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Symbols and Abbreviations

H Hilbert space
R+ positive real number including zero
NV ∈ N number of data point
NW ∈ N number of prototypes
NC ∈ N number of classes
D ∈ N number of dimensions/features
ι ∈ N iteration step
V ∈ RD set of data points
v ∈ V data point
v(t) ∈ V functional data point
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w ∈W prototype
w(t) ∈W functional prototype
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Rj(V,W ) ⊆ V receptive field of prototype wj

A grid or lattice (SOM)
wr ∈W prototype assigned to neuron r (SOM)
r ∈ A neuron on the grid A
ŝ(v) ∈ A neuron of the according winning prototype (SOM)
C = {1, . . . , NC} set of classes
c(v) ∈ C class assignment of a data point
c(v) ∈ [0, 1]NC fuzzy class assignment vector of a data point
ĉ(v) ∈ C predicted class of a data point
y(w) ∈ C class assignment of a prototype
y(w) ∈ [0, 1]NC fuzzy class assignment vector of a prototype
d(v,w) ∈ R+ dissimilarity measure of v and w

dE(v,w) ∈ R+ Euclidean metric of v and w

d2
E(v,w) ∈ R+ squared Euclidean dissimilarity measure of v and w
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|| · ||H, || · ||E , || · ||lp norm ofH, Euclidean norm, lp-norm
< ·, · >H inner product inH
κ(v,w) ∈ R+ positive semi-definite kernel
lc(v,W ) ∈ R+ local cost function
σ ∈ R+ neighborhood range
θ transfer function parameter (GLVQ)
δi,j ∈ {0, 1} Kronecker delta
H(x) Heaviside function
h(x) Delta distribution

SGD Stochastic Gradient Descent
VQ vector quantization
uVQ unsupervised VQ
SOM Self-Organizing Maps (Heskes)
NG Neural Gas
semi-sVQ semi-Supervised VQ
LASSO Learning Associations by Self-Organization
Tib-LASSO Tibshirani- Least Absolut Selection and Shrinkage Operator
FLNG/FLSOM Fuzzy Labeled NG/SOM
FSNG/FSSOM Fuzzy Supervised NG/SOM
sVQ supervised VQ
LVQ Learning Vector Quantization
GLVQ Generalized LVQ
GRLVQ Generalized Relevance LVQ
GMLVQ Generalized Matrix LVQ
LiRaM LVQ Limited Rank MLVQ
DK-GLVQ Differential Kernel GLVQ
SVM Support Vector Machine
SV Support Vectors
RBF Radial Basis Function
GFR/MLVQ Generalized Functional Relevance/Matrix LVQ
eGR/MLVQ enhanced Generalized Relevance/Matrix LVQ
BS-GLVQ border-sensitive GLVQ
P-GLVQ GLVQ with additive penalty function
AEA Asymmetric Error Assessment
β-GlVQ, Γ-GLVQ GLVQ with (asymmetric) misclassification costs
ROC-curve Receiver Operation Characteristic curve
AUROC Area under the ROC-curve
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Chapter 1

Introduction

1.1 Motivation and Problem Description

In the last decades, the possibilities of recoding data volumes have been developing
rapidly. This development requires new techniques in data processing like storage,
reading and analyzing abilities for the huge amounts of data. In this context, Big Data
is one of the buzzwords becoming popular in the last years. Yet, an explicit definition of
Big Data cannot be found. The term includes the handling of huge data sets in general.
Thereby the comprehensions of the words handling and huge depend on the user, his
field of research and point in time.

The fact of having such huge data volumes does not only enforce benefit but also
challenges especially in the analysis of such data sets. Obviously, manual handling of
the data is not longer possible in many applications. Thus, the development of methods
which extract essential information from the data shifts more and more into focus. Of-
ten, the analyses of large data sets are summarized in the term Data Mining. Again, the
keyword Data Mining does not have a clear definition. In general, methods belonging
to Data Mining search systematically for hidden information about and in the data sets.

An essential part of the collective term Data Mining is Machine Learning (ML) which is
an additional tool for classical statistic for data processing. The goal of ML methods is to
generate a generalized model of the input data by learning from examples: In contrast to
classical approaches, not an exact physical, chemical or biological model is developed,
yet, a model is learned using a given data base. Due to the effectiveness and versatility
of applications, the ML methods become important for the analysis of Big Data.

In general, I distinguish into the three groups of ML methods:

unsupervised Given is a data set. It is searched for a generalized but compressed
model describing the data set as close as possible.

supervised Given are input data and output information. Learning takes place as a
reduction between predicted and true output of the data. Thereby it is distin-
guished between discrete output, the classification, and real output, denoted as
regression. Problems, which include both, data with and without output informa-
tion, are called semi-supervised.
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reinforcement learning A special kind of supervised learning is the reinforcment
learning, where the output reward information, i. e. success or non-success, is
usually very sparse. This feedback is given after a delay-time only and not imme-
diately like in supervised learning.

In this thesis, the focus is put on supervised learning, especially on classification. For
this purpose I will utilize basic tools of unsupervised learning. The required details will
be described and related to the general (un-)supervised methods in this thesis. For an
introduction to reinforcement learning methods I refer to [Sutton and Barto, 1988].

The application of unsupervised ML methods is diverse:

basic analysis Self-organizing Maps [Kohonen, 1982], Hidden Markov Model
[Baum et al., 1979]), Generative Topographic Mapping [Bishop et al., 1998],

visualization Principle Component Analysis, Multidimensional Scaling, Stochastic
Neighborhood Embedding1

clustering/compressing c-means [MacQueen, 1967], Fuzzy c-means [Bezdek, 1974],
Affinity Propagation [Frey and Dueck, 2007], Hierarchical Clustering
[Kaufman and Rousseeuw, 1990], Spectral Clustering [v. Luxburg, 2007].

Clustering methods assign similar data points to groups of so called clusters. The term
similar is task dependent and cannot be defined clearly. Hence, the problem of cluster-
ing as well as visualization belongs to the ill-posed problems according to the definition
of Hadamard [Hadamard, 1902], i. e. the evaluation and comparison of models is not
unique due to the unclear definition of similar.

As for unsupervised tasks, for supervised problems exist a huge number of algo-
rithms and methods based on different concepts, e. g.:

Support Vector Machine classification/regression based on convex optimization and
learning theory [Schölkopf and Smola, 2002]

Neuronal Network biological inspired classification/regression [Haykin, 1994]

Bayes Classifier classification based on statistical decision theory[Bishop, 2006]

Learning Vector Quantization prototype based methods obtained by combination of
Bayes classifier and vector quantization [Kohonen, 1986]

The number of new or extended models for classification is rapidly increasing. One
reason thereof is the diversity in the problems. The data bases can be distinguished
with regard to many attributes like the number of data samples available for learning,
imbalanced class probabilities, class separability, the characteristic, e. g. vectorial data
or non-vectorial data, etc. The following two examples illustrate those attributes.

1An overview of visualization methods is given in [v. d. Maaten et al., 2009]
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A - remote sensing data A data set may consist of spectra recorded with a hyper-
spectral camera over an area. Thereby, reflecting or absorbing spectra are assigned to
a pixel representing soil conditions in this area. Here, two specificities regarding clas-
sification problems have to be pointed out. First, within the spectra occur correlations
depending on the wavelengths/frequencies. Thus, although hyperspectra are usually
provided as high dimensional vectors, the problem complexity is much smaller due
to these dependencies. The correlations can be incorporated during learning to built
up more efficient classification models. Second, in general, a pixel has a resolution of
several squared meters on the ground. Hence, a mixture of soil conditions is reflected
and thus, a unique class assignment cannot be given. This aspect causes difficulties in
classification and is related to this thesis.

B - medical data In medical classifications application a typical task is to assign a
diagnosis to a patient record based on measurements, personal data, etc. Frequently,
the data basis for model training suffers due to the fact that the number of patients
is much lower than the number of healthy persons, i. e. I observe imbalanced class
probabilities. For these cases classification models simply optimizing classification
accuracy during training might be misleading. Therefore, particularly in medicine,
sensitivity and precision are favored which should be reflected in the classifier. Further,
misclassification costs can be non-symmetric, i. e. a misclassification of a<n healthy
person to an unhealthy person might be more costly with respect to side effects
or treatment expenses than the other way around. Again, these aspects should be
incorporated into the model training.

In general, I believe that those aspects as well as other expert knowledge and a-priori
information should contribute to classifier specification to obtain more appropriate
and task dependent models. Further, the interpretability of a model gains importance
especially in applications.

In this thesis I concentrate on the prototype based classification which originated
from unsupervised Vector Quantization. Particularly, I focus on models optimizing
well defined criteria comprised in so called cost-functions. This description allows a
mathematical precise treatment on the one hand. On the other hand prototype based
methods generally allow a good interpretation. Moreover, I will investigate how to
integrate expert knowledge in those classifier models. Especially I will consider two
types of integration:

I selection and task driven adaption of dissimilarity measures for data comparison

II direct integration of expert knowledge into the structure of cost functions.
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The functionality of the new investigations is demonstrated on several artificial and
real world data sets which are described in the next section.
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1.2 Utilized Data Sets

The classification problems with underlying data sets are manifold. The kind and char-
acteristics of such problems are described in Section. 3. In the following, the data sets
used in this thesis are described closer. An overview of the important facts of the single
data sets can be found in Table 1.4. Further, it is distinguished between artificial and
real world data sets.

Artificial Data Sets

Artificial data sets reflect typical properties of real data sets and the methods should be
able to handle them adequately. The design of artificial data sets gives the possibility
to demonstrate the specialty of the proposed methods. Further, if the dimensionality of
the data is set to two or three, the resulting model can be visualized.

Flags of Palau, Ukraine and Czech

The flags of the nations are very multifaceted regarding colors, symbols, and geometric
forms. Therefore, they are well suited for the creation of artificial 2D-data sets with
special features and the visualization of the specific ideas of the classification methods.
In our case, we use the special characteristics of the flags: Palau, Ukraine and Czech.

Palau-Flag The flag of Palau2 with the derived data set are depicted in Fig. 1.1. The
data set consists of two classes and 1099 data points with a class distribution
around one to three. The special characteristic of this data set is the non-linear
separability in the two dimensional Euclidean space.

Ukraine-Flag The design of the Ukraine flag (see Fig 1.2) is a simple linear separable
problem. The data set consists of two class with 1000 data points per class.

Czech-Flag The Czech flag reflects a three class problem (see Fig 1.3), where the classes
are pairwise linear separable and touch each other. The number of total data
points is 1000.

Triangle

The Triangle data set consists of two-dimensional data points divided into three classes.
Each class is made of 100 equally distributed data samples which are arranged in a
rectangle. The special characteristic is the overlap of the pairwise classes (see Fig. 1.4).

2Palau is an island country next to the Philippines and belonging to the island group of Micronesia.
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Figure 1.1: Palau data set: original Palau flag (left), derived 2D data set with the two classes +
and o (right)

Figure 1.2: Ukraine data set: original Ukraine flag (left), derived 2D data set with the two classes
+ and o (right)

Figure 1.3: Czech data set: original Czech flag (left), derived 2D data set with the three classes o,
? and white + (right)
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Figure 1.4: Triangle data set: two-dimensional data set with the three classes o, ? and +. Each
class consist of 100 data points.

Real world data sets

The novel methods should also work on real world data sets. A special kind of real
world data are functional data:

Note 1.1. Functional data are data points with lateral dependencies in the neighbored
dimensions. In general, we consider vectors vt ∈ RD, which are discrete representations
of functions v(t). Examples are time series or spectra.

The following real world data sets, used in this thesis, are described closer. The data
sets belonging to different kind of scientific fields like food industry, remote sensing or
medicine.

Coffee - hyperspectra from the food industry

The Coffee data set contains short-wave infrared range (SWIR) spectra of five different cof-
fee types (see Fig. 1.5). The data set is provided by Prof. Udo Seiffert and his research
group at Fraunhofer IFF Magdeburg/Germany. The spectra are obtained by utilizing
a hyperspectral camera (HySpex SWIR-320m-e, Norsk Elektro Optikk A/S) with the
SWIR between 970 nm and 2500 nm at 6 nm resolution yielding 256 bands per spec-
trum. Moreover, proper image calibration was done by using a standard reflection pad
(polytetrafluoroethylene (PTFE)) [Backhaus et al., 2011]. A data sample is a vector con-
taining 256 absorption values. Per coffee type we selected 5000 spectral vectors and
normalized them by the l2-norm.
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Figure 1.5: Coffee data set: mean spectra of the five coffee. types

Colorado LANDSAT TM - spectra of remote sensing

The sensors of LANDSAT TM produce images of the ground with seven different spec-
tral bands. The resolution of the band 1 − 5 and 7 is 30 × 30m2 and of band 6 it is
60 × 60m2. Thereby, the first three bands are in the visible spectrum (corresponding
roughly to the colors blue, green and red) and the bands 4, 5, 7 are in the near-infrared
spectrum. Thermal band 6 has a lower spatial resolution and therefore, it was dropped
it according to common practice [Augusteijn et al., 1995]. The bands are designed to de-
tect and distinguish between different vegetations, rock formations, and other ground
characters. The Colorado LANDSAT TM data set3, abbreviated Colorado, is an image of
a mountainous region in central Colorado with the pixel size 1907 × 1784. The basis
of this data set are manually labeled pixels of the image, i. e. each label is ground truth.
The ground cover is subdivided into 14 classes with different occurrences (see Tab. 1.1).

The full Colorado data set consists of 3 402 088 data samples with six bands. For
training the data set is usually divided into 10% training and 90% test data samples
keeping the class distribution. Moreover, the spectra are normalized by the l2-norm.

Further, a second data set is derived. Therefore, I packed 10× 10 pixels of the image
to one data sample by averaging the single features and generated fuzzy label vectors.
A fuzzy label vectors c(v) ∈ [0, 1]14 contains the percentage of each class in the packed
10 × 10 image. The resulting data set consists of 33 820 data points belonging to a
190× 178 packed image.

3The data set was provided by M. Augustijn (University of Colorado).
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Figure 1.6: Colorado data set: False color image of a mountainous region in Colorado with 14
different kinds of vegetation or other ground characters (class assignments in Table 1.1).

Indian Pine - spectra of remote sensing

The Indian Pine data set4 was generated by an AVIRIS sensor capturing an area corre-
sponding to 145× 145 pixels in the Indian Pine test site in the northwest of Indiana (see
Fig. 1.8, [Langrebe, 2003]). The spectrometer operates in the visible and mid-infrared
wavelength range (0.4 − 2.4µm) with D = 220 equidistant bands. The area includes
16 different kinds of forest or other natural perennial vegetation and non-agricultural
sectors, which are also denoted as background. These background pixels are removed
from the data set as usual. Additionally, we remove 20 wavelengths, mainly affected
by water content (around 1.33µm and 1.75µm, see Fig. 1.9). Finally, all spectral vectors
were normalized according to the l2-norm. This overall preprocessing is usually ap-
plied to this data set [Langrebe, 2003]. The mean spectra of the 16 classes are depicted
in Figure 1.9.

