Vol-87

[CEUR Workshop

Proceedi ngs] © 2003 for the individual papers by the papers' authors. Copying permitted for private
and scientific purposes. Re-publication of material on this page requires permission by
the copyright owners.

EON2003
Evaluation of Ontology-based Tools

Proceedings of the 2nd International Workshop on Evaluation

of Ontology-based Tools
held at the 2nd International Semantic Web Conference ISWC

2003

20th October 2003 (Workshop day)
Sundial Resort, Sanibel Island, Florida, USA

Edited by

York Sure (Contact Person) #
Oscar Corcho +

Indtitute AIFB, University of Karlsruhe, Postfach, 76128 Karlsruhe, Germany
+ Departamento de Inteligencia Artificial, Facultad de Informética, Universidad Politécnica de
Madrid, 28660 Boadilla del Monte, Madrid, Spain

Note: Additional information and material such as dlides of the presentations and created
experiment ontol ogies can be found at the EON2003 workshop website.

Table of Contents

Part I. Accepted Papers

Towards a benchmark for Semantic Web reasoners - an analysis of the DAML ontoloqy library
Christoph Tempich and Raphael Volz

Results of Taxonomic Evaluation of RDF(S) and DAML+ OIL ontologies using RDF(S) and
DAML+OIL Validation Tools and Ontology Platfor ms import services
M. Carmen Suarez-Figueroa and A suncion Gomez-Perez

Racer: A Core Inference Engine for the Semantic \Web
Volker Haardev and Ralf Moller

DL-workbench: a metamodeling approach to ontology manipulation
Mikhail Kazakov and Habib Abdulrab

OntoTrack: Fast Browsing and Easy Editing of Large Ontologie
Thorsten Liebig and Olaf Noppens

TooCoM : a Tool to Operationalize an Ontology with the Conceptual Graph Model
Frederic Furst, Michel Leclere, and Francky Trichet

A domain ontology engineering tool with general ontologies and text corpus
Naoki Sugiura, Masaki Kurematsu, Naoki Fukuta, Noriaki 1zumi, and Takahira Y amaguchi

An Ontology-Driven Application to |mprove the Prescription of Educational Resources to
Parents of Premature | nfants
Howard Goldberg, Alfredo Morales, David MacMillan, and Matthew Quinlan

Part II: Experiment Contributions

Domain natural language description for the experiment

Using XSLT for Interoperability: DOE and The Travelling Domain Experiment
Raphael Troncy, Antoine Isaac, and Veronique Malaise

SemTalk EON2003 Semantic Web Export / Import Interface Test
Christian Fillies

Evaluation experiment of ontology tools' interoperability with the WebODE ontology
engineering workbench

Oscar Corcho, Asuncion Goémez-Pérez, Danilo José Guerrero-Rodriguez, David Pérez-Rey,
Alberto Ruiz-Cristina, Teresa Sastre-Toral, M. Carmen Sudrez-Figueroa

Case Sudy: Using Protege to Convert the Travel Ontology to UML and OWL
Holger Knublauch

| nteroperability of Protege 2.0 beta and OilEd 3.5 in the Domain Knowledge of Osteoporosis
Franz Calvo and John Gennari

submitted by York Sure, 2003-11-04

Towards a benchmark for Semantic Web
reasoners - an analysis of the DAML ontology
library

Christoph Tempich and Raphael Volz

Institute AIFB, University of Karlsruhe, Germany
http://www.aifb.uni-karlsruhe.de
(tempich,volz)@aifb.uni-karlsruhe.de

1 Introduction

Benchmarks are one important aspect of performance evaluation. This paper
concentrates on the development of a representative benchmark for Semantic
Web-type! ontologies. To this extent we perform a statistical analysis of available
Semantic Web ontologies, in our case the DAML ontology library, and derive
parameters that can be used for the generation of synthetic ontologies. These
synthetic ontologies can be used as workloads in benchmarks.

Naturally, performance evaluation can also be performed using a real work-
load, viz. a workload that is observed on a reasoner being used for normal op-
erations. However, such workloads can usually not be applied repeatedly in a
controlled manner.

Therefore synthetic workloads are typically used in performance evaluations.
Synthetic workloads should be a representation or model of the real workload.
Hence, it is necessary to measure and characterize the workload on existing
reasoners to produce meaningful synthetic workloads.

This should allow us to systematically evaluate different reasoners and rea-
soning techniques using a benchmark to gain realistic practical comparisons of
individual systems.

1.1 Related Work

The development of benchmarks for ontology-based systems is substantially dif-
ferent from the development of a test suite [3] for testing the correctness or
ability of a reasoner in handling particular primitives of an ontology language.
The latter is intended to give yes or no answers to questions like whether a sys-
tem can make certain entailments or find particular inconsistencies. The former,
however, is intended to come up with numbers for a set of performance criteria
(metrics).

Within the Description Logic community benchmarking [8, 6] was performed
repeatedly in the past for empirical system comparsion. However, these represen-
tativeness of the used benchmarkss [1,7,6] are questionable for practical cases

! Hence RDFS, DAML+OIL and OWL

due to several reasons. For example, [8] tested the performance of class satis-
fiability based on a sequence of classes which are (exponentially) increasingly
difficult to compute. These class definitions are hardly representative for practi-
cal cases. The test for ABox reasoning was underdeveloped since most systems
at the time of evaluation did not support any ABox reasoning capabilities.

[6] used both real and synthetically generated knowledge bases as one part
of their evaluation of knowledge representation systems. The study was only
concerned with the terminological part of knowledge representation systems and
used a target representation language of limited expressivity for generating syn-
thetic knowledge bases. The generated knowledge bases, however, are not real-
istic for Semantic Web-type knowledge bases as we will see from our analysis.
Hence, their assumption for class formation 2 is not representative.

1.2 Contribution

In this paper, we provide a systematic approach for the creation of benchmarks
for knowledge representation systems. The key characteristic of our approach is
that we want to use generating functions to create synthetic ontologies ar, which
are derived from structural properties of a given (representative) set of ontolo-
gies. If the set of analyzed ontologies is structurally inhomogeneous, clustering
techniques are applied to come up with k homogeneous subsets, viz. types of
ontologies, for which separate synthetic ontologies can be created. A particular
benchmark then consists of several synthetic ontologies representing individual
types. Instead of reducing language expressivity to the least common denomina-
tor (RDFS in the Semantic Web case), we consider the inability of a particular
reasoner to support certain language primitives in our performance evaluation
design.

1.3 Limitations

While our approach (with proper adaptation) might be reusable to evaluate other
tools relevant to KR-based applications, e.g. editors and visualization tools, our
primary focus is set on evaluation of the inference and data processing core of
knowledge representation systems. Additionally, we do not consider the iden-
tification of a representative list of service requests, which nevertheless are an
important aspect in a benchmark. The actual generation of synthetic ontologies
is subject of our ongoing research, nevertheless the initial results of our analysis
appear to be promising and worth to disseminate.

1.4 Structure of the paper

The paper is structured as follows. Section 2 describes our approach to per-
formance evaluations using benchmarks. Section 3 presents our analysis of the
DAML ontology collection, which motivates the necessity for a categorization
into several types of ontologies. Section 4 describes the clustering and shows

2 each class definition is a conjunction containing one or two class symbols (super-
classes) zero or one cardinality restriction and zero, one or two value restrictions

how we come up with three categories of ontologies, which are more homoge-
nous. We conclude in Section 5 summarizing our results and giving an outlook
to ongoing and future work.

2 Performance Comparisons

We consider benchmarking as the process of performance comparison of two or
more reasoners by measurements. A benchmark is the workload used in such
measurements. Each performance comparison draws itself on a set of perfor-
mance criteria or metrics. The choice of the metrics directly depends on the list
of services offered by the reasoner.

g%
- O

Request for
service i

Can Answer

Cannot answer

@ Resource
Response \
Time - Time between .
Probability Metrics

Fig. 1. Services and Metrics in Benchmarks

2.1 Reasoning Services

For each service request several possible outcomes exist (cf. Figure 1). Generally,
we can assume that a particular system can either respond correctly, incorrectly
or cannot answer the request. A reasoner usually offers query services to interface
with the system, several systems also allow update services for manipulation of
the knowledge base.

Unlike databases, a reasoner supporting DAML+OIL or OWL, will usually
offer several different query services w.r.t. an ontology O. These query services
primarily target queries about classes:

1. class-instance membership queries: given a class C,
(a) ground: determine whether a given individual a is an instance of C;

(b) open: determine all the individuals in O that are instances of C;
(c) “all-classes”: given an individual a, determine all the (named) classes in
O that a is an instance of;

2. class subsumption queries: i.e., given classes C' and D, determine if C' is a
subclass of D w.r.t. O;

3. class hierarchy queries: i.e., given a class C return all/most-specific (named)
superclasses of C' in the T-Box and/or all/most-general (named) subclasses
of C' in the T-Box;

4. class satisfiability queries, i.e., given a class C', determine if the definition of
C' is generally satisfiable (consistent).

There are similar queries about properties, viz. property-instance member-
ship, property subsumption, property hierarchy, and property satisfiability, and
also the possibility to check the consistency of the whole ontology / knowledge
base.

A single service does not suffice One might want to argue that it is suf-
ficient to measure the performance of the satisfiability, since it is well known,
that all queries about classes can be reduced to satisfiability testing. It is impor-
tant, however, to distinguish different types services, since optimizations can be
made for particular services. Naturally the effect of those optimization should be
measurable. For example, we might want to measure the performance of a classi-
fication service, which can be reduced to several class-subsumption queries (and
in turn satisfiability), but reasoners may use different classification algorithms
to minimize the number of issued subsumption queries.

2.2 Metrics

For each of the different service requests and their corresponding responses, we
can observe a number of metrics. These metrics are later evaluated in the com-
parison of systems. We may measure successful performance by time-throughput-
resource metrics, which measure the responsiveness and productivity and utiliza-
tion (of system resources) of the reasoner. Notably it is not sufficient to consider
response time as the only metric. Some reasoners may be able to respond to
requests in parallel, which might lead to a higher throughput. Another reasoner
may have a small memory footprint and therefore have a better utilization of
system resources. Of course, individual evaluations might consider further met-
rics.

If the response is incorrect, errors should be returned by the reasoner. Such
errors can be classified and it is interesting to determine probabilities for each
class of errors and measure the time between such errors. Notably, it is not
sufficient to only measure correct performance, since errors are common [6] (even
if the reasoning procedures are supposed to be sound and complete).

Several reasons may exist that a reasoner fails to provide an answer at all.
Similar to errors, it is sensible to classify failures and determine the probabil-
ities and time between failures for each class. For example, a reasoner may be
unavailable due to network errors or software errors or due to lack of support
for certain language primitives.

2.3 Workloads

The workload of a reasoner consists of the knowledge base which is loaded by the
reasoner and the list of service requests issued by users. We do not consider the
identification of a representative list of service requests, which are an important
aspect in a benchmark, but concentrate on creating a representative synthetic
knowledge base that is subject to user queries.

3 Characterizing Semantic Web ontologies

In order to generate sensible synthetic ontologies, an analysis of available on-
tologies is necessary, this is the subject of this section.

3.1 Selecting a list of Semantic Web ontologies

For our experiment we chose the DAML.org list of ontologies [4], which contained
247 ontologies at the time of the analysis. Our selection of this set of ontologies
is intentional and motivated by the following facts: Firstly, we are not related
with the authors of the ontologies in any form. Secondly, most ontologies are
created by different people with diverse technical backgrounds (ranging from
students to researchers). In this sense, they can be understood as representative
for the Semantic Web. Interestingly, many of the ontologies in the library turn
out to be just conversions of ontologies, which were initially created in some
other representation language. For example, the famous wine ontology is with
us since ’Classic’ times (for more than 15 years !). This also seems to be a valid
assumption for the Semantic Web, which is for sure not created from scratch.

We processed these ontologies using the 1.6.1 version of JENA, we used the
Jena DAML API to access the data. The collection contained 189 ontologies in
DAML-ONT or DAML+OIL formats, which should be processable by the API
in general.

Unfortunately more than 50% of the ontologies contained RDF errors or did
not contain valid URIs or did not use RDF(S) namespaces correctly. We did
not make any attempt to fix these problems, therefore we could only process 95
ontologies in practise. This results seems shocking, but underlines the need of
software that can cope with such errors®.

The correctness of namespace? and RDF usage is, however, not the only
relevant property. For example, 21% of the parsable ontologies did not specify the
type of properties, viz. whether they are in fact Datatype- or ObjectProperties.
In practise, further heuristics need to be applied to make use of these ontologies
in reasoners, i.e. deriving the missing type information (e.g. such as done in [2]).
Again, we did not make any attempt to fix these problems.

3 Analogous to HTML browsers, which can cope with all sorts of HTML errors !

4 A good example for namespace confusion is the NASDAQ ontology
(http://www.daml.org/ontologies/342). Quiz question: can you spot the in-
consistency ?

We based our analysis on the structural properties of asserted information,
hence no reasoning was applied. Detailed numbers and sources for the analysis
package can be found online®.

Average|Std Dev|Median|Min| Max|C.O.V.
Primitive Classes 154,29(1.016,07 5/ 119.795| 6,59
Class Expressions 175,20(1.016,39 19 1(9.795| 5,80
Restrictions 19,13| 44,52 o< 327 2,33
Enumeration 0,33 1,72 - - 16 5,26
Set Operation 1,45 8,62 -l -|78,00| 5,94
Properties 28,41 43,47 13 -l 269 1,53
Object Properties 8,34| 31,26 2l -] 269 3,75
Datatype Properties| 12,57| 23,15 4 - 145 1,84
Individuals® 29,48| 222,32 -l -2.157| 7,54
EquivalentClass 0,73 3,15 -l -|20,00| 4,34

Table 1. Average Usage of some language primitives (across all ontologies)

3.2 Average Characterizations

One part of our analysis was concerned with simply counting the usage of certain
features. Table 1 summarizes the average usage of language primitives in the
ontologies. One important aspect of the summary given in table 1 is that the
coefficient of variation (C.0.V.), viz. the ratio of standard deviation and the
mean, is high. This shows that the particular ontologies vary tremendously, that
is the distribution is highly skewed, hence the median is a more representative
characterization of the different numbers than the average.

As we can see primitive classes” are the predominant form of class expres-
sions. Different sorts of restrictions are the second most important form of class
expressions, interestingly only one ontology actually made use of a single cardi-
nality restriction that would not be expressible in OWL Lite. Seldom enumera-
tions are used, even considering hasValue®. Actually, only seven ontologies used
set operations to define classes, which are also not available in OWL Lite”. An-
other interesting aspect is that equality is rarely used to define classes (and also
rarely used to make properties and individuals synonymous). Also ontologies
typically do not contain any individuals. We assume that the pool of individuals
will be distributed through the web and is consequently rarely specified together
with the ontology.

3.3 Ratios of Primitives

The second part of our analysis concerned the ratio of different primitives in
ontologies. The variability of these ratios is smaller than the average counts (cf.

® http://kaon.semanticweb.org/owl/evaluation/

7 By primitive class we denote the atomic named classes that occur on the left-hand
sides of subClassOf statements

8 which can be understood as a syntactically convenient form to express value restric-
tions with a nominal value

9 viz. complementOf, disjointUnionOf or unionOf

Ratios Average|Std Dev|Median|Min| Max|C.O.V.
Primitive/Class Expr. 50% 0,34 39%| 6%[100%| 0,67
Obj. Prop. / Prop. 24% 0,27 16%| 0%|100%| 1,12
Dat. Prop. / Prop . 52% 0,38 67%| 0%/100%| 0,72
Prop. / Prim. Class 3,54 3,89 2,00 -121,00f 1,10
Trans. Prop. / Prop. 0,05 0,10 -| - 0,40 2,30
Obj. Prop./ Prim. Class 0,61 0,83 0,50 -| 5,57 1,35
Dat. Prop./ Prim. Class 2,25 3,33 1,00 -115,75 1,48
Ex. Rest. / Rest. 1% 0,08 0%| 0%| 65%| 5,79
Univ. Rest. / Rest. 48% 0,44 52%| 0%|100%| 0,91
Card. Rest./ Rest. 34% 0,38| 20%| 0%[100%| 1,11
Rest. /Primitive 2,32 2,70 1,50 -|16,00| 1,17
Asserted Ind. / Primitive 0,60 4,18 - -140,501 6,97

Table 2. Ratio between some language primitives (across all ontologies)

Table 2) since we aggregated relativized numbers. Another effect is of course
that numbers do not necessarily add up anymore.

One aspect that can be observed is that the DAML.org library typically
contains ontologies and not schemas, since the ratio between Data Properties and
Primitive Classes is very low. However, datatype properties are the predominant
type of properties. Also some of the ontologies, particularly those with high
numbers of classes do not contain any properties, hence the average number of
properties per primitive class is very low.

Some 5% of the defined object properties were declared to be transitive.
None of the analyzed ontologies contained any functional or inverse functional
properties.

Among the restrictions, universal restrictions are predominant, in fact they
almost half of all restrictions on average. Typically, a primitive class is further
defined by more than two restrictions. Not surprisingly, if we recall our argument
for the low number of individuals, at least half of all primitive classes have no
direct asserted individuals.

3.4 Distributions of elements in class definitions

The third part of analysis was concerned with determining distributions of the
elements contained in class definitions, viz. trying to get answers on questions
like: 'How many super-classes does a class typically have 7, "THow many sub-
classes 7', and '"How many classes are defined using property restrictions ?’. We
did not consider determining distributions for EquivalentClass-statements, as
these statements occurred too rarely to come up with a statistically sound, viz.
significant, argument.

Figure 2 displays the distribution of sub-classes, super-classes and restric-
tions per class expression. The y-Axis displays the percentage of class expres-
sions, which have a certain number of subclasses, superclasses or restrictions. The
x-Axis represents this number. The last value (15) aggregates all greater num-
bers, hence the percentage of class expressions is also aggregated. As we can see
the distributions are highly inhomogeneous. As our analysis was performed on
the syntactic declarations, the semantic properties of description logics, namely

SubClass Distribution SuperClass Distribution

2 s 4 5 s 7 & 9 w0 U 2 B 1w 15 16

Restriction Distribution

Fig. 2. Distribution of SubClass, SuperClass and Restrictions per Class Expression

that each class is a subclass of daml:Thing are not considered in the distribu-
tions, if this were done every class but daml:Thing would have one super-class.
Actually, the found ontologies were inconsistent in this respect. Several ontolo-
gies redeclared daml:Thing in another namespace (usually the namespace of the
ontology). Thing was explicitly assigned as the super-class of a class repeat-
edly (although this automatically sanctioned by the semantics of the language).
Again, these effects were not considered in the analysis.

4 Categories of Ontologies

As discussed before, the distributions of different language primitives is inho-
mogeneous. However, a quick glimpse on the ontologies suggests that there are
different classes of ontologies with a more homogeneous use of those primitives.
Thus we applied a clustering algorithm to the data, and indeed found three
different clusters.

4.1 Clustering

In order to apply the clustering, a normalization of the data was carried out
by using the number of defined classes as denominator. Input values for the
clustering algorithm were those language primitives, which were used at least
11 times across all ontologies'®. The data set consisted of the 95 error-free on-

10 We chose this number due to the consideration, that a primitive with lower usage,
given the small number of ontologies, can only disturb the result.

tologies, which were characterized by 10 attributes, namely Class expressions
(95)!1, Primitive Classes(95), Restrictions(69), All Restrictions (48), Cardinality
Restrictions (52), Cardinality Restriction covered by OWL Lite (52), Properties
(92), Datatype Properties (68), Object Properties (63), and Individuals (19).

We used the WEKA machine learning package to analyze the data, in par-
ticular the clustering packages. All attributes have a value range as real value.
Hence, we expect unambiguous results from the clustering algorithm, since no
transformations need to be applied.

The best results were identified using the k-means[5] clustering algorithm,
which initially chooses k random seed points as cluster centroids. It then repeat-
edly aligns data points to the nearest seed point and calculates the new cluster
centers by averaging the assigned data points. This procedure terminates when
a certain terminating condition is reached, in our case that no data point is
reassigned to another cluster anymore.

A critical decision with k-means is the number of cluster k. We did not
evaluate measures like information loss or others in order to define the best
number of clusters. We simply evaluated the attributes defined in table 3 for
different k£ and found that k = 3 assigns the ontologies in a reasonable way, that
is the the coefficient between the improvement of the homogenization (reduction
of the COV measure) and the number of clusters k is maximal. More specifically,
the clustering allowed us to decrease the c.0.v coefficient to almost half, namely
an average of 2,4 in contrast to the 4,5 in 2 using k = 3 clusters.

Average|Std Dev|Median|Min|Max|C.O.V.

Primitive Classes 414 1683 12| 1{9795 4,0
Class Expressions 418 1710 15| 1{9795 4,0
Restrictions 1,5 4.7 0] 0 25 3,1
Properies 39 46 20{ 0] 179 1,2
Object Properties 8 26 0| 0f 144 3,0
Datatyp Properties 13 25 0] 0| 108 1,9
Individuals 73 370 0| 0]2157 5,1

Table 3. Average Usage of some language primitives (across clustered ontologies(C1))

4.2 Cluster contents

A closer examination of the ontologies assigned to the different clusters reveals
that the clusters correspond more or less to three types of ontologies. The largest
cluster of ontologies seems to contain ontologies of taxonomic or terminological
nature. The ontologies are characterized by few properties and a large number
of classes, cf. Table 3.

The second largest cluster contains description logic-style ontologies. This
cluster is characterized by a high number of axioms per class and a low number of
primitive classes. These ontologies also contain a very high number of restrictions
and properties (especially datatype properties), however almost no individuals.

The third cluster contains database schema-like ontologies. The ontologies
are medium size containing on average 65 class expressions and 25 properties.

11 The value in brackets specifies the number of ontologies, where values occured

This cluster is more inhomogeneous as indicated by high standard deviations
per primitive.

oo - : -

SuperClass distribution

Fig. 3. Average Distribution of SubClass, SuperClass and Restrictions for the Clusters
with the estimated distributions (y-axes is log scale)

4.3 Feature Distributions

Having clustered the ontologies into more consistent classes, we now have a
look at the distributions of certain features in the taxonomic cluster and the
database-like cluster. Again, due to lack of space, we will not look at all feature
combinations but rather examine two representative features, namely restrictions
per primitive class (database-like)!? and the distribution of subclasses per class
expression (cf. Figure 3 (taxonomic)).

Restrictions In particular we had a look at the distribution of restrictions across
classes in the different clusters. In average 1,513 (C1), 2614 (C2) and 30% (C3),
17 restrictions are defined in each ontology. Hence, 0.004 (C1), 0.6 (C2) and
0.63 (C3) per class. We compared the observed distributions with the expected
values of parameterized distribution functions, in particular the exponential dis-
tribution and the power law distribution [9]. Intriguingly the distributions of
restrictions closely corresponds to power law distributions with o = 3,5 (C1),

12 The absolute number of restrictions in the taxonomic case is to small to analyze the
data expecting significant results.

13 standard deviation of 4,8

14 standard deviation of 59

15 standard deviation of 48

a=1,9 (C2) and a = 1,8 (C3). This argument is supported with a confidence
value of 99,9 % (using the y2-Test). a was estimated to fit the average of the
observed distribution. In this case the estimated standard deviation differs at
most 16% (C1) from the actual standard deviation. In case of cluster C3 with
the most restrictions the difference is just 2% which underlines the argument for
a power law distribution.

Sub Classes per Class Considering the distribution of sub classes per class, we
found that in the taxonomic-like cluster (C1) each class had 0.30 subclasses with
a standard deviation of 0.86. At this point we want to recall, that we did not
apply any reasoning to the data set. This would probably alter the figures a bit.
We found that the distribution of sub classes per classes also follows a power
law distribution with a@ = 2,2. As in the case of restrictions, the argument is
supported with a confidence value of 99%. However, the estimated standard
deviation differs 40% from the actual observation. The other two clusters (C2,
C3) seem to follow a lognormal distribution for the occurrence of sub classes
for the first two classes, but than the distribution seems more like a power law
distribution. However, a look at the distributions for Super Classes per Class
shows an inverted picture, with clusters C2, C3 following a power law distribution
and cluster C1 a lognormal one.

5 Conclusion

We provided a systematic approach for the creation of benchmarks for knowledge
representation systems and presented the results of the first step in benchmark
creation - the analysis of available data. Using our analysis of the DAML.org
library, we can use generating functions, e.g. an exponential distribution with
the calculated mean for the distribution of restrictions, to generate ontologies
for benchmarking, that correspond structurally to real-life ontologies.

Our analysis shows, that benchmarks have to consist of several types of on-
tologies, since the set of analyzed ontologies would otherwise be too inhomoge-
neous to derive parameters. As our analysis showed, 3 types of ontologies can
generally be identified. For each type of ontologies, high confidence values for
the generator functions could be shown.

Our future work is concerned with implementation, viz. an online web service
to generate synthetic ontologies, and with deriving realistic workloads for mod-
elling user requests. To this extend we plan to monitor existing ontology-based
applications, e.g. the OntoWeb portal and the portal of our institute.

References

1. P. Balsinger and A. Heuerding. Comparison of theorem provers for modal logics -
introduction and summary. In Proc. of Tableauz’98, pages 25-26, 1998.

2. Sean Bechhofer, Raphael Volz, and Philip Lord. Cooking the Semantic Web with
the OWL APIL. In ISWC 2003, Sanibel Island, Florida, USA, October 2003.

3. Jeremy Caroll and Jos De Roo. OWL Web Ontology Language Test Cases. Internet:
http://www.w3.org/ TR /owl-test/, May 2003.

. DAML.org Ontology Library. Internet: www.daml.org/ontologies, As of July, 25th
2003.

. J. A. Hartigan and M. A. Wong. Algorithm AS136. A K-means clustering algorithm.
Applied Statistics, 28:100-108, 1979.

. J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Profitlich. An Empirical Analysis
of Terminological Representation Systems. Artificial Intelligence, 68(2):367-397,
August 1994. 1994.

. A. Heuerding and S. Schwendimann. A benchmark method for the propositional
modal logics k, kt, s4. Technical Report IAM-96-015, University of Bern, Switzer-
land, October 1996.

. L. Horrocks and P. F. Patel-Schneider. DL systems comparison. In E. Franconi,
G. De Giacomo, R. M. MacGregor, W. Nutt, C. A. Welty, and F. Sebastiani, edi-
tors, Collected Papers from the International Description Logics Workshop (DL’98),
pages 55-57. CEUR, May 1998.

. G. K. Zipf. Selective Studies and the Principle of Relative Frequency in Language.
Harvard University Press, 1932.

Results of Taxonomic Evaluation of RDF(S) and
DAMLAOIL Ontologies using RDF(S) and DAMLA+OIL
Validation Tools and Ontology Platforms Import Services

Asuncion Gémez-Pérez, M. Carmen Suérez-Figueroa

Laboratorio de Inteligencia Artificial
Facultad de Informatica
Universidad Politécnica de Madrid
Campus de Montegancedo sn.
Boadilla del Monte, 28660. Madrid, Spain
asun@i . upm es
ncsuarez@elicias.dia.fi.upmes

Abstract. Before using RDF(S) and DAMLAOIL ontologies in Semantic Web
applications, its content should be evaluated from a knowledge representation
point of view. In recent years, some RDF(S) and DAML+OIL ‘checkers’,
‘validators’, and ‘parsers’ have been created and several ontology platforms are
able to import RDF(S) and DAML+OIL ontologies. Two are the experiments
presented in this paper. The first one reveals that the majority of RDF(S) and
DAMLAOIL parsers (Validating RDF Parser, RDF Validation Service, DAML
Validator, and DAML+OIL Ontology Checker) do not detect taxonomic
mistakes in ontologies implemented in such languages. So, if such ontologies
are imported by ontology platforms, are they able to detect such problems? The
second experiment presented in this paper reveals that the majority of the
ontology platforms (OilEd, OntoEdit, Protégé-2000, and WebODE) only detect
a few of mistakes in concept taxonomies before importing them.

1 Introduction

In recent years, considerable progress has been made in developing the conceptual
bases for building technology that allows reusing and sharing ontologies for the
Semantic Web. As any other resource used in software applications, ontology content
should be evaluated before (re)using it in other ontologies or applications. In that
sense, we could say that it is unwise to publish an ontology or to implement software
that relies on ontologies written by others (even by yourself) without first evaluating
its content, that is, its concept definitions, its taxonomy and its formal axioms.

Ontology evaluation is an important activity to be carried out during the whole
ontology life-cycle. Up to now, few domain-independent methodological approaches
[6, 11, 15, 17] include an evaluation activity.

The first works on ontology content evaluation started in 1994 [9, 10], and in the
last three years the interest of the Ontological Engineering community in this issue
has grown. The main efforts were made by Gémez-Pérez [7, 8] and by Guarino and

colleagues with the OntoClean method [12]. ODECIlean [5] is a tool integrated into
the WebODE environment that gives support to the OntoClean method.

With the increasing number of ontologies implemented in the ontology markup
languages RDF(S) [3, 13] and DAMLA+OIL [18], many specialized ontology
validation tools for these languages have been built: Validating RDF Parser', RDF
Validation Service’, DAML Validator’, DAML+OIL Ontology Checker®, etc. These
tools are mainly focused on evaluating ontologies from a syntactic point of view, that
is, checking whether the ontologies are compliant with the languages specification.
However, they are not focused on detecting mistakes from a knowledge
representation point of view, that is, if the ontologies have inconsistencies and
redundancies.

We have performed experiments with 24 ontologies (7 on RDF(S) and 17 on
DAMLAOIL), which are well built from a syntactic point of view, according to the
languages specifications, but have inconsistencies and redundancies. We have parsed
them with the previous four tools and we have discovered that on the majority of the
experiments, they do not detect the taxonomic mistakes identified in [7].

The key point is that RDF(S) and DAML+OIL ontologies are imported by
ontology platforms. In fact, OilEd [2], OntoEdit [16], Protégé-2000 [14], and
WebODE [4, 1] are able to import ontologies implemented in both languages, but
there are not previous works analysing whether such platforms are able to detect
wrong RDF(S) and DAML+OIL ontologies. In order to carry out this analysis, we
have used the same 24 ontologies (7 on RDF(S) and 17 on DAML+OIL) and we have
imported them within the previous ontology platforms. We have found out that on the
majority of the experiments, these ontology platforms do not detect mistakes in
concept taxonomies represented in RDF(S) and DAML+OIL.

This paper is organized as follows, section two presents briefly the method for
evaluating taxonomic knowledge in ontologies. Section three presents a description of
some ontology ‘checkers’, ‘validators’, and ‘parsers’. Section four includes our first
comparative study, including examples of the RDF(S) and DAMLA+OIL ontologies
used on the testbed. Section five presents an overview of some ontology platforms.
Section six presents the results of importing RDF(S) and DAML+OIL ontologies with
taxonomic mistakes in the ontology platforms. Finally, we conclude with further work
on evaluation.

2 Method for Evaluating Taxonomic Knowledge in Ontologies

Figure 1 presents a set of possible mistakes that can be made by ontologists when
modeling taxonomic knowledge in an ontology under a frame-based approach [7]. In
this paper we only focus on inconsistency mistakes (circularity and partition) and
redundancy mistakes (grammatical), and we postpone the analysis of the others for
further works. Below we explain briefly the studied mistakes.

" http://139.91.183.30:9090/RDF/VRP/
2 http://www.w3.org/RDF/Validator/

? http://www.daml.org/validator/

* http://potato.cs.man.ac.uk/oil/Checker

Circularity Errors

Common classes in disjoint decompositiors and partitions
. Common instances in disjoint decormpositions and partitions
Inconsistency < Partition Frrors
External classes inexhaustive decompositions and partitions
External instances in exhaustive decompositions and partitions

Semantic Errors

Incomplete Concept Classification

Incompleteness
ition s Digjoint lmowledge omission
Exhaustive Inowledge omission
. Redundancies of subclass of relations
Grammatical
Redundancies of instance of relations
Redundancy

Identical formal definition of some classes

Identical formal definition of some instances

Figure 1. Types of mistakes that might be made when developing taxonomies with frames

Inconsistency: Circularity Errors occur when a class is defined as a

specialization or generalization of itself. Depending on the number of relations
involved, circularity errors can be classified as circularity errors at distance zero (a
class with itself), circularity errors at distance 1, and circularity errors at distance n.

Inconsistency: Partition errors. Concept classifications can be defined in a

disjoint (disjoint decompositions), a complete (exhaustive decompositions), and a
disjoint and complete manner (partitions). The following types of partition errors are
identified:

Common classes in disjoint decompositions and partitions. These occur when
there is a disjoint decomposition or a partition class-py,..., class-p, defined in a
class class-A, and one or more classes class-By,..., class-B, are subclasses of more
than one class-p;.

Common instances in disjoint decompositions and partitions. These errors
happen when one or several instances belong to more than one class of a disjoint
decomposition or partition.

External classes in exhaustive decompositions and partitions. They occur when
having defined an exhaustive decomposition or a partition of the base class
(class-A) into the set of classes class-pj,..., class-p,, and there are one or more
classes that are subclasses of the class-A, instead of being subclasses of a class
the set of classes class-pj,..., class-py.

External instances in exhaustive decompositions and partitions. These errors
occur when we have defined an exhaustive decomposition or a partition of the
base class (class-A) into the set of classes class-pj,..., class-p,, and there are one

or more instances of the class-4 that do not belong to any class class-p; of the
exhaustive decomposition or partition.

Redundancy: Grammatical Errors.
= Redundancies of ‘subclass-of” relations occur between classes they have more
than one ‘subclass-of” relation. We can distinguish direct and indirect repetition.
= Redundancies of ‘instance-of” relations. As in the above case, we can distinguish
between direct and indirect repetition.

3 Ontology ‘Checkers’, ‘Validators’ and ‘Parsers’

At the moment, there exist various ontology ‘checkers’, ‘validators’, and ‘parsers’
which are intended to carry out some kind of validation and/or checking of ontologies
on diverse web-based languages. In this paper, we focus on the most frequently used
parsers that validate and/or check ontologies on RDF(S) and DAMLAOIL: Validating
RDF Parser and RDF Validation Service for RDF(S), and DAML Validator and
DAMLAOIL Ontology Checker for DAMLA+OIL. Other parsers not included in this
paper are: Rapier RDF Parser’, Thea RDF Parser’, Chimaera’, ConsVISor®, etc.

The Validating RDF Parser. The ICS-FORTH RDFSuite’ is a suite of tools for RDF

metadata management. This RDFSuite consists of tools for parsing, validating, storing

and querying RDF descriptions, namely the Validating RDF Parser (VRP), the RDF

Schema Specific DataBase (RSSDB) and the RDF Query Language (RQL). The ICS-

FORTH Validating RDF Parser (VRP v2.5)" analyzes, validates and processes RDF

schemas and resource descriptions. This parser offers the following functions:

e Syntactic Validation for checking if the RDF/XML syntax of the input namespace
conforms to the updated RDF/XML syntax proposed by W3C.

o Semantic Validation for verifying the selected constraints derived from RDF
Schema Specification (RDFS). VRP allows to choose several semantic validation
constraints: class hierarchy loops, property hierarchy loops, domain and range of
subproperties, source and target resources of properties, and types of resources.

RDF Validation Service. The W3C RDF Validation Service'' is based on HP-Labs

Another RDF Parser (ARP'?), which currenlty uses the version 2-alpha-1. This online

service supports the Last Call Working Draft specifications issued by the RDF Core

Working Group, including datatypes. This online service offers the following

functions:

e Syntactic Validation for checking if the input namespace conforms to the updated
RDF/XML Syntax Specification proposed by W3C.

3 http://www.redland.opensource.ac.uk/raptor/

8 http://www.semanticweb.gr/

" http://www ksl.stanford.edu/software/chimaera/

8 http://vis.home.mindspring.com/index.html

? Partially supported by EU projects C-Web (IST-1999-13479), MesMuses (IST-2001- 26074),
and QUESTION-HOW (IST-2000-28767)

' http://139.91.183.30:9090/RDF/VRP/index . htm]

" http://www.w3.org/RDF/Validator/

'2 ARP was created and is maintained by Jeremy Carroll at HP-Labs in Bristol

e Semantic Validation. The service does not do any RDF Schema Specification
validation.

