
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Kernel Perceptrons to Learn Action Effects for Planning

Citation for published version:
Mourao, K, Petrick, R & Steedman, M 2008, 'Using Kernel Perceptrons to Learn Action Effects for Planning'.
in Proceedings of the International Conference on Cognitive Systems (CogSys 2008). pp. 45-50.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the International Conference on Cognitive Systems (CogSys 2008)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28976154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/using-kernel-perceptrons-to-learn-action-effects-for-planning(a4c452ba-4d7a-4f58-865c-afbfe5005a68).html


Using Kernel Perceptrons to Learn Action Effects for Planning

Kira Mourão
School of Informatics

University of Edinburgh
Edinburgh EH8 9LW, Scotland, UK
k.m.t.mourao@sms.ed.ac.uk

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9LW, Scotland, UK
rpetrick@inf.ed.ac.uk

Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh EH8 9LW, Scotland, UK
steedman@inf.ed.ac.uk

Abstract— We investigate the problem of learning action
effects in STRIPS and ADL planning domains. Our approach is
based on a kernel perceptron learning model, where action and
state information is encoded in a compact vector representation
as input to the learning mechanism, and resulting state changes
are produced as output. Empirical results of our approach
indicate efficient training and prediction times, with low average
error rates (< 3%) when tested on STRIPS and ADL versions of
an object manipulation scenario. This work is part of a project
to integrate machine learning techniques with a planning
system, as part of a larger cognitive architecture linking a high-
level reasoning component with a low-level robot/vision system.

I. INTRODUCTION

Artificial intelligence planning systems provide a powerful
tool for controlling a cognitive agent’s actions in both real-
world and artificial domains. A drawback of such approaches
is that they require a model of the dynamics of the domain
in which the agent will operate. In real-world domains, such
models may not be readily available, or may not properly
account for unexpected subtleties that arise in the world when
a model is constructed a priori by hand. An alternative, more
desirable approach is to endow the agent with the ability to
learn from its environment in order to induce a world model,
and the effects of its actions, from its experiences.

Using machine learning techniques to learn action models
is not a new idea. Prior approaches have applied inductive
learning [1] and directed experimentation [2] techniques to
data represented in first-order logic, without noise or non-
determinism. Other approaches have used schema learning to
learn probabilistic action rules operating on discrete-valued
sensor data [3]. Also, k-means clustering of equivalence
classes, followed by extraction of sensor data features, has
been used to train support vector machines (SVMs) to predict
deterministic action effects in a given context [4]. Recently,
attention has shifted to methods which exploit relational
structure in order to improve speed and generalisation per-
formance. For instance, [5] generates and refines rules using
heuristic search guided by maximum likelihood, and shows
that relational deictic rules are learnt more effectively than
propositional or purely relational rules. Similarly, [6] uses
a logical inference algorithm to efficiently learn rules in
relational environments.

Our approach is based on a connectionist learning model,
namely kernel perceptron learning [7], [8]. Such methods

are particularly useful since they can be shown to provide
good performance, in terms of both the training time and
the quality of the learnt models. We focus on one aspect
of the learning problem in this paper, namely learning the
effects of an agent’s actions, given a set of actions and
their preconditions. Currently, our learning method assumes
a fully observable world for training purposes (i.e., complete
world state descriptions), however, it can be made much more
general. For instance, our approach can be extended to handle
noisy data [9], and we believe it can also be used to learn
action preconditions and more complex representations.

Since we would like to apply our techniques to real
planning systems, we will focus on two different types
of action representations commonly used in the planning
community: STRIPS actions [10] and ADL actions with
conditional effects [11]. We consider deterministic domains
with actions that affect a subset of the properties (predicates)
that make up the world state. In our approach, we use a
representation that makes efficient use of predicates, and
follow the approach of [5] where deictic referencing is
used to reduce the complexity of the representation. We
demonstrate that kernel perceptrons can be used successfully
to learn the dynamics of an object manipulation domain, in
a manner that is independent of the number of objects in the
world, making it suitable for large planning scenarios.

This paper is organized as follows. In Section II we discuss
the planning representations we are interested in learning. In
Section III we describe kernel perceptrons and how we use
them to learn action effects. In Section IV we present the
results of our learning experiments. In Sections V and VI
we discuss our results and our plans to incorporate these
techniques into a cognitive architecture linking a high-level
planning system to a low-level robot/vision system.