4The data set can be found at www.ehu.es/ccwintco/uploads/2/22/Indian_pines.mat
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Figure 1.7: Colorado data set: mean bands of the 14 ground cover classes with the class
assignment in Table 1.1.

class description quantity

1 Scotch pine 17.1 %

2 Douglas fir 10.4 %

3 Pine/fir 5.3 %

4 Mixed pine fir 8.0 %

5 Supple/prickle pine 4.3 %

6 Aspen/mixed pine forest 6.1 %

7 Without vegetation 5.0 %

8 Aspen 8.2 %

9 Water 0.5 %

10 Moisten meadow 2.9 %

11 Bush land 3.7 %

12 Grass/pastureland 7.8 %

13 Dry meadow 19.8 %

14 Alpine vegetation 0.8 %

Table 1.1: Colorado data set: name of the classes with the class distribution (color and classes
are conformal to Figure 1.7)
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Figure 1.8: Indian Pine data set: 145× 145 pixels in the Indian Pine test site with 16 different
kinds of natural perennial vegetation or non-agricultural areas.

class description quantity

0 background 10659

1 Alfalfa 54

2 Corn-no till 1434

3 Corn-mimimum till 834

4 Corn 234

5 Grass/pasture 497

6 Grass/trees 747

7 Gass/pasture-mowed 26

8 Hay-windrowe 489d
9 Oats 20

10 Soyabeans - to till 968

11 Soyabeans - minimum till 2486

12 Soyabeans 614

13 Wheat 212

14 Woods 1294

15 Building-grass-trees-drives 380

16 Stone-stell towers 95

Table 1.2: Indian Pine data set: name of the classes and class distributions (color and classes
are conformal to Figure 1.8)

Morbus Wilson - medical data set

Morbus Wilson is an autosomal-recessive disorder of copper metabolism. The copper
accumulates in the central nerve system, liver and other organs, which leads to dis-
turbances in liver function and basal ganglia showing hepatic and extrapyramidal mo-
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Figure 1.9: Indian Pine data set: mean spectra of the 16 ground cover classes (class assignment
see Table 1.2)

tor symptoms. Patients suffering Morbus Wilson develop neurophysiological impair-
ments. In the initial non-neurologic phase (NN), impairments are negligible or at least
not defacing, whereas later during the neurologic phase (N) the disturbances become
severe [Hermann et al., 2003]. During the course of the disease the non-neurological
phases manifested in the neurological state. Medical treatment may slow this process
down and reduce the symptoms. Depending on the impairment level and the respec-
tive pharmaceutical dose rate the treatment causes side effects and could also be expen-
sive. Therefore, a precise classification is demanded.

According to a clinical scheme suggested by Konovalov, patients can be divided into
two main groups: neurological (N) and non-neurological (NN) [Hermann et al., 2003].
Moreover, these two main groups can be subdivided. The neurological group includes
the pseudo-sclerotic (PS), pseudo-parkinsonian (PP) and merged type (MT) subgroup.
The non-neurological group can be separated into the hepatic type (HT) and the asymp-
tomatic type (AT). A further group consisted of healthy volunteers (V). A clinical (ex-
pert) distinction between these subgroups is difficult and requires substantial medical
expertise. Different physical examinations are usually applied including among others
genetic analysis, fine-motoric, and neuro-physiological tests. The results are condensed
in the expert diagnosis by the medical doctor.

There are two different data sets related to Morbus Wilson 5:

Morbus Wilson - EIP The impairments of the nervous pathways can be detected
by investigation of latencies of evoked potentials collected in a data vector denoted as
electro physiological impairment profile (EIP). The Wilson data set EIP contains 122
five-dimensional EIPs described in [Hermann et al., 2003]. The task here is, to classify
the patients according to the Konovalov-scheme only on the basis of their neurophys-

5The data sets were provided by Wieland Hermann (Paracelsus-Klinik Zwickau, Germany).



1.2. Utilized Data Sets 13

class PS PP MT HT AT V

EIP2 N NN

EIP4 PS PP+MT HT+AT V

EIP6 PS PP MT HT AT V

number 34 14 8 9 8 47

Table 1.3: Morbus Wilson data set: class subdivisions

iological data. However, it is not clear whether a precise classification based on these
data is possible [Hermann et al., 2002].

Three different tasks can be derived from the EIP data set: The first task is to distin-
guish between the two main groups only, NN (including V) vs N. A more challenging
task is the six-class problem with all the three subgroups. Due to the small number of
data samples, we merge several classes (see Tab. 1.3) to obtain a third data set EIP4.

Morbus Wilson - PET The accumulation of copper in the central nervous sys-
tem causes a disturbed glucose consumption. To evaluate the smooth transition be-
tween the NN and N phase a [18F ]-Fluorodesoxyglucose-Positron-Emission-Tomography
([18F ]FDG-PET) was applied delivering a neurological impairment profile for each pa-
tient/proband (see Fig. 1.10) [Hermann et al., 2002].

Thus, the second Wilson data set, denoted as PET, consists of an eleven-dimensional
vector containing the normalized glucose consumption in different brain regions
(frontal lobe, parietal lobe, temporal lobe, occipital lobe, ant. cingulum, post cingu-
lum, putamen, caput nuclei caudati, cerebellum, midbrain, thalamic area). This data
set can be used to learn a binary classification decision based on the neurophysiological
impairment profile. The PET data set contains a non-neurological group (NN) consist-
ing 15 volunteers samples and 16 non-neurologic samples, and a neurological group
(N) of 34 neurologic samples (N).

Tecator - spectra of the food industry

The Tecator data sets consists of 215 spectra measured for several meat probes. The spec-
tral range is 850 - 1050 nmwithD = 100 spectral bands (see Fig. 1.11). The original data
set is labeled according to the fat and protein level. We only use the labels for the fat
content and divided the probes between high and low fat level. Further, the data set is
provided as a training set (NVtrain = 172) and a test set (NVtest = 43) [Krier et al., 2009].
The data set is available at library StaLib6.

6Tecator data set is available at http://lib.stat.cmu.edu/datasets/tecator.
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Figure 1.10: Wilson data set: [18F ]FDG-PET analysis: normal (left) and disturbed (right)
[Hermann et al., 2002].

Figure 1.11: Tecator data set: mean absorbing spectra for the two classes high and low fat content
with their standard deviation (dotted lines).

Wine - spectra of the food industry

Another example from the food industry is the Wine data set which contains 121 absorb-
ing infrared spectra of wine. The spectra ranges from 4000 - 400 cm−1 (or equivalently
from 2.5−25µm) withD = 256 equidistant frequency bands (see Fig.1.12). The data are
labeled according to the two alcohol levels (low/high) as given in [Krier et al., 2009].
Further, we use the same splitting between training (NVtrain = 94) and test data
(NVtest = 30) as in [Krier et al., 2009]. The spectra with the number 34, 35 and 84 are
identified as outliers and dropped off the data set. The wine data set can be down-
loaded from the UCI repository7.

7Wine data set is available at http://www.ucl.ac.be/mlg/index.php?page=database.
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Figure 1.12: Wine data set: mean absorbing spectra for the two classes. The blue line corresponds
to a high alcoholic level whereas the green one stands for a low level.
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Table 1.4: Overview of the important facts of the used data sets (NV -number of data points, D
- number of features/dimension, NC- number of classes)



Chapter 2

Prototype Based Methods for Vector Quantization

Generally speaking, the goal of vector quantization methods (VQ) is to partition of the
data space. Vector quantization in the context of Machine Learning is a powerful and
essential tool for exploring and investigating the underlying structure of a data set.
This thesis concentrates on prototype based methods, i. e. the data are described by
representatives also denoted as prototypes. In the following prototype based VQ we will
abbreviated by VQ.

The VQ methods can essentially be divided into unsupervised (uVQ), supervised
(sVQ), and semi-supervised (semi-sVQ) methods. One goal among others is to estimate
the density distribution of the data set by a few prototypes. Thereby, the data samples
together with their (dis-)similarities are given. For unsupervised VQ the cost func-
tion, also denoted as expected risk function, is the quantization error of the model. Well
known uVQ methods are the c-means (CM, [MacQueen, 1967]), the Fuzzy-c-means
(FCM, [Bezdek, 1974]), the Self-Organizing Maps (SOM, [Kohonen, 1998]), and Neu-
ral Gas (NG, [Martinetz et al., 1993]). These methods try to minimize the description
error by adapting the prototypes. Thereby, in CM as well as in FCM the prototypes
are learned independently [Buttoi and Bengio, 1994]. Yet, SOM and NG are inspired by
natural processes and consider additionally the neighborhood cooperation between the
prototypes during learning.

Compressing the data by finding data representative prototypes often is only a
preprocessing step. Tasks following afterwards are: clustering, visualization of
the data set, and further analysis in various areas of application like image pro-
cessing, pattern recognition and data mining. Thereby, clustering methods should
group given similar data points such that data with related semantical meaning
are linked together. A popular prototype based clustering method is Affinity
Propagation (AP, [Frey and Dueck, 2007]). Yet, a big issue in unsupervised VQ
is the evaluation and interpretation of similarity. Obviously, the evaluation is
data-dependent as well as task-dependent. Therefore, clustering and visualization
are ill-posed problems. Hence, for cluster solutions exist a lot of validity mea-
sures like the Dunn-Index [Dunn, 1973], CONN-index ([Taşdemir and Merényi, 2011],
[T. Geweniger and Villmann, 2012]), Cohen’s Kappa [Cohen, 1960] and many more
([Hashimoto et al., 2009], [Zalik and Zalik, 2011]). A lot of them like Dunn- and CONN-
index rely on separation and compactness, i. e. it is assumed, that a good cluster solution
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has compact clusters and the clusters are well separated from each other. Other eval-
uation measures are based on further criteria like on information theoretical aspects,
e.g. Information Entropy [Bezdek, 1974]. Yet as mentioned before, an optimal cluster
solution in general or the one and only measure for model evaluation does not exist.

In the field of supervised VQ, additionally to the data samples the class assignment
of each data point is known. It has to be distinguished strictly between training, test
and application phase. During the training, a classifier model is adapted on the basis of
the training data set using the label information. The evaluation of the model is done
on a test set, i. e. labeled data which are not used for training. In the application phase,
the classifier model assigns each data point to a class to predict the labels for those new
data.

Frequently, the classification error (cerr) or the classification accuracy (acc) is cal-
culated for validation during training and test. Thereby, cerr is the number of data
points which are misclassified by the model and acc the number of correct classified
data points. However, other statistical quality measures for classification problems can
also be used. A few of them are listed in Section 3. In general, a desirable classifi-
cation model ends up with a high generalization ability and thus a minimal expected
risk, i. e. high performance on data with unknown labels (application phase). Good
results on the training set do not imply a good generalization. Roughly speaking, gen-
eralization means that a model remains valid for a test data set, i. e. it has similar per-
formance like on the training set and avoids learning by heart. Statistical theory about
the generalization ability, the Vapnik-Chervonenkis-theory (VC-theory), and how to
measure the expected risk, can be found in [Vapnik, 1995]. An alternative description
of the generalization ability of a classifier is the Rademacher and Gaussian complexity
[Bartlett and Mendelson, 2002]. Although the classification task seems to be well de-
fined, the goal and condition in several application methods differ, which leads to a
large number of classifiers. A more detailed description of these aspects is addressed
in Section 3.

Cluster methods may also be adapted to be used also for classification. Thereby,
after uVQ and clustering of the prototypes, the prototypes are post-labeled. Note,
a good cluster solution does not imply a good classification error or the other way
around. Thus, beside the data samples the label information should be incor-
porated during the learning like in Supervised Neural Gas [Villmann et al., 2003]
or in semi-supervised classification methods e. g. the Fuzzy Labeled Neural
Gas (FLNG, [Villmann et al., 2006b]) or the Fuzzy Supervised Neural Gas (FSNG,
[Kästner and Villmann, 2012]). In semi-supervised leaning both labeled and unlabeled
data are given. The unlabeled data also contribute to build a model for improving the
classification outcome.

Generally, all mentioned methods are based on similarities or dissimilarities between
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the data. We define distance or dissimilarity measures as follows:

Note 2.1. In this work, we use the same denotation as given in Pekalska&Duin

[Pekalska and Duin, 2005]. A metric d : RD × RD → R+ fulfills the following require-
ments for x, y, z ∈ RD

reflexivity d(x, x) = 0

symmetry d(x, y) = d(y, x)

definiteness d(x, y) = 0⇒ x = y

triangle inequality d(x, y) + d(y, z) ≤ d(x, z) .

If d(x, y) is not a metric, we distinguish between hollow, pre-, quasi and semi metrics (see
Tab. 2.1). Unless stated otherwise, the notations distance or dissimilarity measure refer
to the hollow metric, i. e. only the reflexivity has to be fulfilled.

reflexivity symmetry definiteness triangle
equation

hollow metric x - - -
pre metric x x - -
quasi metric x x x -
semi metric x x - x

Table 2.1: Different kinds of dissimilarity measures d : RD × RD → R+

In the following a few prototype based unsupervised, supervised and semi-
supervised vector quantization methods will be introduced in their basic variants. Later
on some of these will be extended and improved.



20 2. Prototype Based Methods

Parts of the section are based on

T. Geweniger, L. Fischer, M. Kaden, M. Lange and T. Villmann: Clustering by Fuzzy
Neural Gas and Evaluation for Fuzzy Clusters. Computational Intelligence and Neu-
roscience, 2013.

2.1 Unsupervised Vector Quantization

Prototype based uVQ uses a set of prototypes W = {w1, . . . ,wNW } ∈ RD to represent
a vectorial data set V = {v1, ..,vNV } ∈ RD. In crisp VQ, an index mapping function
Υ : IV = {1, . . . , NV } 7−→ IW = {1, . . . , NW } maps the index i of each data point vi to
an index j of a prototype wj . In fuzzy VQ, this index mapping is not unique, i. e. a data
point vi can be assigned to several prototypes (cf. page 29). First, we consider crisp VQ.
Each data point vi is assigned to a prototype by the winner-takes-all (WTA) rule:

i 7−→ j = s(vi) = argmin
k∈IW

(d(vi,wk)) , (2.1)

such that s(vi) refers to the index of the best matching prototype in terms of the distance
function d(vi,wj). The distance d(vi,wj) describes the dissimilarity between vi and wj .

Often d(v,w) is based on the Euclidean norm

dE(v,w) = ||v −w||E =

√√√√ D∑
k=1

(vk − wk)2 (2.2)

or the squared Euclidean distance

d2
E(v,w) = (dE(v,w))2 =

D∑
k=1

(vk − wk)2. (2.3)

It has to be mentioned that the squared Euclidean distance not a metric, i. e. it is a quasi
metric (see Note 2.1). Furthermore, any other dissimilarity measure such as the Sobolev
distances, divergences, the lp distances, or kernel distances can be applied depending
on the applications and the VQ model. We will discuss deeper details about distance
or dissimilarity measures in Section 2.4.