DAML Validator. The DAML Validator' is available via either a WWW interface
or download. The Validator uses the ARP parser from the Jena (1.6.1) toolkit to create
an RDF triple model from the input code being validated. The DAML Validator
checks DAMLA+OIL markup for problems beyond simple syntax errors. The Validator

reads in a DAML file and examines it for a variety of potential errors. The output is a

list of indications (errors, warnings, or information), a pointer to the errors in the file,

and some guidance on the nature of the problems. It offers the following functions:

e Syntactic Validation for checking for namespace problems (outdated URIs, file
extensions in URIs) during model creation. The validator tests RDF resources for
existence: any subject, or object resource that is referenced must have a defined
type.

e Semantic Validation for verifying the global domain and range constraints of the
predicate. The subject and object of a statement should be instances of the
predicate’s domain and range classes. Each node (RDF Resource and it’s
accompanying statements) is validated based on the following types: Class,
Property, Restriction, ObjectRestriction, DatatypeRestriction, or an Instance of
one or more classes.

DAMLA+OIL Ontology Checker. The DAML+OIL Checker'® was developed by

University of Manchester (UK). The DAML+OIL Checker is a servlet that uses the

OilEd codebase to check the syntax of DAML~+OIL ontologies and returns a report on

the classes and properties in the model. This checker is a web interface to check

DAML+OIL ontologies and content using Jena. It offers the following functions:

o Syntactic Validation for checking missing definitions. The checker is fairly strict
about the format of the input: in particular “rdf:ID attributes” must be conforming
XML names, and unqualified attributes should not be used.

o Semantic Validation for verifying class hierarchy loops.

4 Comparative Study of RDF(S) and DAMLA+OIL “‘Checkers’, ‘Validators’ and
‘Parsers’

As we said before, the first goal of this paper is to analyse whether RDF(S) and
DAML+OIL parsers presented in section 3 detect the concept taxonomy mistakes
presented in section 2. In order to achieve this goal, we have built a testbed of 24
ontologies (7 in RDF(S) and 17 in DAMLAOIL), each of which implements one of
the errors presented in section 2. And we have parsed them with the previous parsers.
In the case of RDF(S) we have only 7 ontologies because partitions cannot be defined
in this language.

These ontologies and the results of their evaluation can be found at
http://minsky.dia.fi.upm.es/odeval/index.html.

'3 http://www.daml.org/validator/
' http://potato.cs.man.ac.uk/oil/Checker

In figure 2 we show the RDF(S) code and graphical notation of two of these
ontologies: the one that implements the circularity error at distance 2, and the one that
implements the mistake of indirect redundancy of ‘instance-of’ relation. Figure 3
shows the DAMLAOIL code and graphical notation of three of these ontologies: the
one that implements the circularity error at distance 1, the one that implements the
mistake of common class in disjoint decomposition, and the last one that implements
the mistake of external instance in partition.

<rdfs:Class rdf ID="Term_A"> ss-of
<rdfs;subClassOf rdf:resource=""#Term_B" /> erm_
<frdfs:Class>

<rifs:Class rdf ID="Term_B"=
<rdfs;subClassOf rdf:resource=""#Term_C" />

subclass-of

</rdfs:Class>
subclass-of T
<ridfs:Class rdf ID="Term_C"=
<rdfs;subClassOf rdf:resource=""#Term_A" /> {_
<frdfs:Class» —

a) Loop at distance 2

<rdfs:Class rdfID="Class_A">
<rdfslabel=Class_A</rdfslabel>
<rdfs:subClassOf rdf:resource="#Class_B"/> Class_B

</rdfs:Class>

=rdfs:Class rdf ID="Class_B">
=tidfzlabel=Clasz_B</rdfslabel=
</rdfs:Class>

instance-of

subclass-of

I_}

Class A

=Class_A rdf:ID=""Instance A"> instance-of
<rdfs:label=-Instance A</rdfs:label-

=/Class_A>
=(Class_B rdf:about=""#Instance A" />

b) Indirect redundancy of ‘instance-of’ relation

Figure 2. Examples of RDF(S) ontologies

After parsing the ontologies on the testbed with the parsers, we found that all these
parsers recognised the code as well formed code, but the majority had problems
detecting most of the knowledge representation mistakes that these ontologies
contained.

The results of analysing and comparing these parsers are shown in table 1. The
symbols used in this table are the following:
O: The parser does not accept files written in this language
v': The parser detects the mistake in this language
x: The parser does not detect the mistake in this language
--: The mistake cannot be represented in this language

<daml Class rdf ID="Class B">
<rdfslabel>Class B</frdfslabel>

<rdfs:subClassOf rdf: resource=""#Class_C" /> | Class B |
</l Class> -

A
<daml:Class rdf ID="Class_C"> subclass-of subclass-of

<rdfslabel>Class C<frdfslabels h 4

<fdaml:Class> | Class_C |

<darml:Class rdfabout="#Class_C">
<rdfs:subClassOf ndf:resource="#Class B" />
</datnl:Clage>

a) Loop at distance 1

=darnl:Class rdf ID="Class_&" />

<daml:Class rdf ID=""Class_P1">
<daml:digjoint With rdf:resource=""#Class_P2"/> =

<rdfs:subClass Of rdf:resource="#Class_A" /> disjoint decomposition T
«</darnl:Class>

<darml:Class rdf [D=""Class P2">
<rdfs:subClass Of rdf:resource=""#Class_A" />
<fdaml:Class>

<darnl:Clazs rdf ID="Class B> subelass-of
<ndfs:subClass Of rdf:resource="#Class_F1" /> (Class B
=rdfs:subClass Of rdf:resource="#Class P2" />
<fdarml:Class=

| Class P1 | | Class P2 |

subclass-of

b) Common class in disjoint decomposition

<darmnl:Clags rdf ID="Clags_A" /=

<darmil Class rdf ID="Class_P1" />

<datnl:Class rdfID="Class_F2" /=
partition
=Class_A rdf:ID=""Irstance A" /> ¢
| Class P1 | | Class P2 |

<daml:Class rdfabout="#Class_A">
<daml:disjointUnionOf rdf:parseType=""daml:collection™>
<daml: Class rdf:about=""#Class_P1""/=
<daml: Class rdf: about=""#Class_P2""/=

<fdaml disjointUnionOf= -
instance-of

<fdarnl:Class=

c¢) External instance in partition

Figure 3. Examples of DAML+OIL ontologies

As we can see in table 1, we have checked whether RDF(S) tools (VRP and RDF
Validation Service) were able to evaluate DAMLAOIL files, and whether
DAMLAOIL tools (DAML Validator and DAML+OIL Ontology Checker) were able
to evaluate RDF(S) files. In the case of RDF(S) tools, the experiments showed that
RDF Validation Service can read DAML+OIL ontologies, although it does not detect
the mistakes, but VRP cannot read them. In the case of DAML-+OIL tools, the
experiments showed that both of them are able to recognize RDF(S) files. Although

the DAMLAOIL Ontology Checker is not a RDF(S) validation tool, it was able to
detect circularity errors in that language.

Before going in detail with circularity errors, we have an important comment to
make. The RDF(S) and DAMLAOIL specifications allow cycles in concept
taxonomies. However, we consider that this is a mistake from the knowledge
representation point of view, that is, we would not recommend designing ontologies
with cycles in their concept taxonomies. So here we want to stress the distinction
between checking an ontology from a syntactic point of view (checking whether the
ontology is compliant with the language specification) and checking an ontology from
a knowledge representation point of view (checking whether the ontology does not
have the mistakes presented in section 2).

Circularity errors are the only ones detected by some of the parsers studied in this
experiment. VRP is able to detect circularity errors at any distance in RDF(S)
ontologies, indicating that there is a semantic error (“loop detected”). The
DAMLAOIL Ontology Checker detects circularity errors at any distance in RDF(S)
and DAMLAOIL ontologies, throwing a warning about it (“cycles in class
hierarchy”).

Regarding partition errors, they have only been studied for DAML+OIL, since
they cannot be represented in RDF(S). None of the DAML~+OIL validators, neither
the RDF Validation Service, have detected partition errors with the 10 ontologies
from the testbed.

The same occurs with the grammatical redundancy errors, which are not detected
by any of the RDF(S) and DAMLAOIL parsers studied.

5 Ontology Platforms

In this paper we focus on the most representative ontology platforms that can be used
for importing ontologies: OilEd, OntoEdit, Protégé-2000, and WebODE. In this
section, we provide a broad overview of these ontology platforms.

OilEd" [2] was initially developed as an ontology editor for OIL ontologies, in the
context of the European IST OntoKnowledge project. However, OilEd has evolved
and now is an editor of DAML+OIL and OWL ontologies. OilEd can import
ontologies implemented in RDF(S), OIL, DAML+OIL, and the SHIQ XML format.
Besides exporting ontologies to DAMLA+OIL, OilEd ontologies can be exported to the
RDF(S) and OWL ontology languages and to the XML formats SHIQ and DIG.

OntoEdit'® [16] has been developed by AIFB in Karlsruhe University. It is an
extensible and flexible environment, based on a plugin architecture, which provides
functionality to browse and edit ontologies. It includes plugins for reasoning using
Ontobroker, plugins for exporting and importing ontologies in different formats
(FLogic, OXML, RDF(S), DAML+OIL), etc. Two versions of OntoEdit are available:
OntoEdit Free and OntoEdit Professional.

'3 http://oiled.man.ac.uk
' http://www.ontoprise.de/com/start_downlo.htm

ICS-FORTH

v +
Validating RDF | RDF Validation 1 p, (v vValidator DAML+OIL
Service Ontology Checker
Parser
'RDF(S) | DAML+OIL | RDF(S) | DAML+OIL | RDF(S) | DAML+OIL | RDF(S) | DAML+OIL
Inconsistency: | At distance zero 4 o X x X x v v
Circularity i At distance one 4 N 4 X x X v v
Errors : At distance n v S x X x x v v
! Common classes in i Direct - 0 - x - b x x
i disjoint decompositions | [pdirect | - N — X - X - X
i Common classes in partitions - o - x - x - x
] . R T~
i Common instances in | Direct - o - X - X - X
I 2.0 ¢ 9rg [-r— e el R ———————— e e et EEE P —————————————
, r-—-
Tnconsistency: | disjoint decompositions : Indirect — N x _ x . %
Partition | Common instances in partitions -- o - x - X - x
Err ; i i
ors ! External classes in .exhaustlve _ Q . % . < _ <
i decompositions
i External classes in partitions -- N - x - X - x
E External instances in exhaustive _ Q _ % . < . <
: decompositions
i External instances in partitions -- N -- x - X - x
| Redundancies of | Direct x 0 Q | ox i ox ox bk x x
Redundan.cy: I ‘subclass-of” relations | [ndirect x) x x x x % %
Grammatical ' - ——
T — I Redundancies of i Direct x Q0 | ox x| X ox X x
i ‘instance-of” relations | Indirect x S x X X x x x

Table 1. Results of the analysis of the RDF(S) and DAML+OIL parsers

Protégé-2000'" [14] has been developed by the Stanford Medical Informatics
(SMI) at Stanford University, and is the latest version of the Protégé line of tools. It is
an open source, standalone application with an extensible architecture. The core of
this environment is the ontology editor, and it holds a library of plugins that add more
functionality to the environment (ontology language importation and exportation,
OKBC access, constraints creation and execution, etc.). Protégé-2000 ontologies can
be exported and imported with some of the backends provided in the standard release
or as plugins: RDF(S), DAML~+OIL, OWL, XML, XML Schema, and XMI.

WebODE'" [4, 1] has been developed by the Ontology Engineering Group at
Universidad Politécnica de Madrid (UPM). It is an ontology-engineering suite created
with an extensible architecture. WebODE is not used as a standalone application, but
as a Web application. There are several services for ontology language import and
export (XML, RDF(S), DAML+OIL, OIL, OWL, CARIN, FLogic, Jess, Prolog),
axiom edition with WAB (WebODE Axiom Builder), ontology documentation,
ontology evaluation, and ontology merge.

6 Comparative Study of Ontology Platforms Import Services

As we said before, the second main goal of this paper is to analyse whether ontology
platforms presented in section 5, are able to detect taxonomic mistakes in RDF(S) and
DAML+OIL ontologies before importing them.

In order to carry out this experiment, we have reused the same 24 ontologies (7 in
RDF(S) and 17 in DAMLAOIL with inconsistency and redundancy mistakes) used in
the previous experiment. In the case of RDF(S) we have only 7 ontologies because
partitions cannot be defined in this language. We have imported these ontologies
using the import facilities of the ontology platforms presented in section 5. Table 2
presents the results of the experiment using the following symbols:

© : The ontology platform does not allow representing this type of mistake

v : The ontology platform detects the mistake during ontology import

x : The ontology platform does not detect the mistake during ontology import
-- : The mistake cannot be represented in this language

The main conclusions of the RDF(S) and DAML+OIL ontology import are:

Circularity errors at any distance are the only ones detected by most of ontology
platforms analyzed in this experiment. However, OntoEdit Free does not detect
circularity errors at distance zero, but it ignores them.

Regarding partition errors, we have only studied DAMLA+OIL ontologies because
this type of knowledge cannot be represented in RDF(S). Most of ontology platforms
used in this study do not detect partition errors in DAML+OIL ontologies.
Furthermore, some partition errors (common instance in partitions, external instance

' http://protege.stanford.edu/plugins.html
'8 http://webode.dia.fi.upm.es/

in exhaustive decompositions, etc.) cannot be represented in the ontology platforms
studied. Only WebODE detects some partition errors using the ODEval'® service.

Grammatical redundancy errors are not detected by most of ontology platforms
used in this work. However some ontology platforms ignore direct redundancies of
‘subclass-of” or ‘instance-of” relations. As the previous case, only WebODE detects
indirect redundancies of ‘subclass-of’ relations in RDF(S) and DAML+OIL
ontologies using the ODEval service.

7 Conclusions and Further Work

In this paper we have shown that, in general, current RDF(S) and DAML+OIL
‘checkers’, ‘validators’, and ‘parsers’ are not able to detect mistakes from a
knowledge representation point of view, but they mainly focus on the syntactic
validation of the RDF(S) and DAML+OIL ontologies that they parser.

We have also shown that only a few taxonomic mistakes in RDF(S) and DAML~+OIL
ontologies are detected by ontology platforms which are able to import ontologies in
such languages.

Taking into account that only a few parsers are able to detect loops in RDF(S) and
DAMLAOIL taxonomies, we considered that it is necessary to create more advanced
evaluators than those already existing for evaluating RDF(S) and DAMLAOIL from a
knowledge representation point of view.

We also consider that it is necessary to create more advanced ontology import
services in ontology platforms.

We think that much work must be made to integrate ontology evaluation functions
in ontology development tools, and to create an integrated ontology evaluation tool
suite that will permit analyzing ontologies in different languages and KR formalisms.

Acknowledgements

This work has been supported by the Esperonto project (IST-2001-34373), by the
Spanish project ‘Plataforma Tecnologica para la web semantica: Ontologias, analisis
de lenguaje natural y comercio electronico’ (TIC-2001-2745), and by a research grant
from UPM (“Beca asociada a proyectos modalidad B”).

We thanks for his comments and revisions to Oscar Corcho.

' http://minsky.dia.fi.upm.es/odeval

OilEd OntoEdit Free Protégé-2000 WebODE
RDE(S) | DAML+OIL | RDF(S) | DAML+OIL | RDF(S) | DAML+OIL | RDE(S) | DAML+OIL
Inconsistency: ! At distance zero v v X x v v v v
Circularity | At distance one v v Voo v v v v v
Errors I At distance n v o v v o v v v v v
I Common classes in Direct - x - X - | x = v
I disjoint decompositions ! Indirect ! % — % — % - v
I i i y i
i Common classes in partitions - X - ® - X - v
| Common instances in | Direct = x - x -) LT ©
Inconsistency: | disjoint decompositions i Indirect - | X - S - ® - S
Partition | Common instances in partitions N x . @) S @) -)
Errors i i X X | |
| External classes 1p_exhaust1ve o x o ® o x o ®
] decompositions : : : .
| External classes in partitions - X - @) - x - v
| External 1nstances_n_1 exhaustive o x o ® o x o ®
| decompositions . : : i
| External instances in partitions - X - @) - x - v
! Redundancies of Direct X x X x x x x| x
gedundancy; I subclass-of relations | Indirect X X X x x X Voo v
rammatical | : I i ; ;
Errors I Redundancies of Direct | x x x| X x & e S
! instance-of relations | Indirect x| x x| X ® ® e | @)

Table 2. Results of the RDF(S) and DAML+OIL ontology import

References

10.

11.

12.

13.

Arpirez JC, Corcho O, Fernandez-Lépez M, Goémez-Pérez A (2003) WebODE in a
nutshell. Al Magazine To be published in 2003

Bechhofer S, Horrocks I, Goble C, Stevens R (2001) OilEd: a reason-able ontology editor
for the Semantic Web. In: Baader F, Brewka G, Eiter T (eds) Joint German/Austrian
conference on Artificial Intelligence (KI’01). Vienna, Austria. (Lecture Notes in Artificial
Intelligence LNAI 2174) Springer-Verlag, Berlin, Germany, pp 396-408

Brickley D, Guha RV (2003) RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Working Draft. http://www.w3.org/TR/PR-rdf-schema

Corcho O, Fernandez-Lopez M, Gomez-Pérez A, Vicente O (2002) WebODE: an
Integrated Workbench for Ontology Representation, Reasoning and Exchange. In: Gomez-
Pérez A, Benjamins VR (eds) 13™ International Conference on Knowledge Engineering
and Knowledge Management (EKAW’02). Sigiienza, Spain. (Lecture Notes in Artificial
Intelligence LNAI 2473) Springer-Verlag, Berlin, Germany, pp 138-153
Fernandez-Lopez M, Gémez-Pérez A (2002) The Integration of OntoClean in WebODE.
In: Angele J, Sure Y (eds) EKAWO02 Workshop on Evaluation of Ontology-based Tools
(EON2002), Sigiienza, Spain, pp 38-52.

Fernandez-Lopez M, Gomez-Pérez A, Pazos-Sierra A, Pazos-Sierra J (1999) Building a
Chemical Ontology Using METHONTOLOGY and the Ontology Design Environment.
IEEE Intelligent Systems & their applications 4(1) (1999) 37-46.

Gomez-Pérez A (2001) Evaluating ontologies: Cases of Study. IEEE Intelligent Systems
and their Applications. Special Issue on Verification and Validation of ontologies. Marzo
2001, Vol 16, N° 3. Pag. 391 — 409.

Gomez-Pérez A (1996) A Framework to Verify Knowledge Sharing Technology. Expert
Systems with Application. Vol. 11, N. 4. PP: 519-529.

Gomez-Pérez A (1994) Some ideas and Examples to Evaluate Ontologies. Technical
Report KSL-94-65. Knowledge System Laboratory. Stanford University. Also in
Proceedings of the 11™ Conference on Artificial Intelligence for Applications. CAIA94.
Goémez-Pérez A (1994) From Knowledge Based Systems to Knowledge Sharing
Technology: Evaluation and Assessment. Technical Report. KSL-94-73. Knowledge
Systems Laboratory. Stanford University. December.

Griininger M, Fox MS (1995) Methodology for the design and evaluation of ontologies. In
Workshop on Basic Ontological Issues in Knowledge Sharing (Montreal, 1995).

Guarino N, Welty C (2000) 4 Formal Ontology of Properties In R. Dieng and O. Corby
(eds.), Knowledge Engineering and Knowledge Management: Methods, Models and
Tools. 12th International Conference, EKAW2000, LNAI 1937. Springer Verlag: 97-112.
2000.

Lassila O, Swick R (1999) Resource Description Framework (RDF) Model and Syntax
Specification. W3C Recommendation. http://www.w3.org/TR/REC-rdf-syntax/

. Noy NF, Fergerson RW, Musen MA (2000) The knowledge model of Protege-2000:

Combining interoperability and flexibility. In: Dieng R, Corby O (eds) 12" International
Conference in Knowledge Engineering and Knowledge Management (EKAW’00). Juan-
Les-Pins, France. (Lecture Notes in Artificial Intelligence LNAI 1937) Springer-Verlag,
Berlin, Germany, pp 17-32

Staab S, Schnurr HP, Studer R, Sure Y (2001) Knowledge Processes and Ontologies,
IEEE Intelligent Systems, 16(1). 2001.

Sure Y, Erdmann M, Angele J, Staab S, Studer R, Wenke D (2002) OntoEdit:
Collaborative Ontology Engineering for the Semantic Web. In: Horrocks I, Hendler JA
(eds) First International Semantic Web Conference (ISWC’02). Sardinia, Italy. (Lecture
Notes in Computer Science LNCS 2342) Springer-Verlag, Berlin, Germany, pp 221-235

17. Uschold M, Griininger M (1996) ONTOLOGIES: Principles, Methods and Applications.
Knowledge Engineering Review. Vol. 11; N. 2; June 1996.
18. van Harmelen F, Patel-Schneider PF, Horrocks I (2001) Annotated DAML~+OIL (March

2001) Markup Language. Technical Report. http://www.daml.org/2001/03/daml+oil-
walkthru.html

Racer: A Core Inference Engine for the
Semantic Web

Volker Haarslev and Ralf Moller?

fConcordia University, Montreal, Canada (haarslev@cs.concordia.ca)
Technical University Hamburg-Harburg, Germany (ra.moeller@tu-harburg.de)

Abstract. In this paper we describe Racer, which can be considered
as a core inference engine for the semantic web. The Racer inference
server offers two APIs that are already used by at least three different
network clients, i.e., the ontology editor OilEd, the visualization tool
RICE, and the ontology development environment Protege 2. The Racer
server supports the standard DIG protocol via HTTP and a TCP based
protocol with extensive query facilities. Racer currently supports the web
ontology languages DAML+OIL, RDF, and OWL.

1 DMotivation

The Semantic Web initiative defines important challenges for knowledge repre-
sentation and inference systems. Recently, several standards for representation
languages have been proposed (RDF, DAML4OIL, OWL). One of the standards
for the Semantic Web is the Resource Description Framework (RDF [12]). Since
RDF is based on XML it shares its document-oriented view of grouping sets of
declarations or statements. With RDF’s triple-oriented style of data modeling,
it provides means for expressing graph-structured data over multiple documents
(whereas XML can only express graph structures within a specific document).
As a design decision, RDF can talk about everything. Hence, in principle, state-
ments in documents can also be referred to as resources. In particular, conceptual
domain models can be represented as RDF resources. Conceptual domain mod-
els are referred to as “vocabularies” in RDF. Specific languages are provided for
defining vocabularies (or ontologies). An extension of RDF for defining ontologies
is RDF Schema (RDFS [6]) which only can express conceptual modeling notions
such as generalization between concepts (aka classes) and roles (aka properties).
For properties, domain and range restrictions can be specified. Thus, the expres-
siveness of RDFS is very limited. Much more expressive representation languages
are DAML4-OIL [15] and OWL [14]. Although still in a very weak way, based
on XML-Schema, OWL and DAML+OIL also provide for means of dealing with
data types known from programming languages.

The representation languages mentioned above are defined with a model-
theoretic semantics. In particular, for the language OWL, a semantics was de-
fined such that very large fragments of the language can be directly expressed
using so-called description logics (see [1]). The fragment is called OWL DL.

With some restrictions that are discussed below one can state that the logical
basis of OWL (or DAML+OIL) can be characterized with the description logic
SHZIQ(D,)~ [3] (DAMLHOIL documents are to be interpreted in the spirit of
OWL DL). This means, with some restrictions, OWL documents can be automat-
ically translated to SHZQ(D,,)~ T-boxes. The RDF-Part of OWL documents
can be translated to SHZQ(D,,)~ A-boxes.

In the remainder of this paper Racer, its APIs, and its inference services
are briefly described. The use of Racer as network server is illustrated by RICE
offering an interactive visualization and query interface. The paper is concluded
by reporting on Racer’s constraint-based data types support whose functionally
exceeds the current OWL standard.

2 Racer: A Description Logic Inference Engine

The logic SHZQ(D,,)~ is interesting for practical applications because highly op-
timized inference systems are available (e.g., Racer [8]). Racer is freely available
for research purposes and can be accessed by standard HTTP or TCP protocols
(the Racer program is subsequently also called Racer server). Racer can read
DAMLAOIL and OWL knowledge bases either from local files or from remote
Web servers (i.e., a Racer server is also a HTTP client). In turn, other client
programs that need inference services can communicate with a Racer server via
TCP-based protocols. OilEd [4] can be seen as a specific client that uses the
DIG protocol [5] for communicating with a Racer server, whereas RICE [13]
is another client that uses a more low-level TCP protocol providing extensive
query facilities (see below).

The DIG protocol is a an XML- and HTTP-based standard for connecting
client programs to description logic inference engines. DIG allows for the allo-
cation of knowledge bases and enables clients to pose standard description logic
queries. The main ideas behind DIG are described in detail in [5]. As a stan-
dard and a least common denominator it cannot encompass all possible forms
of system-specific statements and queries. Let alone long term query processing
instructions (e.g., exploitation of query subsumption, computation of indexes
for certain kinds of queries etc., see [9]). Therefore, Racer provides an additional
TCP-based interface in order to send instructions (statements) and queries. For
interactive use, the language supported by Racer is not XML- or RDF-based
but is largely based on the KRSS standard with some additions and restrictions.
The advantage is that users can spontaneously type queries which can be directly
sent to a Racer server. We will see below that RICE can be used as a shell for
Racer. However, the Racer TCP interface can be very easily accessed from Java
or C++ application programs as well. For both languages corresponding APIs
are available.

The following code fragment demonstrates how to interact with a Racer
server from a Java application using Racer’s TCP-based API. The aim of the
example is to demonstrate the relative ease of use that such an API provides.

public class KillerApplication {

public static void main(String[] argv) {
RacerClient client=new RacerClient("racer.cs.concordia.ca", 8088);
try {
client.openConnection();
try {
String kbName=
client.send (" (owl-read-document
\"http://wuw.cs.concordia.ca/"faculty/haarslev/family.owl\")");
String queryResult=
client.send("(individual-direct-types |#CHARLES|)");
System.out.println(racerResult);

}

catch (RacerException e) {

}
}
client.closeConnection();
} catch (IOException e) {

}

The connection to the Racer server is represented with a client object (of class
RacerClient). The client sends messages to a Racer server running on the ma-
chine with name "racer.cs.concordia.ca" on port 8088. The Java program
can be run on another computer, of course. The program instructs the Racer
server to load an OWL document from a remote server. In addition, the Java
client program executes a query and prints the result set.

3 A Selection of Supported Inference Services

In description logic terminology, a tuple consisting of a T-box and an A-box
is referred to as a knowledge base. An individual is a specific named object.
OWL also allows for individuals in concepts (and T-box axioms). For example,
expressing the fact that all humans stem from a single human called ADAM
requires to refer to an individual in a concept (and a T-box). Only part of the
expressivity of individuals mentioned in concepts can be captured with A-boxes.
However, a straightforward approximation exists (see [10]) such that in practice
suitable SHZQ(D,,)~ ontologies can be generated from an OWL document.
Racer can directly read OWL documents and represent them as description
logic knowledge bases (aka ontologies). In the following a selection of supported
queries is briefly introduced.

— Concept consistency w.r.t. a T-box: Is the set of objects described by a
concept empty?

— Concept subsumption w.r.t. a T-box: Is there a subset relationship between
the set of objects described by two concepts?

— Find all inconsistent concepts mentioned in a T-box. Inconsistent concepts
might be the result of modeling errors.

— Determine the parents and children of a concept w.r.t. a T-box: The parents
of a concept are the most specific concept names mentioned in a T-box which
subsume the concept. The children of a concept are the most general concept
names mentioned in a T-box that the concept subsumes. Considering all
concept names in a T-box the parent (or children) relation defines a graph
structure which is often referred to as taxonomy. Note that some authors
use the name taxonomy as a synonym for ontology.

Whenever a concept is needed as an argument for a query, not only predefined
names are possible. If also an A-box is given, among others, the following types
of queries are possible:

— Check the consistency of an A-box w.r.t. a T-box: Are the restrictions given
in an A-box w.r.t. a T-box too strong, i.e., do they contradict each other?
Other queries are only possible w.r.t. consistent A-boxes.

— Instance testing w.r.t. an A-box and a T-box: Is the object for which an
individual stands a member of the set of objects described by a certain query
concept? The individual is then called an instance of the query concept.

— Instance retrieval w.r.t. an A-box and a T-box: Find all individuals from an
A-box such that the objects they stand for can be proven to be a member
of a set of objects described by a certain query concept.

— Computation of the direct types of an individual w.r.t. an A-box and a T-
box: Find the most specific concept names from a T-box of which a given
individual is an instance.

— Computation of the fillers of a role with reference to an individual.

Given the background of description logics, many application papers demon-
strate how these inference services can be used to solve actual problems with
DAML4OIL or OWL knowledge bases. The query interface is extensively used
by RICE, which is briefly described in the next section.

4 RICE: Racer Interactive Client Environment

RICE [13] is a tool for Racer that visualizes taxonomies and A-box structures
and enables users to interactively define queries using these visualizations. RICE
is started as an application program and can be configured to connect to a Racer
server by giving a host name and a port. When RICE connects to a Racer server
it retrieves all T-boxes and displays them in an unfoldable tree view (in a similar
way as OilEd [4] does).

In Figure 1 the taxonomy induced by the T-box specified above is presented
(left window, unfoldable tree display). The taxonomy is accompanied by the
pane for displaying A-box individuals (to the right of the tree display). Selecting
a concept name in the taxonomy corresponds to posing an instance retrieval
query with that concept name as a query concept. The result set is displayed in

£ RACER Interactive CLIENT Environment (RICE)
Fil= Edit Tools Help

Concepts: JType!SeIect a Concept Mame to show (exacLI ABoxes:

@ DEFAULT |FamLy M _
B A FAMLY Instances: all Racr ABox
24 AUTO [ALICE File Edit
@ SMART e
-8 TAX CHARLES
% CHLD
=-C [N .
4 MAN e
| B4 BROTHER
: o UNCLE f
o PARENT |
Lo WWOMAN
- SEAT
|

Stat its andior concept definttions: {

has-child

Submit ShowGraph PreClassify
RACER Replies:

1 unzatizfiable concept(s) found:
ECOMOMIC-TAXI

Tree intialized

Fig. 1. Snapshot of RICE displaying an example knowledge base (T-box and A-box).

the instances pane. In the example in Figure 1 all humans are displayed. The
structure of the whole A-box can be displayed by pressing the button “Show
Graph”. The graph window to the right appears. Clicking on individuals is in-
terpreted as posing queries for the direct types of the individuals. In Figure 2
the individual CHARLES is selected. The taxonomy is automatically unfolded
such that all concept names which are direct types can be seen as highlighted
nodes. Figure 2 also demonstrates that graphical attributes (e.g., color, shape)
for displaying A-boxes can be (interactively) specified as appropriate.

RICE users can interactively type instructions and queries into the interac-
tion pane in the middle. In Figure 2 we see an instance retrieval query. Query
results are printed into the lower pane. Since Racer supports multiple A-boxes,
users can interactively select the A-box subsequent queries should refer to (see
the main window in Figure 2, top-right selection box). The current T-box can
also be easily set by clicking on a T-box name.

If a user specifies a knowledge base with OilEd, Racer can be used to verify
and classify it with a single click. The knowledge base is then known to the Racer
server. If RICE connects to the Racer server, the knowledge base is visible. Note
that OilEd and RICE can access a Racer server in parallel without any problems

& RACER Interactive CLIENT Environment (RICE)
File Edit Tools Help

Concepts: ITypelSelect a Concept Mame to show (exact matching only) LI ABoxes:
% DEFALLT fFamLy |
Ba FaMLY Instances:
B4 &UTO
@ SMART
Ll TAX
poo M CHILD
-4 HUMaN
=-Ca[
E-_4 BROTHER & Racer - ABox
-4 UNCLE Flle Edit
Rl RENT =
el WOMAN
L@ SEAT

Statements andfor concept definttions:

(concept-instances (and (some has-child woman) man))

ShowGraph

RACER Replies:
(CHARLES)

oo

E3 -
g o

Fig. 2. Snapshot of RICE showing the results of a direct types query and an instance
retrieval query.

if the Racer Proxy is installed appropriately (see [10]). If the RICE user selects
the knowledge base stemming from OilEd (in Figure 3 we used one of the OilEd
example files) and presses “Show Graph”, the A-box part is shown in a graph
display (see Figure 3).

As a summary, we compare OilEd and RICE. OilEd supports DIG, which
makes it useful for more reasoners, but is limited to what DIG supports. Further-
more, OilEd provides a graphical means for displaying definitions of concepts and
instances. This makes it easy to see what properties are defined and which ones
are inherited. OilEd presents unsatisfiable concepts in the taxonomy, whereas
they are not shown in RICE. RICE can connect to a Racer server that has al-
ready loaded a model, and retrieve its taxonomy (this is not supported by DIG).
RICE can add individual DL statements to Racer (although this currently re-
quires full classification of the model involved). RICE can be used to pose queries
on Racer (either interactively or with a textual specification), and shows a graph-
ical representation of relations in an A-box. RICE can also deal with multiple
T-boxes and associated A-boxes. In particular, it can show instances of a concept
and concepts (direct types) of instances.

& RACER Interactive CLIENT Environment (RICE)
File Edit Tools Help

Concepts: Jhittp: fpotato.cs.man.ac.

| ABoxes:

63 o | Than &
® |http:fpotato.cs man.ac.
@ |ttp:fipotato.cs man ac.ukfortologies/diving#Oxygen+Cleaned)
® |http:ipotato.cs man.ac. |
® |http:ibotato.cs.man.ac.

onarion]

yor vv
. cs.man.ac jes/diving#Physi

ayl
=14 |http: footato cs man ac ukiontologies/diving#Procedure|

® |http:fipotato.c:

man.ac

® |http:fipotato c:

man.ac

* c

man.ac

® |http:iipotato.c:

® |http:fipotato.c:

man.ac
man.ac

~| JoeFauLt
Instances:
[giesidiving#AOW|
Igies/diving#Advanced-+Diver|
lesidivingair
les/diving#Assistartsinstructc
(ies/iving#BSAC+88+Tables|
\giesidiving#BSAC|
ies/diving#DivesLeader|
giesidiving#Divemaster|

® |http:fpotato cs.man.ac J \giesidiving#First+Class+Diver|
. cs.man.ac i ol lgiesdiving#Heliox|
® _|fitp: fpotato.cs.man ac ukiontologies/diving#Staged+Decompression] Iniop tisinectiat it hd
I | ttp: /fpotato cs man.ac.ukontologiesidiving#Qualification] j ;r _’ L,_]
andior concept defintions:
(concept-inst (or (some |http:iipotato.cs man ac ,_byl

man.ac
csman.ac i

£ Racer - ABox
File Edit

RACER Repliest
(lttp: fipotato g
Ihttp:fotato.c:
Ihttp:fpotato.c
Ihttp: fpotato.c
Inttp: potato.c
Inttp:footato.c

First+Class+Diver

Advanced+Diver

Sports+Diver

awarded_by | awarded_by

awarded_by awarded_by awarded_by

il

Fig. 3. Using RICE to visualize a RDF document interactively defined with OilEd.

5 Reasoning Beyond OWL: Constraints on Data Types

For various practical reasons OWL also includes so-called data types based on
XML-Schema. Data types in XML-Schema are inspired by a storage-oriented
characterization of values and are taken from programming languages. For in-
stance, data types encompass integer, short, long, boolean, string as well
as various kinds of specializations for strings.

For an ontology representation language, a semantic characterization for data
types might have been more appropriate in our opinion. Thus natural numbers,
integers, reals, or complex numbers might have been selected as data types rather
than long or short etc. because for knowledge representation languages the
storage format should not be of top-most concern.

Based on XML-Schema in DAML4OIL or OWL it is possible to specify
subtypes of, for instance, integer by defining a minimum or maximum value
[15]. However, OWL does not support so-called constraints between data values.
In many practical applications, for instance, linear polynomial inequations with
order relations are appropriate. In description logics and databases, these kinds
of constraints have a long tradition (see [1,11]). In the following we will adopt
the description logic perspective: concrete domains [2].

Racer supports concrete domain reasoning over natural numbers (N), integers
(Z), reals (R), complex numbers (C), and strings. For different sets, different
kinds of predicates are supported:

N: linear inequations with order constraints and integer coefficients
— Z: interval constraints

— R: linear inequations with order constraints and rational coefficients
C: nonlinear multivariate inequations with integer coefficients

— Strings: equality and inequality

For convenience, rational coefficients can be specified in floating point notation.
They are automatically transformed into their rational equivalents (e.g., 0.75 is
transformed into %) In the following we will use the names on the left-hand side
of the table to refer to the corresponding concrete domains.

The following example uses the concrete domains Z and R. For sake of brevity,
we use Racer’s Lisp syntax [10].