II. ACTION REPRESENTATIONS FOR PLANNING

The action representations we will use are based on the
logical representations typically found in planning systems.
A domain D is defined as a tuple D = 〈O,P,A〉, where O
is a finite set of world objects, P is a finite set of predicate
(relation) symbols, and A is a finite set of actions. Each
predicate and action also has an associated arity. Predicates
of arity 0 are referred to as object independent properties,
while those of arity at least 1 are object dependent properties.

ttotterd
Typewritten Text
Mourao, K., Petrick, R., & Steedman, M. (2008). Using Kernel Perceptrons to Learn Action Effects for Planning. In Proceedings of the International Conference on Cognitive Systems (CogSys 2008). (pp. 45-50).



TABLE I
STRIPS ACTIONS FROM AN OBJECT MANIPULATION DOMAIN

Action Preconditions Effects
graspA-table(x) clear(x) add(ingripper(x))

gripperempty del(gripperempty)
ontable(x) del(ontable(x))

graspA-stack(x, y, z) clear(x) add(ingripper(x))
gripperempty add(clear(y))
isin(x, y) del(gripperempty)
instack(x, z) del(isin(x, y))

del(instack(x, z))

A fluent is an expression p(c1, c2, . . . , cn), where p ∈ P ,
n is the arity of p, and each ci ∈ O. A state is any set of
fluents, and S is the set of all possible states. For any state
s ∈ S, a fluent p is true at s iff p ∈ s. The negation of a
fluent, ¬p, is true at s (also, p is false at s) iff p 6∈ s.

Each action a ∈ A is defined by a set of preconditions,
Prea, and a set of effects, Effa. Prea can be any set of fluents
and negated fluents. We consider two different kinds of
action effects, both of which are commonly found in planning
domains. In STRIPS actions [10], each effect e ∈ Effa has
the form add(p) or del(p), where p is any fluent. In ADL
actions [11], each effect e ∈ Effa is either a standard STRIPS
effect, or a conditional effect of the form Ce ⇒ add(p) or
Ce ⇒ del(p). Here, Ce is any set of fluents and negated
fluents, and is referred to as the secondary preconditions
of effect e. Action preconditions and effects can also be
parametrized. An action with all of its parameters replaced
with objects from O is said to be an action instance.

Action instances are state transforming. Given a state s
and an action instance A, A is applicable (or executable) at
s iff each precondition p ∈ PreA is true at s. An applicable
action produces a new state s′ that is identical to s, but
updated with the effects of A as follows: for each e ∈ EffA,
(i) if e is an effect add(p) then p is added to s′, (ii) if e is an
effect del(p) then p is removed from s′, (iii) if e is an effect
Ci ⇒ add(p) then p is added to s′ provided all fluents of Ci

are true at s, and (iv) if e is an effect Ci ⇒ del(p) then p is
removed from s provided the fluents of Ci are true at s.

In this paper we will focus on a specific object manip-
ulation scenario, represented as a simple planning domain,
where a robot has the ability to grasp, stack, and remove
objects from a table environment.1 For instance, the domain
includes actions like graspA-table(x) (“grasp object x from
the table using grasp type A”), graspA-stack(x, y, z) (“grasp
object x from object y in a stack with z at its base using grasp
type A”), and putAway(x) (“put object x away on a shelf”).
The domain also includes properties like gripperempty (“the
robot’s gripper is empty”), clear(x) (“object x has no objects
on top of it”), ontable(x) (“object x is on the table”),
and isin(x, y) (“object x is in object y”). As we’ll see in
Section V, this domain is motivated by work that aims to link
a robot/vision system with a planner, within an architecture
where the robot can learn and act [12], [13].

1This domain is similar to Blocksworld, but has been extended to include
more complex grasping actions and management of limited resources.

Input vector Corresponding action/predicate

0 graspA-table(obj1)
1 graspA-stack(obj1, obj2, obj3)
0 graspB-table(obj1)
0 graspD-table(obj1)
0 putInto-objectOnTable(obj1, obj2)
0 putInto-stack(obj1, obj2)
0 putAway(obj1)

9>>>>>>>=>>>>>>>;
Actions

0 gripperempty
. . .

ff
Object independent
properties

0 ontable
1 clear
0 isin-obj1
1 isin-obj2

. . .

9>>>=>>>;
Properties related
to grasped object (1)

1 ontable
0 clear
0 isin-obj1
0 isin-obj2

. . .

