1,...,Xn to be xn. Note that we do not consider the iteration of desire in this paper. (~X=~x)� φ
denotes the counterfactual conditional which means if X1=x1,...,Xn=xn were true, thenφwould
be the case.

Definition 3 (Intervention). Let M = 〈F ,A, <〉 be a DC-model based onS; let ~X=~x be an assignment
on S. The DC-model M~X=~x = 〈F~X=~x,AF~X=~x

, <〉, resulting from an intervention setting the values of

variables in ~X to ~x, is such that

• F~X=~x is as F except that, for each endogenous variable Xi in ~X, the function fXi is replaced by a
constant function f ′Xi

that returns the value xi regardless of the values of all other variables.

• AF
~X=~x

is the unique valuation where (i) the value of each exogenous variable not in ~X is exactly

as inA, (ii) the value of each exogenous variable Xi in ~X is the provided xi, and (iii) the value of
each endogenous variable complies with its new structural function (that in F~X=~x).6

In fact, an intervention that sets a variable in X to the value x is an operation that maps a
given model M to a new model MX=x, in this way, X is cut off from all its causal dependencies
and fixed to the value x.

Definition 4 (Truth Conditions). Let 〈F ,A, <〉 be a DC-model based on S, the truth condition of the
formulas in L are given by (boolean cases are defined as usual):

• 〈F ,A, <〉 |= X=x iffA(X) = x

• 〈F ,A, <〉 |= FP(~X = ~x) iff for any two assignmentsA1 andA2 toU ∪V such thatA1(~X) = ~x
andA2(~X) is not ~x,A2 < A1

• 〈F ,A, <〉 |= (~X=~x)� φ iff 〈F~X=~x,AF~X=~x
, 〉 |= φ

• 〈F ,A, <〉 |= D(~X=~x) iffAF < AF
~X=~x

The second item says that the valuation that setting the variables in ~X to ~x are preferred to
the one does not do that setting, which reflects the idea of ‘for its own sake’. And the final item
defined the desire modality intuitively: wanting ~X to be X1,...,Xn to be xn means the possible
assignment that sets variables in ~X to be ~x is preferred for its own sake to the real one.

Now let us revisit the example Robin’s desire of taking sleeping pills. Let X=1 stands for ‘taking
sleeping-help pills’ and X=0 stands for not; and Y=1 stands for ‘having a good sleep’ and Y=0
stands for not. ‘Robin wants to take sleeping-help pills’ can be formulated as D(X=1). This
model can be described by Figure 1.

In Figure 1, we can see that for any assignmentsAi andA j (i, j ∈ {1, 2, 3}) such thatAi(Y) = 1
and A j(Y) = 0, we have A j < Ai. And hence we have PF(Y=1). Since (X=1) � (Y=1),
〈FX=1,AFX=1, <〉 |= Y = 1, there is a transition from A to A2 and A2 is actually AFX=1. Since
A < A2, we have 〈F ,A, <〉 |= D(X = 1).

Now we apply the same way of modelling to Robin’s desire of buying a sport car. Let S=1
stands for buying a sport car and S=0 for not; And R=1 stands for Robin’s being rich and R=0
for not. The corresponding desire-causality model is illustrated in Figure 2.

6Note that, since F is recursive, the valuationAF
~X=~x

is uniquely determined.
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Figure 1: Robin’s desire of taking sleeping pills
The double circle represents the real assignment; the solid arrow is the total order < and the dotted arrow
is the counterfactual transition by setting the value of X to 1.

Figure 2: Robin’s desire of buying a sport car

We can check that D(S=1) does not hold atA, which is the actual world. The result fits our
intuition that Robin does not desire buying a sport car.

3 Expected Outcomes

We will axiomatize the logic system of ID and prove its completeness. Under this framework,
we have some interesting inferences to capture the instrumental desire.

(1) ((X=x� Y = y) ∧ PF(Y=y))→ D(X=x)

(2) (~X=~x ∧D(~Y=~y))→ ¬(~Y=~y� D(~Z=~z))
if ~X=~x, ~Y=~y, ~Z=~z are all full assignment ofU ∪V

(3) ~X=~x� D(~Y=~y)→ D(~X=~x ∧ ~Y=~y)), if ~X and ~Y are disjoint

(4) (~X=~x� ~Y=~y) ∧D(~X=~x)→ D(~X=~x ∧ ~Y=~y), if ~X and ~Y are disjoint

Also the connection between our logic ID and the CP logic (ceteris paribus logic) can be
observed, and it will be taken into account in the full version. One possible way to extend our
framework is to change the preference structure, e.g., the way of preference lifting, which will
be explored in the following work.
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