(in-tbox family)

(signature
:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)))

(equivalent teenager (and human (min age 16)))
(equivalent old-teenager (and human (min age 18)))

Asking for the children of teenager reveals that old-teenager is a teenager. A
further extensions demonstrates the usage of reals as concrete domain.

(signature
:atomic-concepts (... teenager)
:roles (...)
:attributes ((integer age)
(real temperature-celsius)
(real temperature-fahrenheit)))

(equivalent teenager (and human (min age 16)))

(equivalent old-teenager (and human (min age 18)))

(equivalent human-with-feaver (and human (>= temperature-celsius 38.5))
(equivalent seriously-ill-human (and human (>= temperature-celsius 42.0)))

Obviously, Racer determines that the concept seriously-ill-human is sub-
sumed by human-with-fever. For the Reals, Racer supports linear equations
and inequations. Thus, we could add the following statement to the knowl-
edge base in order to ensure the proper relationship between the two attributes
temperature-fahrenheit and temperature-celsius.

(implies top (= temperature-fahrenheit
(+ (x 1.8 temperature-celsius) 32)))

If a concept seriously-ill-human-1 is defined as

(equivalent seriously-ill-human-1
(and human (>= temperature-fahrenheit 107.6)))

Racer recognizes the subsumption relationship with human-with-fever and the
synonym relationship with seriously-ill-human.

In an A-box, it is possible to set up constraints between single individuals.
This is illustrated with the following examples.

(signature
:atomic-concepts (... teenager)
:roles (...)
:attributes (...)
:individuals (eve doris)
:objects (temp-eve temp-doris))

(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)

(= temp-doris 39.5))

For instance, this states that the individual eve is related via the attribute
temperature-fahrenheit to the object temp-eve. The constraint (= temp-eve
102.56) specifies that the object temp-eve is equal to 102.56.

Now, asking for the direct types of eve and doris reveals that both indi-
viduals are instances of human-with-fever. In the following A-box there is an
inconsistency since the temperature of 102.56 Fahrenheit is identical with 39.5
Celsius.

(constrained eve temp-eve temperature-fahrenheit)
(constrained doris temp-doris temperature-celsius)
(constraints

(= temp-eve 102.56)

(= temp-doris 39.5)

(> temp-eve temp-doris))

An additional kind of query is possible for concrete domains: Check if certain
concrete domain constraints are entailed by an A-box and a T-box. For instance,
in the above-mentioned example, the following query returns true.

(constraint-entailed? (= temp-eve temp-doris))

6 Conclusion

This paper briefly described Racer and demonstrated that Racer can cooper-
ate with various kinds of ontology editors and visualization tools. Racer can be
considered as one of the fastest OWL DL reasoners based on sound and com-
plete algorithms that is currently freely available. It is still unique in its highly
optimized reasoning support for A-boxes and constraint-based data types (as
demonstrated in the previous sections). Racer also includes optimization tech-
niques supporting the classification of very large knowledge bases (KBs). For

instance, a set of KBs could be classified in a few hours [7] that were derived
from the Unified Medical Language System (UMLS) and contain up to 200,000
concept introduction axioms (OWL classes) and up to 50,000 hierarchical roles
(OWL object properties).

Acknowledgements

We gratefully acknowledge the work of Ronald Cornet, who developed RICE.

References

1.

2.

10.
11.

12.

13.

14.

15.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2002. In print.

F. Baader and P. Hanschke. A scheme for integrating concrete domains into
concept languages. In Twelfth International Joint Conference on Artificial In-
telligence, Darling Harbour, Sydney, Australia, Aug. 24-30, 1991, pages 452—457,
August 1991.

F. Baader, 1. Horrocks, and U. Sattler. Description logics as ontology languages
for the semantic web. In D. Hutter and W. Stephan, editors, Festschrift in honor
of Jorg Siekmann. LNAI. Springer-Verlag, 2003.

S. Bechhofer, I. Horrocks, and C. Goble. OilEd: a reason-able ontology editor for
the semantic web. In Proceedings of KI2001, Joint German/Austrian conference on
Artificial Intelligence, September 19-21, Vienna. LNAI Vol. 2174, Springer-Verlag,
2001.

S. Bechhofer, R. Méller, and P. Crowther. The DIG description interface. In Proc.
International Workshop on Description Logics — DL’03, 2003.

D. Brickley and R.V. Guha. RDF vocabulary description language 1.0: RDF
Schema, http://www.w3.org/tr/2002/wd-rdf-schema-20020430/, 2002.

V. Haarslev and R. Moller. High performance reasoning with very large knowledge
bases: A practical case study. In B. Nebel, editor, Proceedings of the Seventeenth
International Joint Conference on Artificial Intelligence, IJCAI-01, August 4-10,
2001, Seattle, Washington, USA, pages 161-166, August 2001.

V. Haarslev and R. Moller. Racer system description. In International Joint
Conference on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy.,
2001.

V. Haarslev and R. Moller. Optimization stategies for instance retrieval. In Proc.
International Workshop on Description Logics — DL’02, 2002.

V. Haarslev and R. Moller. The Racer user’s guide and reference manual, 2003.
G. Kuper, L. Libkin, and J. Paredaens (Eds.). Constraint Databases. Springer-
Verlag, 1998.

O. Lassila and R.R. Swick. Resource description framework (RDF)
model and syntax specification. recommendation, W3C, february 1999.
http://www.w3.org/tr/1999/rec-rdf-syntax-19990222, 1999.

R. Moller, R. Cornet, and V. Haarslev. Graphical interfaces for Racer: querying
DAMLA+OIL and RDF documents. In Proc. International Workshop on Descrip-
tion Logics — DL’03, 2003.

F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein. OWL web ontology language reference, 2003.

F. van Harmelen, P.F. Patel-Schneider, and 1. Horrocks (Editors). Reference de-
scription of the DAMLA+OIL (march 2001) ontology markup language, 2001.

DL-workbench: a meta-modeling approach to ontology
manipulation

Mikhail KAZAKOV" 2 Habib ABDULRARB?

! Research division, Open Cascade S.A. 91400, Saclay, France
mikhail kazakov@opencascade.com
2PSI laboratoire, INSA de Rouen, BP 8, 76131, Mont Saint Aignan, France
abdulrab@insa-rouen. fr

Nowadays many ontological editors are available. However, several specific
requirements forced us to develop a new ontology edition platform which we
call DL-workbench. DL-workbench contains three main modules. First module
defines a meta-model for description of ontological formalisms. It provides an
API that allows management of ontological entities, containers of entities, and
many other features that are useful when one needs to use an ontological model
within its project. A second module of DL-workbench is a formalism-
independent processing module with integrated GUI for edition of elements
based on the meta-model. This module uses the meta-model and is implemented
as a plug-in to the IBM Eclipse platform. A third module defines the SHIQ
description logic formalism using the meta-model. The third module customizes
also the user interface (images, etc.). DAML+OIL is used within this module as
a persistent format. DL-workbench pays much attention to edition of logical
equations and to management of a group of ontologies within a project. DL-
workbench allows easy integration of ontological model with other data inside
one standalone or distributed application. DL-workbench can be used both as
the ontological editor and as an ontology manipulation platform integrated with
other tools and environments. This paper describes our motivation for creation
of DL-workbench, implemented features and lessons learned from
implementation of ontological editor.

1. Introduction

Ontologies have become an increasingly important research topic. This is a result of
their usefulness in many application domains (software engineering, databases,
medical domain, conceptual modeling, etc.) and the role they will play in the
development of emerging Semantic Web activity. It is clear that development and
manipulation of ontologies have to be supported by corresponding software tools
(annotation tools, editors, reasoners, etc.) and standards (OWL [9], etc.).

Nowadays many application domains are looking for use of ontologies. Each
domain, that uses ontologies, sets its own requirements for tools. One of such
domains is software integration. The main challenge of software integration is: how to
make working together software entities that were not initially created to work with
each other. We are currently working on the topic of semi-automated integration of

various numerical simulation multi-physics solvers [2]. Here the use of ontologies (as
formal description models) helps to share a common view on specification of solvers
that come from different vendors. Integration topic is out of the scope of this article
and will be published in a separate paper. Some preliminary results are given in [16].

Since we use logical models in our specific domain, we need a formalism that will
be used for creation of these models and tools that support the formalism (creation of
ontologies and reasoning). Also we need an API that allows us to integrate all these
tools with software, specific to the integration domain. Taking into account the
research origin of our work, we have formulated a set of requirements for an
ontological tool that would be convenient for us (the same requirements arise often
within the variety of other domains):

e Full support of at least one of ontological formalisms. Several formalisms are
preferred for research purpose. During the work on our research project
dedicated to semi-automated integration we experimented with several
ontological formalism and at the moment of DL-workbench creation we were
not sure, whether description logics are appropriate or not for our research.

e Convenient user interface to work with complex logical expressions (with
ability to modify the structure of expressions via the graphical user interface).
While trying several ontological editors, we found that most of the ontological
editors don’t implement expression editors. Those who implement them were
not convenient from our point of view.

e Presence of reasoner connection for implemented formalisms. Within our
research we have to work with complex logical axioms and ontological
models. These require the presence of reasoner both for validation of
ontologies and for performing of additional reasoning tasks that are dedicated
to semi-automated integration of software components.

e Ability to integrate that tool into a specific domain environment. Our research
is dedicated to integration environments that already exist as prerequisite. The
next requirement is coming from the same origin.

e Ability to manipulate ontologies and their elements from specific domain
environment. We need that in order to merge several ontological formalisms
within the same environment. For example the ontological data is merged with
specifications of Java interfaces.

« Ability to work with structured “ontological projects’ but not with “files’.
Following our methodology of semi-automated integration we need to work
with several separated ontological files at the same time. Managing of these
files within the “project”-like environment seems to be an acceptable solution.
Most of the people in software engineering who will use our products are
familiar with this concept.

* Fast and portable user interface and presence of extension points

Studying the state of the art, we did not find any tool that could comply with our
requirements. Thus the decision to create own platform was taken. The name of the
platform is DL-workbench (short of Description Logic Workbench, since SHIQ
description logic [7] is the main formalism that is used). DL-workbench is published
now under open source license (http://www.opencascade.org/dl-workbench).

Semantic Web activity is an important world-wide effort that combines many
techniques and touches many application domains. We hope that our experience in
creating of software tools for manipulation of ontologies (and DL-workbench itself)
will be useful for the semantic web community. This paper describes a meta-model
approach that was used for creation of DI-workbench. First we give the concept of
DL-workbench and our motivations. Further, we describe the meta-model kernel and
other modules. At the end we share some of lessons learned during creation of this
tool.

2. DL-workbench conception

The next list of principles and it constitutes the main concept of DL-workbench:

e DL-workbench is based on a meta-model that is capable to describe the structure
of ontological formalisms and data that is used within a specific domain.

e DL-workbench has a modular (plug-in based) architecture with clearly specified
dependencies among modules.

e Main processing module of DL-workbench is based only on the meta-model and
does not depend on any of specific formalisms. This module implements features
such as persistence skeleton, tracking of changes, transactions!, lifecycle of
instances and many others.

¢ Each generic module provides a set of documented extension points that can be
used by other modules / software to customize the platform.

e The work with ontologies is performed using a notion of a project. A project here
is a structured set of ontological files (ontological resources) and other domain
specific data if needed.

e DL-workbench defines an internal data model and “Ul-ready” data model. That
allows organization of different views on the same data (i.e. project view,
namespace view, taxonomy view)

e DL-workbench supports manipulation/edition of complex expressions and
axioms. In many application domains, the complete and *“reasoning-able”’
ontologies require the use of logical expressions and axioms.

e DL-workbench provides the user interface of an ontological editor.

We strongly believe that an ontological manipulation platform shall be based on
these principles to be interoperable and useful for researchers, software architects and
end users. DL-workbench source code is public and we hope it will be useful for
vendors of ontology edition tools.

DL-workbench can be viewed both as a meta-model based platform for creating
ontology-manipulation tools and as an ontological editor that supports SHIQ
description logic (i.e. the meta-model is used to define SHIQ model). DL-workbench

! Transaction support is not implemented in the current version of DL-workbench

uses DAMLA+OIL? [8] as persistent format and Racer [11] as DL reasoner. DL-
workbench is implemented as a set of plug-ins to IBM Eclipse platform [10]. Eclipse
is an emerging open source environment for creation of project-based tools.

3. DL-workbench structure

Meta-model

The major advantage of the DL-workbench is its meta-model based architecture. It
allows easy-to-use definition of entities and relations of an ontological formalism that
has to be used within the workbench. The meta-model is implemented as a set of Java
interfaces for the convenience of use from programming environments. Java
programming is involved for instantiation of the meta-model. This is an explicit
design choice. We benefit of existing type checking system and absence of another
compiler. That makes the objects instantiated from meta-objects working very fast.
The power of Java language can be used for definition of behavioral parts of the meta-
model. Moreover most of the people working in integration area are familiar with
Java.

A meta-model is a language that is used for description of ontological formalisms
by specifying their elements, structure and invariants (invariants have to be satisfied
when instances of these elements are created or modified). For example: one needs to
work with a simple propositional logic that includes notions of “atomic proposition”
and “composite proposition” expressed via logical expression with conjunction,
disjunction and negation operands.

Our meta-model is implemented as a light module and is independent from Eclipse
or any other tool. The main goal of the module is to achieve the maximal level of
independence from specific formalism and to enable implementing generic software
features (object lifecycle, transactions, etc.). The module also helps achieving the
interoperability among different tools by sharing the same meta-model.

The meta-model is basically intended for specifying structural models. Semantics
of the meta-model were inspired by Description Logics [1]. We tried to keep the meta-
model as simple as possible, but powerful enough for many possible needs.

The main element of meta-model is a meta-concept (IMetaConcept Java
interface). It represents any typed element with a set of properties. For example:
“Expression”, “proposition”, “atomic proposition”’, “logical operand” are the
instances of meta-concept. Each meta-concept has a meta-name that is represented in
a form of java interface. The taxonomy of these Java interfaces defines the taxonomy
(i.e. subsumption relationships) of corresponded meta-concept instances. For
example: an “atomic proposition” is a “proposition” and an “expression” with atomic
propositionsis also a*“proposition”.

2 We consider using the OWL language [9] instead of DAMLA+OIL as soon as OWL parsers
will appear on the market.

Another important element of a meta-model is a meta-property (IMetaProperty
Java interface). A meta-property represents a property that can potentially restrict a
meta-concept (similar to description logic semantics of “property”). For example, the
“atomic proposition” concept has “name’ property; an “expression” concept has
“operand”, “left part” and “right part” properties. Meta-property also has a meta-name
that is represented in the same way as for meta-concepts (i.e. in the form of Java
interfaces). Each meta-concept instance may have a set of meta-property instances as
its definition. An instance of meta-concept that inherits other meta-concepts also takes
all their properties. Generally, the most specific meta-concept is restricted by the
transitive closure of all the properties

Any meta-property has the notion of domain restriction, range restriction, inverse
property restriction and transitivity. Semantics of all these notions (meta-concept,
meta-property, domain, range, etc.) are very close to semantics of corresponded
elements from description logics [7].

In addition to these semantics, each meta-property can be augmented with a pre-
post processing handler for checking the invariant conditions of given property
values. For example: the “name” property of the “proposition” concept has a “String”
type. It must be complaint with the URI specification (i.e. no spaces, quotes, etc). An
invariant handler that does such check can be written for the “name” property.

The meta-model includes a simple type system. Types are used to define meta-
property range restrictions and to type instances of meta-model elements. Type
system includes singular types and collection types. A singular type can be primitive
(String, Boolean, Integer, Float, and Enumeration) or a meta-concept instance.
Collection type is defined by the type of its elements (any other type).

In order to specify some logical model (formalism), meta-concept and meta-
property classes must be instantiated. A special meta-model factory is implemented
within DL-workbench to facilitate this task. It is worth to mention, that many
formalisms can exist at the same time, can share their definitions and can be searched
for specific meta-concepts and meta-properties.

Here it's necessary to mention, that three meta-modeling levels exist.
IMetaConcept interface carries the notion of “meta-concept”, its Java instance is a
specific instance of the “meta-concept” (model concept) and IModelInstance
interface specify an instance of the model concept (i.e. model instance). In order to
instantiate the formalism, the notion of value is defined (I1value interface). Every
primitive type and collection has its value object (IPrimitivevalue,
IModelCollection). Every instance of meta-concept within some formalism can
have many model instances represented by instances of IModelInstance interface.

Each model instance has its type represented by a meta-concept instance and a set
of values according to properties of the model concept. For example: a model instance
of “expression” meta-concept can be created with three values of their properties:

o “left part”: model instance of type : “atomic prop.” :“name” = “MARY” : String
e “operand” : model instance of type : “conjunction”
e “right part” : model instance : type “atomic prop.” : “name” = “PETER”: String

As we can see the instances of the above mentioned simple propositional
formalism are expressed in terms of meta-model. The structure of the ontological
formalism can be easily traversed by any application. Consequently, an ontological
editor that supports only the notion of (concept — property — value) triple can be easily

implemented. That is extremely important for specific application domains, where the
ontological information must be included within some other application.

The last element of meta-model is a “Container”. Container is a collection of
model instances or other containers that supports basic operations of addition,
removal, iteration, checking of containment and size request. Creation of dynamic
groups of elements is useful when sending information to reasoner, saving sub-
ontology, classifying elements, etc.

We use the same meta-model for description of Java interfaces within the software
integration domain. The meta-model is generic enough while having rich semantics.
Many structural data formalisms can be easily expressed in the presented meta-model.

The meta-model kernel has a small abstract model expressed by means of meta-
model. It contains the most useful semantic such as named object, namespace, generic
expression and many others. We believe that this model is useful for expressing
different formalisms. The DL-workbench meta-model documentation [5] may be
consulted for further information.

The meta-model kernel publishes an API that allows defining and manipulating the
meta-model instances (models), instantiation of these models, manipulation of
instances of models (for example ontological elements) and many other features.

Processing module

A generic model processing module implements manipulation and edition of
ontologies. This module is integrated with Eclipse workspace and depends only on the
meta-model module. Eclipse framework provides us with the project-oriented
workspace. The framework enables transparent connection to many environments of
software integration domain (IBM Web Sphere, some UML tools, etc.).

The processing module implements the “view” and “controller” concepts
according to the Model-View-Controller paradigm. Here the “model” concept is
represented by a formalism that is an instance of the meta-model. “Controller” can be
viewer as the Ul operations. “View” data model is built on top of meta-model and
enables many representations for specified formalism. An ontological project can be
viewed by default as:

e astructured set of persisted ontologies (files)

e aset of namespaces (in case if formalism supports namespace)

* each element of some formalism is presented by a tree including properties of
corresponded meta-elements and their typed values

The processing module defines all the generic Ul operations for lifecycle of
model instances independently of the formalism used. Processing module generates
user interface controls following the structure of a given model instance. For example:
the “expression” meta-concept instance has two properties of type “proposition” and
one property of type enumeration. In this case, when a user asks for edition of an
instance of “expression”, three groups of controls will be generated independently on
the end-user semantics of “expression”. This principle works for any operation within
the module. User interface elements are created only once for each type of elements

and cashed to reduce unnecessary OS interactions. Each module, dependent on this
one, must specify the formalism itself and its Ul resources (icons, names, order, etc.).
Several concurrent/joint formalisms can be also supported.

The processing module publishes an API for manipulation and configuration of
the user interface. It has an Ul ready API that encapsulates instances coming from
meta-modeling kernel allowing their visual presentation. Further details of
implementation, extension points and API can be found in [5].

SHIQ module

SHIQ module implements a model of SHIQDn description logic formalism [7] that
is based on the meta-model, implements DAMLAOIL reader and writer and defines
DIG interface [4] connection for the solver. The implementation of SHIQ formalism
can be found in [5] and is not repeated in this paper. The module implements an
additional view — taxonomical view: Selecting of any SHIQ “concept” or “object
property” concepts within the Eclipse workspace causes the dynamic building of the
taxonomy tree for this concept/property. The view is shown by default on the right
edge of the Eclipse window within the DL-workbench perspective. The taxonomy is
dynamically rebuilt using “subClassOf” and “sameAs’ properties of the SHIQ
“concept”/"properties”. SHIQ module (as any formalism specific module) also
specifies a set of Eclipse extensions: association of *.daml files with the plug-in,
association of specific icons with menu items and others UI features. Integration with
Eclipse is described in DL-workbench documentation [5].

As one can observe, the inclusion of specific formalism and customization of the
user interface represent a very small part of the ontological editor code. SHIQ logic
formalism was described via the meta-model within one working day. GUI
customization was done within one week. The F-logic formalism was prototyped as
an example during several hours using the same meta-model and benefits all the
editor features (F-logic module is not published with DL-workbench due to
incompleteness of GUI customization and absence of persistent format connection.).

Racer reasoner [11] is used via DIG interface. We choose Racer due to its support
of ABox reasoning. However, the DL-workbench itself uses a reasoner only for
satisfability and subsumption checks, thus FaCT [12] or any other DIG-complaint
reasoner can be used. DAMLAOIL reading support is done with the help of Jena
DAML parser [17]. DAML+OIL writing was done via Xerces XML parser. Since
DAMLAOIL is a superset of RDFS, RDFS files can be also read by DL-workbench.

More details on the user interface and use of DL-workbench as ontological editor
can be taken from [5]. The product itself and its source code can be downloaded
following link in [5].

4. Lessons learned

In this section we'd like to indicate some positive experience and observations that
were received during the creation of DL-workbench and use of ontologies for a
specific application domain.

Axioms and logical expression are extremely important for creating of complete
and reasoning-ready ontologies. However, it's extremely difficult to have a
convenient user interface (GUI) for their edition. We' ve implemented our own GUI of
expression editor; however we strongly believe that some deep research must be
conducted on ergonomics of expression editor. It can be something between text input
with dynamic compilation and GUI-based editor that chooses elements from lists.
Current implementation of the expression editor is based on the same principle as
other editors of DL-workbench: editor of “Expression” entity with a set of properties
such as “left part”, “right part” and “operand”. Expression entities can be nested (i.e.
“left part” can be also an expression). The rules of expression building are defined in
the form of invariants and pre-post conditions in a generic model from meta-modeling
module. We came from considerations that the given structure of expressions is
common for most of the possible ontological formalisms. End user has always the
possibility not to use the presented model or replace it according to its needs. The
correctness of expressions is also supported by invariants and all structurally
inconsistent equations are highlighted for the user. The processing module recognize
“equation” as a special type and provide light edition mechanism using drag and drop
and dynamic management of lists of possible elements. Same mechanism tries to
assure that nested equations are not lost when containing structure is modified within
the top level editor (loss happens sometimes in OilEd equation editor).

From our point of view, working with ontologies must follow the project-oriented
paradigm. It’s hard to imagine areal industrial ontology that is saved in one file and
has no references to other files. The use of URI as a physical location of imported
ontology is not always suited for industrial use due to possible unavailability of some
URI at some time. Here the notion of project as a complete set of needed ontological
resources can facilitate manipulation of ontologies. It can clearly separate a physical
structure of files from logical structure of ontologies (i.e. namespaces, taxonomies).
However it is worth to mention that needs of Semantic Web can be different.

Presence of meta-model for implementation of ontological formalism and
connection with other data structures is very important. Above we said many things
about these benefits.

The ability to have many different views (by namespaces, by taxonomies, by files,
graphical view® and many others) on the same ontological structure helps a lot in
many real cases.

Support of several formalisms and several GUI views is extremely important since
it allows creation of different views for different groups of users on the same domain
data and its ontological semantics. For example the same ontology may be presented
by two formalisms with different expressivity to different groups of people.

We found it useful to introduce several macro-semantics into the SHIQ editor that
are computed from basic SHIQ semantics*:

¢ XOR, IMPLIES and EQUALS logical operators can be easily introduced into any
expression. These operands are easily convertible into AND/OR/NOT sequences
and vice versa. That adds more high level semantics to the user.

3 Graphical view is not provided in current version of the DL-workbench
4 These macro-commands are excluded from the first open source version of DL-workbench

e In the same way: “class or equivalents” or “class of disjoints” elements can be
defined on top of basic SHIQ axioms. When writing/reading to DAML+OIL
corresponded transformations are performed.

Easiness of integration of ontological model / ontological edition user interface is
crucial when ontologies are used within some application domains. There is an
evident help from modern frameworks such as Eclipse and use of component
technologies. Especially this is important, when research projects with sharp time
frames are conducted.

By developing DL-workbench we have achieved all the requirements that were
described at the beginning of this paper. Our current research for software integration
is based on DL-workbench. We use described concepts for creation of extensions of
DL-workbench that facilitate our experiments with integration of numerical solvers
and creation of “good enough” ontologies verified by reasoner.

5. Other editors and APIs

Many ideas of user interface were inspired by OilEd [6] ontological editor. OilEd is
the first editor that implements most of the features of SHIQ description logic,
reasoner connection and expression edition. That was an ontological editor we used
before creating DL-workbench. However, despite of all its benefits, some elements of
user interface, such as choice among “subClassOf” and “sameClassAs’, semantic of
some axioms and some others elements are not always clear for the end user. We tried
to resolve these issues in DL-workbench. OilEd is an open source project, but OilEd
API seemed to us difficult to integrate with other tools. Presence of meta-model level
within the DL-workbench gives more flexibility and ease of use together with other
tools.

WebODE project [3] is an ontological workbench that provides various ontological
services. The project has a highly flexible architecture and provides many viewpoints
on data. The meta-modeling approach chosen by DL-workbench allows on-fly
changing of ontological formalism and easy integration with non-ontological data
structures. In addition, DL-workbench is an open source project.

Protege [18] ontological editor has a convenient plug-ins API for its extension.
However our intention was to integrate an ontological editor as a plug-in into software
development tools but not vice-versa.

KAON API and a set of related KAON tools [14] define a distributed ontology
manipulation infrastructure that is based on client-server architecture and provides
many useful features. KAON has a hard coded API for its ontological formalism, that
is mostly RDFS based and doesn’t support extended semantics of equations nor very
expressive description logics (such as SHIQ). We found the OI-modeler ontological
editor of KAON to be difficult for the end user.

Many other ontological editors are present nowadays. Due to the absence of space
in the paper we can’'t compare many tools. [13] is a good survey of ontological tools.
The deliverable 1.3 [19] of OntoWeb project gives a comprehensive comparison of
tools.

6. Conclusions and future plans

We have presented DL-workbench, both an Eclipse-based ontological editor for SHIQ
logic and a meta-model based platform for manipulation of ontologies in conjunction
with other tools. We've shown the benefits to use meta-model for creating of
ontology-based products especially when working within specific application
domains.

Today the DL-workbench is a research prototype and it lacks the stability that is
needed for industrial development of ontologies. It lacks the functionality of merging
and aligning of ontologies and more extensive support of reasoners features on the
user interface level. All of that is planned to be improved soon. The user interface
ergonomics and usability study is required.

We use DL-workbench for development of our domain specific extensions and
integration with other tools. That assures the constant evolution and support of the
DL-workbench. In the future we plan to introduce a transaction mechanism with
undo-redo operations, merging/alignment of ontologies, graphical representation of
ontological information and make many other improvements.

References

1. F. Baader et all, “The Description Logic Handbook: theory, implementation and
applications” , Cambridge University Press, 2003 ISBN 0-521-78176-0

2. The SALOME project, Online: http://www.opencascade.org/salome

3. WebODE project, Online : http://delicias.dia.fi.upm.es/webODE

4. S. Bechhofer, “The DIG description logic interface: DIG/1.0", 2002, Online:
http://www.th-wedel.de/~mo/racer/interface1.0.pdf

5. DL-workbench project web site. Online: http://www.opencascade.org/dl-workbench

6. S. Bechhofer et al, “OilEd: a Reason-able Ontology Editor for the Semantic Web”,
Springfied-Verlag, LNCS, 2001

7. 1. Horrocks, IU. Settler, and S. Tobies. “Reasoning with individuals for the description
logic SHIQ”. LNAI number 1831 pp. 482-496. Springer-Verlag, 2000

8. DAMLAOIL language, Online: http://www.w3.org/TR/daml+oil-reference

9. OWL language, Online: http://www.w3.org/TR/owl-absyn

10. IBM Eclipse 2.1 platform, project page, Online: http://www.eclipse.org

11. Racer reasoner. http://www.th-wedel.de/~mo/racer

12. FaCT reasoner, http://www.cs.man.ac.uk/~horrocks/FaCT

13. M. Denny, “Table 1. Ontology editor survey results", 2002, Online
http://www.xml.com/2002/11/06/Ontology Editor Survey.html

14. KAON API, Online: http:/km.aifb.uni-karlsruhe.de/kaon/Members/rvo/kaon_api

15. OMG MOF repository specification, Online:
http://www.omg.org/technology/documents/formal/mof.htm

16. M. Kazakov, H. Abdulrab, E. Babkin, “Intelligent integration of distributed components:
Ontology Fusion approach”, In proceedings of CIMCA 2003 conference, 2003, ISBN 1-
740-88069-2

17. Jena DAML and RDF parser, Online: http://www.hpl.hp.com/semweb/index.html

18. Protege environment, Online: http://protege.standord.edu

19. OntoWeb project, “Deliverable 1.3 report”, Online: http://www.ontoweb.org

OntoTrack: Fast Browsing and Easy Editing of
Large Ontologies

Thorsten Liebig! and Olaf Noppens'

Dept. of Artificial Intelligence
University of Ulm
D-89069 Ulm
{liebiglolaf.noppens}@informatik.uni-ulm.de

Abstract. OntoTrack is a new browsing and editing “in-one-view” on-
tology authoring tool. It combines a sophisticated graphical layout with
mouse enabled editing features optimized for efficient navigation and ma-
nipulation of large ontologies. The system is based on SpaceTree [PGB02]
and implemented in Java2D. OntoTrack provides animated expansion
and de-expansion of class descendants, zooming, paning and uses elab-
orated layout techniques like click-able miniature branches or selective
detail views. At the same time OntoTrack allows for quite a number of
editing features using mouse-over anchor buttons and graphical selec-
tions without switching into a special editing layout. In addition, every
single editing step is synchronized with an external reasoner in order to
provide instant feedback about relevant modeling consequences.

1 Introduction

The availability of adequate tools for end users is a pivotal element in order
to push Semantic Web techniques from academia to commercial environments.
Simple, flexible, and intuitive user interfaces play an important role within this
context. In contrast to current tool evaluations which concentrate mainly on
language specific issues (e.g. language conformity) and technical criteria (e. g.
turn around ability for interoperability) [AS02] we will focus on adequate visu-
alization, navigation and simple editing of large ontologies in the remainder of
this paper.

Currently, many ontology editors use two functionally disjunct interfaces for
either editing or browsing ontologies. Editing interfaces are commonly based on
vertical expand and contract lists representing the class hierarchy. When select-
ing a particular class in the list one can inspect and manipulate its corresponding
definition using predefined forms in an additional display area. Our experiences
with expand and contract style interfaces identified a number of conceptual
drawbacks:

— The number of visible classes is limited by the screen height. Even middle
sized ontologies very likely require scrolling after some level expansions.

— The larger the ontology the harder it will get to identify the inheritance
path from a particular class up to the root of the ontology. This is due to
the fact of exclusively two level states. An ontology level is either completely
expanded or contracted and is not allowed to display a selection of context
relevant classes.

— Depending on the branching factor of an ontology a list representation makes
it difficult to compare two different expansion paths concerning level depth
or common ancestors.

— Because of the tree based nature of expansion lists multiple inheritance is
difficult to represent in general. Multiple ancestors of a class are usually
displayed with help of an auxiliary display area. Inversely, this class will
appear as “cloned” class in the list of descendants of every super class. This,
however, will result in a proportional growth of redundant classes with the
number of multiple inheritance statements.

— When defining a class one commonly needs to access and select other classes.
This temporally requires additional expand and contract style selection lists
for a class hierarchy already on screen.

An extreme example for which the list representation will be inherently unsuit-
able is the task of showing the complete inheritance path of a class in a large
ontology having multiple ancestors.

In order to better support those tasks most tools incorporate an additional
graphical browsing interface using tree like, tree map, ven or hyperbolic layout
techniques more or less suitable for navigating large ontologies. However, those
interfaces do not allow for substantial editing and are designed as view-only
plugins in most cases.

Our novel ontology editor, called OntoTrack, combines hierarchical layout
technologies with context sensitive zooming features and mouse enabled editing
abilities optimized for navigation and manipulation of large ontologies. Onto-
Track is based on the linked tree diagram approach of SpaceTree [PGB02] which
dynamically zooms and lays out tree branches to best fit the available screen
space. OntoTrack’s ontology layout is driven by an animated “expansion on user
demand” strategy making use of elaborated minimization techniques for alter-
native inheritance paths or descendants. At the same time OntoTrack allows for
quite a number of editing features from mouse-over anchor buttons to context
sensitive choose lists without switching into a special editing layout.

The remainder of this paper is organized as follows. In the next section we
present OntoTrack our new graphical authoring tool for ontologies. In particular,
we explain OntoTrack’s browsing, editing, and searching abilities as well as its
inference features via link-up to an external reasoner. In section 3 we describe
the current implementation status and discuss current and future work. Sec-
tion 4 contains preliminary benchmarking results concerning to some qualitative
navigation criteria. We will end with a short summary and some notes about
possible enhancements.

2 A New Graphical Authoring Tool For Ontologies

2.1 Browsing Features

lAtlr;l_:uteValue] [;{el_ationship]

- |
[Process| [intangiblestuff] [InternalMachineThing|

Fig. 1. Partially expanded ontology in top-down layout showing miniature tree
thumbnails summarizing not expanded sub-branches.

OntoTrack aims at integrating optimized layout techniques for hierarchies
with graphical editing features. Currently, the system is based on SpaceTree
[PGB02] an interactive tree browser with dynamic rescaling of branches, op-
timized camera movement, and preview icons for non expanded sub-branches.
Within SpaceTree the expansion of a new tree level is animated and may re-
sult in trimming of branches of previous levels when needed. SpaceTree allows
for changing the overall orientation of the layout and for explicit de-expansion
blocking of user selected branches.

Our attempt was to adapt SpaceTree for browsing and editing ontologies by
extending its inheritance centered layout algorithm in a first step. The primary
structuring element of ontologies and trees is the inheritance relation. Conse-
quently, SpaceTree’s as well as OntoTrack’s layout algorithm dynamically adapt
their graphs in order to be able to display the complete inheritance path ei-
ther in a top-down or left-right orientation. As an option, the path from the
last expanded class to the root will be outlined. Depth, width and the num-
ber of descendants of not expanded sub-branches are symbolized by triangles of
varying length, width, and shading or as an iconified branch in order to pro-
vide information about deeper levels. In addition, the whole ontology layout can
continously be zoomed or paned simply by mouse-down movements. Figure 1
shows an OntoTrack screen capture of an ontology! after some level expansions.
Here, a classical top-down orientation and a miniature tree thumbnail style has
been chosen. In comparison, figure 2 shows the same ontology in a less expanded
state using a left-to-right orientation and a triangle thumbnail style. Here, the

! Showing the top-level classes in an early version of Cyc.

inheritance path for the last expanded class “IndividualObject” is outlined by a
darker node background.

Fig. 2. Ontology of figure 1 in left-right layout and triangle thumbnails.

In the case of expanding a level containing classes having multiple ancestors
in currently not expanded branches, those ancestors are drawn as click-able icons.
As an example, figure 3 shows the ontology of figure 2 after expansion of class
Stuff via middle mouse click. Both descendants of Stuff have multiple ancestors.
A further ancestor of Process is an already expanded class Event. In contrast, one
ancestor of IntangibleStuff (namely IntangibleObject as can be seen in figure 1) is
within the currently not expanded sub-branch of class Intangible and therefore
drawn as a click-able icon.

When moving over an iconified ancestor with the mouse pointer a tool-tip
message with the corresponding class name appears. Clicking on such an ances-
tor icon results in an expansion of this class. This strategy guarantees that all
ancestors of all expanded classes are displayed either expanded or abbreviated as
click-able icons. Having all inheritance paths visible up to the root helps a user
to keep orientated concerning to the primal structuring principle of ontologies.

RepresentedThing|

k‘.‘ycThing Intangiblek ——® b

IndividualObject

Fig. 3. Ontology of figure 2 after expansion of class Stuff.