9>>>=>>>;
Properties related
to grasped object (2)

0 ontable
0 clear
0 isin-obj1
0 isin-obj2

. . .

9>>>=>>>;
Properties related
to grasped object (3)

Fig. 1. Representation of an action and state as a binary input vector

Table I shows the encoding of two STRIPS actions in
our object manipulation domain, graspA-table and graspA-
stack. Actions such as these provide a straightforward
representation of the manipulation tasks that can be per-
formed. For instance, if we have a state s defined by the
set {clear(obj1), clear(obj2), gripperempty, ontable(obj1),
ontable(obj2)}, then the action instance graspA-table(obj1)
is applicable at s. Applying the effects of this action instance
to s produces the new state s′ = {clear(obj1), clear(obj2),
ingripper(obj1), ontable(obj2)}. We will also consider an
ADL version of this domain in our testing.

III. KERNEL PERCEPTRON ACTION LEARNING

The planning actions in the previous section give rise to
a simple state transition system, where the application of
an action at a state produces a new state. In this model,
an action’s effects determine the changes made to a state
during execution. Since a state is simply a set of fluents, the
transition between states is simply the difference between
two sets of fluents. Our goal in this section is to develop an
approach that learns these differences between states.

Learning the complete dynamics of a planning domain
requires the ability to learn both the preconditions needed to
perform an action, and the effects of the action at a particular
state. In this paper, we will only focus on the effects
problem, and will simply assume that the action set and
action preconditions are supplied to our learning mechanism
as part of the input. (We also believe our approach extends to
the problem of learning action preconditions; see Section V).

The specific learning method we will use is a connectionist
machine learning model based on kernel perceptrons [7], [8].
Kernel perceptrons obtain reasonable accuracy at acceptable
training and prediction speeds, allowing us to use this
approach in practical planning applications. Alternative non-



linear classifiers, such as SVMs, can be substantially slower
[14] while performance is not guaranteed to be better [15].

In order to effectively use kernel perceptrons, we must
consider how best to encode our learning problem in terms
of the inputs and outputs of the learning mechanism. We
consider each of these problems in turn, as well as the overall
operation of our learning approach.

A. Input representation

The input to our learning mechanism uses a vector rep-
resentation that encodes a description of the action being
performed and the state at which the action is applied. For
each action in the domain, the vector includes an element
that is set to 1 if the action is to be performed, or 0
otherwise. For states, we consider object-independent and
object-dependent properties separately. In the case of object-
independent properties (e.g., gripperempty), the vector in-
cludes a single element for each property of the domain,
representing the truth value of that property (fluent) at the
state being considered: the element is set to 1 if the fluent
is true at the state, or 0 if the fluent is false at the state.

For object-dependent properties, we avoid representing all
possible fluents, which could lead to very large input vectors.
Instead, we consider each property on a per object basis,
by representing only those properties of the objects directly
involved in the action being applied, and the objects related
in some way to those objects. Additionally, a form of deictic
representation is used (similar to [5]), where objects are
specified in terms of their roles in the action, or their roles in
a predicate with another object. For example, in Table I the
only object involved in graspA-table is the “grasped object”
x. In graspA-stack the objects include the “grasped object”
x, and the related objects “object containing the grasped
object” y and “object at base of grasped object’s stack” z.

Rather than maintaining a “slot” in the input vector for
each possible role, roles are allowed to overlap. The only
constraint is that two objects with the same role in the
same action in two different instances of the action must
always be represented at the same slot in the input vector.
Thus, each object is represented by a set of inputs, one
for each object-specific predicate (such as ingripper), and
each relation with another object (such as isin). To bind
relations to the correct objects, extra predicates are used
which relate the current object to one or more other objects,
identified by their slot (e.g., isin-obj1, isin-obj2, etc.). This
representation significantly reduces the number of inputs to
the learning mechanism, and is dependent on the complexity
of the actions and relations between objects, rather than the
number of objects in the domain.

The final input vector has the form: 〈actions, object-
independent properties, object slot 1 predicates, object slot 2
predicates, . . . , object slot n predicates〉. Fig. 1 shows an ex-
ample of an input vector for an action-state pair. In this case,
the action performed is graspA-stack. The “grasped object”
properties are represented in the object obj1 slot, while the
“object below the grasped object” properties are represented
in the object obj2 slot. Here, clear(obj1), isin(obj1, obj2)

and ontable(obj2) are shown to be true. No further object
properties are included in the state in this example, and so
all the remaining bits are set to 0.