The WTA rule (2.1) realizes a partition of the data space into Voronoi cells, denoted
as receptive fields in prototype based VQ. Each receptive field

Rj(V,W ) = {v ∈ V |d(v,wj) ≤ d(v,wk) ∀j 6= k} (2.4)

includes all data points assigned to prototype wj in accordance to (2.1). Properties of
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the receptive fields1 are:

NW⋃
k=1

Rk(V,W ) = RD and µ

(
NW⋂
k=1

Rk(V,W )

)
= 0

where math measure µ(M) = 0 implies that the set M is of the measure zero.

As already mentioned, the goal of uVQ is, among others, to minimize the description
error. This can be modeled by the following general continuous cost function:

EuV Q =

∫
P (v) · lc (v,W ) dv (2.5)

where P (v) is the data density and lc (v,W ) are the local costs. Thereby, each method
has its own specific local cost function. If it is set to lc (v,W ) = d2

E(v,ws(v)), EuV Q
describes the common quadratic Euclidean description error.

Unsupervised VQ is an unconstrained, in general non-linear and non-convex opti-
mization problem. The stochastic gradient descent (SGD) strategy is a well established
method solving this kind of cost function based optimization problems. The SGD is
applied on several other cost functions mentioned in this work. The selection of this
optimization strategy has an historical background. A more detailed description of
SGD can be found in appendix A.1. In the following, in one epoch ι of SGD all data are
considered once in a random sequence. The general update in uVQ of the prototypes
wj can be determined by:

wj ← wj − α ·∆wj (2.6)

∆wj ∼ ∂ lc (v,W )

∂wj
, (2.7)

where 0 < α ≪ 1 is the learning rate2. The SGD is performed until convergence, i. e.
the change of the outcome of the cost function is smaller than a predisposed value, or
until a predefined number of epochs is reached.

For the data compression task, the number of prototypes has to be very small com-
pared to the number of data points, i. e. NW ≪ NV . The existing cost function based
VQ methods differ in the definition of the local costs. Several models are motivated by
neural data processing in the brains whereas other are inspired by physics.

1We assume data densities without Dirac impulses.
2The parameter wj is a vector. The gradient ∂d(v,wj)

∂wj
is a shorthand notation for a vector with entries

of the single derivatives
∂d([v]l,[wj ]l)

∂[wj ]l
, l = 1, . . . , D.
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2.1.1 C-means

Many advanced methods are based on the c-means method introduced first by
MacQueen [MacQueen, 1967]. The goal of c-means is to partition the data space into
c clusters such that the sum of the distances of the data samples to the cluster means is
minimal. The local costs in (2.5) are defined by

lcCM (v,W ) = d(v,ws(v)), (2.8)

where in the original work of MacQueen d(v,w) is the squared Euclidean distance.
The learned prototypes wj can interpreted as centroid in the contentious and as cluster
means in the discrete case. The number of prototypes, i. e. the number of clusters c, has
to be chosen in advance.

Finding the minimum of the cost function (2.5) with the local costs (2.8) is NP-hard.
As already mentioned, the SGD can be applied to find a local minimum of the cost
function. In each iteration step, where one randomly chosen data point v is considered,
only the best matching prototype ws(v) is adapted. The update of prototype ws(v) is
obtained by the partial derivatives of the cost function according to ws(v):

ws(v) ← ws(v) − α ·
∂ d
(
v,ws(v)

)
∂ws(v)

,

where 0 < α ≪ 1 is the learning rate and has to be decreased during the learning
process.

Recent studies for c-means replace the squared Euclidean distances d(v,w) by further
distance measures [Karayiannis and Randolph-Gips, 2003]. Yet, the distance function
has to be differentiable according to the parameters, i. e. to the prototypes.

Although, CM is known to find only local optima [Bottou and Bengio, 1994], it is
widely used. To overcome this locality behavior, the algorithm is usually performed
several runs with different initializations and the best achieved model is taken. An-
other problem of CM is the occurrence of dead units. Dead units are never winning
prototypes wj , i. e. j 6= s(v) ∀v ∈ V . An alternative to assure a faster convergence,
avoid local optima and dead units is to include local neighborhood cooperativeness
between the prototypes as outlined in the following.

2.1.2 Self-Organizing Map

The Self-Organizing Map (SOM) is introduced for efficient VQ inspired by cortical
maps as well as data visualization by Kohonen ([Kohonen, 1982], [Kohonen, 1998]).
The neighborhood cooperativeness in Kohonen-SOM is inspired by cortical sensory
maps in the human brain, i. e. similar stimulus mapped spatially to neighbored neu-
ronal structures. This principle is modeled by topology preserving mapping from a D-
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dimensional data space V onto a low-dimensional simple geometric grid A (typically
two or three dimensions). Thereby, each prototype wr ∈ RD is assigned to a node also
denoted as neuron r ∈ A. Generally, the geometric grid A is fixed and the prototypes
wr are adapted according to the neighborhood cooperativeness in A.

A lot of modifications, extensions and mathematical analyses of the Kohonen-SOM
are published ([Heskes, 1999], [Vesanto, 1999], [Kaski et al., 1998], [Kohonen, 2013]).
The original SOM by Kohonen is not based on a cost function [Erwin et al., 1992]. One
fundamental improvement was presented by Heskes [Heskes, 1999] who established
a modified SOM based on a cost function keeping the main idea of Kohonen-SOM
neighborhood cooperativeness. The cost function introduced by Heskes has the same
structure as (2.5). However, the local costs are defined via:

lcSOM (v,W, σ) =
∑
r′∈A

hSOMσ

(
ŝ (v) , r′

)
d (v,wr′) , (2.9)

taking into account the topological structure of the external grid A. In opposite to the
WTA-rule (2.1), the winner in (2.9) is determined by:

ŝ (v) = argminr∈A

(∑
r′∈A

hSOMσ

(
r, r′

)
d (v,wr′)

)
(2.10)

depending on the neighborhood function

hSOMσ

(
r, r′

)
= exp

(
−dA (r, r′)

2σ2

)
(2.11)

evaluate in A. The value σ > 0 determines the influence range in the lattice. It has to be
pointed out: the neighborhood function hSOMσ and, therefore, the winner determination
ŝ (v) take into account the distance dA (r, r′) of the neurons in the external latticeA. The
distance dA depends on the type of A, e.g. in general, if the grid is rectangular, dA is the
Manhattan metric or if A is hexagonal, dA is chosen as Euclidean distance.

The optimization of the cost function (2.5) with the local costs (2.9) by SGD leads to
the learning rule

4wr ∼ −hSOMσ (r, ŝ (v))
∂d (v,wr)

∂wr
. (2.12)

It should be emphasized that this derivation of the gradient descent learning is only
valid iff the local costs lcSOM (v,W, σ) in the cost function (2.5) are exactly the same as
those used for the winner mapping in (2.10) [Villmann, 2006].

Besides compressing and clustering the information while preserving the basic topo-
logical and metric relations, the main virtue of the SOM is its visualization ability. The
clustering solution becomes visible with the projection ΥSOM : IV 7−→ A. An overview
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of visualizations methods are given in [Vesanto, 1999]. Two well-established visualiza-
tion tools for SOM models with a two dimensional lattice A are:

Component planes A component plane coded for each neuron in this lattice is the
value of one dimension or also called component [wr]k. This value is coded by a
color scale or gray levels. Thus, the number of component planes is identical with
the number of dimensions. The component planes may give a hint whether the
SOM model is topology preserving [Vesanto, 1999, Villmann, 2006]. An example
is depicted in 2.1.

U-matrix The U-matrix was developed by Ultsch [Ultsch and Semon, 1990] and is a
distance matrix based on the SOM-lattice. For each neuron r the direct neighbors
in the grid taken as graph are determined NN(r), e. g. in the rectangular lattice
these are four for the neurons inside the lattice and, accordingly fewer for neurons
at the border. In the U-matrix the distance d(wr, wr′) is visualized by using a gray
level scale or component planes, respectively. Thus, the size of the u-matrix for
a rectangular lattice with the size a × b is (2 · a − 1)(2 · b − 1). A generalization
thereof is: each neuron is attached by a third dimension called the u-high. This
u-high codes the mean distance of a neuron to its direct neighbors:

u(r) =
1

|NN(r)|
∑

r′∈NN(r)

d(wr,wr′)

The u-matrix is a powerful tool for the interpretation of the resulting model. It
also can be used to determine the number of clusters [Ultsch and Semon, 1990].
An exemplified U-matrix is shown in Fig. 2.2.

Crucial issues concerning the structure of the SOM-lattice are:

• number of nodes

• neighborhood structure and

• shape of the grid.

These questions are data depending and there exists no general answer. The re-
sulting model should be checked, whether the SOM solution is topology preserving
[Villmann, 2006]. If the model is topology preserving, the result should be used for
further analyses and conclusions. Thus, the fixed prior chosen lattice causes topologi-
cal restrictions and therefore, can induce difficulties in applications. A further method
with natural visualization ability which also relies a data depended lattice (not fixed
beforehand) is the Topology Representing Network. A description thereof can be found in
[Martinetz and Schulten, 1994]. A further alternative is the Neural Gas, which is expli-
cated in the next part.
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Figure 2.1: Component planes for the six features of the Colorado data set (see page 8). The
rectangular grid size is 6 × 7.The component planes show a good behavior of the SOM-model.
This is also reflected in the topographic product of −8.7 · 10−4 ≈ 0 [Villmann, 2006].

Figure 2.2: U-matrix of the Colorado data set is based on the lattice 6× 7.
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2.1.3 Neural Gas

The Neural Gas (NG) was introduced by Martinetz, Berkovich, & Schulten

and is inspired by the SOM [Martinetz et al., 1993]. In Neural Gas a neighborhood co-
operativeness between prototypes is also integrated in the local cost to speed up the
convergence compared to CM. Yet, the NG neighborhood function hNGσ is evaluated in
the input space V and not on an external grid like in SOM. More precisely, hNGσ depends
on the winner rank function

rkj (v,W ) =

NW∑
k=1

H (d (v,wj)− d (v,wk)) (2.13)

where

H (x) =

{
0 if x ≤ 0

1 else
(2.14)

is the Heaviside function. The winning prototype ws(v) has the rank rks(v)(v,W ) = 0,
the second closest prototype wj the rank rkj(v,W ) = 1 and so one. The neighborhood
function yield to:

hNGσ (rkj (v,W )) = exp

(
−rkj (v,W )

2σ2

)
(2.15)

with the neighborhood range σ ≥ 0. For σ > 0, beside the winning prototype ws(v)

also the prototypes of higher ranks are updated. In general, σ slowly decreased to zero
during learning [Martinetz et al., 1993].

The local costs are:

lcNG(v,W, σ) =

NW∑
j=1

hNGσ (rkj (v,W )) d (v,wj) (2.16)

and the cost function of the neural gas yields to:

ENG(V,W ) =
1

C(σ)

∫
P (v) lcNG(v,W, σ) dv (2.17)

with data density P (v) and the normalization constant C(σ) =
∑NW

j=1 h
NG
σ (rkj). The

cost function corresponds to the energy function of a gas with the particles w, the po-
tential V and the viscosity σ.

The learning takes place as stochastic gradient descent on ENG according to

wj ← wj − α ∆wj (2.18)

∆wj ∼ hNGσ (rkj (v,W )) · ∂d (v,wj)

∂wj
(2.19)
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where α > 0 is the learning rate. During the adaptation process the shifting of the
prototypes can be interpreted as the dynamic of the diffusing particles moving in a
potential determined by the data density [Martinetz et al., 1993].

In a nutshell, the NG is an efficient tool for uVQ. Like SOM the NG takes also the
neighborhood cooperativeness into account. Thus, the method is not sensitive to the
initialization like c-means and therefore is robust. Further, due to the neighborhood
cooperatives dead units are avoided. Compared to SOM, an advantage is the abolition
of the topological restriction in the neighborhood cooperativeness because of the win-
ner ranks. Therefore, Neural Gas is a good choice for unsupervised vector quantization
problems. Yet, NG does not provide a feasible possibility for visualization.

2.1.4 Common Generalizations

So far only the basic prototype based uVQ methods were explained. Yet, there exist a
lot of extensions and modifications. A few of them are summarized in this section and
exemplified on the Neural Gas method.

Batch Variants

In the last section only the online variants of the uVQ were presented, i. e. during each
prototype update step only one data point is taken into account. The notation batch
indicate another optimization strategy. Though, for an averaged update of the pro-
totypes all data points are taken into account in one iteration step and therefore, all
data points have to be presented in advance. In general, an alternating optimization
scheme adapted from the Expectation-Maximization strategy (EM, [Bishop, 2006]) is
applied and in each iteration step prototypes are set to an weighting average over the
data samples (Batch c-means [Ball and Hall, 1967], Batch SOM [Cheng, 1997], Batch NG
[Cottrell et al., 2006]).

Batch NG For Batch NG the discrete form of the NG cost function is defined by

ENGdisc(V,W ) =
1

C(σ)

NV∑
i=1

lcNG(vi,W, σ) (2.20)

with the local costs lcNG(vi,W, σ) from (2.16). The ranks are interpreted as hidden vari-
ables kji = rkj (vi,W ) where the vectors ki = {kji ∈ {0, . . . , NW−1}|vi ∈ V } constitute
a permutation of the set {0, . . . NW − 1} and includes all winner ranks. Thus, the new
parameters of the cost function (2.20) are ki and wj . The optimization of ENGdisc(V,W )

might be done by an alternating optimization strategy [Bishop, 2006], which consist of
the following two alternating adaptation steps:
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step A Calculate the ranks of wj for all data points:

kji =

NW∑
k=1

H (d (vi,wj)− d (vi,wk))

step B Fix the parameter vector ki. Update prototype wj by the weighted average:

wj =

∑NV
k=1 h

NG
σ (kjk) · vi∑NV

k=1 h
NG
σ (kjk)

(2.21)

Step B can be interpreted as a second order optimization according to Newton opti-
mization. The derivation of the formula (2.21) can be found in [Cottrell et al., 2006].
It has to be mentioned that this batch variant is formulated for the squared Euclidean
distance. The distance d2

E is implicitly involved in (2.21).
The Batch SOM is analog to the Batch NG, only the neighborhood function and the

winner determination is changed accordingly [Cheng, 1997]. Usually, only a few adap-
tation steps are necessary for convergence in the batch variants [Cottrell et al., 2006].

In general, the batch variants are faster in convergence especially on high dimen-
sional data, because only one adaptation is necessary in each epoch. However, the
prototypes might get stuck in local minima and in particularly in Batch SOM, the prob-
lem of topological mismatches and the dependency on the initialization is much more
pronounced as for online learning [Fort et al., 2001].

Median and Relational Variants

In some fields of application like in the analysis of protein structures and text docu-
ments, the data are not given in the standard Euclidean vector space. Instead, a discrete
representation of the data or even only a (dis-)similarity matrix are available. In these
cases the standard shifting (2.6) of the prototypes is not possible due to the derivations
of d(v,w) do not exist.

In the median variants the prototypes are restricted to be data points, i. e. an in-
dex mapping Ψ : l ∈ {1, . . . NW } 7−→ l̃ ∈ {1, . . . NV } is learned (Median NG
[Cottrell et al., 2006], Median SOM [Kohonen and Somervuo, 2002]). Hence, only the
dissimilarity matrix D ∈ RNV ×NV+ of the data points has to be given. Moreover, D has
to be a quasi metric 3[Cottrell et al., 2006].

