297 research outputs found

    Authoring Game-Based Adaptive Units of Learning with IMS Learning Design and <e-Adventure>

    Get PDF
    Burgos, D., Moreno-Ger, P., Sierra, J. L., Fernández Manjón, B., & Kooper, R. (2007). Authoring Game-Based Adaptive Units of Learning with IMS Learning Design and <e-Adventure>. International Journal of Learning Technology, 3(3), 252-268.Electronic games and simulations (eGames) are a valuable support for adaptive learning. This adaptation can be based on different inputs, such as the user´s performance, behaviour or cognitive load. Both adaptation and eGames can be modelled with IMS Learning Design or integrated from an external resource. In this article we show the relation between IMS Learning Design and the <e-Adventure> Project when it comes to authoring adaptive Units of Learning integrated with eGames. We first describe the challenges of this objective and the several different solutions on authoring and integration. We also describe the content-centered authoring approach in <e-Adventure>, and the need for a communication service with IMS LD that makes a bi-directional influence on the user’s adaptive learning experience. At the end, we describe a practical example that illustrates how an adaptive IMS LD Unit of Learning with an integrated <e-Adventure> eGame is developed.This paper is partially supported by the European projects TENCompetence (IST-TEL/2004-2.4.10, www.tencompetence.org) and ProLearn (IST 507310, www.prolearn-project.org), and the research group <e-Ucm> (www.e-ucm.es). The Education and Science Spanish Committee (projects MetaLearn TIN2004 08367 C02-02 and OdA Virtual TIN2005-08788-C04-01) and the Regional Government / Complutense University of Madrid (grant 4155/2005 and research group 910494) have also supported this work partially. Special thanks to Bruno Torijano Bueno for his participation in the creation and preliminary tests of the sample game

    Ontology-based methodology for error detection in software design

    Get PDF
    Improving the quality of a software design with the goal of producing a high quality software product continues to grow in importance due to the costs that result from poorly designed software. It is commonly accepted that multiple design views are required in order to clearly specify the required functionality of software. There is universal agreement as to the importance of identifying inconsistencies early in the software design process, but the challenge is how to reconcile the representations of the diverse views to ensure consistency. To address the problem of inconsistencies that occur across multiple design views, this research introduces the Methodology for Objects to Agents (MOA). MOA utilizes a new ontology, the Ontology for Software Specification and Design (OSSD), as a common information model to integrate specification knowledge and design knowledge in order to facilitate the interoperability of formal requirements modeling tools and design tools, with the end goal of detecting inconsistency errors in a design. The methodology, which transforms designs represented using the Unified Modeling Language (UML) into representations written in formal agent-oriented modeling languages, integrates object-oriented concepts and agent-oriented concepts in order to take advantage of the benefits that both approaches can provide. The OSSD model is a hierarchical decomposition of software development concepts, including ontological constructs of objects, attributes, behavior, relations, states, transitions, goals, constraints, and plans. The methodology includes a consistency checking process that defines a consistency framework and an Inter-View Inconsistency Detection technique. MOA enhances software design quality by integrating multiple software design views, integrating object-oriented and agent-oriented concepts, and defining an error detection method that associates rules with ontological properties