B. Output representation

The output of the learning mechanism is a prediction of
the set of domain properties that will change if the given
action is performed at the given state. As with the input, this
is encoded as a binary vector, with each output representing
a state property: the output value is 1 if the property changes
and 0 if it does not. As with the input vector, object-
independent properties are represented by single elements,
while object-specific properties are again represented on a
per-object basis in slots. Thus, the output vector has the form:
〈object-independent properties, object slot 1 predicates, ob-
ject slot 2 predicates, . . . , object slot n predicates〉.

C. Learning

The task of the learning mechanism is to learn the associa-
tions between action-precondition pairs and their effects, that
is, rules of the form 〈A, PreA〉 → EffA. As a result of the
form of the planning actions we allow, effects are assumed
to be deterministic and disjunctive effects (i.e., effects of the
form “either p1 or p2 changes”) are not allowed. Instead,
all effects involve either conjunctions of predicates (in the
case of STRIPS) or conjunctions of predicates conditioned
on other conjunctions of predicates (in the case of ADL).
This means that it is sufficient to learn the rule for each
effect predicate separately. Thus, we can treat the learning
problem as a set of binary classification problems, one for
each (conditional) effect predicate.

A simple, fast, binary classifier that can be used to address
our particular learning problem is the perceptron [16]. The
perceptron maintains a weight vector w which is adjusted
at each training step. The i-th input vector xi ∈ {0, 1}n in
a class y ∈ {−1, 1} is classified by the perceptron using
the decision function f(xi) = sgn(〈w · xi〉). If f(xi) is
not the correct class then w is set to w + yx; if f(xi) is
correct then w is left unchanged. Provided the data is linearly
separable, the perceptron algorithm is guaranteed to converge
on a solution in a finite number of steps [17], [18]. If the
data is not linearly separable then the algorithm oscillates,
changing w at each misclassified input vector.

One solution for non-linearly separable data is to map the
input feature space into a higher-dimensional space where the
data is linearly separable. However, an explicit mapping leads
to a massive expansion in the number of features which may
make the classification problem computationally infeasible.
Instead, an implicit mapping can be achieved by applying
the kernel trick to the perceptron algorithm [8]. The kernel
trick is applied by noting that the decision function can be
written in terms of the dot product of the input vectors:

f(xi) = sgn(〈w · xi〉) = sgn(
n∑

j=1

αjyj〈xj · xi〉),

where αj is the number of times the j-th example has been
misclassified by the perceptron. By replacing the dot product



with a kernel function k(xi,xj) which calculates 〈φ(xi) ·
φ(xj)〉 for some mapping φ, the perceptron algorithm can
be run in higher dimensional space without ever requiring
the mapping to be explicitly calculated.

Since in general the problem of learning action effects is
not linearly separable, the kernel perceptron is an appropriate
choice for this problem. An ideal kernel is one which allows
the perceptron algorithm to run over the feature space of all
conjunctions of features in the original input space, as this
would allow an accurate representation of the exact conjunc-
tion of features (action and preconditions) corresponding to
a particular effect. Such a kernel is k(x, y) = 2same(x,y),
where same(x, y) is the number of bits with the same value
in both x and y [19], [20]. As we’ll see in Section V, we
also believe our approach can be made much more general,
letting us relax some of our earlier restrictions.

IV. EMPIRICAL RESULTS

In this section we describe the results of testing our
learning procedure on the object manipulation domain de-
scribed in Section II. Data was simulated from the domain
description, for both a purely STRIPS version of the actions
and an ADL version with context-dependent action effects.
(For example, the two STRIPS actions in Table I were
merged into a single ADL action, along with other changes.)
Each case was generated by randomly selecting an action,
and setting the inputs for the preconditions required for the
action to 1. The action input was set to 1, and all other
action inputs to 0. The remaining irrelevant inputs were
used to create separate training and testing input data sets.
For the training data, half of the inputs in each instance
were randomly set to 0 or 1, with the other half all set
to 0 (vice versa for the testing data). Outputs were set to
1 if the feature changed as a result of the action and 0 if
not. Overall, 3000 training and 500 testing examples were
generated with the (strong) assumptions that (i) no noise was
present in the training/testing set, and (ii) no irrelevant output
data was included in the training examples (i.e., only relevant
changes were provided). To determine an error bound on our
results, 10 runs with different randomly generated training
and testing sets were used. Our testing environment was a
2.4 GHz quad-core system with 6 Gb of RAM. All times
were measured for Matlab 7.2.0.294.