Extensions of the median variants are the relational methods, where the prototypes
are assumed to be linear combination of the data points w =

∑NV
i=1 αivi. Thus, the

linear factors αi are adjusted during the learning (Relational NG [Cottrell et al., 2006],

3The dissimilarity measure D can be embedded in a pseudo-Euclidean vector space (see Note 2.1 or
[Pekalska and Duin, 2005]).
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Relational SOM [Hasenfuss and Hammer, 2007]). Like in the median variants, only
the dissimilarity matrix D has to be given and which has to be a quasi metric
[Hasenfuss, 2009].

Median NG In Median NG ([Cottrell et al., 2006]) a prototype wl is mapped on a
data point vl̃ with dil̃ = d(vi,vl̃). To learn this index mapping step B for Batch NG
(2.21) is replaced by:

l̃← argmin
l′∈{1,...,NV }

NV∑
i=1

hNGσ (kli) di,l′

with the fixed vector ki = {kli ∈ {0, . . . , NW − 1}|vi ∈ V }.

Fuzzy Variants

Until now the assignment of a data point vi to a prototype wj is unique and crisp. Let,
U ∈ RNV ×NP+ be an assignment matrix and in fuzzy variants of uVQ (fuzzyVQ) these
assignments uij can be possibilistic uij ∈ [0, 1] or probabilistic (uij ≥ 0 and

∑NW
j=1 uij =

1). For crisp VQ yields uij = 1 if vi is mapped to wj and uij = 0 otherwise.
The discrete cost function of the fuzzyVQ variant has the form:

EfuzzyV Q =

NV∑
i=1

NW∑
j=1

umij · lc(vi,wj ,W ) (2.22)

where lc(vi,wj ,W ) are the local costs and m is the fuzzyness parameter usually set
between 1.2 ≤ m ≤ 2 [Bezdek, 1980]. If m → 1, the assignments converge to the
crisp solution and for m → ∞ a unique distribution is forced [Bezdek, 1980]. For
fuzzyVQ variants, both the position of the prototypes and the assignments uij have
to be adapted. Frequently, the learning of both parameters is done by alternating op-
timization [Bezdek and Hathaway, 2003]. This optimization principle is similar to the
batch variants.

The Fuzzy-C-Means (FCM) was proposed by Dunn [Dunn, 1973] and elaborately dis-
cussed and improved by Bezdek [Bezdek, 1980]. Later, the idea of fuzzyness was trans-
fered to the SOM (FSOM [Tsao et al., 1994]) and NG (FNG [Geweniger et al., 2013]).
Again, we specify the basic principle for NG.

Fuzzy Neural Gas The cost function of the Fuzzy Neural Gas (FNG) yields to:

EFNG =

NV∑
i=1

NW∑
j=1

umij · lcFNG(vi,wj ,W, σ) (2.23)
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with lcFNG similar to the local costs of the original NG (2.16):

lcFNG(v,wj ,W, σ) =

NW∑
l=1

hFNGσ (rkj (wl,W )) d2
E (v,wj) . (2.24)

Yet, the rank is determined according to the best matching prototype and not according
to the data points:

hFNGσ (rkj (wl,W )) = exp

(
−rkj (wj ,W )

2σ2

)
(2.25)

is the neighborhood function of the FNG with the winner rank function

rkj (wl,W ) =

NW∑
k=1

H
(
d2
E (wl,wj)− d2

E (wl,wk)
)
. (2.26)

Analog to Batch NG, the optimization of the FNG cost function with the parameters
prototypes w and fuzzy assignments umij instead of the hidden variables kj is based on
the alternating optimization strategy. Thus, we obtain the following steps, which have
to be processed alternatingly:

step A Calculate the fuzzy assignments uij for all data points:

uij =
1∑NW

l=1 (lcFNG(v,wj ,W, σ))1−m · (lcFNG(v,wl,W, σ))m−1

step B Fix the fuzzy assignments uij and update prototype wj : Using the squared Eu-
clidean distance the update equation can be formulated as:

wj =

∑NV
i=1

∑NW
l=1 u

m
il · hFNGσ (rkj (wl,W )) · vi∑NV

i=1

∑NW
l=1 u

m
il · hFNGσ (rkj (wl,W ))

(2.27)

A more detailed description and the proof of convergence can be found in
[Geweniger et al., 2013].
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2.2 Supervised Vector Quantization

As already mentioned, for sVQ beside the training samples v ∈ V ⊂ RD also the class
assignments c(v) ∈ C = {1, . . . , NC} are given. The task is to find a model which assign
a data point v to a predicted label ĉ(v) ∈ C under the aspect of correctness, i. e. good
classification performance.

A common measure to evaluate the classification performance is the classification
accuracy acc(V,W ) or the classification error cerr(V,W ), respectively. The accuracy is
determined by the relative number of data points which are classified correctly by the
model, i. e.:

acc(V,W ) =
1

NV

∑
v∈V

δc(v),ĉ(v) (2.28)

where δi,j is the Kronecker delta with

δi,j =

{
1 , if i = j

0 , else
(2.29)

The classification error is simply cerr(V,W ) = 1− acc(V,W ).
Two well known prototype based classifier models are the Support Vector Ma-

chine (SVM, [Schölkopf and Smola, 2002]) and the Learning Vector Quantization (LVQ,
[Kohonen, 1998, Sato and Yamada, 1996]). The SVM is an extension of a hyperplane
classifier to solve non-linear separable binary classification problems. The hyperplane
is described by the prototypes, called Support Vectors, and therefore, the prototypes
are class border typical. The cost function of the SVM maximizes the margin between
two classes and is model as quadratic optimization problem with convex constraints.
It has to be pointed out that the SVM is a binary classifier. Extensions to multi-class
problems are only based on heuristics. A more detailed description can be found in the
Appendix A.2 or in [Schölkopf and Smola, 2002].

The Learning Vector Quantizers are well established Bayesian classifiers with an in-
tuitive learning principle. A detailed description of the LVQ methods follows.

2.2.1 The Family of Learning Vector Quantizers - LVQ

The basic method LVQ 1 was introduced by Kohonen with the goal to approximate a
Bayes classification scheme in an intuitive manner [Kohonen, 1986]. At the beginning
of the training phase data points v ∈ V with their labels c(v) and at least one initialized
prototype w per class with y(w) ∈ C are given. LVQ 1 is based on the Hebbian learning
scheme and is an iterative method. In one iteration step a data point v is chosen ran-
domly and the nearest prototype, the winner ws(v), is determined using the squared
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Euclidean distance d2
E (2.1). The update of the winner ws(v)

ws(v) ←− ws(v) − α ·∆ws(v) (2.30)

depends on the label matching

∆ws(v) = (−1)
1+δc(v),y(ws(v)) · (v −ws(v))

where 0 < α� 1 is a decreasing learning rate. The adjusting of the prototypes follows
the intuitive principle of attraction and repulsing:

attraction If the winning prototype ws(v) is of the same class as the presented data

point v, i. e. c(v) = y(ws(v)), ws(v) will be attracted due to: (−1)
1+δc(v),y(ws(v)) = 1.

repulsing If the label of the winning prototype ws(v) is different compared to c(v), the

prototype will be pushed away, i. e. (−1)
1+δc(v),y(ws(v)) = −1.

At the end of the training, the prototypes should describe their classes as precise as
possible.

The assignment of a data point with an unknown label is done by nearest prototype
classification (NPC):

NPC : y(ws(v)) 7→ ĉ(v). (2.31)

The simple principle of LVQ is very effective in a lot of applications
([Umer and Khiyal, 2007], [Bashyal and Venayagamoorthy, 2008]). However, there are
some disadvantages, like slow convergence or instability in some cases: If prototypes
and data points are in an inappropriate constellation e. g. unbalanced data or unfa-
vorably initialized, the prototypes might be pushed away always. Therefore, some
improvements are developed, e. g. LVQ 2.1 and LVQ 3 [Kohonen, 1998].

LVQ 2.1 For LVQ 2.1 beside the winning prototype ws(v) also the second best match-
ing prototype ws2(v) with

s2(v) = argmin
k∈{1,...,NW },k 6=s(v)

d(v,wk) (2.32)

is considered. Thereby, the update of these prototypes has to be distinguished into three
cases:

case I c(v) = y(ws(v)) = y(ws2(v)): No update is performed because of the robust
decision.
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case II c(v) 6= y(ws(v)) and c(v) 6= y(ws2(v)): Both prototypes are pushed away

∆ws(v) = −α · (v −ws(v))

∆ws2(v) = −α · (v −ws2(v)) .

case III k, l ∈ {s(v), s2(v)} and k 6= l: If c(v) = y(wk) 6= y(wl) and both prototypes are
located within the window

min

(
(v −wl)

2

(v −wk)
2 ,

(v −wk)
2

(v −wl)
2

)
>

1− ω
1 + ω

, (2.33)

the prototype wk is attracted and wl is pushed away

∆wk = +α · (v −wk)

∆wl = −α · (v −wl) .

The window parameter 0 < ω ≤ 1 effects the number of training samples taking
into account during the learning. A good choice for ω is 0.2 to 0.3 [Kohonen, 1998].
The window rule assures that only prototypes around the decision border are
considered, without this rule the prototypes may diverge.

The LVQ 2.1 should be applied subsequently to LVQ 1 and run for only a few iteration
steps, because it may cause instable behavior [Kohonen, 1998]. If we consider only one
prototype per class, LVQ 1 tries to arrange the prototypes in the class centers. Other-
wise, LVQ 2.1 is more class border sensitive, because of window rule (2.33).

LVQ 3 The variant LVQ 3 is based on LVQ 2.1 and only differs in case I. Hereby, both
prototypes are attracted:

∆ws(v) = α · (v −ws(v))

∆ws2(v) = α · (v −ws2(v))

The LVQ 3 should only be applied in addition to LVQ 1 like for LVQ 2.1

All mentioned heuristics and combinations thereof typically have a good perfor-
mance in practical applications. However, they are only heuristics and, therefore, no
predictions about the learned models and local or global optima are possible. An ex-
tended version is the Generalized Learning Vector Quantization which is based on a
cost function and, therefore, is mathematically more sound.
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2.2.2 Generalized Learning Vector Quantization

The Generalized Learning Vector Quantization (GLVQ) was introduced by Sato and

Yamada in 1995 [Sato and Yamada, 1996]. The goal of the GLVQ method is to minimize
the classification error by keeping the principle of prototype learning known from LVQ.
For that purpose, Sato and Yamada introduced the classifier function:

µW (v) =
d+(v)− d−(v)

d+(v) + d−(v)
, (2.34)

where d+(v) = d(v,w+) is the distance between data point v and its the best matching
prototype w+ with the same label, i. e. c(v) = y(w+). Otherwise, d−(v) = d(v,w−)
is the distance between data point v and the closest, wrong labeled prototype w−, i. e.
c(v) 6= y(w−). More precisely:

w+ = argmin
w∈W+(v)

d(v,w) with W+(v) = {w ∈W | y(w) = c(v)} (2.35)

w− = argmin
w∈W−(v)

d(v,w) with W−(v) = {w ∈W | y(w) 6= c(v)} (2.36)

Obviously, the classifier function (2.34) is non-positive iff the data point is correct clas-
sified, i. e. d+(v) ≤ d−(v) is valid. Due to the normalization term d+(v) + d−(v) the
range of µW (v) is in the interval µW (v) is [−1, 1].

The cost function is a soft version of the classification error and has the form of:

EGLV Q =
1

NV

∑
v∈V

fθ(µW (v)) (2.37)

with the transfer function fθ. The transfer function has to be monotonically increasing.
Common choices are the identity or the sigmoid function

fθ(x) =
1

1 + e−θ·x
. (2.38)

which depends on the parameter θ. Choosing the latter one, the range of the sum terms
in (2.37) is [0, 1] and, hence, the cost function approximates the classification error for
θ ↗∞ (see Sec. 5.1).

The minimization of the differentiable cost function (2.37) can be done by stochastic
gradient descent. The update rules result in

w± ← w± − αW
∂EGLV Q
∂w±

(2.39)
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with learning rate 0 < αW � 1 and derivatives

∂EGLV Q
∂w±

= ξ±θ (v) · ∂d
±(v)

∂w±
(2.40)

with ξ±θ (v) = f ′θ(µW (v)) · ±d∓(v)

(d+(v) + d−(v))2
. (2.41)

As it can be seen in (2.40), the updates depend on the derivatives of the distance mea-
sure according to the prototypes. Therefore, one requirement on the distance measure
is the differentiability. A common choice is the squared Euclidean distance which ends
up in a vector shift of the prototypes during the update:

∂d±(v)

∂w±
= −2(v −w±) . (2.42)

It turns out, the GLVQ with squared Euclidean distance and optimization by SGD is
alike the LVQ 2.1 with data dependent factors in the update (see Sec. 5.1).

The GLVQ belongs to the margin optimizers like the SVM. Yet, the GLVQ optimizes
the hypothesis margin 1

2(d+(v)−d−(v)) [Crammer et al., 2003]. The hypothesis margin
is related to the distance a prototype can be altered without changing the classification
decision. Thus, this fact indicates an efficient structural risk optimization in the learning
phase [Hammer et al., 2001]. Further, in case of overlapping classes the GLVQ is more
robust than LVQ, since convergence is assured.

Moreover, LVQ or GLVQ are flexible related to the distance measures: any dissimi-
larity measure which is differentiable according to the prototypes can be applied and
distance adaption is also feasible (see Sec. 2.4).

Further, GLVQ is designed for multi-class problems, i. e. NC > 2. The only require-
ment is to provide at least one prototype per class and therefore, the complexity of the
resulting model has to be determined in advance. The correct number of prototypes is
hard to identify and depends on the data set. However, less is more: In many applica-
tions one prototype per class is adequate if additionally distance adaption is applied
([Biehl et al., 2012],[Biehl et al., 2013]). Note, if the standard GLVQ with Euclidean dis-
tance and one prototype per class is performed, it is equivalent to a linear classifier.

Analog to the methods for unsupervised VQ, different variants of GLVQ are avail-
able: Median GLVQ [Nebel et al., 2013], Relation GLVQ [Hammer et al., 2011] and also
fuzzy variants [Villmann et al., 2008]. Further, probabilistic variants of the LVQ meth-
ods exist: Soft Nearest Prototype Classifier (SNPC) [Seo et al., 2003] and Robust Soft
LVQ (RSLVQ) [Seo and Obermayer, 2003] with median, relational variants, and so on
([Nebel et al., 2014],[Hammer et al., 2014a]). Yet, in [Nebel and Villmann, 2013] it is dis-
cussed that the result of SNPC and RSLVQ is similar, beside the different motivations.

Moreover, the combination of unsupervised NG and supervised GLVQ, the so called
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Supervised Neural Gas (SNG), is proposed in [Villmann et al., 2003]. The SNG provides
a more stable convergence behavior, because the neighborhood cooperativeness of NG
is integrated into the GLVQ principle.

