991 research outputs found

    Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach

    Get PDF
    Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processing capability for handling real-life situations. This thesis is concerned with the design, implementation, testing and application of these techniques to those datasets. The thesis also introduces a hybrid intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems. This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected labels crisp. This leads to a different output layer activation function and weight connection in the neural network (NN) structure obtained by mapping the FDT to the NN. A momentum term was also introduced into the learning process to train the weight connections to avoid oscillation or divergence. A new reasoning mechanism has been also proposed to combine the constructed tree with those weights which had been optimized in the learning process. This thesis also makes a comparison between the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT. SIx datasets ranging from material science to medical and civil engineering were introduced as case study applications. These datasets involve classification of composite material failure mechanism, classification of electrocorticography (ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave overtopping prediction. Different intelligent systems techniques were used to cluster the patterns and predict the classes although OWFDT was used to design classifiers for all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were used to cluster the acoustic event signals and classify those events to different failure mechanism, after the classification, OWFDT was introduced to design a classifier in an attempt to classify acoustic event signals. For the eye bacteria dataset, we use the bagging technique to improve the classification accuracy of Multilayer Perceptrons and Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select those most important sensors (features) so that the dimension of the data could be reduced. Those features which were most important were used to grow the OWFDT and the curse of dimensionality problem could be solved using this approach. The last dataset, which is concerned with wave overtopping, was used to benchmark OWFDT with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical Method (GNMM) and Fuzzy ARTMAP. Through analyzing these datasets using these Intelligent Systems Techniques, it has been shown that patterns and classes can be found or can be classified through combining those techniques together. OWFDT has also demonstrated its efficiency and effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy Decision Tree

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Approximation contexts in addressing graph data structures

    Get PDF
    While the application of machine learning algorithms to practical problems has been expanded from fixed sized input data to sequences, trees or graphs input data, the composition of learning system has developed from a single model to integrated ones. Recent advances in graph based learning algorithms include: the SOMSD (Self Organizing Map for Structured Data), PMGraphSOM (Probability Measure Graph Self Organizing Map,GNN (Graph Neural Network) and GLSVM (Graph Laplacian Support Vector Machine). A main motivation of this thesis is to investigate if such algorithms, whether by themselves individually or modified, or in various combinations, would provide better performance over the more traditional artificial neural networks or kernel machine methods on some practical challenging problems. More succinctly, this thesis seeks to answer the main research question: when or under what conditions/contexts could graph based models be adjusted and tailored to be most efficacious in terms of predictive or classification performance on some challenging practical problems? There emerges a range of sub-questions including: how do we craft an effective neural learning system which can be an integration of several graph and non-graph based models? Integration of various graph based and non graph based kernel machine algorithms; enhancing the capability of the integrated model in working with challenging problems; tackling the problem of long term dependency issues which aggravate the performance of layer-wise graph based neural systems. This thesis will answer these questions. Recent research on multiple staged learning models has demonstrated the efficacy of multiple layers of alternating unsupervised and supervised learning approaches. This underlies the very successful front-end feature extraction techniques in deep neural networks. However much exploration is still possible with the investigation of the number of layers required, and the types of unsupervised or supervised learning models which should be used. Such issues have not been considered so far, when the underlying input data structure is in the form of a graph. We will explore empirically the capabilities of models of increasing complexities, the combination of the unsupervised learning algorithms, SOM, or PMGraphSOM, with or without a cascade connection with a multilayer perceptron, and with or without being followed by multiple layers of GNN. Such studies explore the effects of including or ignoring context. A parallel study involving kernel machines with or without graph inputs has also been conducted empirically

    Artificial Intelligence Techniques in Medical Imaging: A Systematic Review

    Get PDF
    This scientific review presents a comprehensive overview of medical imaging modalities and their diverse applications in artificial intelligence (AI)-based disease classification and segmentation. The paper begins by explaining the fundamental concepts of AI, machine learning (ML), and deep learning (DL). It provides a summary of their different types to establish a solid foundation for the subsequent analysis. The prmary focus of this study is to conduct a systematic review of research articles that examine disease classification and segmentation in different anatomical regions using AI methodologies. The analysis includes a thorough examination of the results reported in each article, extracting important insights and identifying emerging trends. Moreover, the paper critically discusses the challenges encountered during these studies, including issues related to data availability and quality, model generalization, and interpretability. The aim is to provide guidance for optimizing technique selection. The analysis highlights the prominence of hybrid approaches, which seamlessly integrate ML and DL techniques, in achieving effective and relevant results across various disease types. The promising potential of these hybrid models opens up new opportunities for future research in the field of medical diagnosis. Additionally, addressing the challenges posed by the limited availability of annotated medical images through the incorporation of medical image synthesis and transfer learning techniques is identified as a crucial focus for future research efforts

    Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach

    Get PDF
    Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processing capability for handling real-life situations. This thesis is concerned with the design, implementation, testing and application of these techniques to those datasets. The thesis also introduces a hybrid intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems. This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected labels crisp. This leads to a different output layer activation function and weight connection in the neural network (NN) structure obtained by mapping the FDT to the NN. A momentum term was also introduced into the learning process to train the weight connections to avoid oscillation or divergence. A new reasoning mechanism has been also proposed to combine the constructed tree with those weights which had been optimized in the learning process. This thesis also makes a comparison between the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT. SIx datasets ranging from material science to medical and civil engineering were introduced as case study applications. These datasets involve classification of composite material failure mechanism, classification of electrocorticography (ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave overtopping prediction. Different intelligent systems techniques were used to cluster the patterns and predict the classes although OWFDT was used to design classifiers for all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were used to cluster the acoustic event signals and classify those events to different failure mechanism, after the classification, OWFDT was introduced to design a classifier in an attempt to classify acoustic event signals. For the eye bacteria dataset, we use the bagging technique to improve the classification accuracy of Multilayer Perceptrons and Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select those most important sensors (features) so that the dimension of the data could be reduced. Those features which were most important were used to grow the OWFDT and the curse of dimensionality problem could be solved using this approach. The last dataset, which is concerned with wave overtopping, was used to benchmark OWFDT with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical Method (GNMM) and Fuzzy ARTMAP. Through analyzing these datasets using these Intelligent Systems Techniques, it has been shown that patterns and classes can be found or can be classified through combining those techniques together. OWFDT has also demonstrated its efficiency and effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy Decision Tree.EThOS - Electronic Theses Online ServiceUniversity of WarwickOverseas Research Students Awards Scheme (ORSAS)GBUnited Kingdo

    Addressing High False Positive Rates of DDoS Attack Detection Methods

    Get PDF
    Distributed denial of service (DDoS) attack detection methods based on the clustering method are ineffective in detecting attacks correctly. Service interruptions caused by DDoS attacks impose concerns for IT leaders and their organizations, leading to financial damages. Grounded in the cross industry standard process for data mining framework, the purpose of this ex post facto study was to examine whether adding the filter and wrapper methods prior to the clustering method is effective in terms of lowering false positive rates of DDoS attack detection methods. The population of this study was 225,745 network traffic data records of the CICIDS2017 network traffic dataset. The 10-fold cross validation method was applied to identify effective DDoS attack detection methods. The results of the 10-fold cross validation method showed that in some instances, addition of the filter and wrapper methods prior to the clustering method was effective in terms of lowering false positive rates of DDoS attack detection methods; in some instances, it was not. A recommendation to IT leaders is to deploy the effective DDoS attack detection method that produced the lowest false positive rate of 0.013 in detecting attacks outside of demilitarized zones to identify attacks directly from the Internet. Implications for positive social change is potentially in enabling organizations to protect their systems and provide uninterrupted services to their communities with reduced financial damages

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Machine-learning approaches in drug discovery: methods and applications

    No full text
    During the past decade, virtual screening (VS) has evolved from traditional similarity searching, which utilizes single reference compounds, into an advanced application domain for data mining and machine-learning approaches, which require large and representative training-set compounds to learn robust decision rules. The explosive growth in the amount of public domain-available chemical and biological data has generated huge effort to design, analyze, and apply novel learning methodologies. Here, I focus on machine-learning techniques within the context of ligand-based VS (LBVS). In addition, I analyze several relevant VS studies from recent publications, providing a detailed view of the current state-of-the-art in this field and highlighting not only the problematic issues, but also the successes and opportunities for further advances

    Integration of Auxiliary Data Knowledge in Prototype Based Vector Quantization and Classification Models