2.2 Editing Features

As mentioned before OntoTrack is a browsing and editing in-one-view authoring
tool. This allows to re-use already available navigation principles for the task of
building and manipulating ontology definitions. The most primitive manipula-
tion feature consists of the direct editable class name field of every class node.
Beyond that, OntoTrack’s click-and-drop editing features are enabled by switch-
ing into the “anchor button” mode. Within this mode anchor buttons appear
when moving the mouse over editable entities. Figure 4 shows the anchor buttons
of a class IndividualObject displayed in top-down orientation (in left-right orien-
tation the button layout is rotated 90° anti-clockwise). The triangle symbol on
top of the class box represents the superclass relationship. With a click on this
button one can specify this class to be an descendant of another class selectable
with a click on that class. A new sub class can be created with a click onto the
bottom triangle. In correspondence with the RDFS and OWL specification the
semantics of multiple subclass statements for one class is that of a conjunction
in OntoTrack.

o — <
[IindividualObject| S

N

Fig. 4. Anchor buttons of a class in top-down layout.

In addition, OntoTrack offers further editing functions while in its “detailed
view” mode. The detailed view mode is activated or deactivated for each class
separately using the mouse-wheel up- resp. down-wards while being over the
class with the mouse pointer. When activated, OntoTrack uses a slightly adapted
UML style class diagram syntax. In contrast to the UML specification our class
diagram is divided into two (instead of three) compartments. The top compart-
ment contains the name of the class. The bottom compartment contains a list
of property restrictions of this class. In case of OWL Lite each row of this list
contains (implicit conjuncted) one existential or universal quantification or un-
qualified cardinality restrictions displayed in abstract Description Logic (DL)
syntax (see [Baa0O3] for the abstract DL terminology). Figure 5 shows a class
with one minimal and one exact cardinality restriction. An existing restriction
can be deleted by clicking on the red dot on the right side of the corresponding
row. A new restriction is added to a class by using the green dot at the bottom
of the class box (see figure 5). The cells of each row are editable via choose lists.
An unqualified cardinality restriction provides three choose lists, one for the car-
dinality operator (>, <,=) one for the value (0 or 1 in OWL Lite) and one for
the currently available properties. Quantifications also require three choose lists

—

[Process
= 1 has-Actar
= 1 has-Duration

TN

Fig. 5. Class in detailed view mode.

(one for the quantifier 3 or V, one for the property, and one for the qualifying
class). Additional editing features like switching between complete and partial
definitions are accessible via a right mouse button context menu. As an alterna-
tive short-cut we plan to add click-and-drop quantifier and cardinality symbols
for specifying properties statements between classes as shown in figure 4 in the
near future.

2.3 Inference Feedback

OntoTrack is equipped with an interface to an DL reasoner called RACER
[HMO1]. All changes after each editing step (e.g. list selection, subclass state-
ment) are send to the RACER system via the TCP-based client interface JRacer.
RACER will then make all modeling consequences explicitly available for Onto-
Track. Of special interest within our ontology layout is the subsumption relation-
ship which may implicitly be influenced by an editing step. As soon as RACER
recognizes a change in the class hierarchy OntoTrack updates the correspond-
ing graphical representation (showing only direct subsumers/subsumees of each
class). Those updates are also animated in order not to confuse the user with a
new hierarchy layout in one step. Other graphical inference services (which are
special cases of the subsumption relationship in fact) cover unsatisfiable class
definitions or equivalence between different classes. In OntoTrack an unsatisfi-
able class will be drawn in red and equivalent classes are outlined with a colored
background.

2.4 Searching

OntoTrack also adapts SpaceTree’s search features. When looking for a specific
class name, even in the selection phase during editing, one can use a string
based ontology search. When start typing a search string all matching classes or
sub-branch icons are highlighted. Each additional character or deletion in the
search string directly results in an updated highlighting of matching parts of
the ontology. OntoTrack currently supports three matching mode: exact match,
substring match from string beginning, and full substring match. As an option,

the user can then fan out the ontology by expansion of all currently matching
classes via one button click.

3 Implementation Status and Current Work

Our ontology authoring tool OntoTrack is still under development. The features
described in section 2 are those of the first implementation phase. Some may
change in future versions if they don’t prove to be useful. It is our considered
opinion that performance and scalability are very important properties of user
friendly tools and a key for user acceptance. We therefore have chosen Piccolo
as our graphical library. Piccolo is an optimized subset of Jazz [BMGO00], a fast
zoomable interface toolkit based on Java2D.

A first prototype of OntoTrack has been implemented by extending Space-
Tree’s layout algorithm, which itself uses the Piccolo libraries. Within this ver-
sion all mentioned browsing features of subsection 2.1 are implemented in full
detail. Some of the editing features of subsection 2.2 however are still under
development (click-and-drop qualifiers and cardinality statements).

Current work is focused on refining and optimizing the layout algorithms
for ancestor thumbnails. Miniature tree layouts for ancestors with multiple in-
heritance turned out to be difficult in general. Imagine the problem of thumb
placing for a short expanded inheritance path together with a long alternative
path via a thumbnail miniature tree (or vice versa). Inheritance links between
thumbnail classes and already expanded classes are another factor of complexity
for placing and cross minimizing layout algorithms. As an additional constraint
we want to re-arrange the layout of expanded classes in each possible expansion
step as less as possible. Therefore, OntoTrack implements a local optimization
layout algorithm triggered by the class the user currently wants to expand.

OntoTrack’s file import as well as export uses the RDF parser Jena2[McBO01].
Jena2’s internal ontology model for classes and properties also serves as Onto-
Track’s central representation model. Currently, OntoTrack is able to read in
and write out OWL Lite ontologies. However, properties as well as global prop-
erty constraints (domain and range statements) are not editable in OntoTrack
at the moment.

Conceptually, we plan to cover a notable fragment of OWL Lite’s language
constructs while adopting UML’s class diagram representation. In a first step
we concentrated on OWL Lite’s class axioms and restriction statements (see
section 2.3.1.1. and 2.3.1.2. of OWL Abstract Syntax and Semantics document
[PSHHO3]). Next, we want to extend the editor with a parallel representation
of properties and property hierarchies. Our goal is an mixed graphical repre-
sentation based on the hierarchical class layout described above together with
editable property edges in combination or as alternative to the list representation
of OntoTrack’s detailed view mode.?

2 The ezZOWL plugin [OC03] for Protégé is an example of a likewise mixed class and
property representation to some extend.

4 Preliminary Evaluation

It was not the goal of our preliminary evaluation tests to determine an overall
ranking of different ontology editors. Other tools like Protégé [GMFT03], On-
toEdit [SSA01] or OilEd [BHGS01] are obviously in a more sophisticated state
of development and in some cases tailored to different tasks or users. Our aim
was to evaluate our graphical browsing and editing interface against other user
interfaces with respect to certain navigation criteria.

First we compared the maximum number of classes to display for a given
screen size. Using a screen size of 1280x1024 we counted a number of 50 to
60 displayable classes in expand and contract style ontology browsers using full
screen hight (here, the screen width has no effect on the maximum of displayable
classes). Using a comparable font size in OntoTrack we were able to expand more
than 100 classes using full screen mode.

In contrast, the length for an inheritance path for a branch with classes
having a name with an average length of 12 characters has a depth of 13 levels
in OntoTrack. In an expand and contract style interface the same number of
level expansions approximately take up 30 % of the screen width.

However, in order to have some qualitative results concerning average navi-
gation or editing performance a controlled experiment has to be conducted. A
set of experiments comparing three tree-based browsing tools (MS Explorer, a
Hyperbolic tree browser, and SpaceTree) showed some performance advantages
for the SpaceTree approach concerning tasks like first-time node finding, listing
all ancestors of a node, or differentiate between branches with varying numbers
of nodes [PGB02]. These results may serve as an indicator with respect to nav-
igation and editing performance of OntoTrack in comparison with expand and
contract style interfaces.

5 Summary and Outlook

Expand and contract style interfaces for ontologies inherently have substantial
drawbacks concerning search and navigation speed, user orientation, and editing
flexibility in our opinion. Our new authoring tool for ontologies combines an ani-
mated graphical layout with mouse enabled editing features within one view. We
are still in an early development phase, but first experiences with our SpaceTree
[PGBO02] based prototype are encouraging. We therefore see OntoTrack as an
easy-to-use interactive ontology editor especially for non-experienced users and
even for large ontologies.

Current work focuses on finalizing the layout algorithm, and further editing
features. We also plan to extend OntoTrack’s search facility for regular expres-
sion matching as well as for restriction expressions. The link-up to the RACER
reasoner is also a subject of optimization. Currently, OntoTrack needs to query
the reasoner for all possible consequences of each user change in order to update
its internal representation model. Here, an event triggered notification model
on reasoner side would significantly speed up this process. In addition, an ad-
equate explanation module is needed in order to distinguish between ‘direct’

consequences (e.g. an unsatisfiable class because of an user manipulation) and
follow-up consequences (e.g. the consequences of an unsatisfiable class with re-
spect to other classes). In order to become a competitive application basic fea-
tures like undo, print, or various exports into other ontology languages have to
be implemented in future versions of OntoTrack.

We plan to cover ontology languages with an expressivity at least compara-
ble to that of OWL Lite. Complex class descriptions like nested restrictions or
general inclusion axioms may need additional graphical features in a next evo-
lution step. A graphical representation as well as editing interfaces for disjoint
classes, coverings and instances are also on our working agenda. An graphical
UML representation for some of those have already been discussed in [BKK*01]
and may serve as starting point for our application.

References

[AS02] Jiirgen Angele and York Sure. Whitepaper: Evaluation of Ontology-based
Tools. Technical report, OntoWeb Deliverable 1.3, 2002.

[Baa03] Franz Baader. The Description Logic Handbook, chapter Appendix 1: De-
scription Logic Terminology. Cambridge University Press, 2003.

[BHGS01] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd:
a Reason-able Ontology Editor for the Semantic Web. In Proc. of the
German conference on Artificial Intelligence, KI2001, pages 396 — 408.
Springer Verlag, LNAI Vol. 2174, September 2001.

[BKK*01] Kenneth Baclawski, Mieczyslaw K. Kokar, Paul A. Kogut, Lewis Hart,
Jeffrey Smith, William S. Holmes, Jerzy Letkowski, and Michael L. Aron-
son. Extending ULM to Support Ontology Engineering for the Seman-
tic Web. In Proceedings of the Fourth International Conference on UML
(UML 2001), number 2185 in LNCS, pages 342 — 360, Toronto, Canada,
October 2001. Springer Verlag.

[BMGO00] Ben Bederson, Jon Meyer, and Lance Good. Jazz: An Extensible Zoomable
User Interface Graphics Toolkit in Java. UIST 2000, ACM Symposium on
User Interface Software and Technology, CHI Letters, 2(2):171 — 180, 2000.

[GMF*03] John Gennari, Mark Musen, Ray Fergerson, William Grosso, Monica
Crubézy, Henrik Eriksson, Natalya Fridman Noy, and Samson Tu. The
Evolution of Protégé: An Environment for Knowledge-Based Systems De-
velopment. International Journal of Human Computer Studies, 58(6):737
— 758, June 2003.

[HMO1] Volker Haarslev and Ralf Moller. RACER System Description. In Proc. of
the International Joint Conference on Automated Reasoning, IJCAR’2001,
Siena, Italy, June 2001.

[McBO01] Brian McBride. Jena: Implementing the RDF Model and Syntax Speci-
fication. In Proc. of the Second International Workshop on the Semantic
Web, SemWeb’2001, Hong Kong, China, 2001.

[0C03] Sooyoung Oh and Moonyoung Chung. ezOWL plugin for Protégé. http:
//iweb.etri.re.kr/ezowl/, 2003.

[PGB02] Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. SpaceTree:
Supporting Exploration in Large Node Link Tree, Design Evolution and
Empirical Evaluation. In Proc. of the IEEE Symposium on Information
Visualization, INFOVIS 2002, pages 57 — 64, Boston, USA, October 2002.

[PSHHO3]

[SSA01]

Peter Patel-Schneider, Patrick Hayes, and Tan Horrocks. OWL Web On-
tology Language Semantics and Abstract Syntax. W3C Working Draft,
March 2003.

York Sure, Steffen Stab, and Jiirgen Angele. OntoEdit: Guiding Ontology
Development by Methodology and Inferencing. In Proc. of the Confeder-
ated International Conferences CooplS, DOA and ODBASE 2002, pages
1205 — 1222. Springer Verlag, LNCS Vol. 2519, October 2001.

TooCoM : a Tool to Operationalize an Ontology with the
Conceptual Graphs Model

Frédéric Furst, Michel Leclére, Francky Trichet

Institut de Recherche en Informatique de Nantes
2 rue de la Houssiniére - BP 92208
44322 Nantes France
{furst,leclere,trichet}@rin.univ-nantes.fr

Abstract. This article deals with the operational use of a domain ontology inte-
grated into a Knowledge-Based System (KBS). It presents TooCoM, a tool dedi-
cated to (1) the definition of ontologies with the Entity-Relationship paradigm
and (2) the operationalization of ontologies in the context of the Conceptual
Graphs model. TooCoM provides functionalities for specifying an operational
scenario of use of the ontology which is under construction, for transcribing this
ontology into the corresponding operational form and for using this operational
form in an embedded inference engine.

Keywords: Ontology, Conceptual Graphs, Knowledge-Based Systems, Opera-
tionalization.

1 INTRODUCTION

Most of works which aims at developing tools for building an ontology focuses on the
edition of the conceptual vocabulary, i.e. the terminological level. For instance, Protégé
allows the knowledge engineer to build a hierarchy of concepts and to specify pre-
defined properties of the concepts through the Frame model [11]. OntoEdit (renamed
Kaon) is also based on the Frame paradigm. As Protégé, it focuses on the structuration
of a set of concepts and on the specification of predefined properties of these concepts
[20].

None of the tools listed within the OntoWeb project [6] aims at editing, in an in-
tuitive and graphical way, the axioms of a domain. However, in our opinion, axioms
are the main operational ressource of an ontology since they constrain the use of the
conceptual vocabulary. Consequently, they are the only means to specify the semantics
of a domain. For instance, in Protégé, the knowledge engineer must known the Protégé
Axiom Language to specify the constraints and/or the rules of the domain. In OntoEdit,
the specification of a non-predefined axiom must be done by using a logical formula.

TooCoM s a tool which adresses this problem. It allows the knowledge engineer
(1) to specify the conceptual vocabulary of the domain by using the Entity-Relationship
paradigm, (2) to specify the axioms of the domain in a graphical way and (3) to easily
make these axioms operational in order to perform reasoning in the context of the Con-

ceptual Graphs model?. For this last point, TooCoM can be considered as an innovative
tool in the sense that it allows the knowledge engineer to follow reasoning processes in
a graphical way. This aspect is very important because, in our opinion, this facilitates
the appropriation and the control of the semantics which is associated to the ontology
under construction. In other words, providing functionalities dedicated to a graphical
appropriation of the implications of all the axioms (rules and constraints) of a domain
makes the understanding (and therefore the refinement) of the semantics of a domain
more easy.

As WebODE implements the METHONTOLOGY methodology to build an ontol-
ogy [1], TooCoM implements original guidelines to specify axioms at the conceptual
level and to specify the operational use of the ontology which determinates the opera-
tional form of the axioms.

From a technical point of view, TooCoM is based on CoGITaNT, a framework which
offers capabilities to represent and manipulate Conceptual Graphs [10]. TooCoM has
been tested in the context of the GINA project (Interactive and Natural Geometry) re-
lated to CAD (Computer-Aided Design) [13]. In this experiment, our tool has been used
to build and to automatically operationalize an ontology of geometry [9].

The rest of this paper is structured as follows. Section 2 presents how building an
ontology with TooCoM, in particular how specifying the conceptual vocabulary and the
axioms. Section 3 first introduces the process we advocate to operationalize an ontology
and then shows the application of this process in the context of the Conceptual Graphs
model and its implementation in TooCoM. Finally, section 4 introduces a discussion
about the innovative aspects of TooCoM in comparison with existing tools.

2 DEFINING AN ONTOLOGY WITH THE ENTITY-
RELATIONSHIP PARADIGM

Defining an ontology with the Entity-Relationship (E/R) paradigm mainly consists in
(1) specifying of the conceptual vocabulary of the domain which is considered and (2)
specifying the semantics of the conceptual vocabulary through axioms.

2.1 The specification of the conceptual vocabulary

As implied by the Gruber’s definition, (« an ontology is a formal, explicit specifica-
tion of a shared conceptualization » [12]), the building of an ontology is based on a
conceptualization, which is a conceptual description of the knowledge covered by the
ontology. This description consists of a conceptual vocabulary which, in the context of
the E/R paradigm, contains a set of concept types and a set of relation types which can
both be structured by using subsomption links.

TooCoM allows the knowledge engineer to define such hierarchies, both for concept
types and for relation types. Figure 1 shows an extract of the hierarchy of concept types

! Operationalizing knowledge consists in representing it with an operational language, according
to an operational goal. An operational language is a formal language (i.e. a language having
a syntax and formal semantics) which provides inference mechanisms allowing one to reason
from its representations. An operational goal is specified by a scenario of use (cf. section 3.1).

& TooCoM - ginakng 181 x|
Ontology Options Help

[Concept types hierarchy | Relation types hierarchy | Axioms |

==

[ontology
% [concept Types
Universel

Geometric_Ohject

Set_of_Foints

Plane_Gure

|Curvad_3urface‘ |F’Ianeisurfate‘

‘ haon_Affin_Curve | | Nnn_F‘Iana_Cume‘

|Emk9n_LmE‘

Straight_Line

cuadiataral

HMpémarrer H Gl e | H “geae de .. | Gjocseroect | (2] sonzoos....| Bpturstps .| Bciwm., | EC:\WINNH.“%ﬂntnIng... KEI@@Q 14:00

Fig. 1. A hierarchy of concept types in TooCoM. An arrow represents a subsomption link between
a concept type and his parent concept type (« a Triangle is-a Polygon »).

which has been defined for the GINA project (i.e. an ontology of geometry defined ac-
cording to Hilbert’s book « Grunlagen der Geometrie »). Figure 2 shows the hierarchy
of relation types.

2.2 The specification of the axioms

Axioms represent the intension of concept types and relation types and, generally speak-
ing, knowledge which is not strictly terminological [19]. Axioms are specific to ontolo-
gies and, in our opinion, allow us to distinguish an ontology from a thesaurus. Thesaurus
are only based on terminological representations and can be compared to light weight
ontologies, whereas heavy weight ontologies contain the whole semantics of a domain
[18]. Axioms specify the way the terminological primitives must be manipulated. Two
types of axioms can be distinguished :

— the axioms that represent common and well-defined properties of concept types or
relation types ;
— the axioms that represent properties specific to the domain .

@ TooCoM
Ontology Options Help

=l8(x]

) naligned
(®) between
(R) nhetween
(R) same_sides
(®) same_sideP
(R) nsare_sides

4

I»

BRE

+|[Concepttypes hierarchy | Relation types hierarchy | Axioms

hinary_relation

(R) nsare_sideP
[nstances

P O3 Adoms
@ impliincompApparRule] -
(8) i -4-3 HEjgans

implilncomEntreRule
implilncomEntreRule2
impliTransAppar

pelnnn=ps

B 3 Properties of belongsSP X |
Term |belongssP [Enisn =

sit
Aty e

belongsSP

Signature |PIanE_Curve i H Plane

Pargrits ‘helongs ‘

children | |
[0 Transitive [Reflexive

OK

Syrmmetric

ternary_relation

nsame_sidsP

same_sideP
nsame_sides
same_sides

‘FMpémarrer H ME SRS E H = 3Boite dm| @]Eowzuaal ear\ZUU.‘.l @fuvst‘p‘.‘l Hc:\ww.] Ec:\wmm| 2 Ontolow.. (FHcarver... R{@Tﬁ@ 15138

Fig. 2. A hierarchy of relation types in TooCoM. The property box of the belongsSP relation type
is open. Such a box shows the signature, the parents, the children and the algebraic properties of a
relation type. For instance the belongsSP relationship can only be stated between a Plane_Curve
and a Plane, it has the belongs relation type as parent and no child and bears any algebraic

property.

The common properties, that we call axiom schemata, can correspond to:

algebraic properties such as symmetry, reflexivity, transitivity;

the is-a link between two concept types or two relation types (subsomption prop-
erty);

the signature or the cardinalities of a relation type;

the exclusivity or the incompatibility between two concept types or two relation
types (the incompatibility between two primitives P, and P is formalized by
—(P1 A P), the exclusivity is formalized by =P, = P,).

Classical axiom schemata can be specified by simply indicated the property of the
relation types in the tool box (cf. figure 2), i.e. without creating a new axiom by using
the Axioms panel. If an additional property of relation type (symmetry, transitivity or
reflexivity) is specified, the corresponding axiom is automatically created and added to
the ontology.

However, an axiom does not necessarily correspond to a schema. For instance, fig-
ure 3 shows the axiom 1.2 of Hilbert’s axiomatics. This axiom, which expresses a prop-

erty of identity between a Straight_line and a couple of Points does not correspond to a
classical axiom schema and must be build in the axiom panel.

& TooCoM - ginakng _=1x]

Ontology Options Help

R raligned |
(R} between .
(&) nbetween A laxiome2.1.3
(R} same_sides | laxiomer2

(R) same_sideP sy egir =
(R) nsame_sides

[Concept types hierarchy | Relation types hierarchy | Axioms. |

EEERXE

I»

<ETT>

nsame_sidep
@ Minstances
A

implilncomEntreRule
implilncomEntreRule:
impliTransAppar

__nbelongsPs

helongsPs
helangsPS

belongsP S

Straight_Line =

(&) axlome-1-3
(A fmiome1-3]

Straight_Ling *

hpamarrer || 1 @ £25) & @ || E5amote..| Ejimages | (2] cone.,. | Bprurst.. | Bcaw..| Focs .| @cw.. [[Sontel.. Flawo. | [GRBFR w61

Fig. 3. Representation of an axiom in TooCoM. The yellow (bright) concepts and relationships
represent the hypothesis part of the axiom and the gray (dark) concepts and relationships represent
the conclusion part. Semantics of this axiom is as follows: given two different points and two
different straight lines, if one of these points belongs to the two lines, and if the other belongs to
one the lines, it does not belong to the second line.

In TooCoM, the subsomption links and the signatures of the relation types are the
only properties that are embedded into the modeling paradigm underlying our tool, and
they do not have to be expressed by axioms. All other properties of the conceptual prim-
itives have to be specified as axioms via the definition of predefined axiom schemata
in hierarchies of concept or relation types, or via the whole creation of an axiom in the
Axioms panel.

An axiom is composed of an hypothesis part and a conclusion part, respectively
represented by a conceptual graph?. A conceptual graph is a bipartite graph composed
of concept vertices (representing objects of the domain) and relationship vertices (de-
scribing relationships between objects). Each vertex of a conceptual graph is labeled. A

2 The Conceptual Graphs model, first introduced by Sowa [17], is a knowledge representation
model which belongs to the semantic networks. An extension of this model, the SG family [2],
presented in section 3.2, extends the model with reasoning primitives, rules and constraints.

concept vertex is labeled with the concept type from which the represented object is an
instance. To identify the represented object, one can possibly add an individual marker.
In that case, the vertex is called an individual concept. In other case, one adds to the
concept type a star which denotes the generic marker (i.e. the identity of this concept
is not defined). Such a vertex is called a generic concept. A relation vertex is simply
labeled by a relation type specifying the nature of the link between the neighbouring
concepts.

But this representation of axioms does not specify their operational semantics, in the
sense that it does not specify the way the axioms will be used in an operational appli-
cation. Because this operational semantics depends on the operational goal of the KBS,
it can not be included in an ontology, which must be independent from any operational
goal. Thus specifying this semantics conducts to an operational ontology, through an
operationalization process.

3 OPERATIONALIZING AN ONTOLOGY WITH TooCoM

An ontology is only a conceptual representation of a domain, independently of any op-
erational applications. To use an ontology in a KBS, it is necessary to transcribe the
conceptual representation into a form in accordance with the way the KBS will be used.
This form must be an operational form, in the sense that the knowledge representation
model must offer operational mechanisms, such as inference mechanisms, in order to
allow the manipulations to which the KBS is dedicated. For instance, to perform auto-
matic reasoning, the operational formalism must allow the representation of derivation
rules and the effective application of these rules on a set of facts. Thus, the use of an
ontology in a KBS requires an operationalization process, that consists in transcribing
the ontology in an operational formalism, in accordance with the operational use of the
KBS.

3.1 The scenarii of use and the operationalization of axioms

The operationalization of an ontology is only conceivable for a well defined operational
use, characterized by a precise scenario of use [5]. A scenario of use is the description
of the purposes for which knowledge will be manipulated in the system. Defining a
scenario of use mainly consists in describing the way the axioms will be used in the
system, because the operational representation of terminological knowledge does not
depend on the different contexts of application. Indeed the representation of a concept
or a relation type is the same in the case of a system dedicated to knowledge validation
or in the case of a system built to produce new facts from a knowledge base. Only the
operational representations of the axioms are specific to the goal of the application.
We consider that an axiom can be used to validate knowledge in relation to the
ontology or to produce new facts from a base. For instance, the axiom 1.6 of Hilbert
« If two points A and B of a straight line d belong to a plane «, then all the points of
d belong to a » can be used either to deduct the membership of points to a plane, or
to indicate that a situation is not in accordance with the semantics of geometry, such as

« there are two points that belong to both a straight line and a plane and a point of the
straight line which does not belong to the plane ».

Moreover, an axiom can be used when the user of the system asks for it, or it can
be applied automatically by the system everywhere it is possible. The first application
is called explicit, the second implicit. For instance, the axiom 1.3.1 of Hilbert « On a
straight line, there are at least two points » can be implicitly used if the user is not
supposed to apply this axiom before considering points on a straight line or, on the
contrary, can be explicitly used if he is supposed to resort to the axiom for considering
such points, for instance for educational purposes.

So, operationalizing an ontology requires, for each axiom, the choice of a context
of use which specifies the purpose for which the axiom will be used and how it will be
applied in the system. The different contexts of use we have identified are:

The inferential and explicit context of use: the user applies the axiom by himself
on a fact base to produce new facts;

The inferential and implicit context of use: the axiom is applied by the system on
a fact base to produce new facts;

The validation and explicit context of use: the user applies the axiom by himself
to check that a fact base is in accordance with the semantics of a domain;

The validation and implicit context of use: the axiom is applied by the system to
verify that a fact base is in accordance with the semantics of a domain.

A scenario of use consists in a set of contexts of use choosen for each axiom of
the ontology. Generally speaking, the operational form of an ontology includes infer-
ential mechanisms and validation mechanisms. These mechanisms are required for the
automatic (or semi-automatic) manipulation of knowledge. For instance, a scenario ded-
icated to a computer-aided teaching application allows the user to apply knowledge to
deduce new facts or to check his work. Such a scenario comprises automatic inferences
and validation processes, in accordance with the level of the user.

Figure 4 presents the general inference cycle through which the axioms are applied
in a KBS. First the user can add facts to the fact base, then he can apply an axiom
choosen between the inferential and explicit ones. Then the system applies all the infer-
ential implicit axioms in order to sature the fact base with implicit knowledge. Finally, a
validation step, which can be partially leaded by the user, permits to detect « semantical
inconsistencies » in the fact base.

Two particular scenarii can be distinguished: the pure validation scenario, where the
operational ontology is used to check a fact base according to the semantics of a domain
(all axioms are operationalized in a validation context of use), and the inferential and
implicit scenario, where the operational ontology is used to automatically produce new
knowledge (all axioms are operationalized in an implicit context of use). To define the
scenario of use of an ontology, the context of use of each axiom must be specified. This
context constrains the operational form of the axiom. But, of course, the choice of the
operational knowledge representation language also constrains this form.

Beginning of the cycle
Automatic or semi-
The user add facts automatic validation with
(possibly none) to the fact the axioms used in a

base checking context of use
The user releases the Saturation by automatic
application of an axiom application of the axioms
(possibly none) with an with an inferential and
inferential and explicit implicit context of use

context of use

Fig. 4. The inference cycle dedicated to the use of an operational ontology.

3.2 The operationalization of the axioms with the Conceptual Graphs model in
TooCoM

TooCoM is based on an extension of the Conceptual Graphs model (CGs). The CGs
model is an operational knowledge representation language which provides conceptual
primitive representations through concepts and relationships between these concepts
[17]. The subsomption property and the signature of relationships are integrated in the
model. The other axioms, that express the way the primitives must be manipulated, can
be represented with three types of reasoning primitives, that have been added as an
extension of the model, the SG family [2]:

— The positive constraints, with an hypothesis part and a conclusion part, of which
the semantics is: if the hypothesis part is present, then the conclusion part must be
present (otherwise the constraint is broken);

— The negative constraints, with an hypothesis part and a conclusion part, of which
the semantics is: if the hypothesis part is present, then the conclusion part must be
absent (otherwise the constraint is broken);

— The rules, with an hypothesis part and a conclusion part, of which the semantics is:
if the hypothesis part is present, then the conclusion part can be produced.

A rule can be implicitly used by the system (i.e. applied everywhere the hypothesis
of the rule is present) or explicitly applied by the user (on a given fact in the knowledge
base). A negative or positive constraint can be automatically used by the system (i.e.
checked everywhere in the knowledge base) or explicitly applied by the user.

In order to allow the automatic operationalization of ontologies in TooCoM, we
have defined operationalization mechanisms for each form of axiom. For instance, an
axiom can have the following form:

Ve, .o H =3y, ym 11 () A ATp(L) 1)

where r; are relationships between the x; and/or y; variables and H a conjonction of
predicats which express concepts or relations.

The different operational forms of such an axiom, depending on the context of use,
are:

— Inferential and implicit context of use: the axiom is operationalized by an implicit
rule which corresponds to the the logical formulaVzy, ...,x,, H = Jy1, ..., ym
r()A AT

— Inferential and explicit context of use: the axiom is operationalized by an explicit
rule which corresponds to the logical formulaVa1, ...,z H = Jy1, ..oy Ym r1(.)A
.. Arp(..) and p negative constraints which correspond to the statement V1, ..., x,
H (Ari(..))i=1..p,i;, it CaN NOt exist r;(..),j = 1..p, where 7“3 is exclusive with
r; in the ontology?. If any relationship exclusive with r; exists in the ontology, the
corresponding constraint is replaced by q negative constraints which correspond to
the statement V1, ...,z H (A 7i(..))i=1..p,i;, it Can not exist r;k(..), k=1.g,
where r§k are all incompatibles with r; ;

— Validation and implicit (respectively explicit) context of use: the axiom is opera-
tionalized by p negative and implicit (respectively explicit) constraints
Vor, @ H (ATi(2))im1.piz = r}(..),j = 1..p, where 7“3 is exclusive with
r; in the ontology. If any relationship exclusive with r; exists in the ontology, the
corresponding constraint is replaced by q negative constraints which correspond to
the statement Va1, ...,z H (A 7i(..))i=1..p,i;, it CaN NOt exist r;k(..), k= 1.q,
where 7 are all incompatibles with r; .

In TooCoM, the user can build an operational ontology by specifying the context of
use of each axiom of the ontology. According to this context, each axiom is automat-
ically transcribed into an appropriate form (i.e. a rule, a constraint, a rule and a set of
constraints or a set of constraints). Then, the operational ontology, which includes the
conceptual primitives and the axioms in an operational form, can be exploited by the
TooCoM inference engine which implements the reasoning cycle presented in figure 4.

3.3 The use of an operational ontology in TooCoM

TooCoM provides an inference engine based on the manipulation of conceptual graphs.
This inference engine uses the CoGITaNT framework which allows to compare graphs
and to apply CG rules through a graph projection operator [10]. By using this inference
engine, the knowledge engineer can test the ontology under construction by applying
the operational ontology to different situations. For instance he can state a fact rep-
resented by a graph and runs the engine over this fact. During the explicit inferential
phase, he can choose the axiom he wants to apply and where he wants to apply it. The
result of the reasoning process is displayed in real-time in the interface and the user can
check if the resulting fact is correct in relation to the result which is intended. Again,
as shown in figures 5 and 6, we argue in favor of a graphical semantics. These figures
present the running panel of the inference engine.

If the user has a set of competency questions, he can check it with the inference en-
gine. Moreover, the system can indicate exactly what axiom creates an inconsistency or

% The incompatibility between two primitives P, and P, is formalized by —~(P1 A P%), the
exclusivity is formalized by =P, = P».

& TaoCo =l8(x]

Ontology

) naligned 1|/ Concept types hierarchy | Relation types hierarchy | Axioms. |
{R) hetween

4

() nbetween ﬂ | faxiome1-1 Bl e il

g M 2 FooCob - ginaEng il X

() nsam’ Axiom to apply

(R) nsarn
[Instances
B 3 Addoms

@&

[axiome2-4-1
laxiome1-1
[axiome1-3-2

[T

belongsPg
_belongsPs

HMpémarrer H Gl e | H @Eo’\”.l [E o, | Bpfur... Q'Ll @joc”.i Eﬁsa.‘.] ocm! mc:\J @Ja.‘.l e[o R{@Tﬁ@ 13:38

Fig. 5. A step of an inference cycle. The user has build a graph with three points A, B and C where
A is different from B and B different from C (the graph appears in bright color). He selects the
axiom 1.1 (given two different points, it exists a straight line to which belong these two points)
which can be applied on the points A and B, or B and C (the conclusion part of the axiom appears
in dark color). The system suggests to the user different projections on which the axiom can be
applied. By using the keyboard arrows, the user can examine the different projections and apply
the explicit axiom where he wants. In this example, the user applies the axiom on the points A
and B (cf. figure 6 for the next step).

what axiom is lacking to answer the question. For instance, in the domain of geometry,
we have use TooCoM to produce an operational form of the ontology appropriated to
the automatic theorem proof checking [9]. In this case, all the Hilbert’s axioms have
been operationalized through an explicit and inferential context of use and the other ax-
ioms (e.g. the exclusivity between relation types) have been operationalized through an
implicit and inferential context of use. By testing the proof of some theorems, we have
discover some missings, which correspond to implicit knowledge not stated by Hilbert
in his book, but really used in the proofs [9].

The building of different kinds of KBS is possible as far as the system can use the
general reasoning cycle. In the context of geometry, we can adapt the scenario of use
to automatically generate a module of an Intelligent Tutoring System which will use
some axioms to validate the student’s assertions and others to complete these asser-
tions, whereas the student will use the explicit axioms to prove a theorem or to build a
geometric figure.

& TooLor g
Ontology Options Help

) naligned - : [Concept types hierarchy | Relation types hierarchy | axioms. |
{R) hetween 7
®) nbetween [axiomed-1 2] = =1 == [— = [

G e [1 5

® same

() nsam’ Axiom to apply

(R) nsarn
[Instances
B 3 Addoms

[axiome2-4-1
laxiome1-1
[axiome1-3-2

[Asiom|

[T

belongsP S
Straight_Line :*

helongsPs
__belongsPs

Straight, Line -~
y 4b_91ung~aF’-§, 7

HMpémarrer H Gl e | H @Eo’\”.l [E o, | Bpfur... Q'Ll @joc”.i Eﬁsa.‘.] ocm! mc:\J @Ja.‘.l e[o R{@Tﬁ@ 13:38

Fig. 6. After applying the axiom 1.1, the system automatically applies the implicit rules, and
deduces the difference between the points from the symmetry property of the diff (difference)
relation type. The user can then apply another axiom, for instance the axiom 1.1.

4 RELATED WORK

The first aspect that differentiates TooCoM from its related tools is that it is based
on the Entity-Relation paradigm to structure an ontology, whereas most of other tools
dedicated to the building of ontology, like OILEd [3], Protégé [11] or OntoEdit [20],
are based on the Frame paradigm. Indeed, TooCoM is based on the Conceptual Graphs
model which provides both a conceptual paradigm used to structure the terminological
level of the ontology and reasoning mechanisms based on graph homomorphism in
keeping with the first order logic.

Then, most of existing tools provides a textual mode to specify conceptual vocabu-
lary and axioms. For instance, in OntoEdit, the specification of a non-predefined type of
axiom requires the use of the F-Logic syntax [20]. But some of them allows the knowl-
edge engineer to build ontologies in a graphical way: WebOnto provides a graphical
interface for the edition of the conceptual vocabulary but not for the edition of axioms
[7]. The graph based paradigm used in TooCoM is more intuitive than a textual one and
it allows the knowledge engineer to specify both the terminological knowledge and all
kind of axioms in a graphical interface, without knowing a textual axiom language.

We think that a graphic visualization of the inferences carried out is a significant
factor which, on the one hand, facilitates the appropriation of a formal system and, on

the other hand, allows the expert to validate the adopted model on its own (without
reinterpretation of the implemented reasonings by a logician)*. The use of a graphical
langage to build an ontology, which is a knowledge model, is coherent with the use of
graphical languages, as UML, to build modelization in the programming domain.