To summarize: GLVQ is a crucial tool solving classification problems and
has a lot of extensions and modifications. The GLVQ or variants thereof
can be used for a lot of different classification problems with various prop-
erties of the data sets, e. g. low or high dimensional data, two- or multi-
class problems, unbalanced data sets as well as data sets with applica-
tion properties like models with complexity constrains, model interpretation
or visualization ability ([Biehl et al., 2012], [Bashyal and Venayagamoorthy, 2008],
[T. Villmann and Riedel, 2012], [Kästner et al., 2013]).

The GLVQ is a classical supervised learning method and can only handle labeled
data. Yet, in practical applications the labeling of each data point can be very expensive.
Therefore, there exists data sets with labeled and unlabeled data samples. Here, semi-
supervised methods come into contribution. They are described in the next section.
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2.3 Semi-Supervised Vector Quantization

As already mentioned, the term semi-supervised is used for methods which can handle
labeled as well as unlabeled data points. Thereby, the number of unlabeled data sam-
ples is often much higher compared to the number of labeled samples. Thereby, it has
to be distinguished between transduction and inductive models. Transduction meth-
ods only predict the classes of the unlabeled data. On the other side, inductive methods
generating a model for label-prediction of labels of unseen data. In the following, we
only consider inductive models. A summarization semi-supervised learning in general
and different approaches like EM-strategies or the Transduction-SVM can be found in
[Chapelle et al., 2006].

Further, in several approaches of semi-sVQ, the results end up with fuzzy labels for
the prototypes, i. e. the prototypes have no crisp labels, but probabilistic or possibilistic
assignments (cf. fuzzy clustering on page 29). In this section, semi-supervised ap-
proaches integrating label information in a classical uVQ method are explained.

2.3.1 Learning Associations by Self-Organization

Learning Associations by Self-Organization (LASSO)4 combines the dissimilarity mea-
sure between the data points and prototypes in the data space and further the dis-
similarity measure between the label information in the distance function. Suppose
NC classes are given. Each training data vector v is accompanied by a label vector
c(v) =

(
c(v)1, . . . , c(v)NC

)
∈ [0, 1]NC whose entries are taken as probabilistic or pos-

sibilistic class assignments. Analogously, each prototype w is equipped with a class
label vector y(w) ∈ [0, 1]NC . Crisp classification is obtained by the additional require-
ments of c(v)j ∈ {0, 1} and the use of the Euclidean norm ||c(v)||E = 1, otherwise the
assignments are denoted as fuzzy.

Basically, the idea of LASSO is as follows: the input of the Heskes-SOM model is a
vector ṽ extended by the class information ṽ = [v; c(v)]T :

ELASSO =

∫
P (v) lcSOM (ṽ,W, σ) dv

Therefore, beside the location of the prototypes also the class assignments of the pro-
totypes are learned. Another interpretation of this idea is: the distance measure
D (v,w, c(v),y(w)) used for the winner determination (2.10) during learning is an ad-
ditive combination of the distance between data and prototypes in the data space and

4Note, this LASSO approach should not be confused with the regularization method least absolute
shrinkage and selection operator (Tip-Lasso, [Midenet and Grumbach, 1994]). Despite the latter one is more
popular, due to historical reason we decided to use the original abbreviation.
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the distance of the label vectors:

D (v,w, c(v),y(w)) = d2
E(v,w) + d2

E(c(v),y(w)) (2.43)

Yet, in the recall phase, the class information of the data points are not available and
therefore cannot be contributed.

LASSO is a classical semi-supervised method because unlabeled and labeled data can
be used to train the model. Further, this method is also suitable to handle fuzzy labeled
data sets. In general the resulting prototypes have fuzzy assignments, too.

Hence, LASSO has a high variety in applications, but is very restricted concerning
the influence of the class labels during learning. A generalization and extension of
LASSO is the Fuzzy Labeled Self-Organizing Map model (FLSOM, see next part) or
Fuzzy Semi-Supervised SOM (FSSOM, see Sec. 4.2.1).

2.3.2 Fuzzy Labeled Self-Organizing Map

The Fuzzy Labeled Self-Organizing Map (FLSOM) is introduced in
[Villmann et al., 2007]. For FLSOM the original cost function of Heskes-SOM:

ESOM =

∫
P (v) lcSOM (v,W, σ) dv

is extended by a term including the class information:

EFLSOM = (1− γ) · ESOM + γ · ESOMFL (2.44)

with
ESOMFL =

∑
r∈A

∫
P (v) · gSOM (v,wr, β) · δ (c(v),y(wr)) dv (2.45)

where δ (c(v),y(wr)) is any dissimilarity measure for the class assignment vectors. The
parameter γ ∈ [0, 1] determines the influence of the class information whereby γ = 0

yields the Heskes-SOM.

For the choice of the neighborhood cooperativeness function gSOM in (2.45) exists to
possibilities:

case I The neighborhood cooperativeness function gSOM is based on the distance of
the prototypes in the grid like in ESOM :

gSOMI (v,wr, β) = exp

(
−dA (ŝ(v), r)

2β

)



2.3. Semi-Supervised Vector Quantization 39

If additionally σ = β is valid, both neighborhood functions of ESOM and ESOMFL are
identically and the cost function (2.47) can be rewritten:

EFLSOM =

∫
P (V )

∑
r∈A

hSOMσ (ŝ(v), r) [(1− γ) · d(v,wr) + γ · δ(c(v),y(wr))] dv

Therefore, it is a generalization of LASSO with the additive dissimilarity term:

Dadd(v,w, c(v),y(w)) = (1− γ) · d(v,w) + γ · δ(c(v),y(w))

However, the disadvantages of distinguish winner detection in training and recall
phase known from LASSO remains.

case II The approach which is presented in [Villmann et al., 2007] chooses the neigh-
borhood cooperativeness function gSOM (v,wr, β) as Gaussian kernel

gSOMII (v,wr, β) = exp

(
−d(v,wr)

2β

)
(2.46)

based on the distance d(v,wr) in the data space. It is assumed if the classification prob-
lem is fairly smooth, data points next to a prototype determine the corresponding label.

In case II the updates of the prototype depends on both cost function terms of (2.44):

∆wr =

(
(γ − 1)hSOMσ (ŝ(v), r) +

γ

4β2
gSOMII (v,wr, β) (c(v)− y(wr))

)
∂d(v,wr)

∂wr

Further, the updates of the labels are:

∆y(wr) = γ · gSOMII (v,wr, β) · ∂δ (c(v),y(wr))

∂y(wr)

While the latter case with gSOMII is more complicated and not easy to interpret, the
winner detection in the learning and recall phase is the same, i. e. the winner detection
is independent from the labels.

As well as in LASSO, the data points can be equipped without, with crisp or fuzzy
labels. For visualization of the results component planes as well as the label maps can
be used. The label map show the fuzzy labels of each neuron in the grid. An example
can be found in Application 4.5.

2.3.3 Fuzzy Labeled Neural Gas

The same idea like in FLSOM can be transfered to the Neural Gas
[Villmann et al., 2006a] called Fuzzy Labeled Neural Gas (FLNG). The cost func-
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tion of FLNG has the same structure

EFLNG = (1− γ)ENG + γENGFL (2.47)

but is based on Neural Gas and with

ENGFL =

NW∑
j=1

∫
P (v) gNG (v,wj) δ(c(v),y(wj)) . (2.48)

Again, δ(c(v),y(wj)) is a dissimilarity measure for the class assignment vectors and
γ ∈ [0, 1] determines the influence of the class information. The neighborhood cooper-
ativeness function gNG (v,wj) in FLNG explicitly takes into account the dissimilarity
d (v,wj) between the prototype wj and the data vector v. Once more, the choice of
gNG (v,wj) has to be divided into two cases. This time the cases regard the properties
of the data distribution: discrete or continuous. For continuous data the neighborhood
function becomes

gNGcont (v,wj) = exp

(
−d (v,wj)

2σ2

)
whereas

gNGdiscr (v,wj) = hNGσ (kj (v,wj))

is valid for the discrete setting. In the latter case, the cost function (2.47) can be further
simplified to

EFLNG =

NW∑
j=1

∑
v∈V

P (v)hNGσ (kj (v,wj))Dadd (v,wj , c(v),y(wj), γ)

with a new additive distortion measure

Dadd (v,wj , c(v),y(wj), γ) = (1− γ) d (v,wj) + γ δ(c(v),y(wj)). (2.49)

To simplify the idea of the discrete FLNG, only the distance of the Neural Gas d(v,w)

is replaced by the additive distortion measure Dadd (v,w, c(v),y(w), γ) which include
the class information.

The necessity for the distinction of the discrete and continuous cases in the neighbor-
hood cooperativeness for the labels is the consequence to assure a valid convergence
proof for the algorithm. Details can be found in [Villmann et al., 2006a]. Another sim-
ilar method the Fuzzy Supervised Neural Gas (FSNG) is presented in section 4.2.2. In
the FSNG the discrete and continuous cases has not be distinguished and this method
is a good alternative for the FLNG.
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Parts of the section are based on

T. Villmann, S. Haase, and M. Kaden: Kernelized Vector Quantization in Gradient-
Descent Learning, Neurocomputing, 2014.

M. Riedel, F. Rossi, M. Kästner, and T. Villmann: Regularization in Relevance Learn-
ing Vector Quantization Using lp-Norm. ESANN, 2013.

2.4 Dissimilarity Measures

In this section, we take a closer look to the dissimilarity or distance measures, respec-
tively (see Note 2.1). Until now, the phrase ’d(v,w) is any distance measure is written
very often. Nearly all methods in VQ were developed using the (squared) Euclidean
distance. However, not for every data set this Euclidean measure is the best choice.
Therefore, e. g. in [Hammer and Villmann, 2005] the idea of using other distance mea-
sures or the adaptation of distance parameters came up. Possible distances may be:
lp-distances, Sobolev distance, divergences, kernel based distances or covariances. The
applied distance measure do not have to be a metric (see Note 2.1). Yet, an impor-
tant requirement is the differentiability according to the second argument, because all
described online VQ methods in this theses using the stochastic gradient descent to
optimize their cost functions.

A frequently ask question is: which measure should be used for a given data set.
Unfortunately, no general answer exists. Though, certain properties of the data set
should be considered when a measurement is chosen. In the following, some distance
measures are described closer.

Minkowski Distances

A generalization of the Euclidean distance is the fundamental Minkowski distance or
also called lp-distance:

dlp(v,w) =

(
D∑
k=1

|vk − wk|p
) 1

p

(2.50)

where p > 0. If p ≥ 1, it is even a metric and it yields

dlp(v,w) = ||v −w||lp (2.51)

with || · ||lp is the lp-norm. Special cases are p = 2 as Euclidean distance and the Manhat-
tan metric with p = 1. Moreover, if 0 < p < 1, (dlp)

p = ||v −w|p|lp is a metric, too and
small distinctions have a higher weight and the other way around [Lange et al., 2014].
Further, it has to point out that for special values of p, dlp(v,w) is not differentiable due
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to the absolute value function. However, it exists several differentiable approximations,
which were applied in [Lange and Villmann, 2013].

Sobolev Distance

A special kind of data are functional data, i.e. the data points are discrete represen-
tations of functions vt = v(t) (see Note 1.1). The Sobolev distance dγ,kS implies beside
the standard Euclidean distance of the data points also the Euclidean distance of the
derivatives up to the kth order of a data sample v(k) or prototype w(k), respectively:

dγ,kS (v,w) = γ0 · dE(v,w) +

k∑
l=1

γl · dE(v(l),w(l)) (2.52)

with the linear combination factors γl > 0 and
∑k

l=0 γl = 1. The factors γl weight the
influence of the single derivatives.

The generalization of (2.52) is the p-Sobolev distance analog to the Minkowski dis-
tance:

dγ,kSp (v,w) = γ0 · dlp(v,w) +
k∑
l=1

γl · dlp(v(l),w(l)) (2.53)

whereby for p = 2 yields the Sobolov distance dγ,kS .
In general, the derivatives of the discrete representation of the data points are not

given and has to be approximated e. g. by a difference operator. Due to the approx-
imation and consequential approximation error, k is often set to k = 1. A theoreti-
cal integration of the p-Sobolev norm into VQ can be found in [Villmann, 2007] and
[Villmann and Hammer, 2009].
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Functional Distance

A further distance for functional data is presented by Lee & Verleysen

[Lee and Verleysen, 2005]. This dissimilarity measure is based on a quasi-norm5 and
is motivated by geometrical considerations. The functional distance is obtained as:

dτFp(v,w) =

(
D∑
k=1

(
Ak−1(v,w) +Ak+1(v,w)

)p) 1
p

(2.54)

with

Ak±1(v,w) =

 τ
2 |vk −wk| , if 0 ≤ (vk −wk)(vk±1 −wk±1)
τ
2

([v−w]k)2

|vk−wk|+|vk±1−wk±1| , if 0 > (vk −wk)(vk±1 −wk±1)
(2.55)

with the same restriction to p known from the lp-distance, i. e. p ≥ 1. An applica-
tion of this distance measure by a respective Supervised Neural Gas can be found in
[Schleif et al., 2007b].

Divergences

The divergences are based on information theory and calculate the information con-
tent between two probability distributions v and w, i. e.

∑D
k=1 vk = 1,

∑D
k=1wk = 1

and vk, wk ≥ 0 ∀k. In general, divergences are hollow metrics, i. e. the symme-
try property is not fulfilled (see Note 2.1). The family of divergences can divided
at least into three main groups: Bregmann, Csiszar-f, and γ-divergences (see Fig 2.3)
[Cichocki and Amari, 2010]. The intersection of all contains the well known Kullback-
Leibler-Divergence for a particular parameter (discrete case):

dKL(v,w) = −
D∑
k=1

vk · log

(
vk
wk

)
(2.56)

An elaborate summarization of divergences and the integration in VQ methods can
be found in [Haase, 2014].

Kernels

Kernel functions are very popular and widely used especially in classification methods.
A kernel is a similarity measure, more precisely an inner product in a sufficiently spe-
cial kind of feature space. The background is that every binary classification problem

5In [Villmann and Lange, 2015] it is shown that the original Lee&Verleysen term is not a norm and
therefore, the according dissimilarity measure is not a metric.
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Figure 2.3: Illustration of the family of divergences [Bunte, 2011]

is linear separable if the data are mapped into a high (may be infinite) feature space
non-linearly [Schölkopf and Smola, 2002]. The principle of kernel mapping is based on
the theoretic work by Mercer and Aronzaijn about positive semi-definite and repro-
ducing kernels [Aronszajn, 1950, Mercer, 1909].

We consider a Hilbert spaceH equipped with an inner product

< ·, · >H: H×H → C.

The fundamental theorem of Moore-Aronzaijn implies: For a set V the kernel function
κ : V × V → C is symmetric and positive semi-definite6 if and only if the mapping
Φ : V → H exists and the feature space H is a functional Hilbert space with the inner
product

κ(v,w) = 〈Φ(v),Φ(w)〉H (2.57)

where v,w ∈ V and Φ(V ) = Iκ ⊆ H [Christmann and Steinwart, 2010]. In the follow-
ing, we consider positive semi-definite and real-valued kernels.

