413 research outputs found

    Evaluating Conversational Recommender Systems: A Landscape of Research

    Full text link
    Conversational recommender systems aim to interactively support online users in their information search and decision-making processes in an intuitive way. With the latest advances in voice-controlled devices, natural language processing, and AI in general, such systems received increased attention in recent years. Technically, conversational recommenders are usually complex multi-component applications and often consist of multiple machine learning models and a natural language user interface. Evaluating such a complex system in a holistic way can therefore be challenging, as it requires (i) the assessment of the quality of the different learning components, and (ii) the quality perception of the system as a whole by users. Thus, a mixed methods approach is often required, which may combine objective (computational) and subjective (perception-oriented) evaluation techniques. In this paper, we review common evaluation approaches for conversational recommender systems, identify possible limitations, and outline future directions towards more holistic evaluation practices

    Towards Question-based Recommender Systems

    Get PDF
    Conversational and question-based recommender systems have gained increasing attention in recent years, with users enabled to converse with the system and better control recommendations. Nevertheless, research in the field is still limited, compared to traditional recommender systems. In this work, we propose a novel Question-based recommendation method, Qrec, to assist users to find items interactively, by answering automatically constructed and algorithmically chosen questions. Previous conversational recommender systems ask users to express their preferences over items or item facets. Our model, instead, asks users to express their preferences over descriptive item features. The model is first trained offline by a novel matrix factorization algorithm, and then iteratively updates the user and item latent factors online by a closed-form solution based on the user answers. Meanwhile, our model infers the underlying user belief and preferences over items to learn an optimal question-asking strategy by using Generalized Binary Search, so as to ask a sequence of questions to the user. Our experimental results demonstrate that our proposed matrix factorization model outperforms the traditional Probabilistic Matrix Factorization model. Further, our proposed Qrec model can greatly improve the performance of state-of-the-art baselines, and it is also effective in the case of cold-start user and item recommendations.Comment: accepted by SIGIR 202

    Controllable Recommenders using Deep Generative Models and Disentanglement

    Get PDF
    In this paper, we consider controllability as a means to satisfy dynamic preferences of users, enabling them to control recommendations such that their current preference is met. While deep models have shown improved performance for collaborative filtering, they are generally not amenable to fine grained control by a user, leading to the development of methods like deep language critiquing. We propose an alternate view, where instead of keyphrase based critiques, a user is provided 'knobs' in a disentangled latent space, with each knob corresponding to an item aspect. Disentanglement here refers to a latent space where generative factors (here, a preference towards an item category like genre) are captured independently in their respective dimensions, thereby enabling predictable manipulations, otherwise not possible in an entangled space. We propose using a (semi-)supervised disentanglement objective for this purpose, as well as multiple metrics to evaluate the controllability and the degree of personalization of controlled recommendations. We show that by updating the disentangled latent space based on user feedback, and by exploiting the generative nature of the recommender, controlled and personalized recommendations can be produced. Through experiments on two widely used collaborative filtering datasets, we demonstrate that a controllable recommender can be trained with a slight reduction in recommender performance, provided enough supervision is provided. The recommendations produced by these models appear to both conform to a user's current preference and remain personalized.Comment: 10 pages, 1 figur

    A 3D Visual Interface for Critiquing-based Recommenders: Architecture and Interaction

    Get PDF
    Nowadays e-commerce websites offer users such a huge amount of products, which far from facilitating the buying process, actually make it more difficult. Hence, recommenders, which learn from users' preferences, are consolidating as valuable instruments to enhance the buying process in the 2D Web. Indeed, 3D virtual environments are an alternative interface for recommenders. They provide the user with an immersive 3D social experience, enabling a richer visualisation and increasing the interaction possibilities with other users and with the recommender. In this paper, we focus on a novel framework to tightly integrate interactive recommendation systems in a 3D virtual environment. Specifically, we propose to integrate a Collaborative Conversational Recommender (CCR) in a 3D social virtual world. Our CCR Framework defines three layers: the user interaction layer (3D Collaborative Space Client), the communication layer (3D Collaborative Space Server), and the recommendation layer (Collaborative Conversational Recommender). Additionally, we evaluate the framework based on several usability criteria such as learnability, perceived efficiency and effectiveness. Results demonstrate that users positively valued the experience

    Data-driven decision making in Critique-based recommenders: from a critique to social media data