The second, and most important, innovative aspect of TooCoM, is to allow the rep-
resentation and the operationalization of all kinds of axioms. As fast as the use of ontol-
ogy is growing, it becomes necessary to represent more and more complex properties
of the concepts. For instance, the specification of OWL [16] includes new properties, as
intersection of concept classes or algebraic properties, that do not appear in the RDFS
specification. In our opinion, a complete ontology representation language must allow
to represent any axiom, and not only predefined axioms. This allows the knowledge
engineer to define properties that are not included in the language. For instance, in the
domain of geometry, a lot of properties expressed through mathematical axioms can not
be related to well defined properties, like algebraic properties.

An other advantage of the operational representation of axioms is the possibility
to use ontologies for reasoning. This aspect becomes more and more important for the
applications of the Semantic Web [8]: the Web services will use ontologies to reason
and this requires the representation of axioms and not only the representation of ter-
minological primitives organized in hierarchies. For instance, the RuleML language
[4] is dedicated to the representation of rules and constraints in order to allow deduc-
tion, rewriting, and further inferential-transformational tasks. But the operational rep-
resentation of axioms is conditioned by their operational uses. So, building operational
representation of axioms requires an operationalization process through which these
representations are produced according to contexts of use.

The representation of all kinds of axioms and their use in an inference engine
through an original operationalization process allows to perform the original goal of
Protégé, that is the interactive building of a KBS [11]. Moreover, in TooCoM, it is pos-
sible to automatically make the ontology operational and to manipulate it at a concep-
tual level. The context of use of each axiom can be specified and the KBS appropriated
to the application which is intended can be automatically generated. As in many tools,
this mechanism permits a constraint checking of the ontology. But it also allows the
knowledge engineer to easily check the completeness of the ontology, by submitting
competency questions to the inference engine.

At this moment, the ontologies can be stored in the BCGCT format [15], which is
peculiar to the CoGITaNT framework, or in the CGXML format. These formats allow
to represent the terminological primitives of a domain, the subsomption links between
these primitives, the instances of concepts types, and axioms in rule form. We plan
to add a module in order to allow the storage and the loading of ontologies in other
common ontology languages like RDFS or OWL, as far as the expressivity of these
langages allows us to represent all axioms.

4 The validation can then be considered as a simple study of graphical explanations of the rea-
sonings that have been performed by the system.

5 CONCLUSION

TooCoM allows a knowledge engineer to build ontologies within the Entity-Relation-
ship paradigm, and to specify both the terminological knowledge of a domain and the
semantics of this domain through axioms. The main characteristics of TooCoM is the
possibility to define all kinds of axioms and to generate different operational ontologies
from the specification of scenarii of use. So, thanks to a graphical semantics, TooCoM
facilitates the appropriation of a global understanding of the semantics of the domain
mainly defined by the axioms.

The operationalization mechanism provided by TooCoM permits, via the definition
of an operational scenario, to produce operational ontologies. These operational ontolo-
gies can be used to validate the ontology itself, by submiting competency questions to
the inference engine. This corresponds to a knowledge level prototyping approach [14].
For instance, the experiment we have done in the domain of geometry has lead us to
modify our ontology after that the proof of a theorem failed.

The operationalization guideline implemented in TooCoM must be extended to
other formalisms than the CGs model. In particular, the use of a combination of OWL, to
represent the terminological knowledge, and RuleML, to represent axioms, is planned.
It will permits to build operational ontologies that can be used on the Web.

References

1. J. Arpirez, O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez. Weboe: a workbench for
ontological engineering. In Proceedings of the first International Conference on Knowledge
Capture (K-CAP’2001), Victoria, Canada, 2001.

2. J.F. Baget and M.L. Mugnier. The sg family: Extensions of simple conceptual graphs. In
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI’2001), pages
205-210, 2001.

3. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: a reason-able ontology editor for
the semantic web. In Proceedings of KI12001, Joint German/Austria Conference on Artificial
Intelligence, volume 2174, pages 396-408. Springer Verlag LNAI, 2001.

4. H. Boley, S. Tabet, and G. Wagner. Design rationale of ruleml : a markup language for
semantic web rules. In Proceedings of the Semantic Web Working Symposium (SWWS’2001),
2001.

5. J. Bouaud, B. Bachimont, J. Charlet, and P. Zweigenbaum. Methodological principles for
structuring an ontology. In ACM Press, editor, Proceedings of IJCAI’95 Workshop: Basic
Ontological Issues in Knowledge sharing, 1995.

6. OntoWeb consortium (coordinated by Asuncion Gomez Perez). A survey on ontology tools.
technical report 1IST-2000-29243, IST, 2002.

7. J. Domingue. Tadzebao and webonto: Discussing, browsing and editing ontologies on the
web. In Proceedings of the Eleventh Knowledge Acquisition Workshop (KAW’98), 1998.

8. D. Fensel and C. Bussler. Semantic web enabled web services. In Proceedings of Inter-
national Semantic Web Conference (ISWC’2002), volume 2342, pages 1-2. Springer-Verlag
LNCS, 2002.

9. F. First, M. Leclére, and F. Trichet. Contribution of the ontology engineering to mathe-
matical knowledge management. Annals of Mathematics and Artificial Intelligence, Kluwer
Academic Publishers, (38):65-89, 2003.

10.

11.

12.
13.
14.
15.
16.
17.

18.

19.

20.

D. Genest and E. Salvat. A platform allowing typed nested graphs : how cogito became cog-
itant. In Proceedings of the International Conference on Conceptual Structures (ICCS’98),
volume 1453, pages 154-161. Springer-Verlag LNAI, 1998.

J.H. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubezy, H. Eriksson, N.F.
Noy, and S.W. Tu. The evolution of protégé: an environment for knowledge-based systems
development. International Journal of Human-Computer Studies, 58:89-123, 2003.

T.R. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 5(2):199-220, 1993.

O. Lhomme, P. Kuzo, and P. Macé. Desargues, a constraint-based system for 3d projective
geometry. Geometric Constraint Solving and Applications, ISBN:3-540-64416-4, 1998.

A. Newell. The knowledge level. Artificial Intelligence, 18:87-127, 1982.

CoGITaNT Home Page. http://cogitant.sourceforge.net/docs/index.html.

Ontology Web Language Home Page. http://www.w3.org/tr/2002/wd-owl-guide-20021104/.
J. Sowa. Conceptual Structures : information processing in mind and machine. Addison-
Wesley, 1984.

S. Staab. An extensible approach for modeling ontologies in rdf(s).
In presentation at the ECDL2000 Workshop on the Semantic Web,
http://www.ics.forth.gr/isl/SemWeb/PPT/Staab.ppt, 2000.

S. Staab and A. Maedche. Axioms are objects too: Ontology engineering beyong the mod-
eling of concepts and relations. Research report 399, Institute AIFB, Karlsruhe, 2000.

Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. Ontoedit: colllaborative
ontology development for the semantic web. In Proceedings of the International Semantic
Web Conference, volume 2342, pages 221-235. Springer-Verlag LNCS, 2002.

A Domain Ontology Engineering Tool with General
Ontologies and Text Corpus

Naoki SUGIURAl, Masaki KURE]\/IATSUQ, Naoki FUKUTAl, Noriaki IZUMI?’, and
Takahira YAMAGUCHI!

! Department of Computer Science, Shizuoka University
3-5-1 Johoku, Hamamatsu, Shizuoka, JAPAN
{sugiura, fukuta, yamaguti}@ks.cs.inf.shizuoka.ac.jp
http://panda.cs.inf.shizuoka.ac. jp
2 Twate Prefectual University, 152-52 Takizawa-aza-sugo, Takizawa, Iwate, JAPAN
kure@soft.iwate-pu.ac. jp
3 CARC, National Institute of AIST, 2-41-6 Tokyo Waterfront, Aomi, Koto-ku, Tokyo,
JAPAN
niz@ni.aist.go.jp

Abstract. In this paper, we describe how to exploit a machine-readable dictio-
nary (MRD) and domain-specific text corpus in supporting the construction of do-
main ontologies that specify taxonomic and non-taxonomic relationships among
given domain concepts. In building taxonomic relationships (hierarchical struc-
ture) of domain concepts, some of them can be extracted from an MRD with
marked subtrees that may be modified by a domain expert, using matching result
analysis and trimmed result analysis. We construct concept specification tem-
plates (non-taxonomic relationships of domain concepts) that come from pairs of
concepts extracted from text corpus, using WordSpace and an association rule al-
gorithm. Through case studies, we make sure that our system can work to support
the process of constructing domain ontologies.

1 Introduction

Although ontologies have been very popular in many application areas (e.g. Semantic
Web), we still face the problem of high cost associated with building up them manually.
In particular, since domain ontologies have the meaning specific to application domains,
human experts have to make huge efforts for constructing them entirely by hand. In
order to reduce the costs, automatic or semi-automatic methods have been proposed us-
ing knowledge engineering techniques and natural language processing ones[1]. However,
most of these environments facilitate the construction of only a hierarchically-structured
set of domain concepts, in other words, taxonomic conceptual relationships. For example,
DODDLE]2] developed by us uses a machine-readable dictionary (MRD) to support a
user to construct concept hierarchy only.

In this paper, we extend DODDLE into DODDLE II that constructs both taxonomic
and non-taxonomic conceptual relationships, exploiting WordNet[3] and domain-specific
text corpus with the automatic analysis of lexical co-occurrence statistics and an asso-
ciation rule algorithm[4]. Furthermore, we evaluate how DODDLE II works in the field
of law, CISG (the Contracts for the International Sale of Goods), and in the field of
business, xCBL (XML Common Business Library). The empirical results show us that
DODDLE II can support a domain expert in constructing domain ontologies.

2 Naoki SUGIURA et al.

A) Taxnomic
Relationship
Acquisition Module

B) Non-Taxnomic
Relationship
Learning Module

cocoectitceoreetiiiiored T aocecccaccecctiiiie,

& i
| - g
... . extraction of 4-grams finding |7
‘ ‘ associ ati ons |17
| . asso ons |7
| - 7
T : onstruction of Verdspa :
‘ ‘ 7
| nodi fication using | 7
| |the syntactic strategies| G —
| . extraction of extraction of %
... . similar concept pairs concept pairs |7
[nodification using | T T e
| a candi date for . ;
| domi n-speci fi c . 7
:‘ hierarchy structure : 2
| ‘ 7
g 2

““““““““ L1IIII7I IS0 s 77007770777507557.

e v‘v‘g
~
Taxononi ¢ Rel ationshi p Non- Taxononi ¢ Relati onshi p

Concept Specification Tenpl ate

* ‘ Extension & Modification ‘

User
(A Domain Expert)

A Donai n Ont ol ogy

Fig. 1. DODDLE II overview

Root Root

Root

- & a
S ? = S O% % E3ki
o> % i jg:_}i!ﬂow o

[JIraB

,jMOVE Cllistm
Fig. 3. Matched Result Analysis

@ Bestmatched Node MOVE STAY

@ internal Node
O Unnecessary Node

Fig. 2. Trimming Process

2 DODDLE II: A Domain Ontology Rapid Development
Environment

2.1 Overview

Figure 1 shows the overview of DODDLE II, “a Domain Ontology rapiD DeveLopment
Environment”. DODDLE II tries to construct a domain ontology from a set of domain
terms given by a human expert using the following two components: Taxonomic Relation-
ship Acquisition module (TRA module) using WordNet and Non-Taxonomic Relationship
Learning module (NTRL module) using text corpus. WordNet is a existing MRD used
in some systems.
A) TRA module tries to support a user in constructing taxonomic relationship (concept
hierarchy) using Word Net.
B) NTRL module extracts the pairs of terms that should be related by some relationships
from text corpus, analyzing lexical co-occurrence statistics, based on WordSpace[5] and
an associate rule algorithm.

We can build concept specification templates by putting together taxonomic and
non-taxonomic relationships for the input domain terms. The relationships should be
identified in the interaction with a human expert.

A Domain Ontology Engineering Tool with General Ontologies and Text Corpus 3

A A
™\, Trimmi ucting
B/(TJ - BD/{J\{D -

D

Fig. 4. Trimmed Result Analysis
2.2 Taxonomic Relationship Acquisition

First of all, TRA module does “spell match” between input domain terms and WordNet.
The “spell match” links these terms to WordNet. Thus the initial model from the “spell
match” results is a hierarchically structured set of all the nodes on the path from these
terms to the root of WordNet. However, the initial model has unnecessary internal terms
(nodes) and they do not contribute to keep topological relationships among matched
nodes, such as parent-child relationship and sibling relationship. So we get a trimmed
model by trimming the unnecessary internal nodes from the initial model (see Fig.2).
After getting the trimmed model, TRA module refines it by interaction with a domain
expert, using Matched result analysis (see Fig.3) and Trimmed result analysis (see Fig.4).
TRA module divides the trimmed model into a PAB (a PAth including only Best spell-
matched nodes) and an STM (a Subtree that includes best spell-matched nodes and
other nodes and so can be Moved) based on the distribution of best-matched nodes. A
PAB is a path that includes only best-matched nodes that have the senses good for given
domain specificity. Because all nodes have already been adjusted to the domain in PABs,
PABs can stay in the trimmed model. An STM is such a subtree that an internal node is
a root and the subordinates are only best-matched nodes. Because internal nodes have
not been confirmed to have the senses good for a given domain, an STM can be moved
in the trimmed model.

In order to refine the trimmed model, DODDLE II can use trimmed result analysis.
Taking some sibling nodes with the same parent node, there may be big differences
about the number of trimmed nodes between them and the parent node. When such
a big difference comes up on a subtree in the trimmed model, it is better to change
the structure of it. DODDLE II asks a human expert whether the subtree should be
reconstructed. Based on the empirical analysis, the subtrees with two or more differences
may be reconstructed.

Finally, DODDLE II completes taxonomic relationships of the input domain terms
manually from the user.

2.3 Non-Taxonomic Relationship Learning

NTRL module almost comes from WordSpace, which derives lexical co-occurrence infor-
mation from a large text corpus and is a multi-dimension vector space (a set of vectors).
The inner product between two word vectors works as the measure of their semantic
relatedness. When two words’ inner product is beyond some upper bound, there are pos-
sibilities to have some non-taxonomic relationship between them. NTRL module also uses
an association rule algorithm to find associations between terms in text corpus. When
an association rule between terms exceeds user-defined thresholds, there are possibilities
to have some non-taxonomic relationships between them.

Construction of WordSpace WordSpace is constructed as shown in Fig.5.

4 Naoki SUGIURA et al.

Texts (4-gram array) Texts (4-gram array) Texts (4-gram vector array) ?
LBEERS R0 . = W, W
EREAEE |)| EERERSR Ehffwh B L
R 6 fs ERE T - LRERE. = W, Wa

— — — ‘WordNet synset
collocation scope context scope | ————— ——
—
fi_- f2
_f|
fa 4-gram vector
fn

Collocation Matrix

Fig. 5. Construction Flow of WordSpace

1. Extraction of high-frequency 4-grams Since letter-by-letter co-occurrence information
becomes too much and so often irrelevant, we take term-by-term co-occurrence infor-
mation in four words (4-gram) as the primitive to make up co-occurrence matrix useful
to represent context of a text based on experimented results. We take high frequency
4-grams in order to make up WordSpace.

2. Construction of collocation matriz A collocation matriz is constructed in order to
compare the context of two 4-grams. Element a; ; in this matrix is the number of 4-gram
fi which comes up just before 4-gram f; (called collocation area). The collocation matrix
counts how many other 4-grams come up before the target 4-gram. Each column of this
matrix is the 4-gram vector of the 4-gram f.

8. Construction of context vectors A context vector represents context of a word or phrase
in a text. A sum of 4-gram vectors around appearance place of a word or phrase (called
context area) is a context vector of a word or phrase in the place.

4. Construction of word vectors A word vector is a sum of context vectors at all appear-
ance places of a word or phrase within texts, and can be expressed with Eq.1. Here, 7(w)
is a vector representation of a word or phrase w, C(w) is appearance places of a word or
phrase w in a text, and ¢(f) is a 4-gram vector of a 4-gram f. A set of vector T(w) is
WordSpace.

w)= > Y. @) (1)

i€eC(w) ¢ close to i
5. Construction of vector representations of all concepts The best matched “synset” of

each input terms in WordNet is already specified, and a sum of the word vector contained
in these synsets is set to the vector representation of a concept corresponding to a input
term. The concept label is the input term.

6. Construction of a set of similar concept pairs Vector representations of all concepts
are obtained by constructing WordSpace. Similarity between concepts is obtained from
inner products in all the combination of these vectors. Then we define certain threshold
for this similarity. A concept pair with similarity beyond the threshold is extracted as a
similar concept pair.

Finding Association Rules between Input Terms The basic association rule algo-
rithm is provided with a set of transactions, T := {¢; | ¢ = 1..n},where each transaction ¢;
consists of a set of items, t; = {a; ; | j = 1..m4, ai; € C} and each item a; ; is form a set of

A Domain Ontology Engineering Tool with General Ontologies and Text Corpus 5

concepts C. The algorithm finds association rules Xy = Yy, : (X, Yr C C, X NY, = {})
such that measures for support and confidence exceed user-defined thresholds. Thereby,
support of a rule X = Y}, is the percentage of transactions that contain X UY) as a
subset (Eq.2)and confidence for the rule is defined as the percentage of transactions that
Y} is seen when X, appears in a transaction (Eq.3).

| {t: | X UYy Cti} |
n

support(Xyx = Yi) = (2)
| {ti | Xk UYk C ti} |

confidence(Xy = Yy) = 16| Xe Chil] (3)

As we regard input terms as items and sentences in text corpus as transactions,
DODDLE 1I finds associations between terms in text corpus. Based on experimented
results, we define the threshold of support as 0.4% and the threshold of confidence as
80%. When an association rule between terms exceeds both thresholds, the pair of terms
are extracted as candidates for non-taxonomic relationships.

Constructing and Modifying Concept Specification Templates A set of simi-
lar concept pairs from WordSpace and term pairs from the association rule algorithm
becomes concept specification templates. Both of the concept pairs, whose meaning is
similar (with taxonomic relation), and has something relevant to each other (with non-
taxonomic relation), are extracted as concept pairs with above-mentioned methods. How-
ever, by using taxonomic information from TRA module with co-occurrence information,
DODDLE II distinguishes the concept pairs which are hierarchically close to each other
from the other pairs as TAXONOMY. A user constructs a domain ontology by consid-
ering the relation with each concept pair in the concept specification templates, and
deleting unnecessary concept pairs.

3 Case Studies

In order to evaluate how DODDLE II is doing in a practical field, case studies have
been done in particular field of law and business. The particular field of law is called
“Contracts for the International Sale of Goods”(CISG)[6] and the particular field of
business is called “XML Common Business Library” (xCBL)[7]. DODDLE II is being
implemented on Perl/Tk now. Figure 6 shows s snapshot.

3.1 A Case Study in the Law Field

Input terms in the Case Study with CISG

A layer is a user in this case study. Table 1 shows significant 46 legal terms extracted
by the user from CISG Part-II. He gave them DODDLE II as input terms.
Taxonomic Relationship Aqcuisition

Table 2 shows the number of concepts in each model under taxonomic relationship
acquisition and Fig.7 shows the concept hierarchy constructed by the user using DOD-
DLE II. Table 3 shows the evaluation of two strategies by the user. Precision is the
percentage of extracted subtrees that were accepted, recall per path is the percentage of
extracted paths that were accepted and recall per subtree is the percentage of extracted
subtrees that were accepted. Precision and both recalls are less than 0.3 and are not good.

6 Naoki SUGIURA et al.

©_DODDLE 11 ver 0.1
Eie it Vew Tools Help

& [CONCEPT concept goods &
-0 abstaction

@ act relationship concept
ety atrute auantly

-3 neninate_object e o

| e material contract

| st

-0 person
-0 focaton
-0 stte

Article 13 (3)

‘Additional or diferent terms relating, amang other things, to the price,
payment, and quantly of the gaods, place and time of delivery, extent
of one party’s liabily to the other or the setdlement of disputes are
considered to alter the terms of the offer materially.

Article z0 (1

4 period of time for acceptance fixed by the ofieror in a telegram or a letter

 date shown on the letter or, f o such date [s shown, from the date
shown on the envelope. A period of ime for acceptance fied by the offeror |/

template
concept:[goods 34

ool [apron 3

tool relationship concept

Apriri non-tworony? place.

relationship
st 3] ity

concept

concept

go0ds

e

‘ accept | Cancel

Fig. 6. The Ontology Editor

Table 1. Significant 46 Concepts in CISG Part-II

acceptance act addition address assent circumstance
communication |[conduct contract counteroffer [day delay
delivery discrepancy |dispatch effect envelope goods
holiday indication intention invitation letter modification
offer offeree offerer party payment person
placeofbusiness |[price proposal quality quantity rejection
reply residence revocation silence speechact system
telephone telex time transmission |withdraw

But about 70 % of the concept hierarchy (taxonomic relationships) were constructed with
TRA module support and about half portion of them results in the information extracted
from WordNet. Therefore we evaluated TRA model worked well in this case study. The
detail of this case study is described in [2].

Non-Taxonomic Relationship Learning

Construction of WordSpace High-frequency 4-grams were extracted from CISG (about
10,000 words) standard form conversion removed duplication, and 543 kinds of 4-grams
were obtained. In order to keep density of a collocation matrix high, the extraction
frequency of 4-grams must be adjusted according to the scale of text corpus. As CISG
is the comparatively small-scale text, the extraction frequency was set as 7 times this
case. In order to construct a context vector, a sum of 4-gram vectors around appearance
place circumference of each of 46 concepts was calculated. In order to construct a context
scope from some 4-grams, it consists of putting together 60 4-grams before the 4-gram
and 10 4-grams after the 4-grams independently of length of a sentence. For each of 46
concepts, the sum of context vectors in all the appearance places of the concept in CISG
was calculated, and the vector representations of the concepts were obtained. The set
of these vectors is used as WordSpace to extract concept pairs with context similarity.
Having calculated the similarity from the inner product for the 1,035 concept pairs which
are all the combination of 46 concepts, and having used threshold as 0.87, 77 concept
pairs were extracted.

Table 2. the Change of the Number of Concepts under Taxonomic Relationship Acquisision
Model |[|{Input Terms|Initial Model|Triimed Model|Concept Hierarchy
Concept 46 133 56 61

A Domain Ontology Engineering Tool with General Ontologies and Text Corpus 7

delay
timee——"
quantity day «—————————Hholiday
stibut silence
attribu e< price
quality discrepancy
content tate it ply
abstraction \ \
g
" withdrawal
communication indication of intention
rejection
letter
fati gal relation
intention
conduct
addition
change modification
act revocation
departure dispatch
transmission
deed‘énwmem
delivery
assent acceptance

speech act mwtauon
CONCEP proposal

offeree
person «————————party =00
entity: telex
system <enve\ope
telephone
inanimate object
goods

location ¢<Sl‘ldc’:§ Py residence
state <:If;<;:;ﬂstance
Fig. 7. Domain Concept Hierarchy of CISG Part I1

Table 3. Precision and Recall in the Case Study with CISG

Precision |Recall per Path|Recall per Subtree
Matched Result|0.25(4/16)| 0.23(5/21) 0.19(4/19)
Trimmed Result| 0.3(3/10) 0.3(6/20) 0.15(3/20)

Finding Associations between Input Terms In this case, DODDLE II extracted 55 pairs
of terms from text corpus using the above-mentioned association rule algorithm. There
are 15 pairs out of them in a set of similar concept pairs extracted using WordSpace.
Constructing and Modifying Concept Specification Templates Concept specification tem-
plates were constructed from two sets of concept pairs extracted by WordSpace and
Associated Rule algorithm. In concept specification templates, such a concept is distin-
guished as TAXONOMY relation. As taxonomic and non-taxonomic relationships may
be mixed in the list based on only context similarity, the concept pairs which may be
concerned with non-taxonomic relationships are obtained by removing the concept pairs
with taxonomic relationships. After the user thought concept definitions, the user modi-
fied concept specification templates. Figure 8.(A) shows concept specification templates
about the concept ”goods”. Figure 8.(B) shows the definition of the concept ”goods”
constructed from consideration of concept pairs in the templates.

Evaluation of Results of NTRL module The user evaluated the following two sets of con-
cept pairs: one is extracted by WordSpace(WS) and the other is extracted by Association
Rule algorithm (AR). Figure 9 shows three different sets of concept pairs from the user,

(A) Concept Specific Template (B) Concept Definition
non-TAXONOMY? : quality ATTRIBUTE : quality
non-TAXONOMY? : quantity = |ATTRIBUTE : quantity
non-TAXONOMY? : contract MATERIAL : contract
non-TAXONOMY? : act MATERIAL : offer

non-TAXONOMY? : delivery
non-TAXONOMY? : effect
non-TAXONOMY? : party
non-TAXONOMY? : payment
non-TAXONOMY? : person
non-TAXONOMY? : price
non-TAXONOMY? : time

Fig. 8. The Concept Specification Templates and Concept Definition for “goods”

8 Naoki SUGIURA et al.

Table 4. Evaluation by the User with Legal Knowledge
WordSPace|Association| The Join of
(WS) Rules (AR)| WS and AR

Extracted concept pairs fird 55 117
Accepted concept pairs 18 13 27
Rejected concept pairs 59 42 90
| Precision |0.23(18/77)|O.24(13/55)|0.23(27/117)|
| Recall |0.38(18/48)|O.27(13/48)| 0.56(27/48) |
Def i ned
Extracted by the User Extracted
(48) by Associate Rule

by WordSpace
(77)

Al gorithm
55)

Fig. 9. Three Different Sets of Concept Pairs from User, WS and AR

WS and AR. Table 4 shows the details of evaluation by the user, computing precision and
recall. Precision is the percentage of concept pairs accepted by a user that were extracted
by DODDLE II. Recall is the percentage of concept pairs extracted by DODDLE II that
were defined by a user. Looking at the field of Precision in Table 4, there is almost no
differences among three kinds of results from WS,AR and the join of them. However,
looking at the field of Recall in Table 4, the recall from the join of WS and AR is higher
than that from each WS and AR, and then goes over 0.5.

3.2 A Case Study in the Business Field

Input terms in the Case Study with xCBL

Table 5 shows input terms in this case study. They are 57 business terms extracted
by a user from xCBL Document Reference. The user is not a expert but has business
knowledge.
Taxonomic Relationship Acquisition

Table 6 shows the number of concept pairs in each model under taxonomic relationship
acquisition and table 7 shows the evaluation of two strategies by the user. The recall per
subtree is more than 0.5 and is good. The precision and the recall per path are less
than 0.3 and are not so good, but about 80 % portion of taxonomic relationships were

Table 5. Significant 57 Concepts in xCBL

acceptance agreement auction availability business
buyer change contract customer data

date delivery document exchange rate |financial institution
foreign exchange [goods information invoice item

line item location marketplace message money
order organization partner party payee
payer payment period of time price process
product purchase purcahse agreement|purchase order |quantity
quotation quote receipt rejection request
resource response schedule seller service
shipper status supplier system third party
transaction user

A Domain Ontology Engineering Tool with General Ontologies and Text Corpus 9

Table 6. The Change of the Number of Concepts under Taxonomic Relationship Acquisision
Model |[|{Input Terms|Initial Model|Triimed Model|Concept Hierarchy

Concept 57 152 83 82
Table 7. Precision and Recall in the Case Study with xCBL
Precision| Recall Recall

per Path |per Subtree
Matched Result|0.2(5/25)[0.29(5/17)| 0.71(5/7)
Trimmed Result|0.22(2/9)]0.13(2/15)| 0.5(2/4)

constructed with TRA module support. We evaluated TRA module worked well in this
case study.

Non-Taxonomic Relationship Learning

Construction of WordSpace High-frequency 4-grams were extracted from xCBL Docu-
ment Description (about 2,500 words) standard form conversion removed duplication,
and 1240 kinds of 4-grams were obtained. In order to keep density of a collocation ma-
trix high, the extraction frequency of 4-grams must be adjusted according to the scale
of text corpus. As xCBL text are shorter than CISG text, the extraction frequency was
set as 2 times this case. In order to construct a context vector, a sum of 4-gram vectors
around appearance place circumference of each of 57 concepts was calculated. In order to
construct a context scope from some 4-grams, it consists of putting together 10 4-grams
before the 4-gram and 10 4-grams after the 4-grams independently of length of a sen-
tence. For each of 57 concepts, the sum of context vectors in all the appearance places of
the concept in xCBL was calculated, and the vector representations of the concepts were
obtained. The set of these vectors is used as WordSpace to extract concept pairs with
context similarity. Having calculated the similarity from the inner product for concept
pairs which is all the combination of 57 concepts, 40 concept pairs were extracted.
Finding Associations between Input Terms DODDLE II extracted 39 pairs of terms from
text corpus using the above-mentioned association rule algorithm. There are 13 pairs out
of them in a set of similar concept pairs extracted using WordSpace. Then, DODDLE II
constructed concept specification templates from two sets of concept pairs extracted by
WordSpace and Associated Rule algorithm. However, the user didn’t have enough time
to modify them and didn’t finish to modify them.

FEvaluation of Results of NTRL module The user evaluated the following two sets of con-
cept pairs: one is extracted by WS(WordSpace) and the other is extracted by AR(Association
Rule algorithm). Figure 10 shows two different sets of concept pairs from WS and AR.
It also shows portion of extracted concept pairs that were accepted by the user. Table
8 shows the details of evaluation by the user, computing precision only. Because the
user didn’t define concept definition in advance, we can not compute recall. Looking at
the field of precision in Table 8, the precision from WS is higher than others. Most of
concept pairs which have relationships were extracted by WS. The percentage is about
77%(30/39). But there are some concept pairs which were not extracted by WS. There-
fore taking the join of WS and AR is the best method to support a user to construct
non-taxonomic relationships.

3.3 Results and Evaluation of Case Studies

In regards to support in constructing taxonomic relationships, the precision and recall
are less than 0.3 in both case studies and there is almost no difference. Generally, 70 %

10 Naoki SUGIURA et al.

Table 8. Evaluation by the User with xCBL definition
WordSPace|Association| The Join of
(WS) Rules (AR)|WS and AR

Extracted concept pairs 40 39 66

Accepted concept pairs 30 20 39

Rejected concept pairs 10 19 27
[Precision [0.75(30/40)]0.51(20/30)[0.59(39/66) |

Accepted by the User
(39)

Extracted Extracted by
by WordSpace Associate Rule Al gorithm
(40) (39)

Fig. 10. Two Difference Sets of Concept Pairs from WS and AR and Concept Sets have Rela-
tionships

or more support comes from TRA module. About more than half portion of the final
domain ontology results in the information extracted from WordNet. Because the two
strategies just imply the part where concept drift may come up, the part generated by
them has low component rates and about 30 % hit rates. So one out of three indications
based on the two strategies work well in order to manage concept drift. The two strategies
use matched and trimmed results, therefore based on structural information of an MRD
only, the hit rates are not so bad. In order to manage concept drift smartly, we may need
to use more semantic information that is not easy to come up in advance in the strategies,
and we also may need to use domain specific text corpus and other information resource
to improve supporting a user in constructing taxonomic relationships.

In regards to construction of non-taxonomic relationships, the precision in the case
study with xCBL is good, but the precision in the case study with CISG is less than
0.3 and not good. Generating non-taxonomic relationships of concepts is harder than
modifying and deleting them. Therefore, DODDLE II supports the user in constructing
non-taxonomic relationships.

After analyzing results of case studies, we have the following problems.

1. Determination of a Threshold: Threshold of the context similarity changes in
effective value with each domain. It is hard to set up the most effective value in advance.

2. Specification of a Concept Relation: Concept specification templates have only
concept pairs based on the context similarity, it requires still high cost to specify rela-
tionships between them. It is needed to support specification of concept relationships on
this system in the future work.

3. Ambiguity of Multiple Terminology: For example, the term “transmission” is
used in two meanings, “transmission (of goods)” and “transmission (of communication)”,
in the article, but DODDLE II considers these terms as the same and creates WordSpace
as it is. Therefore constructed vector expression may not be exact. In order to extract
more useful concept pairs, semantic specialization of a multisense word is necessary, and
it should be considered that the 4-grams with same appearance and different meaning
are different 4-grams.

A Domain Ontology Engineering Tool with General Ontologies and Text Corpus 11

4 Related Work

Navigli et,al. proposed OntoLearn [8][9][10], that supports domain ontology construc-
tion by using existing ontologies and natural language processing techniques. In their
approach, existing concepts from WordNet are enriched and pruned to fit the domain
concepts by using NLP techniques. They argue that the automatically constructed on-
tologies are practically usable in the case study of a terminology translation application.
However, they did not show any evaluations of the generated ontologies themselves that
might be done by domain experts. Although a lot of useful information is in the machine
readable dictionaries and documents in the application domain, some essential concepts
and knowledge are still in the minds of domain experts. We did not generate the ontologies
themselves automatically, but suggests relevant alternatives to the human experts inter-
actively while the experts’ construction of domain ontologies. In another case study [11],
we had an experience that even if the concepts are in the MRD, they are not sufficient to
use. In the case study, some parts of hierarchical relations are counterchanged between
the generic ontology (WordNet) and the domain ontology, which are called “Concept
Drift”. In that case, presenting automatically generated ontology that contains concept
drifts may cause confusion of domain experts. We argue that the initiative should be
kept not on the machine, but on the hand of the domain experts at the domain ontol-
ogy construction phase. This is the difference between our approach and Navigli’s. Our
human-centered approach enabled us to cooperate with human experts tightly.

From the technological viewpoint, there are two different related research areas. In
the research using verb-oriented method, the relation of a verb and nouns modified with
it is described, and the concept definition is constructed from this information (e.g.
[13]). In [14], taxonomic relationships and Subcategorization Frame of verbs (SF) are
extracted from technical texts using a machine learning method. The nouns in two or
more kinds of different SF' with the same frame-name and slot-name are gathered as
one concept, base class. And ontology with only taxonomic relationships is built by
carrying out clustering of the base class further. Moreover, in parallel, Restriction of
Selection (RS) which is slot-value in SF is also replaced with the concept with which
it is satisfied instantiated SF. However, proper evaluation is not yet done. Since SF
represents the syntactic relationships between verb and noun, the step for the conversion
to non-taxonomic relationships is necessary.

On the other hand, in ontology learning using data-mining method, discovering non-
taxonomic relationships using an association rule algorithm is proposed by [12]. They
extract concept pairs based on the modification information between terms selected with
parsing, and made the concept pairs a transaction. By using heuristics with shallow text
processing, the generation of a transaction more reflects the syntax of texts. Moreover,
RLA, which is their original learning accuracy of non-taxonomic relationships using the
existing taxonomic relations, is proposed. The concept pair extraction method in our
paper does not need parsing, and it can also run off context similarity between the terms
appeared apart each other in texts or not mediated by the same verb.

5 Conclusions

In this paper, we discussed how to construct a domain ontology using an existing MRD
and text corpus. In order to acquire taxonomic relationship, two strategies have been pro-
posed: matched result analysis and trimmed result analysis. Furthermore, to learn non-
taxonomic relationships, concept pairs may be related to concept definition, extracted

12 Naoki SUGIURA et al.

on the basis of the co-occurrence information in text corpus, and a domain ontology is
developed by the modification and specification of concept relations with concept spec-
ification templates. It serves as the guideline for narrowing down huge space of concept
pairs to construct a domain ontology.

It is almost craft-work to construct a domain ontology, and still difficult to obtain
the high support rate on system. DODDLE II mainly supports for construction of a
concept hierarchy with taxonomic relationships and extraction of concept pairs with
non-taxonomic relationships now. However a support for specification concept relation-
ship is indispensable. The future works are as follows: improvement in the scalability
of the definition support by learning of heuristics and introduction of the useful data-
mining method instead of WordSpace, and system integration of taxonomic relationship
acquisition module and non-taxonomic relationship learning module (now implementing).

6 Acknowledgment

This work has been supported by Naomi Nakaya and Takamasa Iwade (former students
of Shizuoka University, Japan).

References

1. Y. Ding and S.Foo: “Ontology Research and Development, Part 1 — A Review of Onlotogy”,
Journal of Information Science, Vol.28, No2, 123 136, 2002

2. Rieko Sekiuchi, Chizuru Aoki, Masaki Kurematsu, and Takahira Yamaguchi: “DODDLE :
A Domain Ontology Rapid Development Environment”, PRICAI98, 1998

3. C.Fellbaum ed: “Wordnet”, The MIT Press, 1998. see also URL:

http://www.cogsci.princeton.edu/~ wn/
4. Rakesh Agrawal and Ramakrishnan Srikant : “Fast algorithms for mining association rules,”,
Proc. of VLDB Conference, 487-499, 1994

5. Marti A. Hearst and Hinrich Schutze: “Customizing a Lexicon to Better Suit a Computa-
tional Task”, in Corpus Processing for Lexical Acquisition edited by Branimir Boguraev &
James Pustejovsky, 77-96

6. Kazuaki Sono and Masasi Yamate: United Nations convention on Contracts for the Inter-

national Sale of Goods, Seirin-Shoin, 1993

xCBL.org: http://www.xcbl.org/xcbl40/documentation/ listofdocuments.html

8. R. Navigli and P. Velardi: “Ontology Learning and Its Application to Automated Terminol-
ogy Translation”, IEEE Intelligent Systems, JANUARY/FEBRUARY, pp.22-31, 2003.