So far, the functional Hilbert space, denoted as Feature Mapping Hilbert Space (FMHS),
as well as the mapping Φ are not unique. They become unique if the kernel holds

6symmetric: κ(v1,v2) = κ(v2,v1) ∀v1,v2 ∈ V ; positive semi-definite in case of a finite set V : the
according Gram matrix K with the entries kij = κ(vi,vj) is positive semi-definite ∀vi,vj ∈ V and
i, j = 1, . . . , NV .
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the reproducing property, i. e. for the kernel applies κ(v,w) = 〈fv, fw〉H (∀v,w ∈ V )

with fv(·) = κ(v, ·) [Zhang et al., 2009, Mercer, 1909]. Further, a reproducing kernel is
positive definite7 and imply injectivity of their related feature maps [Aronszajn, 1950].
The FMHS associated by a positive definite kernel κ is denoted byHκ.

Note, the kernel property (2.57) allows a direct calculation of the inner product
with the elements in V without explicit processing the mapping Φ. Thus, the map-
ping is only implicitly performed whereby in the most cases Φ as well as H are un-
known. This concept is called kernel trick. A summarization of definitions and the-
orems about the kernel theory can be found in [Steinwart and Christmann, 2008] or
[Schölkopf and Smola, 2002].

The principle of kernel mapping can be transfer to the prototype based Vector Quan-
tizations methods, too. As mentioned before, the kernels itself determine real inner
products and consequently similarities. Thus, they can not be applied to the VQ meth-
ods directly. Yet, each inner product determines a distance measure according to

dκ(v,w) = 〈Φ(v)− Φ(w),Φ(v)− Φ(w)〉H, (2.58)

which leads after elementary calculations to:

dκ(v,w) =
√
κ(v,v)− 2κ(v,w) + κ(w,w) (2.59)

If the symmetric kernel is only positive semi-definite, the dκ is only a semi metric
(see Note 2.1).Though, a positive definite symmetric kernel induces a metric dκ
[Steinwart, 2001a]. Examples of differentiable kernel induced distances and their
derivatives are listed in Table A.1.

To recapitulate this part; Several dissimilarity measures exist with different theoreti-
cal backgrounds. Some of them are restricted to special structures of the data others can
applied on every kind of data. Yet, if the distance measure is differentiable, it can be
plugged into the prototype based Vector Quantization methods. Due to the non-trivial
theory of the kernels, we have a closer look to the integration of them into GLVQ.

2.4.1 Differentiable Kernels in Generalized LVQ

A well established classifier using the kernel trick is the Support Vector Machine (SVM).
The basic (Euclidean)-SVM optimizes the separation margin of a binary class problem
and according to the minimization of the structural risk the model provides a good gen-
eralization performance ([Vapnik, 1995], [Schölkopf and Smola, 2002]). Yet, this state-
ment applies only for linear separable problems. In many cases the used SVM is based

7The Gram matrix is strict positive.
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on a soft-margin optimization and a kernel mapping (see appendix A.2). Consequently,
the structural risk minimization is not longer guaranteed. Nevertheless, in many appli-
cations the SVM or a modification of it outperforms other classifiers. The SVM is used
in many practical application due to two main reasons:

a) fast computation: the modeling as a quadratic optimization problem with convex
constraints and

b) good separation property: the integration of kernels.

The first aspect a) ensures the determination of an unique global minimum in adequate
time [Bordes et al., 2005]. Quadratic optimizations problems with convex constraints
are sufficiently investigated and thus, fast and efficient algorithms exist like the se-
quential minimal optimization (SMO, [Platt, 1998]).

The second reason b) is associated by the kernel trick as already explained in the last
section. The mapped prototypes Φ(w) are linear combinations of the mapped data
points Φ(v). The prototypes are called support vectors (SV) due to the fact: the SV are
determine the separation margin. Yet, the interpretability of the SV and the resulted
model using the kernel mapping is at least difficult, because the class borders are de-
fined in the FMHSHκ.

There are other limits for the SVM, too. It is common to give the test accuracy to eval-
uate a model determine the generalization ability. Yet, the difference between test and
training accuracy and, especially, the number of support vectors (SV) are also impor-
tant for a statement about the generalization ability. In many applications the relation
between number of SV and data points are really high (sometimes greater than 25%)
[Lange et al., 2013], i. e. nearly every data point is needed for the separation decision
(classification). This high model complexity can causes an over-fitting of the classifica-
tion problem. A more detailed description of the SVM can be found in the Appendix
A.2 or in [Schölkopf and Smola, 2002].

For GLVQ the number of prototypes has to be defined before and hence, the com-
plexity of the resulted model is determined by the user in advance. However, the stan-
dard GLVQ with the Euclidean distance often can not achieve such a great flexibility
in class separation like the kernel methods. Thus, ideas came up to integrate the ker-
nel trick into the GLVQ principle. One idea, presented by Quin and Suganthan in
[Qin et al., 2004] and called Kernelized GLVQ (KGLVQ), pursued the same principle
like SVM: the data points as well as the prototypes are described and handled in the
FMHS H. More precisely, here the prototypes wj ∈ H are linear combinations of the
mapped data points:

wj =

NV∑
i=1

αijΦ(vi) (2.60)
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with the linear combination vector α:j ∈ RNV . Thus, instead of shifting the prototypes,
the factors αij are adapted like it is known from the relational variants (see page 29).
Yet, in the relation variants the prototypes are still in the data space. In the KGLVQ the
prototypes are elements of the FMHS. Again, the knowledge of the mapping Φ(vi) is
not required, because the squared distance in the feature spaceH can be computed by:

d2
κ(vl,wj(α)) = 〈Φ(vl)− Φ(wj(α)),Φ(vl)− Φ(wj(α))〉2H

=

〈
Φ(vl)−

(
NV∑
i=1

αijΦ(vi)

)
,Φ(vl)−

(
NV∑
i=1

αijΦ(vi)

)〉2

H

= κ(vl,vl)− 2

NV∑
i=1

αil κ(vi,vl) +

NW∑
s=1

NV∑
t=1

αsj αtj κ(vs,vt) ,

which is only based on the inner products between data points on H calculated by the
kernel. This approach has the advantage that the kernels κ(vi,vl) do not have to be cal-
culated in each iteration step. Moreover, only the similarity matrix between the data has
to be given for calculation of the Gram-Matrix G = {κ(vj ,wj)}ij . The data points itself
are not longer required. Yet, an assumption on the similarity matrix G is that an Eu-
clidean embedding exists [Hammer et al., 2014a]. A sparse and improved enhancement
of the KGLVQ concerning the learning complexity can be found in [Schleif et al., 2011].
However as pointed out for SVM, the prototypes are not longer interpretable due to the
fact of living in the unknown FMHS (2.60) and the principle of adapting the prototypes
by shifting is lost.

GLVQ applying Differentiable Kernels

A further idea to integrate the kernel concept in the GLVQ is the DK-GLVQ
[Villmann et al., 2015]. Thereby, the distance measure d(v,w) in the cost function (2.37)
is replaced by the distance measure deduced from the kernel κ(v,w);

dκ(v,w) =
√
κ(v,v)− 2 κ(v,w) + κ(w,w). (2.61)

Applied to the famous radial basis kernel (RBF)

κRBF (v,w, ς) = e
−dE(v,w)

2ς2 (2.62)

we obtain the according distance:

dRBF (v,w, ς) =
√

2− 2 · κRBF (v,w, ς) . (2.63)

As already mentioned, for symmetric and positive semi-definite kernels κ, dκ is only
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a semi metric. If the mapping Φκ : V → Iκ ⊆ H is injective, i. e. the kernel is positive
definite, dκ(v,w) becomes a metric and it yields:

dκ(v,w) = ||Φ(v)− Φ(w)||H . (2.64)

It can be shown under some circumstances that the compact metric space (V, dκ)

equipped with the kernel induced distance dκ provides the same topological richness
like the FMHS (Iκ, dκ) [Villmann et al., 2015]:

A kernel is continuous iff the mapping Φ is continuous [Steinwart, 2001b]. Fur-
ther, a scalar function fg : V → R is induced by κ if there exist an element g in
the Hilbert space Hκ with fg(v) = 〈g,Φκ(v)〉Hκ . A continuous kernel on a com-
pact metric space (V, d) is universal if the space Fκ of all functions induced by κ is
dense in the space C(V ) of continuous functions over V with the supremum norm
||g||∞ = supv∈V {|g(v)|} [Steinwart, 2001a]. Due to the fact that universal kernels are
positive definite, Steinwart proves the injectivity of the corresponding feature map
Φκ. Furthermore, the identity map Ψ:

Ψ : (V, dE)→ (V, dκ)

is also continuous.
Concluding, it can be reasoned [Villmann et al., 2015]:

Remark 2.1. Let (V, dE) a compact metric space, κ a universal kernel with the feature
map Φκ : V → Iκ ⊆ H, and dκ is the metric induced by κ, then (V, dκ) and (Iκ, dκ)

are topological equivalent and isometric. The mapping Φκ ◦Ψ−1 : (V, dκ) → (Iκ, dκ) is
continuous and bijective.

This remark is summed up in Figure 2.4 visually.
Consequently, the DK-GLVQ provides high application variety in class separation

like the KGLVQ or SVM do. In Application 2.3 it is shown that the DK-GLVQ achieve
similar accuracy values like the SVM applied on a non-linear separation problem, but
with an underlying linear model, i. e. the number of prototypes in DK-GLVQ is set to
one per class. Thus, in this example the DK-GLVQ model is very sparse compared to
the SVM model, which ends up with more support vectors.

To test if a kernel is universal is challenging as it can be concluded from the definition.
Yet, the most famous kernels like RBF-kernel, exponential kernel, the polynomial ker-
nel or a special kind of radial kernels fulfill these requirements ([Micchelli et al., 2006],
[Sriperumbudur et al., 2011]). The radial kernels are a class of kernels with

κg(v,w) = g(d(v,w)) (2.65)

where g : R+ → R is a scalar function and d(v,w) is a distance measure. In



2.4. Dissimilarity Measures 49

Figure 2.4: Visualization of the topologically equivalence and the isometric of (V, dκ) and
(Iκ, dκ).

[Sriperumbudur et al., 2011] it is shown; if the radial kernel is positive definite, the ker-
nel is also universal. This holds for radial kernels where d(v,w) is a metric.

The properties of be universal or positive definite have not to be fulfilled in general.
In this case the measure dκ(v,w) is still a semi metric (see Note 2.1). Yet, the isometry
between (V, dκ) and (Iκ, dκ) does not longer holds for those kernels.

Obviously, one further requirement on the kernel κ(v,w) for the integration in the
DK-GLVQ is the differentiability according to the prototypes w. Yet, the most common
kernels like the radial basis function, polynomial or the Student-type gaussian kernel
fulfill this requirement (see Tab. A.1). However, e. g. structural kernels like sequence
and tree kernel can not be applied [Suzuki and Isozaki, 2005].

Naturally, differentiable kernels can be also plugged into the unsupervised gradient
based Vector Quantization methods like NG, SOM, or other extensions of the GLVQ
like the border sensitive (see Sec. 5.1) or the attention based one (see Sec. 5.2.1).

2.4.2 Dissimilarity Adaptation for Performance Improvement

In the last subsections several distance measures were discussed. Some of them are pa-
rameterized like the distance of the RBF-kernel dRBF (v,w, ς) (2.63). A big advantage in
prototype based VQ is the possibility of distance adaptation for performance improve-
ment, i. e. additional learning of the distance parameters by stochastic gradient descent.
A pioneering work in supervised Vector Quantization is [Hammer and Villmann, 2002]
about relevance learning. The approach is denoted as Generalized Relevance LVQ (GR-
LVQ). Thereby, a weighted squared Euclidean distance is used:

d2
E(v,w, λ) =

D∑
k=1

(λk(vk − wk))2 (2.66)
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with weighting vector λ2 =
(
λ2

1, . . . , λ
2
D

)
also denotes as relevance profile and the nor-

malization constraint
D∑
k=1

λ2
k = 1 . (2.67)

In GRLVQ, these relevance parameters are adjusted also be SGD in parallel to the pro-
totypes. Later, this idea was also transfer to unsupervised VQ [Kästner et al., 2011].

A generalization of this relevance learning is the matrix variant. Instead of applying
a relevance vector, a matrix is introduced:

d2
E(v,w,Ω) =

m∑
k=1

([Ω(v −w)]k)
2 (2.68)

where Ω ∈ Rm×D can be interpreted as a linear mapping of the data points and proto-
types [Schneider et al., 2009]. The term d2

E(v,w,Ω) is still a quasi metric, because it can
be rewritten to

d2
E(v,w,Ω) = (v −w)T ΩTΩ (v −w) (2.69)

and ΩTΩ is sure positive semi definite. If

Ω =

 λ1 · · · 0
...

. . .
...

0 · · · λD


the distance d2

E(v,w,Ω) is equivalent to d2
E(v,w, λ).

Summarized, any parameterized differential distance can plugged into a gradient
based VQ method and the distance parameters can be determined automatically via
SGD. Further examples of distance parameter adaptation are the learning of the kernel
parameter ς in RBF-kernel [Villmann et al., 2015], relevance/matrix learning in diver-
gences ([Kästner et al., 2011],[Haase, 2014]) or learning of the influence of the deriva-
tives γ in the Sobolev distance [Harth, 2012].

A more detailed description of the principle of distance adaptation will be given in
the following section as exemplified by the relevance/matrix learning in GLVQ and
DK-GLVQ.

Generalized Relevance/Matrix Learning Vector Quantization

In GRLVQ the update of the prototypes is analog to (2.40) applying d±(v, λ) where
d±(v, λ) = d(v,w±, λ) are the weighted distances to the winner prototypes according
(2.35) and (2.36), respectively. Beside the prototypes the relevance profile λ2 is adapted
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in each iteration step:

λk ← λk − αλ ·∆λk (2.70)

with ∆λk = ξ+
Θ(v) · ∂d

+(v, λ)

∂λk
+ ξ−Θ(v) · ∂d

−(v, λ)

∂λk
(2.71)

and ∂d±(v,λ)
∂λk

= 2 · λk · (vk − w±k )2 (2.72)

where ξ±Θ(v) is determined analog to standard GLVQ (2.41).

For choosing the learning rate αλ exists two strategies: From the point of minimiza-
tion of the cost function both the prototypes as well as the relevance profile λ2 are
parameters to be optimized. Thus, αλ can be initialized independent from the learn-
ing rate of the prototypes αW and has to be decreased during learning (see Appendix
A.1). Another point of view is the interpretation of the update as Hebbian learning
scheme. Here, the distance should be adapted much slower (adiabatic) than the proto-
types at least one magnitude, because a quasi stationarity of the dissimilarity measure
is assumed [Hammer and Villmann, 2002].