    Get PDF
    This thesis deals with the integration of auxiliary data knowledge into machine learning methods especially prototype based classification models. The problem of classification is diverse and evaluation of the result by using only the accuracy is not adequate in many applications. Therefore, the classification tasks are analyzed more deeply. Possibilities to extend prototype based methods to integrate extra knowledge about the data or the classification goal is presented to obtain problem adequate models. One of the proposed extensions is Generalized Learning Vector Quantization for direct optimization of statistical measurements besides the classification accuracy. But also modifying the metric adaptation of the Generalized Learning Vector Quantization for functional data, i. e. data with lateral dependencies in the features, is considered.:Symbols and Abbreviations 1 Introduction 1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . 1 1.2 Utilized Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Prototype Based Methods 19 2.1 Unsupervised Vector Quantization . . . . . . . . . . . . . . . . . . 22 2.1.1 C-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3 Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.4 Common Generalizations . . . . . . . . . . . . . . . . . . . 30 2.2 Supervised Vector Quantization . . . . . . . . . . . . . . . . . . . . 35 2.2.1 The Family of Learning Vector Quantizers - LVQ . . . . . . 36 2.2.2 Generalized Learning Vector Quantization . . . . . . . . . 38 2.3 Semi-Supervised Vector Quantization . . . . . . . . . . . . . . . . 42 2.3.1 Learning Associations by Self-Organization . . . . . . . . . 42 2.3.2 Fuzzy Labeled Self-Organizing Map . . . . . . . . . . . . . 43 2.3.3 Fuzzy Labeled Neural Gas . . . . . . . . . . . . . . . . . . 45 2.4 Dissimilarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4.1 Differentiable Kernels in Generalized LVQ . . . . . . . . . 52 2.4.2 Dissimilarity Adaptation for Performance Improvement . 56 3 Deeper Insights into Classification Problems - From the Perspective of Generalized LVQ- 81 3.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 The Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 Evaluation of Classification Results . . . . . . . . . . . . . . . . . . 88 3.4 The Classification Task as an Ill-Posed Problem . . . . . . . . . . . 92 4 Auxiliary Structure Information and Appropriate Dissimilarity Adaptation in Prototype Based Methods 93 4.1 Supervised Vector Quantization for Functional Data . . . . . . . . 93 4.1.1 Functional Relevance/Matrix LVQ . . . . . . . . . . . . . . 95 4.1.2 Enhancement Generalized Relevance/Matrix LVQ . . . . 109 4.2 Fuzzy Information About the Labels . . . . . . . . . . . . . . . . . 121 4.2.1 Fuzzy Semi-Supervised Self-Organizing Maps . . . . . . . 122 4.2.2 Fuzzy Semi-Supervised Neural Gas . . . . . . . . . . . . . 123 5 Variants of Classification Costs and Class Sensitive Learning 137 5.1 Border Sensitive Learning in Generalized LVQ . . . . . . . . . . . 137 5.1.1 Border Sensitivity by Additive Penalty Function . . . . . . 138 5.1.2 Border Sensitivity by Parameterized Transfer Function . . 139 5.2 Optimizing Different Validation Measures by the Generalized LVQ 147 5.2.1 Attention Based Learning Strategy . . . . . . . . . . . . . . 148 5.2.2 Optimizing Statistical Validation Measurements for Binary Class Problems in the GLVQ . . . . . . . . . . . . . 155 5.3 Integration of Structural Knowledge about the Labeling in Fuzzy Supervised Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . 160 6 Conclusion and Future Work 165 My Publications 168 A Appendix 173 A.1 Stochastic Gradient Descent (SGD) . . . . . . . . . . . . . . . . . . 173 A.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 175 A.3 Fuzzy Supervised Neural Gas Algorithm Solved by SGD . . . . . 179 Bibliography 182 Acknowledgements 20

    Approche robuste pour la segmentation et la classification d’images m´edicales

    Get PDF
    Image segmentation is a vital process in various fields, including robotics, object recognition, and medical imaging. In medical imaging, accurate segmentation of brain tissues from MRI images is crucial for diagnosing and treating brain disorders such as Alzheimer’s disease, epilepsy, schizophrenia, multiple sclerosis, and cancer. This thesis proposes an automatic fuzzy method for brain MRI segmentation. Firstly, the proposed method aims to improve the efficiency of the Fuzzy C-Means (FCM) algorithm by reducing the need for manual intervention in cluster initialization and determining the number of clusters. For this purpose, we introduce an adaptive splitmerge technique that effectively divides the image into several homogeneous regions using a multi-threshold method based on entropy information. During the merge process, a new distance metric is introduced to combine the regions that are both highly similar within the merged region and effectively separated from others. The cluster centers and numbers obtained from the adaptive split-merge step serve as the initial parameters for the FCM algorithm. The obtained fuzzy partitions are evaluated using a novel proposed validity index. Secondly, we present a novel method to address the challenge of noisy pixels in the FCM algorithm by incorporating spatial information. Specifically, we assign a crucial role to the central pixel in the clustering process, provided it is not corrupted with noise. However, if it is corrupted with noise, its influence is reduced. Furthermore, we propose a novel quantitative metric for replacing the central pixel with one of its neighbors if it can improve the segmentation result in terms of compactness and separation. To evaluate the effectiveness of the proposed method, a thorough comparison with existing clustering techniques is conducted, considering cluster validity functions, segmentation accuracy, and tissue segmentation accuracy. The evaluation comprises comprehensive qualitative and quantitative assessments, providing strong evidence of the superior performance of the proposed approach
    corecore