9. Roberto Navigli and Paola Velardi: “Automatic Adaptation of WordNet to Domains”, Proc.
of International Workshop on Ontologies and Lexical Knowledge Bases(OntoLex2002), 2002.

10. P. Velardi, M. Missikoff, and P. Fabriani : “Using Text Processing Techniques to Automati-
cally enrich a Domain Ontology”, Proc. of ACM Conf. On Formal ontologies and Information
Systems(ACM FOIS), pp.270-284, October 2001.

11. T. Yamaguchi: “Constructing Domain Ontologies Based on Concept Drift Analysis”, Proc.
of the IJCAI99 Workshop on Ontologies and Problem Solving methods(KRR5), August
1999.

12. Alexander Maedche and Steffen Staab: “Discovering Conceptual Relations from Text”,
ECATI2000, 321 325, 2000

13. Udo Hahn and Klemens Schnattingerg: “Toward Text Knowledge Engineering”, AAAI9S,
TAAAI-98 proceedings, 524-531, 1998

14. David Faure and Claire Nédellec: “Knowledge Acquisition of Predicate Argument Structures
from Technical Texts Using Machine Learning: The System ASIUM”, EKAW’99

~

An Ontology-Driven Application to Improve the
Prescription of Educational Resources to Parents of
Premature Infants

Howard Goldbergl, Alfredo Morales', David MacMillan?, and Matthew Quinlan?

! Clinician Support Technologies Inc, 1 Wells Avenue, Newton, MA 02459
% Network Inference Limited, 25 Chapel Street, London NW1 5DH

Abstract. CST’s Baby CareLink provides a ‘collaborative healthware’
environment for parents of premature infants that incorporates just-in-time
learning as one means of knowledge exploration and patient empowerment [1],
[2], [3]. As the Baby CareLink content base has continued to grow, it has
become increasingly difficult for content prescribers to identify all relevant
resources for parents at a given point in time in their child’s course of care. In
addition, the growing content base has become increasingly difficult to
maintain without a rich indexing system. In order to address these issues, we
have developed an ontology-driven application that supports the indexing and
retrieval of educational materials according to rich descriptions of premature
infants.

We have developed an initial OWL-DL-based [4] ontology describing relevant
concepts in the domain of neonatology, including clinical conditions, diagnostic
testing, therapies, durable medical equipment, and the infants themselves. We
have developed an initial terminologic model describing typical clinical
problems and therapies that occur over the clinical course of these premature
infants. Indexers tag educational resources through a web based client
application that allows them to create rich descriptions of educational resources
based on the reference ontology. Clinical end-users interact with a client
application that identifies educational resources appropriate to clinical scenarios
occurring over the course of a typical premature infant’s development based on
the description generated from records of existing infants in the Baby CareLink
system, or according to a user-created description.

Network Inference’s tools were used to develop the neonatology ontology and
implement the run-time system. Construct™, a Visio-based ontology modeling
tool was used to develop the reference ontology. This tool allowed the
representation of the domain’s concepts, subsumption relationships, properties,
instances, and axioms diagrammatically. Cerebra Server™, an OWL-DL-based
inferencing platform was used to provide logical consistency-checking at
modeling time directly from Construct™. Cerebra Server™ was integrated with
Baby CareLink and to the indexing and retrieving tools through a .Net
connector that provides an API for 1) extending the ontology at indexing time
with newly-classified educational resources, 2) dynamically creating instances
of individual premature babies using data from Baby CareLink and 3) querying
the ontology at run-time.

Howard Goldberg et al.

This knowledge centric approach to the identification and recommendation of
educational resources is anticipated to better individualize information for
parents of infants managed through Baby CareLink and increase the efficacy of
the information prescription process. The approach is expected to increase the
return on investment provided by Baby CareLink through reduction in the time
required by nurses and care managers to interact with the system.

Introduction

CST’s Baby CareLink provides a ‘collaborative healthware’ environment for parents
of premature infants that incorporates just-in-time learning as one means of
knowledge exploration and patient empowerment [1], [2], [3]. As the Baby CareLink
content base has continued to grow, it has become increasingly difficult for content
prescribers to identify all relevant resources for parents at a given point in time in
their child’s course of care. In addition, the growing content base has become
increasingly difficult to maintain without a rich indexing system. In order to address
these issues, we have developed an ontology-driven application that supports the
indexing and retrieval of educational materials according to rich descriptions of
premature infants.

Ontology Design

Initial work on the Proof of Concept (POC) focused on modelling the neonatology
domain, representing educational resources, and designing appropriate queries. The
resulting model represents a base ontology composed of two main types of
constructs—hierarchies of core concepts and axioms describing prototypical
premature infants. The resulting ontology comprises approximately 300 entities,
including concepts, object properties, and complex concepts.

The foundation for the model represents the core domain concepts to be used within
the ontology. The core concepts are organized in hierarchies describing babies,
problems, treatments, tests and educational resources. Each category was elaborated
to a level of granularity required in the context of the POC. For example, Treatment
comprises Therapies, Medications and Procedures. Categories of Baby were defined
according to standard properties, such as gestational age, using classes with
customized complex datatypes to express value ranges within which patients could be
classified. A number of Object Properties were defined (e.g. “may present”, “may be
treated”, “may be tested”) in order to facilitate the definition of relationships between
concepts. These are also used later in the process of querying the live ontology

An additional class called ‘Typical’ was introduced into the model. The Typical class
facilitates the creation of a taxonomic model describing prototypical premature
infants, their presenting problems, and usual therapies. This strategy addresses reuse
by permitting very general axioms in the model, e.g., “A typical 24-36 week old

An Ontology-Driven Application to Improve the Prescription of Educational Resources to
Parents of Premature Infants 3

premature infant presenting with respiratory distress syndrome may be treated with
surfactant and either mechanical ventilation or CPAP” without burdening all
instantiations of 24-30 week-old babies with the generalization. In the application, we
use this duality to enable caregivers to subsequently differentiate between educational
resources relevant to those problems a baby might be expected to present and those
based upon what the baby is known to present.

The model of prototypical premature infants contained in the ontology consists of
complex concepts that define required and optional combinations of tests and
treatments for problems presented by babies within specific age ranges. The OWL-
DL constructs intersectionOf and unionOf were used to define relationships and
restrictions over concepts in the ontology. Problems, Treatments and Tests were
associated graphically with the intersection of the Typical class and sub-classes of
Baby (see Figure 1).

Finally, the Educational Resource class was represented. Education Resources ‘refer
to’ arbitrarily complex descriptions of premature infants. The representations used to
index educational resources are created programmatically through end-user tools
described in the following section.

Bow

P T T T T T T T e T e
-

0L Ciass subClassDf Property...equival

i

instancef samelndi.. different

ISerum Medication Levels Test

|

L

union 0f

may be tested wih

Intersection0f

R S— = Caffeine

- may be treated wimi@ intersectionQf- ¥

intersection0f

CPAP

* intersectionOf Apnea
i e N
", iE<Anonymous>» . N
Construct Browser o x bbbt intersectionOf
—may present
[[odel =]

Diagrams

& ConceplHierachy

24t0 30 wks - Resp]

244030 wks - Resp I]

24to30 wks -Resp NV []

- Brachcardia

Apnea

Senum Medication Levels Test
Calfeine

Gradycardia

intersectionOf
intersectionOf o

inlersection0f intersectionOf
2 .
@ Tyl

urianof nion0f

- Aminophyline
24t 30 whs Gestational Age Premature Baby

%0 to 34 wks Gestational Age Premature Baby

CP&P
Typical

Complex Concept Bradpeardia AND Aprea)

Complex Concept may present [(Bradycardia AND Aprea)]
- Complex Cancept | may present (| Bradycardia AND Apnea)
- Complex Cancept may be beated with | [CPAP AND Caffeine £

Complext Concept (may present (Bradyeardia AND Apnea

Corples Concept { CPAP AND Cafteing AND Arinophyline |

Fig. 1: Description of Babies with Gestational Age 24-34 weeks, in relation to
specific problems, treatments, and tests

A “a,
4 to 30 wks Gesiational Age Premature Baby 130 to 34 wks Gestational Age Premature Baby,

Howard Goldberg et al.

System Overview

The application is architected to integrate at author-time with Baby CareLink’s
content management system (CMS). Domain experts create and publish educational
resources through a web-based editing workbench, part of the CMS. Two further tools
were added to the workbench to support the description of resources—the Resource
Descriptor Plug-in and the Publishing Wizard. Figure 2 shows the architectural
components and their interactions at each stage.

The Resource Descriptor Plug-in allows domain experts to generate metadata about
resources in the Baby CareLink content base, using templates that represent
prototypical relationships between concepts and constructs that exist in the base
ontology. The plug-in dynamically obtains concepts through XQueries posted to
Cerebra via its client APL. The outputs of the plug-in are resource descriptors in the
form of OWL-DL fragments. Each resource descriptor is an instance of the
Educational Resource concept, restricted by the combinations of Problems,
Treatments and/or Tests relating to a rich description for a premature infant. The
source for resource descriptors is stored in the content management system.

The Publishing Wizard facilitates the deployment of resource descriptors into
Cerebra. It interacts with both the CMS and Cerebra to merge completed resource
descriptors into the active ontology. The source for the resulting extended ontology
must also be saved should the ontology need to be reloaded into Cerebra.

CST Editing Workbench ST Editing Warkbench

Rresource Publishing
Description [#—— Wizard
Plugin]
r)
Resouree 1
descriptars HBIL Covvme Tpdutes to
oo Rasource descriptars Prescribed Bincation
[— eealogy

Cerebra Server Cerebra Server
Content it Content Management
Service Ontology Service Ontology
Prescribed Education
A& Concepts
g
]
Cnmemﬂaaeo‘gLResuume O\II’DV\E_SES;DDL:;CE
Figure 2.a — Domain expert creates | Figure 2.b — Once all education resources

resource descriptors using templates and | are described by resource descriptors,
concepts obtained from the ontology. these are published to Cerebra.

An Ontology-Driven Application to Improve the Prescription of Educational Resources to
Parents of Premature Infants 5

In addition to the author-time tools, Baby CareLink was extended in order to
represent patients within the inferencing system. A Patient Profiler module was
developed that synthesizes CareLink data from registered infants into instances of the
Baby concept. These instances serve as the focal point with which to identify
educational resources for each patient. The Patient profiler acts as a daemon,
executing at periodic intervals and forcing reclassification of the resulting ontology
once new Baby instances have been merged.

At run-time, the Information Prescription Pad extends the existing Prescribed
Education module by providing rapid, fine-grained searches against the universe of
educational resources known to Cerebra. Clinicians interact with the Pad’s user
interface in order to create a description of an appropriate baby to be used for search.
The interface presents a series of templates for completion using concepts from the
ontology. Clinicians may build a description from an existing baby or a prototypical
baby.

The Information Prescription Pad queries Cerebra in order to retrieve concepts that
may be valid fillers for slots of the selected template. Posting an instanceProperty
query to Cerebra using a Baby instance and an object property will return all valid
fillers for the specified property. If the clinician is interested in what typically could
be relevant to a particular patient, the Pad uses the specific Baby instance representing
that patient as part of the query — i.e., the conjunction of Premature Baby 1’ and the
concept ‘Typical’. If the clinician is interested in a prototypical baby, the Pad will use
the concept that represents that type of baby when querying Cerebra Server — i.e.,
‘Premature Baby with 24 to 30 weeks Gestational Age’ and the concept ‘Typical’.
Once all templates have been completed, the Information Prescription Pad formulates
an XQuery and posts it to Cerebra through the client API.

The query returns instances of Educational Resources that match the criteria specified
in the template. Each instance has a property containing the URI of the resource to be
prescribed. The Information Prescription Pad renders the list of applicable resources
and provides both a way to review the document and to assign it to the parents of a
baby. After relevant resources have been chosen, the Information Prescription Pad
updates the User Profile of the chosen parent, assigning the resources for her review
the next time that she accesses Baby CareLink.

Howard Goldberg et al.

CST Editing Warkhench Baby CareLink

Patient
Profiler
Paiare Descriptare Datient Dite

Cerebra Server
Content Management EMR CMI
Serice Ontalogy Senice Service

Prescribed Education
Concepts

Baze Concepls
Patient Instances Patient Records

Fig. 3.a. Baby CareLink creates instances describing patients and merges them into
Cerebra.

CST Editing Workbench Baby Carelink

Infarmation
Resowwes for review ____—————+ Prescription
- Pad
URI s
- Teruplates
EI of Recommende Usez profile
sources Ooeris o e
Census l update

Cerebra Server
Content Management EMR Chl
Service Ontalogy Service Service

Frescibed Education

Concepts
tiont Rocords UserPrfies

Fig. 3.b. Clinicians use the Information Prescription Pad to query Cerebra for
educational resources

Evaluation

At the time of submission, the POC system is being alpha tested at CST. Domain
experts are in the process of defining resource descriptors for the more than 800
documents that comprise the Baby CareLink content base, using the Resource
Descriptor Plug-in added to the Editing Workbench. The first stage of the process
centers on creating metadata for the subset of documents related to respiratory
problems, their treatments and the tests that could be performed on a baby presenting

An Ontology-Driven Application to Improve the Prescription of Educational Resources to
Parents of Premature Infants 7

such problems. The domain experts’ feedback is being used to refine the templates
originally developed.

Conclusions and Impacts

We have developed an ontology-driven application that facilitates the prescription of
educational materials to parents of premature infants. Our ontology supports
reasonably high-fidelity representations of neonates, their clinical problems, and
ongoing treatments. These representations allow for a rapid, fine-grained search
against a document set of approximately eight hundred documents. The ontology has
also supported the development of a taxonomic model of potential problems and
treatments occurring in typical neonates over time. The taxonomic model supports
the creation of a module to answer “what if” questions regarding typical clinical
scenarios, e.g., “What are the typical treatments for a 27-week-only baby with
respiratory distress syndrome?”

This early work is significant in several dimensions. We were able to develop a
small, but robust ontology supporting a sophisticated retrieval application using the
current draft of OWL-DL. The feature set of the Cerebra Server provided model-time
validation of the developing ontology, real-time updates to the ontology, and adequate
querying and inferencing capabilities for both terminologic reasoning, and reasoning
about instances. We are able to incorporate Cerebra as a modular inferencing service
within a larger software architecture.

While the CST modelers had previous familiarity with description logic systems such
as LOOM [5], they found that OWL-DL still had a significant learning curve. For
example, understanding OWL representations for necessary and sufficient conditions
requires multiple re-readings of the OWL reference manual to ensure correct
subsumption relationships. The Construct modeling tool simplifies this by hiding the
verbosity of the OWL language, but the modelers also found it was necessary to think
in terms of axiomatic representations in addition to object models. Much of the
collaborative effort between CST and Network Inference was spent in identifying
critical OWL modeling idioms that would scale as the ontology grew. Additionally,
while terminologic query capabilities were adequate for this application, there
remains ground for additional improvements in the expressiveness of a query
language for OWL. Standard notions of time, which are important for our
application, remain to be adapted for an OWL environment. Finally, while we were
able to adapt datatypes for use in characterizing age ranges for our infant models, it
would be useful to incorporate numeric comparison operators into OWL as well.

Future work will examine the use or integration of existing healthcare ontologies into
our system. Generalization of our work to additional medical domains is best
accomplished through extension of existing ontologies as opposed to de novo
development. Fortunately, there is an existing base of formal ontologies for the health
care domain, such as GALEN [6] and SNOMED [7], with which to develop

Howard Goldberg et al.

applications. The features and employed idioms of these ontologies must be evaluated
to establish their use in knowledge mediators such as the one we have developed.
Additionally, these are very large ontologies, whose applicability to Description
Logic reasoning and performance characteristics must be determined for the inference
engine and architecture we are deploying.

Our early work adds additional evidence to the utility of ontology-driven knowledge
mediators, as previously demonstrated by systems such as TAMBIS [8] and
Ariadne/SIMS [9]. This work adds the additional capability for the system to reason
over the domain of interest through the additional terminologic model of typical
premature infants over time. By addressing real-world implementations of ontology-
driven knowledge mediators, we believe this class of mediators may be one of the
early ‘killer applications’ for semantic web technologies.

References

1. Gray JE, Safran C, Davis RB, Pompilio-Weitzner G, Stewart JE, Zaccagnini L, Pursley D.:
Baby CareLink: Using the Internet and Telemedicine to Improve Care for High-Risk
Infants. In: Pediatrics. (2000) Dec; 106(6):1318-24.

2. Goldberg H, Morales A, Gottlieb L, Meador L, Safran C. Reinventing Patient-Centered
Computing for the Twenty-first Century. Medinfo 2001, (2001) 1455- 1458

3. Safran, C. The Collaborative Edge: Patient Empowerment for Vulnerable Populations.
International Journal of Medical Informatics 69 (2003) 185-190.

4. McGuinness, D. L., van Harmelen, F.: OWL Web Ontology Language Overview W3C
Working Draft. W3C (2003).

5. MacGregor RM. Using a Description Classifier to Enhance Deductive Inference.
Proceedings Seventh IEEE Conference on Al Applications, pp. 141-147, 1991.

6. Rector AL, Bechhofer SK, Goble CA, Horrocks I, Nowlan WA, Solomon WD. The GRAIL
Concept Modelling Language for Medical Terminology. Artificial Intelligence in Medicine,
Volume 9, 1997.

7. Spackman KA, Campbell KE, Cote RA. SNOMED RT: A reference terminology for health
care. Proceedings/AMIA Annual Fall Symposium:640-4, 1997.

8. Goble CA, Stevens R, Ng G, Bechhofer S, Paton NW, Baker PG, Peim M, and Brass A.
Transparent Access to Multiple Bioinformatics Information Sources. IBM Systems Journal,
40(2):532 - 552, 2001.

9. Knoblock CA. Planning, executing, sensing, and replanning for information gathering.
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
Montreal, Canada, 1995.

Description of the experiment. Tools Interoperability

The objective of the interoperability experiment proposed in EON2003 is to analyze how ontologies can
be exchanged (exported and/or imported) between different tools - either ontology-related or general
software-engineering related — and/or languages. We foresee to obtain as results of this experiment a set
of conclusions, metrics and guidelines to assess on the quality of exports and imports, interoperability,
and on how exported/imported ontologies can be integrated in different tools. These guidelines could be
also used to decide in which cases it is better to use one ontology tool or another for different domains
and with different modelling/reasoning needs.

Although it is not a requisite to perform this experiment, we recommend to use the same ontology
description that was used in EON2002, in the travelling domain, which can be found in the EON2002 site
(http://km.aifb.uni-karlsruhe.de/eon2002).

As an example, the following protocol can be used to perform this experiment:

1. Develop an ontology with an ontology tool (or reuse it from the EON2002 ontologies repository).

2. Export the ontology to other ontology languages and/or tools, depending on the export capabilities of
the selected tool.

3. Assess the quality of the transformations performed by the selected tool, analyzing the losses of
information in the translation process.

4. Import the ontology to tools able to import the format in which the ontology is available. This import
can be also performed with the same tool used to develop the ontology.

5. Assess the quality of the transformation performed by the selected tools, analyzing the losses of
information in the translation process.

6. Analyze the differences between the original ontology and the ontology that results from this circular
transformation.

The previous protocol is suggested as a possible choice for experimenting interoperability between tools
and languages. The workshop will be open to any other configurations where the central issue of
interoperability is handled, such as comparing how different tools export to another language/tool, how
they import from another language/tool, etc.

Using XSLT for Interoperability: DOE and The
Travelling Domain Experiment

Antoine Isaac'-2, Raphaél Troncy''3, and Véronique Malaisé!+*
! Institut National de I’Audiovisuel, Direction de la Recherche, Equipe DCA
4, Av. de ’Europe - 94366 Bry-sur-Marne
{aisaac,rtroncy,vmalaise}@ina.fr
http://www.ina.fr/
% Université de Paris-Sorbonne, LaLICC, http://www.lalic.paris4.sorbonne.fr
3 INRIA Rhéne-Alpes, Equipe EXMO, http://www.inrialpes.fr/exmo
1 AP-HP, Equipe STIM, http://www.biomath. jussieu.fr

1 Introduction

This paper presents the results of the use of the Differential Ontology Editor®
(DOE) during the second experiment on the evaluation of ontology-related tech-
nologies that was initiated by the OntoWeb thematic network®.

The first experiment aimed at evaluating the modeling of an ontology in var-
ious environments through a shared description of the travelling domain written
in natural language. The workshop (organized at the 13th International Confer-
ence on Knowledge Engineering and Knowledge Management (EKAW 2002) in
Spain) showed that the results were very heterogeneous [1]. This second experi-
ment proposes to analyze how an ontology can be exchanged (exported and/or
imported) between different tools.

We have used the following protocol to perform this experiment:

1. Reuse the ontology modeled with the DOE tool for the EON 2002 Workshop;
2. Perform a circular transformation with RDFS as exchange language, that is:
— Export the DOE ontology in RDFS [10], import it in each of the four
following environments: Protégé2000 [5], OilEd [4], OntoEdit [11]
and WebODE |[2] and assess the quality of the transformation;
— Modify the ontology in these environments and export it again in RDF'S;
Import the result in DOE and assess the quality of the transformation;
— Compare the original ontology and the final ontology that results from
this circular transformation.
3. Perform another circular transformation with the same tools, but with OWL
[6] as exchange language.

® The tool is available for free at http://opales.ina.fr/public/. A repository of
ontologies are available in various languages at http://opales.ina.fr/public/
eon2003/.

® See the Special Interest Group homepage at http://delicias.dia.fi.upm.es/
ontoweb/sig-tools/index.html.

The remainder of the paper is organized as follows. In section 2, we draw some
conclusions about the last experiment and the very heterogeneous ontologies
developed. Section 3 presents the DOE methodology, the DOE tool and our
design choices for modeling the travelling domain ontology. We also introduce
the way we use XSLT stylesheets to exchange the ontology model, since all
languages have an XML serialization. The experiment begins in section 4, where
we follow the protocol with RDFS as exchange language, and continues in section
5, with OWL as exchange language. Finally, we give in section 6 the conclusions
that can be derived from these experiments.

2 Lessons Learned From the EON’2002 Workshop

The first EON workshop led to the creation of ten ontologies that were very
heterogeneous with respect to their conceptualization. First of all, the ontologies
can be classified in two categories: the ones with top-level concepts and rela-
tions, and the ones without. The first category is clearly more interested in the
taxonomy structure (with design decisions inspired by the philosophy) whereas
the second one is rather focused on the concepts that the user needs. Regarding
the description of the domain, all ontologies have, more or less, modeled the
same concepts. However, the taxonomies produced are quite different. The main
differences appear in the branches “means of transport” and “reservation”.
According to us, these differences are mainly due to the lack of particular use
cases that could guide the ontology design. The application using this ontology
was not specified and each ontologist has freely interpreted how to define and
classify the concepts. The knowledge representation paradigm supporting the
modeling and the tool itself contribute to the variability of the ontologies built.
For instance, tools based on the frame paradigm support concept attributes
(binary relations) whereas DOE can model n-ary relations between concepts.

3 DOE: The Differential Ontology Editor

Many approaches (for a complete survey, the reader can refer to the OntoWeb
Technical RoadMap”) have been reported to build ontologies, but only few of
them detail the steps needed to obtain and structure the taxonomies. This ob-
servation has previously led us to propose a methodology entailing a semantic
commitment to normalize the meaning of the concepts [3]. We briefly present
this methodology in section 3.1. In section 3.2, we describe how the DOE ed-
itor implements this methodology, and particularly how its exchange facilities,
via import and export procedures, are performed by XSLT transformations. Fi-
nally, we present the design decisions that we have made to model the travelling
domain ontology (section 3.3).

" http://babage.dia.fi.upm.es/ontoweb/wpl/0OntoRoadMap/index.html

3.1 General DOE Methodology

As shown in [3], none of the methodologies reported to build ontologies force the
ontologist to explicit the real meanings of the concepts. The terms used to refer
to the concepts are still liable to multiple interpretations. This results in possible
misunderstandings and consequently bad modeling and use of the ontology. As
a solution, we have already suggested a three-steps methodology that consists
in:

— a semantic normalization: aims at reaching a semantic agreement about the
meaning of the labels used for naming the concepts;

— a formalization: aims at formalizing the ontology, that is, define the concepts
(in the Description Logics sense), constrain the relations, add axioms (e.g.
algebra properties), add instances, etc.

— an operationalization: allows to equip the concepts with the possible compu-
tational operations available in a particular knowledge representation lan-
guage.

The first step is based on differential semantics [8]. Practically, the ontologist
has to express, in natural language, the similarities and differences of each notion
(concept or relation) with respect to its neighbors: its parent-notion and its
siblings-notions. The result is a taxonomy of notions, where the meaning of a
node is given by the gathering of all similarities and differences attached to the
notions found on the way from the root notion (the more generic) to this node.
We follow four principles to explicit this information:

— The similarity with parent principle (or SWP): explicits why the notion
inherits properties of the one that subsumes it;

— The similarity with siblings principle (or SWS): gives a semantic axis, a
property — assuming exclusive values — allowing to compare the notion with
its siblings.

— The difference with siblings principle (or DWS): precises here the property
value allowing to distinguish the notion from its siblings;

— The difference with parent principle (or DWP): explicits the difference al-
lowing to distinguish the notion from its parent;

For example, Figure 1 gives the differential principles bound to the notion
MeansOfTransport.

In the second step, the notions that come from this conceptualization are
added with a formal meaning. The ontologist can define some concepts, precise
the domains of the relations, add axioms and rules or give instances for some
concepts. Tools make also some consistency checking. For instance, they have to
check the propagation of the arity along the hierarchy of relations — if specified —
and the inheritance of the domains. The third and last step of the methodology
allows to export the ontology modeled into a knowledge representation language.

3.2 The DOE Editor

DOE is a simple prototype that supports partially the three steps of the method-
ology detailed above. It is not intended to bring a direct competition with other
existing environments. Rather, its purpose is to demonstrate by experimentation
how taxonomy structuring can benefit from our proposed methodology.

- Differential Ontology Editor - TravellingOntology 1ol x|
File Edit Metadata Language Help

Differential Ontology
~Tree Browser “|-Editor

Concept

Artefact S
? @ StaticArtefact e It is an artefactthat can move

@ (€ IndependantStaticAretact || Simitarity edit SWP
gg with Parent :

Differential Principles

TownSight
@ LodgingFacility
& (C) Hotel 4
BedandBreakiast 1
G (€ TransportF acility e e
© Airport 22 0 e
¢ (€ DependantStaticArtefact E : It has a specific purpose
© Room | Similarity odit SWS
Q@ © DynamicArtefact || Z)| with Siblings :
@ {€)MeansOfTransport M
L Flane
% BoeingPlane
AirhusFlane
& (©) EarthiyMoT 2
¢ © UrbanOniyMoT e It helps maoving other entities
Underground |l | Difference
CityBus |l] with siblings :
Tramuay 12 M
§ (@ InterurbanMOT
@ (©) CollectivelnterUrbanMoT
Train
@ © IndividualinterUrbanMoT
@ (€ Car

It has a specific purpose : It helps

Taxi E 1 3 L
% RertalCar | Dpifference maving other entities TN
% Motarhike || withParent:

Eike i

4

Fig. 1. The differential principles bound to the notion MeansOfTransport in the DOE
tool

During the first step, the ontologist can enter the definition of the notions
according to our principles. The tool automatizes partly this task. The Figure 1
shows the interface with the concept Means0fTransport highlighted, and its dif-
ferential principles fillers. For the second step, the taxonomies built previously
are shown and the editor allows the ontologist to specialize existing concepts
and relations (without the differential information), as well as to specify the
arity and domains of the relations. The last step is implemented by exporting
the referential ontology into commonly-used knowledge representation languages

(RDFS, DAML+OIL or OWL for instance) that can be used by specific appli-
cation environments. This export mechanism also allows to refine the ontologies
built, using other editors and the features they support.

All the exchange facilities (import and export from various languages®) are
performed, in an original way, with XSLT [12] transformations. Actually, all
proposed languages for representing ontologies on the Web have an XML serial-
ization and the ontology editors themselves have usually their model described in
XML. Therefore, XSLT, which is a language for transforming XML documents
into other XML documents, seems adapted to perform this task. The ontologist
can also use its own stylesheet, dynamically from the file menu, in order to im-
port (resp. export) ontologies. In this case, the user has to specify the URI of
the stylesheet and the input (resp. output) source. This feature provides a flex-
ible way to accomplish the interoperability between DOE and others ontology
builder tools.

3.3 The Travelling Domain Ontology

After comparing with the other ontologies presented at the previous workshop,
we made some minor changes in our ontology (add some concepts and relations).
Our ontology contains a top level to be consistent with our methodology. The
first distinction that we make concerns the possibility for entities to be spatio-
temporally located or not (ConcreteEntity and AbstractEntity).

The ConcreteEntity is then considered mostly in regard of its spatial or
temporal location. TemporalEntity includes the Reservation types. One dif-
ference with other ontologies is the treatment of flight. Here, this concept is
seen as a special reservation. For any kind of reservation, the relation motUsed
can be established with a particular means of transport (e.g. Plane for the
FlightReservation). There are three kinds of SpatialEntity: Biological-
Object (the travel agent or the customer), GeographicObject (continent, coun-
try, city or resort) and Artefact. This last branch is composed of the different
means of transport (by air, sea or earth) and of all types of building (town sight,
hotel or transport facility).

The taxonomy of relations is not very deep. They are grouped according
to their domain, like attributes (or slots) in other knowledge representation
paradigms. The DOE editor, because of its Conceptual Graphs model, supports
n-ary relations. We found this possibility particularly useful to model the relation
distance that involves two spatial objects and the distance metrics.

Finally, it is not possible to write axioms in DOE because its purpose is
mainly to guide the ontologist during the very first steps of the ontology con-
ceptualization. Therefore, we could not specify that a travel between America
and Europe could only be done with an airplane or a ship, or that the one to
five star hotels were the only possible hotel categories.

8 Technically, our editor can import ontologies written in RDFS and OWL, and sup-
ports export in RDFS, OWL, DAML+OIL and CGXML (a language for Conceptual
Graphs specification). For adequacy concerns, we have limitted our paper to the lan-
guages currently focused on by the Semantic Web community.

4 RDFS as Exchange Language

The four following environments (Protégé2000 v2.0 beta, OilEd v3.5, OntoEdit
v2.6 free release and DOE v1.5) can import and export RDFS ontologies. Con-
sequently, we can do the export/import loop from DOE to each of them and
come back. The RDFS import functionality seems to be unavailable online for
the WebODE v2.0 tool and hence, cannot be tested. However, the export feature
is available and we tested it after having imported our ontology via OWL.

4.1 From DOE To Other Environments

As seen in section 3.1, the main contribution of the DOE tool is to force the
ontologist to assign a clear meaning to concepts through the use of differential
principles. Our experiment has shown that we can keep a trace of this semantic
commitment in produced RDFS ontologies by exporting all the related informa-
tion into the rdfs:comment element.

Regarding formal expressiveness, our model is very limited. In fact it is very
close to RDFS: DOE allows concept/relation specialization, domain and range
assignment for relations, and concept instanciation. Therefore, it is not surprising
that our editor easily manages to translate this information.

We then tried to open the produced RDFS file in other environments (the
results are summarized in Table 1). OilEd was able to read it properly, like
Protégé2000, which nevertheless encountered some problems dealing with the
accents on letters found in the ontology. However, these two editors were not
able to import the metadata associated to the ontology even if they were written
according to the Dublin Core recommendation. OntoEdit managed to import the
ontology model, but transformed the Dublin Core container by adding 11 DC
elements to the relation list. It also added a mysterious instance that did not
appear anywhere in the display and, after a glance at the exported RDFS file,
proved to be a generated instance that has the DC attributes entered in the
container. Finally, its pure frame-oriented interface did not show properties that
had no domain defined, whereas they still existed in the model, which is quite
disturbing.

4.2 From Other Environments To DOE

More problems occurred when trying to import back the RDFS ontologies ex-
ported by other environments. Firstly, we could not properly import the file
exported by Protégé2000. We must mention that neither OilEd nor OntoEdit
succeeded in this ordeal: it is due to RDFS errors, such as the use of rdfs:label
as an attribute (instead of a sub-element) of rdfs:Class.

Secondly, both OntoEdit and WebODE do not use the RDF abbreviated
syntax to encode the ontology. All class and property definitions are serialized
as rdf :Description instead of rdfs:Class and rdf:Property. Consequently,

DOE | Protégé | OilEd | OntoEdit |WebODE

Number of Concepts 79 79¢ 79 79
Number of Relations 48 48° 48 59
Number of Instances 22 22 22 23 NOT

Multiple Inheritance |exported |preserved |preserved |preserved available
Domains assignment |exported |preserved |preserved |preserved online
Ontology metadata |exported |omitted [omitted |transformed

Differential Definition |exported |displayed |displayed |displayed

“ Protégé adds 15 system classes.
b Protégé adds 34 system slots.

Table 1. Statistics of the travelling ontology modeled in DOE, exported in RDFS and
imported in several environments

we built a more intricate XSLT stylesheet® in order to deal with every possible
serialization. We also have to specify, by hand, an XML encoding information
adapted for the letter with accents. With this minor change, we are able to
properly import OntoEdit and WebODE outputs. The only thing we do not
get back is the relation hierarchy, which is not exported by WebODE: during
the OWL import, this information is translated into logical axioms that are
not serialized into rdfs:subProperty0f subelements during the export. Both
tools export our differential definitions, but we cannot import them properly:
since they are stored in unstructured rdfs:comment elements, it would require
string parsing to get the original structure. Consequently, we store them in a
text element that is usually used in our model to store unstructured definition
elements.

Things were more simple with OilEd, which uses “pure” RDFS serialization.
We got our two taxonomies back, as well as the domain and range assignments
for the relations. However, instances are not dealt with by OilEd’s simple-RDFS
export. Our differential information was forgotten too: whereas OilEd success-
fully gets and displays rdfs:comment content, it does not export it. Therefore,
we lost the most valuable piece of information issued by our editor.

4.3 Conclusion

Roughly speaking, there is no loss of information when exporting our ontologies
in other environments with RDFS. One may ironically insist on the fact that it is
because we have little formal information to lose. However, it is very important
for us that such a step be a success, since we advocate using our tool as a
precondition for using other tools to further formalize ontologies.

The problems with RDFS import (in fact, OntoEdit and WebODE RDFS)
is strongly linked to the fuzziness of this norm syntax. We have dealt with every

? It also has to deal with other alternatives, such as using rdf:about or rdf:ID to
specify the name of an entity.

possible encoding for a class statement, but one may wonder whether the best
solution is to question the variability of RDFS encoding.

We also have to improve the theoretical validity (with respect to our own
approach) of our translations: for example, when importing a concept inheriting
from multiple parents in the hierarchy corresponding to our first methodological
step, we choose the “differential image” of the first parent encountered to be the
parent of the “differential image” examined concept!®.

5 OWL as Exchange Language

Among the five environments we study, three of them are able to import and
export OWL ontologies: Protégé2000 v2.0 beta, WebODE v2.0 and DOE v1.5.
However, OilEd has the ability to export models in OWL format: to test it, we
have imported an RDFS ontology in OilEd and then exported it in OWL.

5.1 From DOE To Other Environments

Our experiment with Protégé2000 has been quite successful (see Table 2). It
managed to import our OWL file, getting back the two taxonomies with multiple
inheritance, differential definitions, domain and range assignments, as well as
instance definitions. However, some instances whose name did not follow XML
specification were collapsed after their first digits being truncated. For example,
reading 717 and 777, two instances of the BoeingPlane concept, resulted in
creating one instance whose name was an empty string.

Furthermore, all instances that are not in the Protégé namespace'! were
not imported. Consequently, the OWL export of DOE puts all instances in this
namespace, which is a strange hack to allow the interoperability between these
two tools.

Concerning WebODE, concept and relation hierarchies were properly im-
ported, as were the differential definitions and domain and range assignments.
However, it failed in getting back the instances, whatever namespace they are
linked to.