After learning GRLVQ the resulted relevance profile λ2 weights each dimension fo-
cusing a good class separation, i. e. if λ2

k has a high value, then the dimension k is
important for the class separation. Yet, the reverse case does not apply in general, be-
cause single features can dependent on each other and if a feature with high λ2

k will
be dropped off, other features might compensate it [Hammer and Villmann, 2002]. The
number of parameters λ2

k are directly dependent on the dimensionality of the data. If
a high dimensional data set is given, the number of parameters to be optimized is also
high and this might cause instabilities [Mendenhall and Merényi, 2008]. Frequently,
for high dimensional data sets the features depend on each other like in functional data
sets. In Section 4.1 possibilities to integrate this dependency of the dimensions into the
learning scheme is shown up.

As already mentioned, the relevance profile weights each dimension independently
from each other for a better class separation. If the relevance profile is interpret as a
linear mapping only the axes are distorted, i. e. the corresponding mapping matrix
is a diagonal matrix. The generalization would be a fully occupied mapping matrix.
In Generalized Matrix LVQ (GMLVQ) such a linear mapping matrix for better class
separation is learned [Schneider et al., 2009].

Once again, the distance d±(v) in the cost function (2.37) is replace by the mapping
distance d±(v,Ω) (2.68) and beside the prototypes the mapping matrix Ω ∈ Rm×D is up-
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dated:

Ωkl ← Ωkl − αΩ ·∆Ωkl (2.73)

with ∆Ωkl = ξ+
Θ(v)

∂d+(v,Ω)

∂Ωkl
+ ξ−Θ(v)

∂d−(v,Ω)

∂Ωkl
(2.74)

and ∂d±(v,Ω)
∂Ωkl

= [v −w±]m
[
Ω(v −w±)

]
l

. (2.75)

where ξ±Θ(v) and d±(v,Ω) = d2
E(v,w±,Ω) is determined analog to standard GLVQ

(2.41), (2.35), and (2.36), respectively. For learning rate αΩ the same argumentation
applies like for αλ in GRLVQ [Schneider et al., 2009]. The natural number m gives the
dimensionality of the resulted mapping space: φ(v) = Ωv with φ : RD → Rm.

The GMLVQ is versatile in application and interpretation of the learned model. For
example the matrix

Λ = ΩTΩ (2.76)

can be interpreted as classification correlation matrix [Kaden et al., 2014]. The matrix Λ

involves beside the weighting of each feature on the diagonal, the classification cor-
relation values between the features besides the diagonal. This means if Λkl > 0, the
dimension k and l are positive correlated in terms of classification improvement and if
Λkl < 0, they are negative correlated. The GMLVQ is applied on the Coffee data set to
illustrate the mapping Ωv and interpretation of the classification correlation matrix Λ

in Application 2.1.
Like the normalization of the relevance profile a normalization constraint according

Ω or Λ can be required, respectively. Analog to (2.67), the trace of Λ is set to one, i. e.

D∑
i=1

Λii = 1 (2.77)

This constraint can be transferred to Ω by:

Λii =
m∑
k=1

Ω2
ki (2.78)

and therefore, each element of Ω have to be divided by:

Ωlj ←
Ωlj(∑m

k=1

∑D
i=1(Ωki)2

) 1
2

. (2.79)

This normalization does not affect the value of the cost function and can be applied
after each iteration step [?].

Another application possibility is to use the mapping matrix Ω for visualization of the
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classification result denoted as limited rank GMLVQ (LiRaM LVQ, [Bunte et al., 2012]).
For that purpose the matrix has to be initialized rectangular with the mapping dimen-
sion m = 2 or m = 3 (see Fig. 2.12 in Appl. 2.2). It should be emphasized that Ω

differs from the mapping matrix determined by the Principle Component Analysis
(PCA, [Haykin, 1994]). In general, the PCA method is an eigenvalue decomposition
of the data covariance matrix. Afterwards, the first two or three eigenvectors are used
to map the data and, hence, to visualize the data set. Yet, the PCA can be seen as
unsupervised methods since only the data points get into account. Beside the PCA fur-
ther and more established visualization methods exists like Multi-Dimensional Scaling
(MDS), Sammon Mapping or the t-Distributed Stochastic Neighbor Embedding (t-SNE)
[v. d. Maaten et al., 2009]. However, all of them are unsupervised methods. In contrast,
the mapping Ω in GMLVQ is determined under the aspect of good class separation
and thus, it is learned supervised. An illustration of such a mapping can be found in
Application 2.2.

Further, in [Biehl et al., 2009] it is pointed out that the number of non-vanishing
eigenvalues of Λ and, therefore, the number of relevant eigendirections are very small.
Moreover, there is a slight tendency of the squared matrix Ω (i. e. m = D) to converge
to a degenerated state where the rows represent the first eigenvector. Thus, despite
the huge number of free parameters, the solution of GMLVQ tends to yield simple. In
face of this insights, the learning of a huge number of independent parameters like in
GMLVQ can course instability. Therefore, the Enhancement-GMLVQ was developed to
integrate knowledge about the dependency of the dimension in the learning scheme,
e. g. the lateral dependency of the dimensions in functional data. In section 4.1.2 this
idea is described more detailed.

A useful tool in classification is the feature extraction, i. e. beside a good classification
the model identifies the relevant features considering the class separation. On the one
side, in many application the number of features are directly correlated with explicit
costs. On the other side, the classification rate may depend on the number of used
features. Thus, a compromise between classification rate and number of used features
is necessary. On pages 67ff we consider possibilities for obtaining a sparse relevance
profile or classification correlation matrix.

In the following, different aspect of the GRLVQ and GMLVQ are demonstrated on
the Coffee data set (see section 1.2).
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Application 2.1 (Relevance Learning in GLVQ).

data set Coffee

methods GRLVQ, GMLVQ

parameter settings
number of prototypes NW = 5 (one per class)

distance functions d2
E(w,v, λ), d2

E(w,v,Ω)

learning rates αW = 0.0001

αλ = 0.1 · αW
αΩ = 0.1 · αW

experimental settings
number of training/test data 5, 000/20, 000

epochs 5,000
initialization prototypes: mean spectra per class

relevance profile: λi = 1
256

mapping matrix: Ω = I256

results in numbers

accuracy GLVQ GRLVQ GMLVQ
training 76.8% 84.0% 87.0%

test 76.8% 83.9% 86.6%

results in figures

Figure 2.5: Relevance profile λ learned by the GRLVQ.



2.4. Dissimilarity Measures 55

Figure 2.6: Relevance matrix Λ learned by the GMLVQ.

Figure 2.7: Original class mean spectra v̄

Figure 2.8: Mapped mean spectra by Ωv̄
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resume The classification of the Coffee spectra is challenging. Yet, the data set is
homogeneous, due to nearly the same training and test accuracies. The dimension
of the spectra is 256 and therefore, it is a high dimensional data set. The GLVQ get
only about 77% accuracy. Moreover, applying GRLVQ we get up to 87%, whereat
the GMLVQ reaches the best accuracy. In the relevance profile in Fig. 2.5 only
a few wavelengths seems to be important for the classification. Only 44 wave-
lengths have a higher relevance value than 10−4. Yet, the relevance values of the
other wavelength do not vanishing. To obtain a more sparse relevance profile a
regularization term can be added (see page 67). The same behavior of small but
non-vanishing entries occurs for the classification correlation matrix Λ or the map-
ping matrix Ω, respectively. Yet, Λ provides some further information about the
interaction of the wavelengths (see Fig. 2.5), e. g. the wavelengths in the interval
1350 − 1400nm and 1850 − 1875nm are highly correlated which each other. More-
over, in Fig. 2.7 and 2.8 the original mean spectra and the mean spectra mapped
using the matrix Ω are depicted. The original data are difficult to distinguish vi-
sually. In contrast, the discrimination of the mapped mean spectra is obviously
better.
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Application 2.2 (Visualization with GMLVQ (LiRaM LVQ)).

data set Coffee

methods PCA, GLVQ, GMLVQ

parameter settings
number of prototypes NW = 5 (one per class)

distance function d2
E(w,v,Ω)

learning rates αW = 0.0001

αΩ = 0.1 · αW
mapping dimension m ∈ {2, 256} (note: D = 256)

experimental settings
initialization prototypes: mean spectra per class

relevance profile: λi = 1
256

number of training/test data 5.000/20.000
epochs 5000

results in numbers

GLVQ GMLVQ
m - 2 256

test accuracy 83.3% 88.5% 89.0%
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results in figures

Figure 2.9: Classification correlation matrix Λ for GMLVQ with the mapping dimension
m = 2

Figure 2.10: Classification correlation matrix Λ for GMLVQ with the mapping dimension
m = D = 256
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Figure 2.11: Mapping of the the coffee spectra by the first two eigenvectors determined by
the unsupervised PCA

Figure 2.12: Mapping of the spectra by Ωv and Ω ∈ R2×256
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Figure 2.13: Projection of the data according to the eigenanalysis of Λ2 defined by the full
rank mapping Ω2 ∈ R256×256

resume As mentioned in the Application 2.1 the classification of the coffee spectra
is challenging. A standard PCA with mapping on the first two main components
underline this certainty (see Fig. 2.11). Yet, applying LiRaM LVQ we obtain better
results. First the mapping dimension is limited to m = 2 and the visualization can
directly be performed by Ω1v → ṽ ∈ R2. Then, we learned a full rank matrix Ω2

and visualized the data set by the first two principle components of Λ2 = ΩT
2 Ω2.

Visually, this two mappings are very similar (see Fig. 2.12 and 2.13), which is also
reflected by the similar accuracies of GMLVQ with the limited and full rank map-
ping matrix. Yet, compared to the unsupervised PCA visualization the supervised
visualization with Ω1 or Ω2 is considerably better. Especially, the red class (Espresso
Cuba) separates perfectly from the other 4 classes. Further, it can be seen that the
green (Bonga Forest) and black (Espresso Columbia) classes are hard to separate.
Moreover, we observe that the GMLVQ with the full rank Ω2 leads to a smother
correlation matrix (see Fig. 2.9). Hence, the essential structure information is pre-
served in Ω1.

Distance Adaptation in DK-GLVQ

Many kernel are parameterized like the RBF kernel. These parameters have to be ad-
justed in advance for good model performance. This parameter determination can be
very costly and challenging. In the SVM a suitable parameter combination is usually
identified by the systematic search, i. e. all suitable parameters are simple sequential
attempted. Other approaches estimate a parameter initialization. Yet, the estimation
is not always satisfactory for the applications ([?, ?]). One advantages in DK-GLVQ



2.4. Dissimilarity Measures 61

is the possibility of automatically determination of the kernel parameters applying the
stochastic gradient descent. During the learning the kernel parameter is adapted beside
the prototypes like it is known from the relevance/matrix learning. Furthermore, the
kernel parameter can be localized, i. e. each prototype is assigned by its own parameter.

We illustrate this strategy for the RBF kernel in DK-GLVQ; The update for the kernel
parameter ςj of prototype wj is:

ςj ← ςj − ας ·∆ςj

with ∆ςj = ξ+
Θ(v)

∂d2
RBF (v,w+, ς)

∂ςj
+ ξ−Θ(v)

∂d2
RBF (v,w−, ς)

∂ςj

and ∂d2RBF (v,wk,ςk)
∂ςj

=


dE(v,wk)

ς3j
d2
RBF (v,wk, ςk) , if k=j

0 , else
.

where ξ±Θ(v) is determined analogously to the standard GLVQ (2.41) applying the ker-
nel distance. Experiments show, the learning rate ας has to be chosen carefully (see
Application 2.3).

Moreover, the relevance learning of GRLVQ/GMLVQ can also be plugged in the
DK-GLVQ. Again, we demonstrate the relevance learning for the RBF kernel (2.62).
Thereby, we obtain

κRBF (v,w,Ω) = e−
√

(Ω(v−w))2 (2.80)

Thus, the RBF parameter 1/(ς2) is replaced by the mapping matrix Ω. If Ω is a diago-
nal matrix, the diagonal corresponds to the relevance profile. It has to be pointed out
that it can be not longer guaranteed that the kernel κRBF is universal: The property
depends on the classification correlation matrix Λ = ΩTΩ. During the learning we
can only ensure that Λ is positive semi-definite, but not to be strict positive definite

and thus
√

(Ω(v −w))2 may be not longer a metric. Numerically, the probability of Ω

degenerating is nearly zero.
But for all that, choosing m ∈ {2, 3} the resulted model can be additional visualized

[Kästner et al., 2012]. An example of the DK-GMLVQ is presented in Application 2.4.
Thereby, the visualization ability of the DK-GMLVQ is pointed out additionally.
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Application 2.3 (DK-GLVQ with parameter adaptation).

data set Palau

methods GLVQ, DK-GLVQ, SVM

parameter settings
(DK)-GLVQ

number of prototypes NW ∈ {2, 9}
distance function d2

E(v,wj), dRBF (v,wj , ςj)

learning rates αW = 0.01

ας = 10−8

transfer function parameter Θ = 1

SVM
kernel κRBF

kernel parameter ς = 0.5 (systematic search)
penalty value C = 1, 000

experimental settings

(DK)-GLVQ
training set NVtrain = 5, 000

test set NVtest = 20, 000

epochs GLVQ: 1000 DK-GLVQ: 5000
initialization prototypes assigned to a data point randomly

kernel parameter: ς = 0.05

results in numbers

GLVQ DK-GLVQ SVM
NW 2 9 2 9 16

accuracy 67.1% 97.8% 95.5% 99.5% 100%
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results in figures

Figure 2.14: GLVQ results with 2 prototypes (left) and 9 prototypes (right); legend: data
points of class 1 - yellow + and of class 2 - blue ◦, misclassified samples - black ×, proto-
types - red �

Figure 2.15: DK-GLVQ results with 2 prototypes (left) and 9 prototypes (right); legend:
data points of class 1 - yellow + and of class 2 - blue ◦, misclassified samples - black ×,
prototypes - red �

Figure 2.16: SVM result with 16 SV; legend: data points of class 1 - yellow + and of class 2
- blue ◦, SV - red �
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resume This exemplary two-dimensional example shows that a linear classifica-
tion in (V, d2

E) is not possible, however a linear separation in (V, dRBF ). The GLVQ
using only two prototypes (linear model) together with the quadratic Euclidean
distance can not solve the classification problem. One possibility is to enlarge the
number of prototypes per class. Nine prototypes are adequate to solve the problem.
Yet, another possibility is to apply a kernel based distance like the dRBF (v,wj , ςj)

combined with localized parameter learning on ςj . The DK-GLVQ with two proto-
types ends up with a satisfying result. The values for the parameters are ς1 = 0.03

and ς2 = 0.07. In the experiments, it turns out that the parameter learning is very
sensible concerning the learning rate. Thus, the parameters have to be adapted
very carefully (learning rate α = 10−8). The sparsest model of the SVMa ends up
with 16 SV and a training accuracy of 100%.

aThe experiments are done using the libSVM package for Matlab R©

Application 2.4 (Visualization with DK-GMLVQ).