The results of our testing are shown in Fig. 2. Overall,
the kernel perceptron learnt the training data and performed
well on the testing data with a low error rate. Fig. 2(a) shows
the error rate for the learnt STRIPS actions, while Fig. 2(b)
shows the error rate for the ADL actions. In both cases,
the average error dropped to less than 3% after 700 training
examples. The standard perceptron error rate, included for
comparison, shows significantly worse performance: over
5% error after 3000 training examples. Fig. 2(c) shows the
training time for both STRIPS and ADL actions (for 1 bit of
the effect vector), while Fig. 2(d) shows the prediction time
(for 1 bit of 1 prediction). In both cases, the kernel perceptron
method is quite efficient. Perhaps the most surprising result
is that there is little difference between the training and

prediction times of STRIPS actions, compared with those
for ADL actions, at least for our particular testing domain.
In general, performance on ADL domains will always take
longer than STRIPS domains, particularly when the condi-
tional effect training examples are very dissimilar to the other
training examples available. (The ADL problem is slightly
more difficult, even in our domain.) Additional testing is
needed on more complex domains, to determine to what
extent the STRIPS and ADL results remain similar.

In our implementation, performing training or prediction
consists of two steps: calculating the kernel matrix, followed
by either the perceptron algorithm loop or the decision func-
tion calculation, respectively. The kernel matrix calculation
does not vary with the difficulty of the problem. Calculating
the kernel matrix for training is O(n2), where n is the
number of training examples. However, only around 700
examples are required to achieve sufficient generalisation
for planning in the test domain, corresponding to under
0.25 seconds to calculate the kernel matrix. Similarly for
prediction, calculating the kernel matrix is O(mn), where n
is the number of training examples and m the number of
testing examples. For 700 training examples and 500 testing
examples the computation time is also below 0.25 seconds.

For the second step, estimates of O(n2) for training and
O(n) for prediction are valid for the worst case, where the
kernel matrix entries for every pair of training examples
have to be used in the perceptron algorithm loop (so every
training example contributes to the weight vector), and where
kernel matrix entries for every training example paired with
every test example have to be used for the decision function
calculation (again, when every training example contributes
to the weight vector). The overall time is also affected by
such factors as the number of bits in the input vector (which
affects every calculations of the kernel matrix entries), the
number of iterations the perceptron algorithm has to make
(which affects training), and the number of training vectors
which contribute to the weight vector (which affects both
training and prediction). For the testing domain, however,
we have almost linear training time and constant prediction
time in the number of training examples.

V. DISCUSSION

The results of our experiments show that kernel percep-
trons are able to learn the dynamics of a planning domain.
In order to test the feasibility of our approach under real
planning conditions, we are currently integrating our learning
mechanism with the PKS (Planning with Knowledge and
Sensing) planner [21], [22]. In this case, the planner uses
the network as part of its action model, by querying the
network during plan construction to determine action effects
at particular states. Since planning systems traditionally use
efficient rule-based action models, we must still evaluate the
extra overhead resulting from our network-based approach.

We also envision a more incremental approach to train and
use our learning mechanism, as a component of a cognitive
architecture of the kind reported in [12], where a low-level
robot/vision system is linked to a high-level planning system.



0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

Number of training examples

%
 e

rr
or

 

 
STRIPS (kernel perceptron)
STRIPS (standard perceptron)

(a) Average error rate for learnt STRIPS actions

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

Number of training examples

%
 e

rr
or

 

 
ADL (kernel perceptron)
ADL (standard perceptron)

(b) Average error rate for learnt ADL actions

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of training examples

tim
e 

(s
)

 

 

ADL

STRIPS

(c) Training time for STRIPS and ADL actions

0 500 1000 1500 2000 2500 3000

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84
x 10

−3

Number of training examples

tim
e 

(s
)

 

 

ADL

STRIPS

(d) Prediction time for STRIPS and ADL actions

Fig. 2. Results from experiments in the object manipulation domain

Rather than employing a completely offline training phase
for our network, we foresee a more interactive approach,
where online training data is generated from the robot’s
initial experiences in its environment, and the planner is able
to use early action models to generate plans (albeit, lower
quality plans). As more training data becomes available, plan
quality should also increase, allowing the robot to learn how
better to act. An existing integration project that uses the
object manipulation scenario described in this paper, may
provide a useful testbed for our learning techniques [13].