5.2 Other Environments To DOE

When importing Protégé2000 OWL file, DOE got very limited information. It is
partly due to the restrictions of our model, which is limited compared to OWL
expressiveness, and partly due to the choice of XSLT. For instance, we could not
import individuals, since Protégé2000 declares them using the RDFS elements
<namespace:ClassName rdf:ID="instanceID"/> which are difficult to catch

10 Our differential taxonomy is a tree. However, our referential one is not, which implies
that there is no real loss of formal inheritance information when importing a concept
with multiple parents.

Y http://owl.protege.stanford.edu

DOE Protégé WebODE

Number of Concepts 79 79¢ 80°
Number of Relations 48 48¢ 48
Number of Instances 22 20 0
Multiple Inheritance |yes yes? yes

Domains assignment |exported preserved preserved®

Ontology metadata |exported missing missing
Differential Definitions |exported displayed displayed

“ Protégé adds 15 system classes and 19 OWL-related classes.

® WebODE adds the owl:Thing concept.

¢ Protégé adds 34 system slots and 21 OWL-related slots.

4 Slot inheritance is not displayed in the interface, but preserved in the model.

¢ WebODE explicitly assigns owl:Thing to relation domains and ranges that are not
defined.

Table 2. Statistics of the travelling ontology modeled in DOE, exported in OWL and
imported in Protégé and WebODE

and to transform with XSLT features. We could use string-parsing features, but
the result would be quite hazardous.

The problem of instance import does not appear any more when import-
ing OilEd OWL ontologies. Since instances are serialized using the element
owl:Individual from the OWL Presentation Syntax [7], DOE could easily
get them back using an XSLT stylesheet dedicated to the translation of OWL-
Presentation Syntax ontologies. But OilEd has a weird strategy in encoding the
ontologies, mixing the OWL RDF-XML exchange syntax for the terminological
part and the OWL Presentation Syntax for the assertional part of the model.

OWL individuals are not exported by WebODE, as well as the subsumption
relation between relations (during the import, it is translated into logical axioms
which are not translated back into rdfs: subProperty0f subelements). However,
we got back the hierarchy of concepts, together with the rdfs:comment includ-
ing our differential definitions. We also imported the list of relations with their
domain definition, but this one is incomplete if it uses the owl:Thing concept
explicitly introduced by WebODE, an error due to an incomplete namespace
declaration when using owl:Thing in the export file.

6 Conclusion

We have carried out the experiment proposed by the EON Workshop in order to
prove that the interoperability between different ontology editors is feasible. We
started from DOE, a tool implementing a methodology for building ontologies
based on differential semantics. We then exported the travelling domain ontology
in various environments and came back to DOE using XSLT transformations.
The model of the DOE editor is very simple. It can be easily exported to other

environments, which confirms our primary intuition: DOE can interoperate with
them.

Export Import
Global comments OK, put aside some string|OK, but difficult when multi-
encoding and namespace pro-|ple serializations are allowed
blems for a single fact
Concept /relation lists |OK OK, but new concept and re-
lation roots were added
Instances almost OK difficult with the abbreviated
syntax
Formal definitions OK, but limited information|OK, but limited information
was exported had to be imported
Differential definitions |OK, displayed in unstructu-|{OK, but imported in un-
red comments fields structured comments fields
Ontology metadata Dublin Core not properly/Dublin Core not dealt with
dealt with by other environ-|by other environments
ments

Table 3. Summary of the experiment

Using XSLT transformations in a limited expressiveness context has shown
both successes and limits: we are able to export ontologies to other ontological
frameworks, in a satisfactory way, the information we are interested in (the re-
sults are summarized in table 3). However, when we import ontologies built in
those frameworks, we face more problems: some are linked to theoretical consid-
erations (the status of the imported information regarding our methodology),
others are linked to practical implementation shortfalls (the limited expressive-
ness of our formal apparatus), and others are linked to the lack of maturity of
Semantic Web standards. However, the most important information is quite suc-
cessfully dealt with, which comfort us in thinking that a limited but satisfying
interoperability can be easily achieved by simple, syntax-based means.

Acknowledgments

We would like to thank Oscar Corcho for its helpful comments and for reviewing
early drafts of this paper.

References

1. J. Angele, and York Sure (eds.). Evaluation of Ontology-based Tools (EON’02),
Proceedings of the 1st International Workshop EON2002, Sigiienza, Spain, CEUR-
WS Publication, Vol. 62. http://CEUR-WS.org/Vol-62/

9.

. J. Arpirez, O. Corcho, M. Fernidndez-Lépez, and A. Gémez-Pérez. WebODE : a
Workbench for Ontological Engineering. In Proc. of the 1st international Conference
on Knowledge Capture (K-CAP’01), Victoria, Canada, 2001.

. B. Bachimont, A. Isaac, and R. Troncy. Semantic Commitment for Designing On-
tologies: A Proposal. In Proc. of the 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW’02), Lecture Notes in Artificial
Intelligence, Vol 2473, pages 114-121, Sigilienza, Spain, 2002.

. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a Reason-able Ontology
Editor for the Semantic Web. In Proc. of KI2001, Joint German/Austrian con-
ference on Artificial Intelligence, Lecture Notes in Artificial Intelligence, Vol 2174,
pages 396-408, Vienna, Austria, 2001.

. N.F. Noy, R.W. Fergerson, and M.A. Musen. The Knowledge Model of Protégé2000:
Combining Interoperability and Flexibility. In Proc. of the 12th International Con-
ference on Knowledge Engineering and Knowledge Managment (EKAW’00), Juan-
les-Pins, France, 2000.

. OWL, Web Ontology Language Reference. W3C Candidate Recommendation, 18
August 2003. http://www.w3.org/TR/owl-ref/

. OWL Web Ontology Language XML Presentation Syntax. W3C Note, 11 June 2003.
http://www.w3.org/TR/owl-xmlsyntax/

. F. Rastier, M. Cavazza, and A. Abeillé. Sémantique pour I’analyse. Masson, Paris,

France, 1994.

RDF, Ressource Description Framework Primer. W3C Working Draft, 05 September

2003. http://www.w3.org/TR/rdf-primer/

10. RDF Schema, RDF Vocabulary Description Language 1.0. W3C Working Draft,

1

1

05 September 2003. http://www.w3.org/TR/rdf-schema/

1. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer and D. Wenke. OntoEdit:
Collaborative Ontology Engineering for the Semantic Web. In Proc. of the 1st Inter-
national Semantic Web Conference 2002 (ISWC 2002), Lecture Notes in Computer
Science, Vol 2342, pages 221-235, Sardinia, Italia, 2002.

2. XSLT, XSL Transformations W3C Recommendation, 16 November 1999.
http://www.w3.org/TR/xslt

SemTalk EON2003 Semantic Web Export / Import Interface Test

Christian Fillies
Semtation GmbH
cfillies@semtalk.com

Introduction

SemTalk is a MS-Visio based graphical modelling tool, which is used for a broad range of
applications as there are Business Process Modelling, SAP Product Configuration and visual
glossaries. Since it is based on an open extendable meta model new modelling tools can be
created with reasonable effort. Most of these solutions make use of SemTalk’s ability to
represent ontologies or at least taxonomies in a visual way using MS-Visio and MS-Office
clipart symbols. A typical SemTalk model is being published as HTML on the intranet or it is
used to generate Word or PowerPoint documentation.

SemTalk Engine

The native modelling language supported by the SemTalk [1] consistency engine is settled
somewhere in the middle between RDFS and OWL. It supports multiple inheritance,
instances, object- and data type properties. Graphically we follow the approach of the UML
tools with boxes for classes and labelled arcs for object type properties. Data type properties
are being displayed inside the rectangle of the class. We prefer this relatively compact
notation in contrast to the graphical DAML notation used in VisioDAML.

We experienced the SemTalk language constructs as being as complex and powerful enough
to express most of the business problems in the SemTalk application domains. The majority
of users who create ontologies are domain experts and not experts for description logic. Only
a minority of the resulting models is going to be interpreted by machines (except for SAP
Product Configuration, which also requires additional language concepts understood by SAP
Internet Pricing Configurator).

SemTalk Interfaces

In collaboration with Ontoprise GmbH we have created an F-Logic export interface to
communicate with Ontobroker™ and OntoEdit™ [2].

In collaboration with Network Inference Ltd. SemTalk has been customized to cover full
OWL graphically [3]. Because the SemTalk engine has been left unchanged, it can not be
used to check complex expressions, disjointness or equivalence. The Network Inference
product “Construct™” is designed for reasoning on the graphically created OWL model with
the Cerebra™ engine.

SemTalk has export- import interfaces to RDFS and DAML. The main goal of these
interfaces is to make use of existing ontologies in various SemTalk modelling scenarios.
These interfaces are limited to the language subset of the SemTalk engine. E.g. a DAML
disjointness axiom is being ignored by the DAML parser, DAML lists etc. are not being
recognized. This limitation applies to all DAML and RDFS imports described in the
following chapter. For the OWL implementation these restrictions do not apply anymore:

Full OWL can be parsed and generated. We expect significantly higher quality of the import
once all tools will support OWL. It is currently not planned to complete the SemTalk DAML
export. All further development will be done on OWL.

Results of the Experiment

Screenshots of the resulting models are in the appendix. The resulting models will be made
available on http://www.semtalk.com

Loom We did not try to convert the Lisp files

OilEd After fixing some issues on the SemTalk DAML import, a subset of
the model could be imported. The OildEd model differs
significantly from the other models because it makes frequent use of
those DAML features which are not support by SemTalk for
DAML: intersectionOf, unionOf etc.

On the other hand this model is quite close to OWL. We tried to
rename some XML elements to OWL, but finally failed to import it
mainly because of the combination of “cons”-ed Lists and operators.

OntoEdit e Since SemTalk has only an F-Logik export and not an F-
Logik import function, the flo file could not be imported.

e Using DAML import classes, instances and properties could
be imported. Cardinalities are ignored.

OpenKnoME We did not try to convert the Smalltalk files

Protégé Using RDFS import.
Ignored by SemTalk RDFS Import even if the SemTalk engine
could represent them:
e OverridingProperty
e Cardinalities
Allowed Values / Defaultvalues

e All Data types

e Inverse properties are mapped as properties
Terminae We did not try to convert the text / Oil files
WebODE Failed to import classes as rdf:description with rdf:type Class
KAON Successful import after manually removing the XML-namespace

[P

a

The overall impression from a SemTalk standpoint is, that SemTalk failed to import DAML
models with complex expressions. This issue has already been fixed for OWL, which is in
turn not supported by the current versions of the other tools. SemTalk succeeded in importing
taxonomies from all tools, which support DAML or RDFS.

From a business point of view the lack of importing models having axioms and rich logical
expressions is not very relevant since those expressions are not included in the other SemTalk
methodologies such as Business Process Modelling. Being able to import taxonomies with
subclassing and properties is the main point for our current customers.

Being a graphical OWL editor has not been the major goal of SemTalk in the past. The first
solution for OWL is the Construct version of SemTalk developed with Network Inference

early 2003. The intension of “Construct” is to replace the non-graphical OilEd by an easy-to
use graphical tool.

The problems we found using the more sophisticated features of OWL in practice are, that:

1. Most end users will not even try to understand description logic. Ontology modelling
is very often ignored at all. The major problem which arises is how to use
“subClassOf” properly. Concepts like disjointness, equivalence, one of etc. are not
understood by casual users without further explanation.

2. A real WYSIWYG implementation with permanent and incremental consistency
checking is needed to make it usable for a larger community, which none of the
existing engines can provide yet.

References

1. Fillies, C., Wood-Albrecht, G., Weichhardt, F.: A Pragmatic Application of the Semantic Web Using SemTalk,
WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA ACM 1-5811-449-5/02/0005

2. Fillies, C.; Sure,Y: On Visualizing the Semantic Web in MS Office, IV02 LONDON « ENGLAND

3. Fillies, C., Ng, G., Thunell, A.: Cerebra Construct: Inferences for End Users, WWW2003, May 20-24, 2002, Budapest,
Hungary, Poster

Appendix Screenshots

The following screenshots show results of imports from OilEd, OntoEdit, Protégé and
KAON. The last screenshot shows a part of the OilEd model rebuild with the OWL shapeset
made for Construct.

Microsoft Yisio - [oiled.vsd:FirstPage]

Fle Edit Wiew Insert Format Tools Shape SemTalk Window Help - _ 8 X
D-2lasn &Y By @) - Bv‘ﬂQEHvA-Dv/vcojvmu%-v
Marmal - Arial - lpt - B I O %E &viv&v =-=--
semTalk Browser o x PEl B (o BB b8 R b [0 PR [L8 Lt (R Lt D500 B0 1 B0 0 B =
4 Model EE
=-'_4 Diagramme E -
- = £ % R et
+-__| Generic = % Europe b T T
-1/ Obiekte 53 b 4 USA &
+-8 City 3 "m_,,T/"
i EE| ns0:in
: % Ezz:r:rent a3 nsd:in
B Eun :TDAmerica = r ™
= ¢ \ .
Fight e i UK] A0 5
i Eﬁlgt hical L = L F et % North America 3
] eographical Location A r ", F
o' s Chares de Gaul % - 4
B Irstanz W /‘
B Joumey P .,
E § . % P
+ E r';rlanufacturer = >2\ EuroDisney /_§< i e) !{,_x_,‘\
Eson — = L / ¥ Eiffel Tower & nsl:in
B sailing E RV S . S
+-& Thing EE
B Tiip 3 .
. nsiin
+-B Weticle o -
+ :II :ss.obzmllonen - ” { Chicage b,
] tribute '
G s Manchester \x§< e
; . y . >
% Paris F e
. r
nsin e
'
B % Airbus &
4 - P . 7
[ABus 3 i . Y JUSSIRLIRNY S I ey
‘ v E Ringway # v b
Shapes o x e R v % Heathrow &
B cLass R
Bwmst A" e e e i \
...... = A ﬁ Boeing :sc
— @ y —
Instance Froperty Comment definitionOf £ ¢ N ——
Y L
§ NewYork } e OHare &
.. E L :
B { Statve of Liberty s -
¥ |4 4 » M} FirstPage 4 »
Page 11

Screenshot 1 Oiled DAML Import

crosoft Visio

File

Edit Miew Insert Format Tools Shape SemTalk window
D-2lda8 &LV ® = =
Mormal + Arial -~ 1zt » B 7 O

Drawing1:FirstPage

-- DEFAULT_ROOT_CONCERT
--B #ccomodation
E Bed_and_Breakfast
--E Hotel
E Fiwve_Stars_Hotel
g Four_Stars_Hotel
E Orne_Star_Hotel
= g Three_Stais_Hotel
O Holiday_lnn N
2 Holiday_Inn_'w

SemTalk Browser o x
A Modell ~
=I-"_4 Diagramme

+-L_| Generic
—-'_4 Dbjekte

20 30 A0 (] 70 20 a0 100
oo oo onfn il o

Help

@ [k]F-A-O -G
A-d-.

110

100% - .

hington

",

B
-

e
{Holiday_lnn_Wa:;\.

EIR
\
: Statue_of_Liberty
\-k A located_in
located_in S
- UsA
k 77 % located_in . located_in
s E o e e
\n.,__ 4 located_in
stay_at_accomodation
departure_city

means_of_transport

Taxi

Ho E Two_Stars_HoteI {IHarIey_Davidson\%‘/ part_of ey Washdngwn Mad *——means af_transpart Boeing_747
= estination W A \ "
= E Attraction 4 e pakt_of e - -j(—f
2 EuroDisney A \ - Y
O Ghatus_of Liberty % Johns_journey arrlval};;rﬁ_o‘f_transport manufacturad_by
+-3 City b parl_ol ~ . b
+-E Joumey < B r -
+! g Local_transport located_in Madrid_to N:ep;rlura clty a {' Boeing 3
=] Manufacturer 3 L e % Madrid ¥ - o
< = | » o] Eurape i stay_at_accomodation e
= = . manufactured_by
Shapes o x located_in
B CLASS located _in 4
[msT i located_in % Bosing 717
. A i _ “——
T @1 e » . pain :
Instance Property Comment definitionOf England * Vs W —
81 5 ‘-—w/ Germany ¥ <
~| [4 » W]\ FirstPage 4 | 4»|J

Page 11

Screenshot 2 Instances of the OntoEdit DAML Import

crosoft Visio

Fle Edi

@?SEHAD/G

100%

Al D

wiew Insert Format Tools Shape SemTalk Window Help
D-sHa8 SRY e
Mormal + Arial -~ 1zt » B 7 O

SemTalk Browser

Lol P8 o Lo B o B sl R 0 PR o R o FE 8 o L0 b D o DR P S0 B 0 PR P R T
B Bed and Breakfast A~
B I = P ——
= gotd 1 00092 EE New York \»_. r :
travel | 2 ’,_‘—N—‘-._\ odging g continent Morth America T
< travel 00093 = % Holiday Inn ~ e— e e % A7 Tgontinent e s,
-- Mears of transport E| - 4 A \H{ San Francisco }
=-8 Automobile K sontinent e
O travel 00081 continent
B Femy y ‘-\
E fatorcycle - % b
=& Flane A Washington .
O travel 00009 %\ /- Iodging. ¢ _ Landc
o uavel 00012 ‘5 S L el
B stip arrival_city e
B Train ledging_at_destination
B Room facilties depart -
=-8 Tripinformation eparture_dily { Asia]
=& Fiight \\-—w—r cUntlnanl Parig
O travel 00086 |
O travel_00091
g Train tiip 1 Flight Y contlnenl
0. travel_00029 \ travel_D0091 ; ¥ o]
& B Tiipleg ; A B S 4 Cairo
L] Assoziationen %’ Flight D £ Europe -
+-L_| Attribute] % travel_00086 / L '
i B T — L
arrival_gity continent
o x
fﬂgiﬁi;s departure_city continent ;:'
B msT \ / { Africa
.
et Madrid B
“—
Instance Property Comment definitiondf
>| [4" » W]\ FirstPage 4 4»|J
Page 11

Screenshot 3 Instances of the Protege RDFS Import

crosoft Visio

Fle Edit Wiew Insert Format Tools Shape SemTalk Window Help -
D-=ldan S Y By @ - @'@EHvAva/vcojvmu%-
Mormal + Arial -~ 1zt » B 7 O - ﬁ - . - v,
semTalk Browser o xR BBl B o E O CE b (0 b L 0 P R o R Lo [D PR D =
—|-'_4 Diagramme DIRE P
+-_| Generic 2 4 Continent
=23 Obekts el
g Instanz T L —
- E Aot hasGeographicalLocation { Sight 3
--8 Accommodation - oy - ‘E‘.ﬂ?‘::fi’f/
B Bedérdbrekfast % Cairo ¥
B Hotel ~
=B Agency i Sight 3
B Traveltgency {\ StatueOfLiberty #
E Airpart e et e
g Category /,—N—_ ,.\
B Distance % Cﬂlf %
= g GeographicalLocation 5 . Madrid -
RNV
=& Ciy City ™
< Cairo . . London }
o London hasGeographicalLocation S e y
< Madrid hasGeagraphicalLocation
O Mewtork y = —
o Pais { Continent :
O SanFrancisco e U - P %
i City y
O Settle SanFrancisco F
4
O Wazhington — o -
--& Cortinent . . f .
v) . hasGeographicallocation phicalLocation
P - hasGeographicalLocation
e e -
Shapes o x { Boging 4 Continent
[CLass Y Boeing717
S
INST -
&3] . %, oy
o = Paris
oncacs ..
Instance Property Comment definitiondf
>| [4"» W]\ FirstPage < 4»|J

Page 11

Screenshot 4 KAON DAML Import

- [construct.vsd: Trip]

@ File Edit “ew Insert Format Tools Shape Construck Window Help - -8 X
D-ZHE8 SRV 2@ - E-B[hF-A-0-/-&-|100% -3,
Mormal - Arial -1t - | B I U A-d.-B. =-m.2-
SemTalk Browser o xR BB % B B Lo T o T2 T T O T FT R LB D8 0 O 0 B0 BB g
A Model Taxi Ride
=|-'_4 Diagramme
+-__| D%/ Diagram
—|-'_¥ Dbjekte
B Instanz
B intersectionDt Class.54€ Anything P
+ B Thing intersectionQf - w u o
+1-L_| Aszoziationen
+1-_| Attibute
City Vehicle
Journey intersectionOf
< I#
H ow o x] Vehicle
- madeUpCr L] P Land Vehicle Car
% @ | Trip using]
LML Class subClass... Property ' L e se e
arrivesAt
—iw i madelpOf departsFrom
equivalen... disjointilith Instance l'seographical Location),
- s
instance0f samelndi... samefs
- \ Sea Port Pl
ea Pol
different... OWWL Union unionOf ace To Stay =
Lddress Attraction
. @ telephane
—— Airport description
) . Inumber of rooms
WL intersecti... Q'L sstarRating
Intersection Complem
- . =
— = =
- = _ _
——_N eme M0 [W A ¥ M\ _Diagrami 3 Trip 1 LI_‘
Page 22

Screenshot 5 Subset of the OilEd Model redone with the OWL Shapeset

Evaluation experiment of ontology tools
inter oper ability with the WebODE ontology engineering
wor kbench

Oscar Corcho, Asuncién Gémez-Pérez, Danilo José Guerrero-Rodriguez, David_
Pérez-Rey, Alberto Ruiz-Cristina, Teresa Sastre-Toral, M. Carmen Sudrez-Figueroa”

Laboratorio de Inteligencia Artificial
Facultad de Informatica
Universidad Politécnica de Madrid
Campus de Montegancedo sn.
Boadilladel Monte, 28660. Madrid, Spain
(*)Contact author: ntsuarez@elicias.dia.fi.upmes

Abstract. This paper presents the results of the interoperability experiment
proposed in EON2003, using the following ontology tools: Protégé-2000 and
WebODE. We will show which knowledge is preserved and which knowledge
is lost in the import/export processes between tools when using RDF(S) as an
intermediate language.

1 Introduction

Protégé-2000 1.8' [6] and WebODE 2.0° [4, 1] are ontology platforms which are able
to import and export ontologies in different languages (RDF(S), DAML+OIL, etc.).
These ontology platforms and their RDF(S) import and eport services have been
used in our interoperability experiment.

This document analyzes how ontologies are exchanged (exported and imported)
between the previous ontology tools using RDF(S) [2, 5]. We have studied which type
of knowledge is preserved and which knowledge is lost during ontology export and
import in such tools. In our experiment we have reused the travel ontology built in
WebODE for the EON2002 workshop [3].

2 Interoperability experiment with WebODE and Protégé-2000

In order to analyze the interoperability between WebODE and Protégé-2000, we have
carried out the following process:

1. Reuse the travel ontology built in WebODE for the EON2002 Workshop [3], and
export such ontology to RDF(S) using the WebODE RDF(S) export service.

! hitp://protege.stanford.edu/
2 http://webode.dia.fi.upm.es/

2. Import this RDF(S) ontology in Protégé-2000.

3. Export the ontology from Protégé-2000 to RDF(S).

4. Import the Protégé-2000 RDF(S) ontology in WebODE, and analyze the
differences between the original ontology (reused ontology) and the ontology that
results from this circular import/export process.

Figure 1 shows the circular import/export process that we have carried out in the first
part of our interoperability experiment.

ad T

Travel Ontology RDFS + RDF

i

RDFS + RDF

Figure 1. Circular import/export process using WebODE and Protégé-2000.

2.1 Step 1. Export to RDF(S) using WebODE

The WebODE ontology in the travel domain described in [3] and shown in figure 2
have been first exported automatically to RDF(S).
We have studied the generated RDF(S) files, and we can mention the following
features:
WebODE generates a ZIP file that contains:
= Onefilefor the conceptualization of the ontology (travel fromWebODE.rdfs
which containsthe classes and properties of the ontology).
= One file for each instance set that the user has decided to export (which
contain the instances of that instance set). In our case, we have exported one
of the instance sets, the one corresponding to the travel agency in New Y ork
(travel AgencyNY_fromWebODE.rdf).
As a difference with the RDF(S) export function of other tools, such asProtégé-
2000, WebODE does not export all the knowledge of the ontology as it is defined
in the original ontology, but only those pieces of knowledge that can be directly
represented with the standard knowledge model of RDF Schema. Consequently,
axioms defined in the original ontology are not exported, digoint and exhaustive

decompositions and partitions are not exported as such but as subclass-of
relationships, etc.

i WebODE 2.0 FA—— [Tt

Instance Attributes for Term accemmodation.

Fe
drlaroaToieach Trex cectwros Fom ther hotd 10 the
o P r:-:'-lirrmurmremnml Bt L1 Jorh i1 -
2 Dz thew e coramoddation sl having Booksan 00, 11
Ptk T nmm::"“m“"-mm" fadrd .11 mam 1 i-
EER “"Eww vy o 1o ol e Carcrd {3, Tz 1 o
Tres e runnber of B
[cuntaraer e ELDITOb0 B M
[artnm L1 Pt .1l =8]
= Cipics ul Tha URL of T acconamodanon, I an URL (R
[memitiee
Ll [TR HIT
& (b porbaar Tosrm Harma oo
(VET It RHhiisis Hars |

" . | 4 & -
al ia

Dazapdea

e Py |:'u;'_—;|
P ok ddnmasecky | dcresspes)

Figure 2. Edition of instance attributes of the concept accommodation withthe
WebODE ontology editor.

In the RDHS) export process, the user is requested the namespace of the
ontology to be exported. We have used the namespace:
http://webode.dia.fi.upm.essRDFSEON2003_Travel _Ontol ogy#. The files
exported contain the following predefined namespaces for the RDF and RDFS
prefixes:

= rdf: http://www.w3.0rg/1999/02/22-r df-syntax-nst#

= rdfs: http://www.w3.0rg/2000/01/r df-schema#

We have found the following problems in the exported RDF and RDFSfiles:
The concept b&b has a different identifier than the one used in WebODE, as

follows:
<rdf: Description rdf:about="#b&anmp; b' >

The relation usesTransportMean, which is defined in WebODE between the
following pairs of concepts: (carRented, car), (cityBus, bus), (flight,
airTransportMean), (undergroundTransport, underground), (transport,
transportMean), is defined only once in the generated RDFSfile. Thisis dueto the
fact that RDF does not allow homonymous property names. Besides, in RDFS this
property does not have its domain nor itsrange defined.

The same applies to class and instance attributes, which are necessarily attached
to a concept in WebODE, so that we can have different attributes with the same
name in different concepts. For instance, the class attribute numberOfSars is
defined once in the RDFS file, while it is defined for five classes in WebODE
(1StarHotel, 2SarHotel, etc.). In this case, neither the domain nor the range are
specified in the RDFSfile.

Finally, since the RDF(S) export function was developed when the treatment of
datatypes was not clear in the RDFS specification, the current RDF(S) export
function converts all the types of WebODE instance and class attributes to
rdfs:Literal.

WebODE constants are transformed into concepts in RDF(S). For instance, the
constant celsius degrees is transformed into the concept celsius degrees.
Consequently, it losesits value.

2.2 Step 2. Import the RDF(S) files generated by WebODE into Protégé-2000

We have imported into Protégé-2000 the RDF and RDFS files generated in the
previous stage of our experiment. During the import process, the following comments
have been provided by Protégé-2000:
Protégé-2000 has recognized four namespaces in the ontol ogies imported:
= rdf, rdfs, and the base namespace of the ontology
= One additional namespace that appears as the value of a property for a hotel:

http://holidayinn.com
<NSO: url rdf:resource="http://holidayinn.com 13492' />

Besides, the values of class attributes that were exported from WebODE to
RDF(S) are not correctly imported (e.g., the number of stars of a hotel, the air
company in charge of a flight, etc.). Protégé-2000 shows a warning that alerts the
user that this “own slot” has not been defined in a metaclass, as shown in figure 3.
Conseguently, thisinformation islost.

=01 x|

B A LR LB
W FRTros-N e B el

1B w8 Lkt 1 s PSS GO s |_ oo R 358 1 Nl ChRa 5 1 i T3 00 I ECEWsd 6ol | & B MRF SRECR LS
17l Moo B8 L 2 RO AR GRG0 _Triwt | Srie gy ace: o= reid fene o 2o I XWeEDand .48 B R a RDF SECA0] _Trive 0

hip¥aetods da fuan exFOESECHIIN]_Trave| Crepigyfsad 410 coss ok fewe own o 0 YR seeoode s s sxFOFSECHT] Trsve| Okl mecinesstni P

hip ¥asbod s din fugn seFOFUE CRG00]_Trava | Orécigyfaal 416 coas ok awe own o ol i Swsbod s s fiugmasFOFRE ORI 1_Trava|_Ormioka ffts 1 ooy

IVEp Nl 6 el i D L O Tl |0 gaia B 416 E0sni ol Moasl oWt Gl 1 WS A Riniad i 8 i 3 i FPF SRR 000 3 _ T |_ o gyt sirva s 0 ta s a5 s e P

1V Moo 8 80 i 2SR A R0] _Troves | Cnini a4 oy reok reiwe sy o) 01 W wedeond o i erias pro e ROF SECRIN _Trawel_Sios geliet iesct s dandFiice

I Mardod s i3 R n ssROFSE DRI _Trows | Ot nipefaal 4145 rioes rol fowe own o o] i Sastod s dia s ssROFSECATI 1_Trwe Lok pabscon mrecinesSin aef
hip Fetod s dia Mg n saTOPUECRG00]_Treve | Orickpfasl 413 does rof have owen sl el ik watsod s disfiugm s BOPSECHIN 1_Treval_Oriok gt sives sClassdeandan e

I Nwedaod i a i i & FOFAE DRG0 _Trava | Oniom gybaa 415 Boes rol faws owr 5 i weosod o i r e ROFSE ORI 1 Trava|_Ormoks saRineis kSt dardFrice
1VE e b0 g 25 RS ORI T _Traws | Crini o415ty reok fee oonr 20 01 W) Wwedeond oo afiaa v e RDFSECALDN0 1_Trawe 0ok £l 1 orgeny
hin Martods 2 N R ssROFEECRETII _Travs LOnfni 5ab5kn - vl doan nt hurve mam miot hapadsssta o 4 1 prms s ROF BEORINE_Torved_N el ngsde iemben oS

hip Mauteed s i Aupn seTOFAE ORGT01_Trave | Orioi gaftaas ing 717 dows nof b oon sial bt Ven bocs e §.pm s 0P/ 0 H D00 _Traesl _Cridelogyrumt o0 ssas npsrs

Yoo Warctucndn o8 i e R AR ORI 3 _ Tros |_ i gydts e i 717 dioecs £0d Faosed ionry o] g s Do e § 1 65RO FRUE 0 M 300 _ Tramal_Cvn iryBhvacad i ieaSyaad

hriip Mot s in MU n e ROF R ORGTI]_Traws | Orfria rtSabe i sl dass rat hure cram oo hpsssha cie i 4 & pems DR REOH,
1B W GEsn A0 LAY 1 el P T ORI T _Trvasvn |0 1 i (K5 1o e T Tt £ . & i AP S
Vo Maedud s s Mii i e ROFAE ORI _Trova|_Covom s 453 rioees ok hrawe ou 5 i il Wweinda il g cxROFSECREN_Tr
itp Maraad e ol Muan esRLFIE R0 _Trwvei_ Crmingefus 1653 does rol ress own o i e feeoode dadiupm esFLFSECHDI]_Tr

%4 DI Dy LV L 1
ok R T Do Ty

Cavigka pefecan e el nesin i mP

e Marntndn clin Plupin seROERIE OGN _Traws|_Onfria gafun 1457 i rek by own o of il fasbods da g seROFEECHENT_Traws_omia petu sines St eShadan B
B Wt 3 FLLES 1 S D A CORLITIT T |0 LS 1450 e Fol Ml i €1 W00 St 08 Pk i PR ORI 1_ i |0 00 TR G B0 i

Figure 3. Own slots’ import problem with Protégé-2000.

The result of the import process is shown in figure 4. There we can see the details of
the concept accommodation, whose template slots are the same as those defined in
WebODE (except for hasRoom and placedin, which were defined as relations in
WebODE). However there are some differences between these attributes and
relations, which are related to their cardinalities and types. As aresult of using RDFS
as an exchange language, we have lost the cardinality information for template slots.
Additionally, the types “integer”, “Boolean”, etc., have been transformed to “ String”
in Protégé-2000, since they were transformed by WebODE to rdfs:Literal. Finaly,
the type of the slot ur” is “Instance”, of the class :THING, asit was transformed to a
property whose range wasrdfs: Resource by WebODE.

After the import process, we have compared the WebODE ontology and the Protégé-
2000 ontology (shown in figure 4), finding the following differences:

T bravesd_fremW el Frotige-2000 | CSuom ol tectingn mcarcha BT \Escrabrarks | ETCR0ECS zpeali = .}
Fusject Wirdew Helg
Old (RE
= -. . S—
o Chassi (15 S T R T st | 0 Ouaties|
Prissybig| Supene_w V' C | 8 x| acormemem [t
T | - | —— [rr——— viel +]
SETEN-TLAEE S
- HEIEN T Loy Barm e ler
) raiue_decrens
FIChirn
P T T] iz
Cihth Cenzrmin =
§ (Ehala i
S st Tl i SH S YOI+~
“Huth wme [o DiiesFarets
c szmm (B atckmes Sing rrshpis
= *_g:‘_‘mm [& aztareeTagasch Siing medtipla
. 'm: et B dstareeTamanesan Swing meiiph
z ': . [anprisprain =ning ehps
- : :“‘" Bl hashasm Inskanes rasipka o e 1 T -
A "'I 8 | naniardFaT i Roams dking finiiipks
- :E oom ":’ | 1y v TR e dkinp raiipka
"
LE r-!n..ww B | b o il LT ik
: :"-W e EIT [LEETOT [eriT i pezen £ B i |
1 3 pice Fning maiipi
e Instaree il smrse =y THINIG
Hapaclasars =
[Ciong

Figure 4. Travel ontology in Protégé-2000.

Attributes whose type was “integer” or “Boolean” in WebODE have changed in
Protégé-2000 to type “String”. This is due to the fact that the RDFS file already
contained atransformation of these basic typestordfs:Literal.

The cardinalities of attributes have changed. All of them have 0 as a minimum
cardinality and N as a maximum cardinality (that is, they are defined as
“multiple”).

The class attributes defined in WebODE have disappeared, because of the own
slot problem described in the import process.

The attributes with multiple documentations (multiple rdfs:label properties
attached) have now one single documentation that joins all of them.

The knowledge about disjoint and exhaustive decompositions, and partitions is
lost in Protégé-2000, since it was not available in the RDF(S) files. The same
appliesto axioms, concept groups, constants, etc.

The values of the attribute url for two of the instances have been transformed to
instance themselves, as instances of the class :THING. In WebODE and RDF(S)
they werejust URIs.

Since Protégé-2000 is not able to work with different instance sets at the same time,
we have been only able to import one of the instance sets that could be exported by
WebODE.

2.3 Step 3. Export the Protégé-2000 ontology to RDF(S)

Finally, we have exported the Protégé-2000 ontology to RDF(S) and we have
obtained two files, one for the classes and another one for the instances. There are
many differences (mainly syntactic) between the original RDF(S) files and the target
RDF(S) files generated, as can be seen by simply comparing the four files.

2.4 Step 4. Import the RDF(S) ontology generated by Protégé-2000 into
WebODE

In order to import the ontology into WebODE, we have had to join the two files
generated by Protégé-2000 into only one file that contains both the ontology
conceptualization and the instances. This file is called
Travel_fromProtegetoWebODE.rdf s

Inthis import process we have found the following problems:

Protégé-2000 uses a namespace for the RDFS KR ontology that comes from an
old specification: http://www.w3.org/TR/1999/PR-rdf-schema-19990303#. This
causes the WebODE RDK(S) import function to not correctly detect the concepts
defined in the ontology. Consequently, we have edited the file manually so as to
change this namespace by the following: http://www.w3.org/2000/01/r df-schema#.

The concepts whose identifier starts with a digit have not been imported
correctly. As a consequence, we had to rename manually the terms 1StarHotel,
2SarHotel, 3starHotel, 4StarHotel, and 5StarHotel .

The same applies to the instances whose identifier starts with a digit. In this
case, the WebODE import function notifies the following error:

“Error importing RDFS ontology: Error occurred in server thread; nested
exception is: com.hp.hpl.mesa.rdf.jena.model.RDFError:
org.xml.sax.SAXParseException: An invalid second ":' was found in the
element type or attribute name.”
which is not much descriptive about the problem in the source RDF(S) file.
In this case, we have compared the original ontology built in WebODE and the
resulting ontology of importing the RDF(S) of Protégé-2000 in WebODE (shown in
figure 5).

