9,890 research outputs found

    Using Kernel Perceptrons to Learn Action Effects for Planning

    Get PDF
    Abstract — We investigate the problem of learning action effects in STRIPS and ADL planning domains. Our approach is based on a kernel perceptron learning model, where action and state information is encoded in a compact vector representation as input to the learning mechanism, and resulting state changes are produced as output. Empirical results of our approach indicate efficient training and prediction times, with low average error rates (< 3%) when tested on STRIPS and ADL versions of an object manipulation scenario. This work is part of a project to integrate machine learning techniques with a planning system, as part of a larger cognitive architecture linking a highlevel reasoning component with a low-level robot/vision system. I

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Topological descriptors for 3D surface analysis

    Full text link
    We investigate topological descriptors for 3D surface analysis, i.e. the classification of surfaces according to their geometric fine structure. On a dataset of high-resolution 3D surface reconstructions we compute persistence diagrams for a 2D cubical filtration. In the next step we investigate different topological descriptors and measure their ability to discriminate structurally different 3D surface patches. We evaluate their sensitivity to different parameters and compare the performance of the resulting topological descriptors to alternative (non-topological) descriptors. We present a comprehensive evaluation that shows that topological descriptors are (i) robust, (ii) yield state-of-the-art performance for the task of 3D surface analysis and (iii) improve classification performance when combined with non-topological descriptors.Comment: 12 pages, 3 figures, CTIC 201

    Using bag-of-concepts to improve the performance of support vector machines in text categorization

    Get PDF
    This paper investigates the use of concept-based representations for text categorization. We introduce a new approach to create concept-based text representations, and apply it to a standard text categorization collection. The representations are used as input to a Support Vector Machine classifier, and the results show that there are certain categories for which concept-based representations constitute a viable supplement to word-based ones. We also demonstrate how the performance of the Support Vector Machine can be improved by combining representations
    corecore