    Full text link
    In the last decade there have been a large number of proposals in the field of Critique-based Recommenders. Critique-based recommenders are data-driven in their nature sincethey use a conversational cyclical recommendation process to elicit user feedback. In theliterature, the proposals made differ mainly in two aspects: in the source of data and in howthis data is analyzed to extract knowledge for providing users with recommendations. Inthis paper, we propose new algorithms that address these two aspects. Firstly, we propose anew algorithm, called HOR, which integrates several data sources, such as current user pref-erences (i.e., a critique), product descriptions, previous critiquing sessions by other users,and users' opinions expressed as ratings on social media web sites. Secondly, we propose adding compatibility and weighting scores to turn user behavior into knowledge to HOR and a previous state-of-the-art approach named HGR to help both algorithms make smarter recommendations. We have evaluated our proposals in two ways: with a simulator and withreal users. A comparison of our proposals with state-of-the-art approaches shows that thenew recommendation algorithms significantly outperform previous ones

    Enhancing explainability and scrutability of recommender systems

    Get PDF
    Our increasing reliance on complex algorithms for recommendations calls for models and methods for explainable, scrutable, and trustworthy AI. While explainability is required for understanding the relationships between model inputs and outputs, a scrutable system allows us to modify its behavior as desired. These properties help bridge the gap between our expectations and the algorithm’s behavior and accordingly boost our trust in AI. Aiming to cope with information overload, recommender systems play a crucial role in filtering content (such as products, news, songs, and movies) and shaping a personalized experience for their users. Consequently, there has been a growing demand from the information consumers to receive proper explanations for their personalized recommendations. These explanations aim at helping users understand why certain items are recommended to them and how their previous inputs to the system relate to the generation of such recommendations. Besides, in the event of receiving undesirable content, explanations could possibly contain valuable information as to how the system’s behavior can be modified accordingly. In this thesis, we present our contributions towards explainability and scrutability of recommender systems: • We introduce a user-centric framework, FAIRY, for discovering and ranking post-hoc explanations for the social feeds generated by black-box platforms. These explanations reveal relationships between users’ profiles and their feed items and are extracted from the local interaction graphs of users. FAIRY employs a learning-to-rank (LTR) method to score candidate explanations based on their relevance and surprisal. • We propose a method, PRINCE, to facilitate provider-side explainability in graph-based recommender systems that use personalized PageRank at their core. PRINCE explanations are comprehensible for users, because they present subsets of the user’s prior actions responsible for the received recommendations. PRINCE operates in a counterfactual setup and builds on a polynomial-time algorithm for finding the smallest counterfactual explanations. • We propose a human-in-the-loop framework, ELIXIR, for enhancing scrutability and subsequently the recommendation models by leveraging user feedback on explanations. ELIXIR enables recommender systems to collect user feedback on pairs of recommendations and explanations. The feedback is incorporated into the model by imposing a soft constraint for learning user-specific item representations. We evaluate all proposed models and methods with real user studies and demonstrate their benefits at achieving explainability and scrutability in recommender systems.Unsere zunehmende Abhängigkeit von komplexen Algorithmen für maschinelle Empfehlungen erfordert Modelle und Methoden für erklärbare, nachvollziehbare und vertrauenswürdige KI. Zum Verstehen der Beziehungen zwischen Modellein- und ausgaben muss KI erklärbar sein. Möchten wir das Verhalten des Systems hingegen nach unseren Vorstellungen ändern, muss dessen Entscheidungsprozess nachvollziehbar sein. Erklärbarkeit und Nachvollziehbarkeit von KI helfen uns dabei, die Lücke zwischen dem von uns erwarteten und dem tatsächlichen Verhalten der Algorithmen zu schließen und unser Vertrauen in KI-Systeme entsprechend zu stärken. Um ein Übermaß an Informationen zu verhindern, spielen Empfehlungsdienste eine entscheidende Rolle um Inhalte (z.B. Produkten, Nachrichten, Musik und Filmen) zu filtern und deren Benutzern eine personalisierte Erfahrung zu bieten. Infolgedessen erheben immer mehr In- formationskonsumenten Anspruch auf angemessene Erklärungen für deren personalisierte Empfehlungen. Diese Erklärungen sollen den Benutzern helfen zu verstehen, warum ihnen bestimmte Dinge empfohlen wurden und wie sich ihre früheren Eingaben in das System auf die Generierung solcher Empfehlungen auswirken. Außerdem können Erklärungen für den Fall, dass unerwünschte Inhalte empfohlen werden, wertvolle Informationen darüber enthalten, wie das Verhalten des Systems entsprechend geändert werden kann. In dieser Dissertation stellen wir unsere Beiträge zu Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten vor. • Mit FAIRY stellen wir ein benutzerzentriertes Framework vor, mit dem post-hoc Erklärungen für die von Black-Box-Plattformen generierten sozialen Feeds entdeckt und bewertet werden können. Diese Erklärungen zeigen Beziehungen zwischen Benutzerprofilen und deren Feeds auf und werden aus den lokalen Interaktionsgraphen der Benutzer extrahiert. FAIRY verwendet eine LTR-Methode (Learning-to-Rank), um die Erklärungen anhand ihrer Relevanz und ihres Grads unerwarteter Empfehlungen zu bewerten. • Mit der PRINCE-Methode erleichtern wir das anbieterseitige Generieren von Erklärungen für PageRank-basierte Empfehlungsdienste. PRINCE-Erklärungen sind für Benutzer verständlich, da sie Teilmengen früherer Nutzerinteraktionen darstellen, die für die erhaltenen Empfehlungen verantwortlich sind. PRINCE-Erklärungen sind somit kausaler Natur und werden von einem Algorithmus mit polynomieller Laufzeit erzeugt , um präzise Erklärungen zu finden. • Wir präsentieren ein Human-in-the-Loop-Framework, ELIXIR, um die Nachvollziehbarkeit der Empfehlungsmodelle und die Qualität der Empfehlungen zu verbessern. Mit ELIXIR können Empfehlungsdienste Benutzerfeedback zu Empfehlungen und Erklärungen sammeln. Das Feedback wird in das Modell einbezogen, indem benutzerspezifischer Einbettungen von Objekten gelernt werden. Wir evaluieren alle Modelle und Methoden in Benutzerstudien und demonstrieren ihren Nutzen hinsichtlich Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten

    A Cognitively Inspired Clustering Approach for Critique-Based Recommenders

    Full text link
    The purpose of recommender systems is to support humans in the purchasing decision-making process. Decision-making is a human activity based on cognitive information. In the field of recommender systems, critiquing has been widely applied as an effective approach for obtaining users' feedback on recommended products. In the last decade, there have been a large number of proposals in the field of critique-based recommenders. These proposals mainly differ in two aspects: in the source of data and in how it is mined to provide the user with recommendations. To date, no approach has mined data using an adaptive clustering algorithm to increase the recommender's performance. In this paper, we describe how we added a clustering process to a critique-based recommender, thereby adapting the recommendation process and how we defined a cognitive user preference model based on the preferences (i.e., defined by critiques) received by the user. We have developed several proposals based on clustering, whose acronyms are MCP, CUM, CUM-I, and HGR-CUM-I. We compare our proposals with two well-known state-of-the-art approaches: incremental critiquing (IC) and history-guided recommendation (HGR). The results of our experiments showed that using clustering in a critique-based recommender leads to an improvement in their recommendation efficiency, since all the proposals outperform the baseline IC algorithm. Moreover, the performance of the best proposal, HGR-CUM-I, is significantly superior to both the IC and HGR algorithms. Our results indicate that introducing clustering into the critique-based recommender is an appealing option since it enhances overall efficiency, especially with a large data set

    Leveraging Large Language Models in Conversational Recommender Systems

    Full text link
    A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue. Recently, Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding, unlocking the potential of this paradigm. However, effectively leveraging LLMs within a CRS introduces new technical challenges, including properly understanding and controlling a complex conversation and retrieving from external sources of information. These issues are exacerbated by a large, evolving item corpus and a lack of conversational data for training. In this paper, we provide a roadmap for building an end-to-end large-scale CRS using LLMs. In particular, we propose new implementations for user preference understanding, flexible dialogue management and explainable recommendations as part of an integrated architecture powered by LLMs. For improved personalization, we describe how an LLM can consume interpretable natural language user profiles and use them to modulate session-level context. To overcome conversational data limitations in the absence of an existing production CRS, we propose techniques for building a controllable LLM-based user simulator to generate synthetic conversations. As a proof of concept we introduce RecLLM, a large-scale CRS for YouTube videos built on LaMDA, and demonstrate its fluency and diverse functionality through some illustrative example conversations

    The interplay between food knowledge, nudges, and preference elicitation methods determines the evaluation of a recipe recommender system

    Get PDF
    Domain knowledge can affect how a user evaluates different aspects of a recommender system. Recipe recommendations might be difficult to understand, as some health aspects are implicit. The appropriateness of a recommender’s preference elicitation (PE) method, whether users rate individual items or item attributes, may depend on the user’s knowledge level. We present an online recipe recommender experiment. Users (𝑁=360) with varying levels of subjective food knowledge faced different cognitive digital nudges (i.e., food labels) and PE methods. In a 3 (recipes annotated with no labels, Multiple Traffic Light (MTL) labels, or full nutrition labels) x2 (PE method : content-based PE or knowledge-based) between-subjects design. We observed a main effect of knowledge-based PE on the healthiness of chosen recipes, while MTL label only helped marginally. A Structural Equation Model analysis revealed that the interplay between user knowledge and the PE method reduced the perceived effort of using the system and in turn, affected choice difficulty and satisfaction. Moreover, the evaluation of health labels depends on a user’s level of food knowledge. Our findings emphasize the importance of user characteristics in the evaluation of food recommenders and the merit of interface and inter action aspects
    corecore