We have found the following differencesin our comparison:
A new concept is generated in WebODE (rdfs: Resource) which is used as the
root concept of the ontology.

New relations, which did not exist in the original ontology, appear in the
imported ontology. These relations were represented as attributes of type URL in
the original ontology. Since they were transformed into slots with range : THING,
and transformed back to RDFS as properties with range rdfs: Resource, they have
not been recovered as originally during the last import process.

a WebODE 2.0 e [erares m@% PP

Instance Attributes for Term accommodaiion,

QW“EMWE'

;|_':| i TR Tomesd_{irikod rige_f i e oo EO0CN DL vl o e et
P 3 s o sichess | [T et wELCETRNITEL S L Wi
&) dr N S PO & T s o Ul accomieodaion ||
'P I:.':w:c- g DAL o . A TN I vl ¢
detarreToEwach| fritee [amre ol ol 200000 1 e
¥ D ienenoaition Ll srenafcomTent ; The detace Fom e hotel (o e
[e beach| |
P = PR e o o AT chirra bl
[Freesitan-od e) DSCETOEHRGEOT || s s 0RO L
[t Fansstatal SFTATOETL o peryrrrant - Th thtarca Fom the hotal 1o ea
e B HE It
Rn.g—mm bty et 2l PN L et hesrr st
= Z el ploga st | FrLps arw, il o LED00N -
[Twa bt premaroom e | Do the soomvendadakon Al howng
[cominmer dogeri
driance L . NI I ST P ©
& [paca Mmhummmmugﬁmﬂm e T I
L3 rowm e shwrafcomment ; The number of moms that e sl
& [b port the acmrod] |
e e
i | W - .
Qg Ll sdmradcommani : T rurber of oo of the i A
Eroremodstion| |
it Ve ey ZINCHTIL frct-eehwerran skl :
pharwrumbet | It e, e D000
Frenancomment | The phong mumier of th
OO |
e JUARIET ummnmumlmnm pecaf| =g 0 M)
[————— re | e s e O et Lt

Sowwg [0, M|

g 0 M)

Ering [0, Hi

eherabioroar Srng [0, H|

Flgure5 Travel ontology imported from ProtegeZOOO RDH(S).

The concept b& b (bed and breakfast) has been transformed to b, because of the
symbol &.

The documentation of concepts, attributes, relations, etc., now have more text:
they include the term label (as defined in the Protégé-2000 RDF(S) files) and the
comment, which was the original documentation.

The cardinalities and types of the instance and class attributes are different from
those that were originally present in WebODE. This knowledge was lost in the first
step.

All the information that was already lost in the first export processis, of course,
missing: digjoint and exhaustive decompositions, partitions, axioms, etc.

Relations with the same name represented in WebODE (eg.,
usesTransportMean) are now transformed into a unique relation whose domain is
rdfs: Resource.

Class and instance attributes with the same name represented in WebODE (e.g.,
airCompany) are now transformed into a unique relation whose domain and range
is rdfs:Resource. This is due to the fact that their domain was not exported to
RDF(S) instep 1.

3 Conclusions

The table 1 summarizes the main conclusions of this drcular import/export processes,
with the number of ontology components that can be found in each of the ontologies
generated during the process. We do not care about other issues, such as differences
in the domains, ranges, cardinalities, term names, etc.

WebODE | RDF(S) | Protégé-2000 | RDF(S) | WebODE
(step 1) (step 2) (step3) | (step 4)

#eoncepts 62 62 6. 62 63
#subclass of 24 61 63 63 63
#digoint 6 0 0 0 0
decompositions

#exhaustive 0 0 0 0 0
decompositions

#partitions 3 0 0 0 0
#attributes/relations | 69 43 43 43 44
#axioms 8 0 0 0 0
#constants 1 0 0 0 0
#instances 20 20 22 22 20

Table1. Summary of knowledge preserved and lost during the circular
import/export process

The most relevant comments that can be extracted from the previous table are the
following:

WebODE creates a new concept when importing ontologies from RDF(S). This
class is rdfs:Resource, which is used as the root concept of all the ontology
concepts, and is also used as the domain and/or range of several ad hoc relations
for which the domain/range has not been defined explicitly in the RDFSfile.

With regard to the taxonomic relationships between concepts, we have two
comments:

WebODE is able to represent disjoint and exhaustive knowledge in its
concept taxonomies. However, with RDFS we cannot represent this kind of
knowledge, and consequently it is transformed into simple subclass of
relationships. This is the reason why there are 24 subclass of relationships
defined in the original ontology, and they are transformed into 61 in the
RDF(S) file and successive transformations.

Besides, when mporting the ontology from RDF(S) to Protégé-2000 two
new subclass of relationships appear. These are related to the use of the class
:THING as the root class of any Protégée-2000 ontology. As a consequence,
the classes thing and celsius degrees from the original ontology are
explicitly declared as subclasses of : THING.

% This figure does not include the system classes that are always generated by
Protégé-2000

The number of attributesand relationsthat are present in the original ontology is
quite different than that of the ontology generated in RDF(S) and obtained in the
subsequent processes. The reason for this is that WebODE allows representing
different attributes and relations for different concepts with the same name. Thisis
not alowed neither in RDF(S) nor in Protégé-2000. Consequently, in the
transformation, attributes and relations with the same name are transformed into
only one attribute/rel ation.

We have discovered an error in the import process of WebODE with the
RDF(S) property url, whose range is rdfs:Resource. This property is transformed
into an attribute of type URL and a relation between the concept accommodation
and the concept rdfs: Resource.

Axioms and constants are lost in the transformation to RDF(S), since they
cannot be represented in this language.

Finaly, the number of instances is constant, except for the import to Protégé-
2000, in which instances are created for two resources that appear as the range of
the property url (holidaylnn hotels’ URLS), and except for the import to WebODE,
where these instances are lost since they are instances of rdfs: Resource.

Acknowledgments

This work has been supported by the OntoWeb thematic network (IST-2000-29243),
by the research grant AP2002-3838 from MEC, and by a research grant from UPM
(“Becaasociada a proyectos modalidad B”).

References

1. Arpirez JC, Corcho O, Ferndndez-Lopez M, Gémez-Pérez A (2003) WebODE in a
nutshell. Al Magazine 24(3):37:48

2. Brickley D, Guha RV (2003) RDF Vocabulary Description Language 1.0: RDF Schema.
W3C Working Draft. http://www.w3.org/TR/PR-rdf-schema

3. Corcho O, Fernandez-Lépez M, GOmez-Pérez A (2002) Evaluation experiment for the
editor of the WebODE ontology workbench. In: Angele J, Sure Y (eds) EKAWO02
Workshop on Evaluation of ontology -based tools (EON2002). Siglienza, Spain

4. Corcho O, Ferndndez-Lopez M, Gomez-Pérez A, Vicente O (2002) WebODE: an
Integrated Workbench for Ontology Representation, Reasoning and Exchange. In: Gomez-
Pérez A, Benjamins VR (eds) 13" International Conference on Knowledge Engineering
and Knowledge Management (EKAW’02). Siglienza, Spain. (Lecture Notes in Artificial
Intelligence LNAI 2473) Springer-Verlag, Berlin, Germany, pp 138-153

5. Lassila O, Swick R (1999) Resource Description Framework (RDF) Model and Syntax
Soecification. W3C Recommendation. http://www.w3.org/TR/REC-rdf-syntax/

6. Noy NF, Fergerson RW, Musen MA (2000) The knowledge model of Protege-2000:
Combining interoperability and flexibility. In: Dieng R, Corby O (eds) 12" International
Conference in Knowledge Engineering and Knowledge Management (EKAW’00). Juan-
Les-Pins, France. (Lecture Notes in Artificia Intelligence LNAI 1937) Springer-Verlag,
Berlin, Germany, pp 17-32

Case Study: Using Protégé to Convert the
Travel Ontology to UML and OWL

Holger Knublauch

Stanford Medical Informatics
Stanford University
MSOB x-215
251 Campus Drive
Stanford, CA 94305-5479
holger@smi.stanford.edu
WWW home page: http://www.knublauch.com

Abstract. Our goal was to evaluate the import/export capabilities of
Protégé between various ontology file formats. As a starting point, we
chose the Travel ontology used for the Protégé experiment from the pre-
vious EON workshop. We exported this into UML, from where we could
import most of the ontology into the mainstream software development
tool Poseidon. Furthermore, we exported the ontology into OWL. The
resulting OWL file could be processed by the OWL Species Validator.
All transformations maintained the structure of the ontology without
problems but could not handle all of the model semantics correctly.

1 Introduction

Protégé (http://protege.stanford.edu) is one of the most widely used ontology
editors with currently about 10,000 registered users. Its extensible open-source
platform supports several ontology file formats including CLIPS (Protégé’s na-
tive format), various XML dialects, databases, DAML+OIL and RDF(S). Very
recently, storage plugins for the Unified Modeling Language (UML) and the Web
Ontology Language (OWL) have been added. Both plugins are not complete yet
and will evolve during the following months.

This document reports on a simple experiment with the UML and OWL Plu-
gins. We wanted to test whether Protégé can convert a given ontology into these
formats and to get an idea of which information are getting lost during conver-
sion. Our starting point is the Travel Ontology developed by Natasha F. Noy as
described in her contribution to the previous EON workshop. A screenshot of
this ontology (displayed in Protégé) is shown in figure ?7.

The experiment was performed using the most recent alpha release of Protégé
2.0 (build 42). Older versions (starting with version 1.8) would expose the same
behavior for the UML conversion. However, these versions do not support the
OWL Plugin.

% travel Protépé (C:\projectslowl\docs\EON-2003\travel. pprj) fEX
Project Edit Window Help
= ==
olse =8 [+]] [A[R]
BT s e ——
Relationship|Superc... ¥ | V| C 2] | {C/Fight _(tyve=STANDARD.CLASS) G
[O THING A Name Documentation Constraints WUFHT”T
© (C) SYSTEW-CLASS A ‘F‘ " ‘
() Customertrip 19
@ (C) Means of transport
(El Plane Role
(©Train ‘Cﬂm:rele M
%Autumubne
Ferry
+|[=
(C) Motareyele U i St m M mm’_”_
(C) Ship Marne | Type [Cardinality [Other Facets
@ (©) Trip information [Sltype of plane Instance single classes={Plane}
Flight S| econamy clags price String single
©Trammp [S] business class price Float single
@ () Lodging 8] departure aiport (port, station) Siting single
(€ Hotel Edepanure city Instance single classes={Destination}
() Bed and Breakfast (S| departure time String single
(5) Destination [S] arrival airport (port, station) String single
(5) Room facilities [S] means oftransport® Instance single classes=(Plane}
@ Continent [S] arrival time String single
Trip leg [S|lodging at destination T Instance single classes={Lodging}
(C) Distance to destination Earriva\cny Instance gingle clagzes={Deslination}
|
Superclasses ﬂ -
[T} Trip information

Fig. 1. The original ontology (CLIPS format) edited with Protégé.

2 UML Export and Import

UML is one of the best known modeling languages for real-world projects. There
have been several attempts to exploit UML for ontology modeling so that main-
stream tools can be used for knowledge modeling. The Object Management
Group (OMG) has recently issued a call for proposals for a UML-based ontology
language which will boost interest in ontology design among software develop-
ers. In order to provide some interoperability between Protégé and UML tools,
the UML Plugin has been developed in February 2003. Since then, it has been
adopted into routine use by many users.

The Protégé knowledge model (OKBC) and UML allow very similar con-
structs. Most obviously, the following conversions exist:

— UML classes can be compared to OKBC classes
— UML objects are similar to OKBC instances
— UML attributes and relationships are comparable to OKBC slots

However, there is a significant area of language elements that are incompat-
ible. Most notably, Protégé supports a native constraint language called PAL,
whereas UML uses its Object Constraint Language (OCL). Both have a similar
structure but a converter does not exist yet.

Another difference is that Protégé supports generic facet overloading, which
means that you can redefine slot properties (such as value type, cardinality and
default values) for certain classes. This reflects a major difference between UML
and OKBC, namely that in OKBC, slots are first-class elements and can exist
without being assigned to a class, whereas UML attributes and relationships
must be assigned to classes. Protégé’s UML Plugin is able to handle this differ-
ence. For example, it creates multiple copies of an attribute if a slot is attached
to more than one class. It fails however with complex facet overloads, because a
comparable concept does not exist in UML.

Other differences between UML and OKBC include the handling of meta-
classes (which is much more flexible in Protégé) and support for instances. Al-
though UML officially has the concept of Object Diagrams, few tools support it
properly, and so the UML Plugin does not export instances. There is however
no reason why this should not be supported in future versions.

0 Poseidon for UL Community Edition - Travel-Uj
y

Flo Edt View CrteDiagmm Amange Generation
BAS
AE0aBXha Se &
B class centic S Class Dizgam1_| B Classiagram 2 |
Clas centic [3 A1 B8—TT !B BE MO0 ONAQS D Clasbiagam: clasdigram2
> % ot
E 8 las viagam 1 [—
o £ Proteseantoloay customer namels A1 irng
8, s viagiamz rae st et |0 o Top mromator
|- 5 Avtomobite " e Spartre arpor (prt et 1 Sring
[~ B Bed and preatast anival datef0. 1] : Sting i °
o 5 con 0.4 Tiai bip
> B customertip trip information [
> B pestination
&] Disence to destination éﬁ
[[Brem 0.1 Ioching atdestnation
L B o g anival oty | [departur city Fiot
= Lodaing 0] o1 o eoonamy oz pree(o 11 Sting
5 5 Losang URLD1T: 5vin Destnaton o b ness el priceln. 1 double
5~ 1 Means oftransport availble om0 int w1 st I
= — oo alanedD 1 :bosiean 7wl
" descripianD. 11 Sting ooy [Pl tineresip 7 Sting | depare sk
7 B piane ane o the basch (<mD. 1] o uble me.1]: ting
o B Room facities o 1Al ot
=B ship . lodaing 0.1
-8 i number of oms .1 int b o
= B Tain tiip -address(o.1] - Sting Pt Jout means o warsport
o= B Tiip information distance to skiing ([, 1] : doudle continent 04
o 5 Tip leg
b B jmvs Oitanos t destingtion Cortnant e =
oo fsie 0.1
e [ot | [von | [| | ow] | _rew]
o — DT e 1 1 i 1
Bven |oymiany | 1 bootean I it it i i | i
= numberof beds(p.] -
g E TV svaiabien.) boolean
. bl
e Jeve s |
biagram ® = 2
EF‘ Nams [Ela=Dizgran 2] 2
- =@
100% 3

Fig. 2. The ontology exported with Protégé in UML format opened with Poseidon for
UML.

For the given travel ontology, most of the structural information from the
ontology could be preserved. As shown in figure ??, the resulting UML file (in

XMI format) could be loaded with the well-known UML modeling tool Poseidon.
Since not all CASE tools support the XMI standard equally well, it might not be
possible to load UML files generated with Protégé into all tools. This shortcoming
is however due to different interpretations of UML/XMI standards by third-party
tools, while Protégé supports the official UML specification.

Note that Protégé can also re-import UML files that have been changed with
an external tool. In this step it will also combine multiple namesake attributes
into a single slot, etc.

The following information got lost during the translation:

— PAL Constraints
— Facet overloads (there were 4 of them in the original ontology)

The allowed values of symbol slots are exported correctly in the XMI file,
but not displayed by the UML tool so that the datatype of some attributes is
“null”. This is a bug in Poseidon.

While UML and OKBC each provide different modeling elements, they are
both extensible and thus allow for a complete round-trip mapping. Protégé’s
generic metamodeling architecture can be used to define new metaclasses which
capture UML-specific items such as methods and OCL expressions. This has been
partially implemented so that Protégé can also be used to define class methods.
UML has a number of extension mechanisms, such as stereotypes and tagged
values, which can be used to store Protégé-specific data for round-tripping.

The rather awful problem with the current UML specification (before 2.0) is
that there is no standard exchange format for diagrams. This means that users
need to re-layout their class diagrams each time when it has been changed.

3 OWL Export and Import

Work on the OWL Plugin for Protégé started in April 2003 and is not finished
yet. Therefore the following results are preliminary (and might have changed at
the workshop time). Protégé relies on the Jena API, a leading Java-based API
for OWL and RDF. Since this software is also still in alpha state, not all features
are implemented yet.

As shown in figure 77, Protégé and OWL each support constructs that are
not available in the other. A major difference is that OWL supports arbitrary
class descriptions, whereas Protégé only knows primitive named classes. We
have extended Protégé’s metamodel to express these additional language ele-
ments. More details on this mapping can be found on the OWL Plugin web site
(http://protege.stanford.edu/plugins/owl).

The current version of the OWL plugin allows to load arbitrary OWL (DL)
files into Protégé. Some elements of OWL Full, especially metaclasses, can be
represented. Protégé maintains a copy of the OWL model using the Jena API,
and changes in the Protégé model are synchronized with the OWL objects. This
technology ensures that all language elements that Protégé does not support in

Protégé OWL

Generic facet
overriding

‘*\Transitive slots

Classes \. InverseFunctional

:DEFAULTS

Slots/Properties

:ROLE (abstract) Complex class

expressions and

| anonymous classes
| can be used instead
| of primitive classes

/

Instances/Individuals \

Template slot assignment/Domain

:DOCUMENTATION
overriding

Value types/Data types /
//
PAL Constraints Metaclasses Equality and

disjointness
between classes,
o individuals

(instances of type "class") /

Numeric min/max

Fig. 3. The language elements of Protégé and OWL in comparison.

its own metaclass hierarchy at least remain untouched when saved back to a file.
Editing OWL files with Protégé is therefore lossless.

The example travel ontology could be converted into Protégé without prob-
lems. As shown in figure 7?7, facet overloads are automatically converted into
OWL restrictions (here: An allValuesFrom restriction). The only information
that currently gets lost is Protégé-specific elements such as PAL constraints.

The OWL files created by Protégé obey the recent OWL standard speci-
fication and can be loaded by external OWL tools such as the OWL Species
Validator. However, due to the lack of other ontology tools with OWL support,
we could not seriously test advanced issues such as round-tripping between tools.

4 Discussion and Future Work

The simple case studies show that Protégé is a suitable platform for interchanging
models in standard languages such as UML and OWL. Both languages play
a central role in two huge communities that are traditionally not counted as
ontology builders: Mainstream Software Engineering and the Semantic Web,
respectively. The wide adoption of Protégé’s support for these languages has

% Travel OWL Protégé (C:\projects\owl\docs\EON-2003\Travel-OWL. pprj) fEX
Project Edit Window Help

o=@ =& [=] [AIR]
D o | S
Relationship Supercla...vuv"a@m@ () Flight _(type=:0WL-NAMED-CLASS) [E]x]

[ETHING & Name Dacumentation
© (T):SYSTEM-CLASS A
@ (© Ladging ‘F“E‘“'
(C) Bed_and_Ereakfast
(C) Hotel
@ (E) Means_of_transport
(C) Wotorevele
Train
S | Fesiictons T i |

E M i FAENENEVENA(|-=IES

@ (& Trip_information Slot [Restriction [Filler
Train_trip means_of_transport (7 allvaluesF ram Flane
(E) Flight
@ Distance_to_destination
(C) Destination
(C) continent
(C) Trip_leg
Customer_trip
(C) Room_facilities

[a8

[c |superclasses | V| C[+ I;hi ["="] Equivalent classes mmmlz“z Disjoint classes [vle]+] -]

Expression

{C) Trip_infarmation

Fig. 4. The ontology in OWL format edited with Protégé.

shown us how important they are and that ontology construction could play a
much more important role in these communities.

Both examples also demonstrate the flexibility of the OKBC knowledge
model. OKBC provides a very flexible metamodeling architecture that can be
easily extended to capture other languages than those natively supported by
Protégé. With an extended metamodel in place, one only needs to adapt the
user interface to get a custom-tailored modeling tool for almost any language.
Several specific editor components have been implemented for OWL.

In support of true round-trip engineering — which is crucial for real world
projects — the tools should make sure that one tool’s language specific data is
not lost when opened with another tool. We have not fully implemented these
capabilities due to lack of time. Currently, Protégé-specific information that does
not have a direct counterpart in OWL or UML is getting lost. There are however
no reasons why this should not be possible in the future.

EXPERIMENT:

Interoperability of Protégé 2.0 beta and OilEd 3.5 in the
Domain Knowledge of Osteoporosis

Franz Calvo, MD fcalvo@u.washington.edu and John H. Gennari, PhD
gennari(@u.washington.edu

Department of Medical Education and Biomedical Informatics, School of Medicine.
University of Washington, Seattle, WA, USA

1. Introduction

Because the idea of building a single, overall ontology for the entire Semantic Web
seems impossible, we believe that integration of the various standards and ontology
building tools is an important goal. However, the lack of interoperability between the
different knowledge engineering tools currently available constitutes one of the
bottlenecks of the Semantic Web [1]. Yet shared ontologies, ontology extension, and
most ontology tools exhibit a certain degree of interoperability. In this experiment, we
evaluate the capabilities of two ontology tools—Protégé and OilEd—to successfully
import an ontology originally developed using the other tool. In Figure 1, we show the
tools we have evaluated, indicating relationships among the tools. The arrows show the
sorts of output formats (languages) that each tool can produce.

OilEd (version 3.5) http://oiled.man.ac.uk is the de facto standard environment for the
language which grew out of the combination of DAML and OIL and has been variously
known as DAML+OIL and OWL. The Web Ontology Language (OWL) has recently
been advanced to a W3C Candidate Recommendation status. Details are available under
the Semantic Web activity of W3C at http:/www.w3.0rg/2001/sw . OWL is based on
description logics but has many of the syntactic and other features of Frame languages.
As DAMLAOIL, the native format for OilEd ontologies, is not readable by Protégé 2.0
beta, ontologies created with OilEd should be exported in RDFS format to be readable by
Protégé. OilEd can export in OWL format but is unable to import ontologies in this
format, so OWL will not be evaluated.

Protégé 2.0 beta http://protege.stanford.edu is an extensible ontology editor and a
knowledge base editor. Protégé uses the Open Knowledge-Base Connectivity protocol
(OKBC) model as the basis for its own knowledge model. OKBC is a common query and
construction interface for frame-based systems. As an effort to be compatible with other
ontology tools, Protégé can export its ontologies in RDFS format. The current version
provides beta level support for editing Semantic Web ontologies in OWL. The PAL
constraints and Queries Tabs, a plug-in to represent axioms, is not compiled for Protégé
2.0 yet.

DAMLA+OIL plug-in for Protégé (alpha version)
http://www.ai.sri.com/daml/DAMIAOIL-plugin. is developed at SRI. The plug-in

generates ontologies in two formats simultaneously, PPRJ and DAML, which are
readable by Protégé and OilEd respectively. The OWL format is not supported.

Protégeé

plug-in
Protege . ROFS s
2.0 beta RDFS

Figure 1. Relevant file formats for the two ontology tools being evaluated in this
experiment.

Il. Building the model

In order to test the interoperability of OilEd and Protégé, we have developed an ontology
in the domain knowledge of osteoporosis, a common medical disorder. Our high level
ontology has been modeled after the NLM's Unified Medical Language System (UMLS)
Semantic Network http://www.nlm.nih.gov/research/umls , a freely available knowledge
source which has been subject of numerous publications.

Our ontology contains over 200 concepts representing clinically-relevant aspects of
osteoporosis, such as physical signs, symptoms, diagnostic tests and management
options. Salient characteristics of knowledge to be represented in a biomedical ontology
include:

e Preferred name. Several biomedical concepts are referenced by more than one
name, and one of them is usually preferred over the others. For example
“Postmenopausal osteoporosis” is also known as “Type I osteoporosis”, but the
former is the preferred one.

e Synonymy. There are biomedical concepts which have up to six synonymous (e.g.
“Disease of hematopoietic system” has as synonymous “Blood dyscrasia”,
“Hematologic disease”, “Disorder of hematopoietic system”, “Hematopoietic
disease”, “Blood disorder”, and “Hematopoietic disorder).

e Disjoint concepts. Examples of mutually exclusive but not exhaustive concepts
include “Medical device” and “Clinical drug”, both subclasses of “Manufactured
object”.

e Partition. Examples of mutually exclusive and exhaustive concepts include
“Organic chemical”, “Inorganic chemical”, and “Element, ion, or isotope”, all of
them subclasses of “Chemical viewed structurally”.

e Defined and primitive classes. We have a defined class, when we are able to
assign sufficient as well as necessary conditions for the class (e.g. “metabolic
disease” and “disease of bone” for the defined class “metabolic bone disease”). In
the case of most biomedical concepts, we can only assign them some necessary
conditions. These classes are so-called primitive classes. (e.g. the class “metabolic
bone disease” and some necessary but not sufficient properties build up the
primitive class “osteoporosis”).

e Multiple inheritance (polyhierarchy). Most biomedical concepts have more than
one parent class.

e Abstract concepts. Some concepts, such as “Element, lon, or Isotope” are used
only for classification purposes. These abstract concepts can have subclasses, but
not instances.

e Inverse relations. In some cases it is useful to represent relations that have inverse
meanings because both are useful. (e.g. “causes” and ‘“has etiology”). The
ontology should be able to automatically assign values to the other relation when
one of them is used.

e Relation hierarchies. The UMLS Semantic Network associates all its 54 relations
in a hierarchy. For example, the relation ‘“spatially related to” and
“temporally related to” are both subclasses of the relation “associated with”.

In Table 1, we show how each of these three tools represents each of these ontological
characteristics.

Protégé 2.0 beta Protégé + plug-in OilEd 3.5
Preferred name Represented as a Represented as the Represented as the

metaclass class name class name
Synonymy Represented as a Not satisfactory Not satisfactory

meta-class with
multiple cardinality

because custom-built
metaclasses are not
allowed.

because custom-
built metaclasses are
not allowed.

Disjoint concepts | Not possible Possible, as a Possible, as axioms
“LogicalDefinition”.

Partition Not possible Not possible Initially possible but
a bug converts a
partition into
disjunctions when
the ontology is
saved to disk
(Figure 6)

Defined and Not possible Possible Possible (Figure 5)

primitive classes

Polyhierarchy Possible Initially possible but | Possible

one of the parent
classes disappears
when imported by
OilEd (Figure 3)

Abstract Possible Not possible Not implemented;

concepts metaclasses are not
supported

Inverse relations | Implemented in the Implemented in the Yes (Figure 4).

tool but not useful in | tool but not useful in
this ontology because | this ontology because
slots are used in slots are used in
override mode. override mode.

Relation Yes, hierarchies are Yes, hierarchies are Yes, but the

hierarchies graphically displayed | graphically displayed | hierarchy is not
graphically
displayed.

Table 1. Comparison of the ontology-building capabilities of Protégé, Protégé+plug-in,

and OilEd.

Ontologies generated using the alpha DAML+OIL plug-in for Protégé can not represent
properly multiple inheritance (see Figure 3). The ability to represent polyhierarchies is
crucial for a biomedical ontology, so we choose not to further test this plug-in tool in our

experiment.

= Osteoporosis_Protege_Metaclass Protége 2.0 beta (file:/C:/Program®: 20Files... |:||E|[z|
Project Edit Window Help

D|=@] o]~ BB [x]x] [A|R]

(C])) Classes | Bt |

Relationship|Supercl.. ¥ | V| C [5[3| /S BIOMEDICAL CLASS (tyne=:STANDARD-CLA...C|[x
(C) THING A Name Documentation
SYSTEM-CLASS A ;
¢ (?@,.MEm_Cmgaﬁ : |BIOMEDICP~.L—CLAES |
§ (C):cLasSA
@ (C):5TANDARD-CLASSD ;| Role
(C) BIOMEDICAL-CLASS A |° ||nh51,amn v
@ (C):5L0TA :
® (C) FACETA :
& (C) -CONSTRAINTA e
& (T ANNOTATION A : MNarme | Type [cardi| |
& (C) RELATION A ; S| INITIAL-UPPERCASE Boolean single def
@ (C) Concept | [S] PREFERRED-MAME Stiing single
4 : S| SvNONYMS String k...
.. T B Y

Figure 2. All concepts in our Protégé ontology have been modeled as subclasses of the
Biomedical-class metaclass.

¥ Osteoporosis_from_DAMLplugin, Protége-2000

Project Window Help File Log Reasoner Help Export
eI JRENE BRI EENMEE

D) Classes |[S[[|Sits | [TForms | 2 |
Relationship | Superclass > vlc]e|x bl e

9 @Disease_nr_syrndrnme - = Disease_of_hone -

[E] Metabolic_bone_disease|

& () Disorder_of_body_systern

= ; -
@ @ Dizease_of_musculoskeletal_system % mggg:j_l;:lcr_[t;inzr;?;zral_dvsfunctlon
& (C) Skeletal_disease - >
& (C)Disease_of_hone E
(Tl Metabolic_bone_disease™
() Mental_or_behavioral_dysfunction -Supers
@ (T Metaholic_disease i
(C) Metabolic_bone_disease™ - Disease_of_hane
Superclasses | + H =

Wetabolic_disease

%Disease_of_hnne M

Figure 3. Polyhierarchies modeled with DAMLAOIL plug-in for Protégé (left pane)
disappear when imported by OilEd (right pane).

4 Diled 3.5 [DIG) I =] 3
File Log Reasoner Help Export

= = S) R e

~Properties ;|- Documentation
[P] carries_out 5 I=] .
[F] causes -

El CO-0CCUrs_with

—1

= ~Super Properties———— Inverses

= [F] brings_about | [F] has_etiology |
| |
| cowilediontologiesiOsteoporasis_OilEd_final |
| | @

Figure 4. OilEd easily represents inverse properties (called slots in Protégé).

4 Diled 3.5 [DIG) _ (O] x|
File Log Reasoner Help Export

| Lo |) BB |00 V| S|

Ll /| Name Properties
Language | | [Metabolic_bone_disease | | () Subclassof

=1\ ini .

el g @ SameClassAs
Machine_activity i

Malignant_neoplasm_of K | | Documentation

Wanufactured_Ohject : - .
Medical_device =
Mental_or_behaviaral_dys

Mental_process i
Metabolic_bone_disease :| |Disease_of_hone ol

""" Metabolic_disease =

‘| Classes

Metaholic_disease :
Malecular_hinlogy_resear
Malecular_function i

Molecular_sequence “Restrictions

Multiple_myeloma tvpe | propery | filler |
Musculoskeletal_system [& (3) has-class has_location Bone_the_osse...

| | e

]\C:luiledmntulugiEslﬂsteupurusis_ﬂilEd_ﬁnal |
| l @2

Figure 5. Example of a defined class (Metabolic_bone_disease) in OilEd.

4 Diled 3.5 [DIG) _ (O] x|
File Log Reasoner Help Export

| | 00| B |03 V| S|

(Classes |/|E| Properties |/ Individuals |/ Axioms |/ Container |/ Hamespaces

Axioms

Disjoint {(Element_jon_or_isotope | Inorganic_chemical)

Disjoint (Element_jon_or_isotope | Organic_chemical)

% Disjoint {(Inorganic_chemical | Organic_chemical)
Chie i i a1atl

| C:\iled'ontologies'Osteoporosis_OilEd_final |
| | @&

Figure 6. Representation of disjoint classes in OilEd. A bug prevents the definitive
representation of partitions.

The ontologies created with Protégé, Protégé with the DAMLAOIL plug-in, and OilEd
are all available from:
http://www.galenonet.com/Osteoporosis Interoperability experiment Oct16.zip

lll. From Protégé to OilEd

The ontology was exported from Protégé 2.0 beta in RDFS format. When opened with
OilEd 3.5, all properties (slots in Protégé) were present but none of the classes. In
additions, properties had lost its hierarchy. As classes were not present, we did not
perform any further interoperability tests.

IV. From OilEd to Protégé and back

When the ontology—created with OilEd—is later imported by Protégé, all the class
names are displayed with a prefix and we could not find a way to get rid of them (Figure
1.). However, the main limitation we found in this step of the interoperability evaluation
of the tools is the disappearance of the restrictions modeled with OilEd. For example,
Protégé’s Template Slots window does not contain any representation of OilEd’s
Restriction “Metabolic_bone disease” ‘“has-class” “has_location” “Bone” (compare
Figure 5 and Figure 7). Table 2 summarizes these changes.

We then saved to disk the imported ontology (originally created with OilEd), using the
RDFS format. When this ontology (saved by Protégé, originally created with OilEd) was
opened by OilEd, the classes pane was empty. The situation was similar to the one
described above in section III. OilEd is not capable of successfully importing classes
from ontologies saved with Protégé.

G Osteoporosis_OilEd_final Protége-2000 (C:\Program Files\Protege-200040steop. .. |:||E|r5__<|

Project Window Help

o=@ =

(C]l Classes [[S][| Slots |7 Forms | I

Relationship | Superclass > |V C| 4| ¥
L T UEIE T OT =TS _ U DTs 0T ET_ Ty Sy s1ETTI T~

@OStenpnrnSiS_Oi:MentaI_nr_hehavinral_dyafunu:tiu:u
Q@ @Ostenpnrnsis_Oi:MetabnliE_disease
&= @ OSte|:|pnrnais_oi:MetahDIiE_hnne_diaeaSe"

@'@OStenpu:uru:uSiS_Oi:Nenplaatic_prucess
@Oateupnrnsis_Oi:Experimental_mndel_uf_disease
@'@'Dstenpnrnsis_@i:Physinlngic_functinn

Superclasses

@ Csteoporosis_OQiDisease_of_haone
@ Dsteoporosis_OiMetabolic_disease

) Osteoporosis_Oi:Metaboli... [C

e

| Hame

|OStenpnruais_@i:hﬂetabnlic_hnne

| rRole

3 | Concrete

:| Template Siots

Marme

Figure 7. The ontology created with OilEd loses its restrictions (Template slots) when

imported by Protégé.
Ontology as imported by
Protégé
Disjoint concepts Not applicable
Defined and Not applicable
primitive classes
Polyhierarchy Yes
Inverse relations Disappear
Relation hierarchies Conserved

Table 2. Changes found when the RDFS ontology is imported by Protégé.

V. Discussion

We designed an experiment to specifically evaluate the interoperability of Protégé 2.0

beta and OilEd 3.5, two promising tools to create ontologies.

Our results demonstrate that

interoperability is not possible between these tools, by way of the RDFS format.

The work here does not investigate the causes of these interoperation problems. In some
cases, the problems we report may simply be due to immature tool development. The
semantic web languages in particular are quite new, and it may take some time before
robust and well-tested tools are available for these languages. However, in other cases,
interoperation problems may be more fundamental, indicating a gap or discrepancy in the

underlying knowledge models. For example, the inability of Protégé to understand and
use disjoint concepts and defined concepts (see Table 2) may fall into this category.

Each one of the two ontology engineering tools analyzed in this experiment offer special
capabilities to represent biomedical knowledge that the other tool cannot offer. Protégé’s
advantage over OilEd include the representation of preferred names, synonymous, and
abstract concepts. On the other way, OilEd uniquely allows the representation of disjoint
concepts, defined and primitive classes, and to more easily represent inverse relations.

Interoperability of ontology engineering tools is highly desired, in order to integrate the
different knowledge representations developed by different groups and organizations.
However, knowledge representation is an area so complex that, in general, the different
tools available lack interoperability. The ongoing CO-ODE project, which will merge the
best of Protégé and OilEd, promises to enable interoperability between knowledge
representation tools by using OWL.

Acknowledgement
To Richard Phillips, MD, for his useful comments and review of the manuscript.

This work was supported by NIH grant D43 TW001286-04S1 Fogarty International
Training in Medical Informatics.

Bibliography

Fensel D. Ontologies: Their Glory and the New Bottlenecks They Create. Workshop
Semantic Web Action Line 2001.
http://www.ontoweb.org/workshop/amsterdamdec8/ShortPresentation/swt_dieter.pdf

Noy N. F., Fergerson R. W., Musen M. A. The knowledge model of Protege-2000:
Combining interoperability and flexibility. 2nd International Conference on Knowledge
Engineering and Knowledge Management (EKAW'2000), Juan-les-Pins, France. 2000.
http://protege.stanford.edu/publications/Knowledge Model/protege-knowledge-
model.html

Rector A. and colleagues. OilEd Normalised Ontology Tutorial — Biomedical version (for
OilEd version 3.4). October 2002.
http://www.cs.man.ac.uk/mig/ontology-tutorial/oiled-biomedical-ontology-tutorial.zip

Rector A. CO-ODE/HyOntUse. Sixth International Protégé Workshop. July 2003.
Manchester, England. http://protege.stanford.edu/workshop_vi/Alan_Rector Co-Ode-
Southampton-at-Manchester-2003-07-061.pdf