    Building Transformation Networks for Consistent Evolution of Interrelated Models

    Get PDF
    In dieser Dissertation formalisieren und analysieren wir die Konsistenzerhaltung verschiedener Artefakte zur Beschreibung eines Softwaresystems durch die Kopplung von Transformationen zwischen diesen und unterstützen sie mit geeigneten Methoden. Für die Entwicklung eines Softwaresystems nutzen Entwickler:innen und weitere Beteiligte verschiedene Sprachen, oder allgemein Werkzeuge, zur Beschreibung unterschiedlicher Belange. Meist stellt Programmcode das zentrale Artefakt dar, welches jedoch, implizit oder explizit, durch Spezifikationen von Architektur, Deployment, Anforderungen und anderen ergänzt wird. Neben der Programmiersprache verwenden die Beteiligten weitere Sprachen zur Spezifikation dieser Artefakte, beispielsweise die UML für Modelle des objektorientierten Entwurfs oder der Architektur, den OpenAPI-Standard für Schnittstellen-Definitionen, oder Docker für Deployment-Spezifikationen. Zur Erstellung eines funktionsfähigen Softwaresystems müssen diese Artefakte das System einheitlich und widerspruchsfrei darstellen. Beispielsweise müssen Dienst-Schnittstellen in allen Artefakten einheitlich repräsentiert sein. Wir sagen, die Artefakte müssen konsistent sein. In der modellgetriebenen Entwicklung werden solche verschiedenen Artefakte allgemein Modelle genannt und bereits als wesentliche zentrale Entwicklungsbestandteile genutzt, um auch Teile des Programmcodes aus ihnen abzuleiten. Dies betrifft beispielsweise die Softwareentwicklung für Fahrzeuge. Zur Konsistenzerhaltung der Modelle werden oftmals Transformationen eingesetzt, die nach Änderungen eines Modells die anderen Modelle anpassen. Die bisherige Forschung beschränkt sich auf Transformationen zur Konsistenzerhaltung zweier Modelle und die projektspezifische Kombination von Transformationen zur Konsistenzerhaltung mehrerer Modelle. Ein systematischer Entwicklungsprozess, in dem einzelne Transformationen unabhängig entwickelt und in verschiedenen Kontexten modular wiederverwendet werden können, wird hierdurch jedoch nicht unterstützt. In dieser Dissertation erforschen wir, wie Entwickler:innen mehrere Transformationen zu einem Netzwerk kombinieren können, welches die Transformationen in einer geeigneten Reihenfolge ausführen kann, sodass abschließend alle Modelle konsistent zueinander sind. Dies geschieht unter der Annahme, dass einzelne Transformationen zwischen zwei Sprachen unabhängig voneinander entwickelt werden und daher nicht aufeinander abgestimmt werden können. Unsere Beiträge unterteilen sich in die Untersuchung der Korrektheit einer solchen Kombination von Transformationen zu einem Netzwerk und die Optimierung von Qualitätseigenschaften solcher Netzwerke. Wir diskutieren und definieren zunächst einen adäquaten Korrektheitsbegriff, welcher drei Anforderungen impliziert. Diese umfassen eine Synchronisations-Eigenschaft für die einzelnen Transformationen, eine Kompatibilitäts-Eigenschaft für das Transformationsnetzwerk, sowie das Finden einer geeigneten Ausführungsreihenfolge der Transformationen, einer Orchestrierung. Wir stellen ein Konstruktionsverfahren für Transformationen vor, mit welchem die Synchronisations-Eigenschaft basierend auf einer formal bewiesenen Eigenschaft erfüllt wird. Für dieses zeigen wir Vollständigkeit und Angemessenheit mit einer fallstudienbasierten empirischen Evaluation in der Domäne der komponentenbasierten Softwareentwicklung. Wir definieren die Eigenschaft der Kompatibilität von Transformationen, für welche wir ein formales und bewiesen korrektes Analyseverfahren vorschlagen und eine praktische Realisierung ableiten, deren Anwendbarkeit wir in Fallstudien nachweisen. Schlussendlich definieren wir das Orchestrierungsproblem zum Finden einer Orchestrierung, die zu konsistenten Modelle führt wann immer solch eine Orchestrierung existiert. Wir beweisen die Unentscheidbarkeit dieses Problems und diskutieren, dass eine Einschränkung des Problems, um Entscheidbarkeit zu erreichen, die Anwendbarkeit unpraktikabel beschränken würde. Daher schlagen wir einen Algorithmus vor, der das Problem konservativ behandelt. Er findet eine Orchestrierung unter bestimmten, wohldefinierten Bedingungen und terminiert andernfalls mit einem Fehler. Wir beweisen die Korrektheit des Algorithmus und eine Eigenschaft, die das Finden der Ursache im Fehlerfall unterstützt. Zusätzlich kategorisieren wir Fehler, die auftreten können falls ein Netzwerk den definierten Korrektheitsbegriff nicht erfüllt. Daraus leiten wir mittels den bereits genannten Fallstudien ab, dass die meisten potentiellen Fehler per Konstruktion mit den in dieser Arbeit vorgeschlagenen Ansätzen vermieden werden können. Zur Untersuchung von Qualitätseigenschaften eines Netzwerkes von Transformationen klassifizieren wir zunächst relevante Eigenschaften, sowie den Effekt verschiedener Typen von Netzwerktopologien auf diese. Hierbei zeigt sich, dass insbesondere Korrektheit und Wiederverwendbarkeit im Widerspruch stehen, sodass die Wahl der Netzwerktopologie ein Abwägen bei der Optimierung dieser Eigenschaften erfordert. Wir leiten hieraus ein Konstruktionsverfahren für Transformationsnetzwerke ab, welches die Notwendigkeit einer Abwägung zwischen den Qualitätseigenschaften abmildert und, unter gewissen Voraussetzungen, Korrektheit per Konstruktion gewährleistet. Wir unterstützen den Entwicklungsprozess für diesen Ansatz mithilfe einer spezialisierten Spezifikationssprache. Während die Verminderung der Notwendigkeit einer Abwägung zwischen Qualitätseigenschaften durch den Ansatz per Konstruktion erreicht wird, zeigen wir die Erreichbarkeit der Voraussetzungen und die Vorteile der vorgeschlagenen Sprache in einer empirischen Evaluation mithilfe der Fallstudie aus der komponentenbasierten Softwareentwicklung. Die Beiträge dieser Dissertation unterstützen sowohl Forscher:innen als auch Transformationsentwickler:innen und Transformationsanwender:innen bei der Analyse und Konstruktion von Netzwerken von Transformationen. Sie stellen für Forscher:innen und Transformationsentwickler:innen systematisches Wissen über die Korrektheit und weitere Qualitätseigenschaften solcher Netzwerke bereit. Sie zeigen insbesondere welche Teile dieser Eigenschaften per Konstruktion erreicht werden können, welche per Analyse validiert werden können, und welche Fehler unvermeidbar bei der Ausführung erwartet werden müssen. Zusätzlich zu diesen Einsichten stellen wir konkrete, praktisch nutzbare Verfahren bereit, mit denen Transformationsentwickler:innen und Transformationsanwender:innen korrekte, modular wiederverwendbare Netzwerke konstruieren, analysieren und ausführen können