Testing in a robot/planning environment will also allow
us to investigate the effectiveness of our learning method
in practice. For instance, although the error rates for our
learnt actions are low (< 3%), it is unclear what effect
this will have on the quality of plans constructed for this
domain. Since replanning often has to take place in real-
world robot domains, having a perfect plan is not always
necessary. On the other hand, our method also assumes
deterministic outcomes of actions, whereas some actions
might better be modelled with probabilistic outcomes in this

environment. In this case, we may again be able to use
replanning techniques to some extent, but may also have to
consider more substantial changes to our approach.

Currently, our approach makes certain assumptions that
are not always realistic, especially when data is provided by
real-world systems. For instance, we assume that there is no
noise in the input or output data, and no irrelevant data in the
training outcomes. We can relax the first assumption about
noisy data, by using a noise-tolerant variant of the perceptron
algorithm, such as adding a margin term [9]. We also believe
such techniques can be used to handle irrelevant output
data, since by definition such changes behave like noise. (In
particular, irrelevant outputs correspond to irrelevant state
changes in the action effects.) Otherwise, we run the risk of
having perceptrons that fail to converge, or produce error-
prone output when trying to predict such cases.

Representationally, there is also an issue with predicting
changes to domain properties that are dependent on more
primitive properties, as such changes can be wider-reaching
than changes to the purely primitive properties themselves.



For example, our object manipulation scenario allows for
situations where the robot can combine two existing stacks
of objects into one large tower, by gripping the base object
of one stack and releasing it at the top of another stack. In
our initial planning representation, a predicate instack(x, y)
is used to indicate that a block x is in a stack with y at
its base. Thus, after combining two stacks, instack must
be updated for all objects in the “gripped” stack, to reflect
the new base object of the single tower. In order to update
instack correctly using our approach, the output would have
to represent all of the objects in both stacks. Currently, only
objects directly acted on, or related to directly acted on
objects, are represented. Rather than attempt to represent all
the objects required, it is easier to treat instack as a derived
predicate defined in terms of more primitive properties (e.g.,
isin and ontable). This is also the approach taken in [5],
where derived “concepts” are used in the rule antecedents
but only primitive properties are used in the outcomes.

Additional testing is needed to determine the scalability of
our approach on more difficult planning domains, although
we expect that it should scale well with the number of
predicates and actions. We also plan to compare our re-
sults to those of other classifiers, such as SVMs. We are
currently investigating extensions to our approach to learn
more comprehensive, and more complex, action models. For
instance, we believe that our kernel perceptron approach
could also be used to learn action preconditions, provided
it is possible to only represent a small number of objects in
the state at a time. Such an extension would require a means
of choosing which objects to consider, and may ultimately
need to be learnt. An attentional mechanism of some sort
may be of help in this task [23], [5]. We also believe that
our approach can be adapted to learn more sophisticated
action representations, such as those used by PKS to describe
knowledge and sensing. Since PKS’s representation is based
on an extended version of STRIPS/ADL, many of its features
are similar to those that can already be learnt by our methods.

VI. CONCLUSIONS

In this paper we presented a mechanism based on kernel
perceptrons, to address the problem of learning STRIPS
and ADL action effects for planning domains. Overall, our
approach demonstrated efficient performance on our testing
sets, with low average error rates (< 3%) for the learnt
action effects. This work is also part of a larger cognitive
architecture linking a high-level reasoning component with a
low-level robot/vision system. We are currently in the process
of integrating our learning method with the PKS planning
system, and testing our approach on more complex planning
domains including a real-world robot environment [13].

ACKNOWLEDGEMENTS

This work was partially funded by the European Com-
mission through the PACO-PLUS project (FP6-2004-IST-4-
27657) and the UK EPSRC/MRC through the Neuroinfor-
matics Doctoral Training Centre, University of Edinburgh.

REFERENCES

[1] X. Wang, “Learning by observation and practice: An incremental ap-
proach for planning operator acquisition,” in Proc. of the International
Conference on Machine Learning (ICML-95), 1995, pp. 549–557.

[2] Y. Gil, “Learning by experimentation: Incremental refinement of
incomplete planning domains,” in Proceedings of the International
Conference on Machine Learning (ICML-94). MIT Press, 1994.