    Building Transformation Networks for Consistent Evolution of Interrelated Models

    Get PDF
    Complex software systems are described with multiple artifacts, such as code, design diagrams and others. Ensuring their consistency is crucial and can be automated with transformations for pairs of artifacts. We investigate how developers can combine independently developed and reusable transformations to networks that preserve consistency between more than two artifacts. We identify synchronization, compatibility and orchestration as central challenges, and we develop approaches to solve them

    Computer Vision and Architectural History at Eye Level:Mixed Methods for Linking Research in the Humanities and in Information Technology

    Get PDF
    Information on the history of architecture is embedded in our daily surroundings, in vernacular and heritage buildings and in physical objects, photographs and plans. Historians study these tangible and intangible artefacts and the communities that built and used them. Thus valuableinsights are gained into the past and the present as they also provide a foundation for designing the future. Given that our understanding of the past is limited by the inadequate availability of data, the article demonstrates that advanced computer tools can help gain more and well-linked data from the past. Computer vision can make a decisive contribution to the identification of image content in historical photographs. This application is particularly interesting for architectural history, where visual sources play an essential role in understanding the built environment of the past, yet lack of reliable metadata often hinders the use of materials. The automated recognition contributes to making a variety of image sources usable forresearch.<br/

    Computer Vision and Architectural History at Eye Level:Mixed Methods for Linking Research in the Humanities and in Information Technology

    Get PDF
    Information on the history of architecture is embedded in our daily surroundings, in vernacular and heritage buildings and in physical objects, photographs and plans. Historians study these tangible and intangible artefacts and the communities that built and used them. Thus valuableinsights are gained into the past and the present as they also provide a foundation for designing the future. Given that our understanding of the past is limited by the inadequate availability of data, the article demonstrates that advanced computer tools can help gain more and well-linked data from the past. Computer vision can make a decisive contribution to the identification of image content in historical photographs. This application is particularly interesting for architectural history, where visual sources play an essential role in understanding the built environment of the past, yet lack of reliable metadata often hinders the use of materials. The automated recognition contributes to making a variety of image sources usable forresearch.<br/

    Mixing Methods: Practical Insights from the Humanities in the Digital Age

    Get PDF
    The digital transformation is accompanied by two simultaneous processes: digital humanities challenging the humanities, their theories, methodologies and disciplinary identities, and pushing computer science to get involved in new fields. But how can qualitative and quantitative methods be usefully combined in one research project? What are the theoretical and methodological principles across all disciplinary digital approaches? This volume focusses on driving innovation and conceptualising the humanities in the 21st century. Building on the results of 10 research projects, it serves as a useful tool for designing cutting-edge research that goes beyond conventional strategies

    Computer Vision and Architectural History at Eye Level:Mixed Methods for Linking Research in the Humanities and in Information Technology

    Get PDF
    Information on the history of architecture is embedded in our daily surroundings, in vernacular and heritage buildings and in physical objects, photographs and plans. Historians study these tangible and intangible artefacts and the communities that built and used them. Thus valuableinsights are gained into the past and the present as they also provide a foundation for designing the future. Given that our understanding of the past is limited by the inadequate availability of data, the article demonstrates that advanced computer tools can help gain more and well-linked data from the past. Computer vision can make a decisive contribution to the identification of image content in historical photographs. This application is particularly interesting for architectural history, where visual sources play an essential role in understanding the built environment of the past, yet lack of reliable metadata often hinders the use of materials. The automated recognition contributes to making a variety of image sources usable forresearch.<br/
    • …
    corecore