[3] M. Holmes and C. Isbell, “Schema learning: Experience-based con-
struction of predictive action models,” in Advances in Neural Infor-
mation Processing Systems (NIPS) 17, 2005, pp. 585–562.

[4] M. R. Doǧar, M. Çakmak, E. Uǧur, and E. Şahin, “From primitive
behaviors to goal directed behavior using affordances,” in Proc. of
Intelligent Robots and Systems (IROS 2007), 2007.

[5] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning
symbolic models of stochastic world domains,” Journal of Artificial
Intelligence Research, vol. 29, pp. 309–352, 2007.

[6] D. Shahaf and E. Amir, “Learning partially observable action
schemas,” in Proceedings of the National Conference on Artificial
Intelligence (AAAI-06). AAAI Press, 2006.

[7] M. A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical
foundations of the potential function method in pattern recognition
learning,” Automation and Remote Control, vol. 25, pp. 821–837,
1964.

[8] Y. Freund and R. Schapire, “Large margin classification using the
perceptron algorithm,” Machine Learning, vol. 37, pp. 277–296, 1999.

[9] R. Khardon and G. M. Wachman, “Noise tolerant variants of the
perceptron algorithm,” Journal of Machine Learning Research, vol. 8,
pp. 227–248, 2007.

[10] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, pp. 189–208, 1971.

[11] E. P. D. Pednault, “ADL: Exploring the middle ground between
STRIPS and the situation calculus,” in Proc. of Principles of Knowl-
edge Representation and Reasoning (KR-89). Morgan Kaufmann
Publishers, 1989, pp. 324–332.

[12] C. Geib, K. Mourão, R. Petrick, N. Pugeault, M. Steedman,
N. Krueger, and F. Wörgötter, “Object action complexes as an interface
for planning and robot control,” in Proceedings of the Humanoids-06
Workshop: Towards Cognitive Humanoid Robots, Genoa, Italy, 2006.

[13] D. Kraft, E. Başeski, M. Popović, A. M. Batog, A. Kjær-Nielsen,
N. Krüger, R. Petrick, C. Geib, N. Pugeault, M. Steedman, T. Asfour,
R. Dillmann, S. Kalkan, and F. Wörgötter, “Exploration and planning
in a three-level cognitive architecture,” in Proc. of the International
Conference on Cognitive Systems (CogSys 2008), 2008.

[14] M. Surdeanu and M. Ciaramita, “Robust information extraction with
perceptrons,” in Proceedings of the NIST 2007 Automatic Content
Extraction Workshop (ACE07), Mar. 2007.

[15] T. Graepel, R. Herbrich, and R. C. Williamson, “From margin to
sparsity,” Advances in Neural Information Processing Systems, vol. 13,
pp. 210–216, 2000.

[16] F. Rosenblatt, “The perceptron: a probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
no. 6, pp. 386–408, Nov. 1958.

[17] A. B. Novikoff, “On convergence proofs for perceptrons,” in Pro-
ceedings of the Symposium on the Mathematical Theory of Automata,
vol. 12, 1963, pp. 615–622.

[18] M. L. Minsky and S. A. Papert, Perceptrons. The MIT Press, 1969.
[19] K. Sadohara, “Learning of boolean functions using support vector

machines,” in Proc. of Algorithmic Learning Theory, Lecture Notes
in Artificial Intelligence, vol. 2225. Springer, 2001, pp. 106–118.

[20] R. Khardon, D. Roth, and R. A. Servedio, “Efficiency versus conver-
gence of boolean kernels for on-line learning algorithms,” Journal of
Artificial Intelligence Research, vol. 24, pp. 341–356, 2005.

[21] R. P. A. Petrick and F. Bacchus, “A knowledge-based approach
to planning with incomplete information and sensing,” in Proc. of
Artificial Intelligence Planning and Scheduling (AIPS-2002). AAAI
Press, 2002, pp. 212–221.

[22] ——, “Extending the knowledge-based approach to planning with
incomplete information and sensing,” in Proc. of Automated Planning
and Scheduling (ICAPS-04). AAAI Press, 2004, pp. 2–11.

[23] D. Kragic, M. Björkman, H. I. Christensen, and J.-O. Eklundh, “Vision
for robotic object manipulation in domestic settings,” Robotics and
Autonomous Systems, vol. 52, no. 1, pp. 85–100, July 2005.