data set Coffee

methods GMLVQ, DK-GMLVQ, SVM

parameter settings

(DK-)GMLVQ
number of prototypes NW = 5 (one per class)

distance function d2
E , dΩ

RBF

learning rates αW = 0.01

αΩ = 0.01 αW
transfer function parameter Θ = 10

SVM
kernel κRBF

kernel parameter ς1 = 7, ς2 = 5 (systematic search)
penalty value C1 = 200, 000, C2 = 10, 000
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experimental settings

training set NVtrain = 5, 000

test set NVtest = 20, 000

epochs 10,000
initialization prototypes: mean spectra

Ω : m=2 - random, m=256 - identity matrix

results in numbers

GMLVQ DK-GMLVQ SVM
NW 5 5 827 1000

m 2 256 2 256 - -

test accuracy 88.5% 89.0% 90.8% 91.4% 93.6% 94.7%

confusion matrix coffee types black green blue magenta red

GMLVQ

black 81.5 14.1 4.4 0.1 0

(m=256)
green 26.0 73.0 1.0 0 0

blue 5.7 0.2 92.9 1.2 0

magenta 0.8 0.1 1.6 97.5 0

red 0 0 0 0 100

DK-GMLVQ

black 82.8 15.5 1.5 0.1 0

(m=256)
green 17.5 82.2 0.3 0 0

blue 4.7 0.1 94.1 1.1 0

magenta 0.7 0.1 1.5 97.7 0

red 0 0 0 0 100
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results in figures

Figure 2.17: Classification correlation matrix Λ1 for DK-GMLVQ with the mapping dimen-
sion m = 2

Figure 2.18: Classification correlation matrix Λ2 for DK-GMLVQ with the mapping dimen-
sion m = D = 256
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Figure 2.19: Visualization with DK-GMLVQ: mapping of the spectra by Ω1v and Ω1 ∈
R2×256

resume The visualization of the coffee spectra with the Euclidean distances was
already done in Application 2.2. Compared to GMLVQ, the DK-GMLVQ with the
weighted RBF-Kernel κRBF (v,w,Ω) obtain a better accuracy with a very sparse
model, i. e. using only one prototype per class. The SVM with the RBF-Kernel get a
better accuracy of about 2− 3%. However, up to 1000 support vectors are needed.
This corresponds to 20% of the training data. The improvement of the DK-GMLVQ
compared to the GMLVQ reflects in better separation between the green (Bonga
Forest) and black (Espresso Columbia) class, which on the one hand can be seen
in the confusion matrix and on the other hand in the mapped data points by Ω

(compare Fig.2.12 and Fig. 2.19). In Fig. 2.19 the mapped data points with the
limited ranked Ω1 ∈ R2×256 : Ω1v→ ṽ obtained by DK-GMLVQ is shown.

Feature Sparsity in Relevance and Matrix Learning

Especially for high dimensional data sets, a typical relevance profile in GRLVQ/DK-
GRLVQ consists of a few considerable large values ans a large number of small but
non-vanishing values . However, in sparse models with respect to the number of used
features this effect is adverse. Thus, the values of features, which are not decisively con-
tribute to the classification result, should be forced to vanish. To achieve this goal the
cost function can be extended by an additive term forcing a sparsity constraint Es(λ):

EsGRLV Q = EGRLV Q(W,λ) + γ(ι) Es(λ) (2.81)

with the weighting γ(ι) of the sparsity condition depending on the iteration epoch ι.
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The ansatz for the sparsity condition Es(λ) can be diverse. One approach is the for-
mulation of the sparsity constraint by an entropy term known form the information
theory. In this context, the entropy H(λ) measures the average amount of information
of the relevance profile, i. e. the value H(λ) is minimal, iff for one single index k apply
λk = 1 and λj = 0 ∀j 6= k. The fundamental and most famous entropy is the Shannon
entropy:

EHs (λ) = −HShannon(λ) = −
D∑
i=1

λ2
i log(λ2

i ) (2.82)

The Shannon entropy is differentiable with respect to λk. Thus, a optimization by the
SGD is feasible. The additional update for the relevance vector is based on the derivate:

∂EHs (λ)

∂λk
= −

(
log(λ2

k) + 1
)

. (2.83)

The goal of the sparsity is to achieve λk = 0 for a large number of l. However, the
Shannon entropy and its derivate are numerically sensitive for small values of λk due
to the logarithmic function. This might lead to instable behavior during the learning.
Thus, other differentiable entropy functions are thinkable, e. g. the Rényi entropy

ER,αs (λ) = − 1

α− 1
log

(
K∑
l=1

()λ2
l )
α

)
(2.84)

or the Tsallis Entropies

ET,αs (λ) = − 1

1− α

(
1−

K∑
l=1

(λ2
l )
α

)
(2.85)

with their parameter α > 1 8.

Another ansatz is the use of the lp-norm as a sparsity condition. Thereby, the l0-norm
counts the number of features which have non-zero relevances:

El0s (λ) = ||λ||0 =
D∑
i=1

(1− δλi,0) (2.86)

with δi,j is the Kronecker delta (2.29). Unfortunately, this discrete function is non-
convex and hard to minimize (NP-hard). Therefore, the l0-norm is replaced by an
higher order concerning p [Bach et al., 2011]. If p = 2, the least squares of the relevance

8A further application of the entropy for sparsity can be found for the features or structural sparsity of
the functional GRLVQ on page 94ff.
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profile is considered

El2s (λ) = ||λ||2 =

D∑
i=1

λ2
i (2.87)

The cost function term El2s is easy to handle, because the function is convex. Never-
theless, the minimization of (2.81) can be done by stochastic gradient descent, because
||λ||2 is differentiable according λk, too. However, the minimization of the l2-norm is
not the same like the minimization of the l0-norm and therefore, is not suitable for the
sparsity condition [Bach et al., 2011].

In compress sensing or in the Least Absolute Selection and Shrinkage Operator approach
(Tib-LASSO, [Tibshirani, 1996]), the sparsity term is relaxed by the l1-norm

El1s (λ) = ||λ||1 =

D∑
i=1

|λi| (2.88)

which imply a convex optimization problem. Moreover, in [Donoho, 2004] it was
shown that under certain conditions the minimum of the l1-norm is equal to the min-
imum of the l0-norm. Yet, the l1-norm is not differentiable according to λk because of
the absolute value function. Fortunately, in [Schmidt et al., 2007] can be found a dif-
ferentiable approximation of the l1-norm and thus the stochastic gradient descent on
EsGRLV Q with (2.88) can be applied. In the following a short explanation of this method
is given:

As already mentioned, in [Schmidt et al., 2007] a differential approximation for the
l1-norm is pinpointed. Therefore, the absolute value |λi| is divided into

|λi| = (λi)+ + (−λi)+ (2.89)

with (λi)+ = max{λi, 0} (2.90)

The equation (2.90) can be approximated by

(λi)+ ≈ λi +
1

ζ
ln(1 + e−ζλi)

with the approximation parameter ζ explained in [Chen and Mangasarian, 1995]. Thus,
for the absolute value function the differential approximation

|λi|ζ =
1

ζ
ln
(

2 + e−ζλi + eζλi
)
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is obtained. An upper bound for this approximation is

| |λi| − |λi|ζ | ≤
2 ln(2)

ζ
(2.91)

Hence, the greater ζ, the better is the approximation.
Consequently, we can apply these formulas to approximate El1s (λ) and the partial

derivation for the additionally update term of λk results in

∂El1s (λ)

∂λk
≈ tanh

(
ζλk
2

)
.

It should be noted that the weight γ(ι) of the sparsity term in (2.81) should be slowly
increased during learning. Just before the accuracy drastically decreasing, the algo-
rithm should be stopped. At this point a good balance between sparsity and accuracy
is obtained.

The idea of sparsity can be applied to the GMLVQ, too. In this case a matrix lp-norm
has to be utilized. In the example of the l1-norm, we obtain:

||Ω||1 = max
1≤j≤D

m∑
i=1

|Ωij | (2.92)

The realization on ||Ω||1 of the approximation mentioned above is explained in
[Riedel et al., 2013]. Yet, a realization frequently is numerically too complex.

Beside the feature sparsity, the goal of sparse vectors/matrices appears in many
applications and problems. Therefore, the methods to obtain sparsity are multi-
faceted. In this case above described ansatz is only one possibility. More detailed
literature with further approaches can be found in [Donoho, 2004], [Hoyer, 2002], or
[Olshausen and Field, 1997].
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Application 2.5 (Relevance Learning with sparsity conditions in GRLVQ).

data set Coffee

methods sGRLVQ with Shannon Entropy and Tib-LASSO

parameter settings

number of prototypes 5 (one per class)
distance function d2

E(w,w, λ)

learning rates αW = 0.0001

αλ = 0.1 · αW
approximation constant ζ = 5

sparsity weighting γ(0) = 0 linear increasing to γ(5000) = 0.0025

experimental settings

initialization learned GRLVQ model
number of training/test data 5, 000/20, 000

epochs 5,000

results in figures

Figure 2.20: Relevance profile in different states of sparsity according Tib-LASSO.
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Figure 2.21: Development of the accuracy values during sparsity adaptation according
Tib-LASSO (red) and entropy (blue).

resume With increasing sparsity weight γ the relevance profile gets sparse for
Tib-LASSO (see Fig. 2.20). The important wavelengthes for distinguishing the cof-
fee types are around 1140nm, 1420nm and 1600nm. While the resulting relevance
profile applying entropy or Tib-LASSO are similar, the accuracy decreases differ.
Applying the Tib-LASSO approach, the accuracy keeps longer high values com-
pared to the entropy approach, see Fig. 2.21. Moreover, the entropy based method
shows strong instabilities (around ι ≥ 4750) if the relevance weights for spectral
bands approach zero values at the end of the regularization process.



Chapter 3

Deeper Insights into Classification Problems
- From the Perspective of Generalized LVQ -

3.1 Classification Models

In several practical applications it is too complex or even impossible to develop an
exact model for a given problem like for example the distinction of soil conditions via
reflectance (hyper-)spectra from the field of remote sensing. Yet, a set of such tasks can
be formulated as decision or specific classification problems, respectively. Moreover,
if we do so, a classification model can be generated by learning from examples as it is
known from Machine Learning strategies.

Utilization of these strategies can be found in nearly all application fields: food in-
dustry - fat or quality level detection; automotive industry - decision about airbag de-
ployment in a crash scenario; production - stopping of a band-conveyor in an episode;
remote sensing - kind of soil conditions in an area; or in medical sciences - rating of the
advanced case of a patient to name just a view. The huge amount of application fields
entail a high variety of classification models in Machine Learning. The approaches can
be adapted from basic statistics or statistical learning, information theory, optimization
theory or by other sciences like biology or physics. In many cases, the methods combine
several theories and an assignment is not unique.

Basic statistical methods are the Linear Discriminant Analysis (Linear DA) and the
extensions or generalizations thereof Quadratic DA or Fisher DA [Bishop, 2006]. The
DA determines the parameters of a predefined discriminant function, such that the
separation of the classes is as best as possible. In case of the Linear DA, the discriminant
function is linear and, therefore, it should only be applied for simple linearly separable
problems.

Hidden Markov Models (HMM, [Bishop, 2006]) are stochastic models, whereby the
parameters of the stochastic process have to be determined. Further, the HMM can
be seen as a graph, where the nodes are the observations and the edges are equipped
with transition probabilities. As already mentioned, the Support Vector Machine is a
popular method based on statistical learning theory (see page 45 or appendix A.2). One
extension of the SVM is the Relevance Vector Machine, which has a similar cost function
like the SVM, but is based on a Bayesian formulation of a linear model.
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A further family of methods are the Neural Networks (NN, [Haykin, 1994]). The
mathematical models of NN are strongly simplified biological neural networks of
the brain. Yet, they also can be seen as graphs like HMM or Decision Trees (DT,
[Rokach and Maimon, 2008]). DT are tree-like directed graphs where each node cor-
responds to a feature. The final leaves (nodes without a child) represent the classes.
When a data point is given, it is start in the root node (node without a parent) and the
value of the specific feature decide about the next child node. The number of nodes,
the features and the value bounds are learned by examples. There exist many heuristics
methods . For complex data sets with a lot of features the obtained tree can be huge.
Since it might be not manageable, there also exists methods to prune a DF. Further, DT
are instable for small data deviations [?].

It can be distinguish between mathematically proven or heuristic classification ap-
proaches: In this view the classification task can be seen as an optimization problem.
Yet, there are different ways to formulate the cost function. On the one side the formu-
lation depends on the concrete goal like optimization of the accuracy or other statistical
evaluation measures (see Sec. 3.3), but on the other side also on the solution strategy
on the other hand. In general, the direct maximization of the classification accuracy is a
discrete optimization problem which is NP-hard. Therefore, various approaches search
for a continuous approximation, which is easier to handle. For example for SVMs a
quadratic cost function with convex constraints has to be optimized. Thus, the solu-
tion of a SVM is unique and a lot of efficient optimization strategies exist. The SVM
is mathematically established. On the other side, the DT are intuitive models with a
lot of mathematical expertise. Anyway, the decision trees are heuristics. As shown in
Section 2.2.1, the basic LVQ-methods like LVQ 1 or LVQ 2.1 are heuristics. Yet, Sato
& Yamada finding a according cost function by keeping the principle of shifting of the
prototypes and therefore, the generalization of the LVQ, the GLVQ, is not longer heuris-
tically.

The prototype based Vector Quantization methods described in the prevoius section
are adaptive models. Thereby, the prototypes are adapted according to a learning rule
during the training process. This procedure is called online learning, due to the fact that
not all data have to be known at the beginning of the learning. New data points can
be considered any time. Other approaches directly obtain a solution by using all data
points at once. If a new point is available, the whole model has to be determined anew.

Thus, the problem of classification is very comprehensive and many strategies exist
regarding different perspectives. In this thesis, a full summary cannot be given. Nev-
ertheless, several aspects of classification problems to provide better understanding of
the multifariousness of the classifiers are discussed.



Parts of the section are based on

M. Kaden, M. Lange, D. Nebel, M. Riedel, T. Geweniger, and T. Villmann: Aspects in
Classification Learning - Review of Recent Developments in Learning Vector Quan-
tization. Foundation of Computing & Decisions Sciences, 2014.

3.2 The Classification Task

Although the classification task seems to be well defined, a lot of different methods ex-
ist to solve such problems as mentioned in the last pages. Reasons therefore are multi-
faceted. For example: the kinds of underlaying data and classes might be miscellaneous
or the classification goal is not uniform.

In this section, a possible categorization of classification problems is given:

A) goal of the classification task,

B) data characteristics, and

C) class characteristics.

In the following, these three categories are described in more detail.

A) Goal of the Classification Task

Beside the evaluation measure like the classification accuracy, different aspects affect
the performance in practice, e. g. the model complexity, the interpretability or the us-
ability for real time applications [Backhaus and Seiffert, 2014]. Thus, at the beginning
the goal, the limits and the constraints of the given problem have to be well defined.

Thereby, the following aspects about the task should be taken into account for choos-
ing a classifier:

model complexity In most applications there are no restrictions concerning the train-
ing capacity or runtime. However, the chosen model should be applicable and
suitable for the given problem. Thereby, a statement of Einstein should be con-
sidered: ’Everything should be made as simple as possible, but not simpler’.

Further, since the resulting model might be implemented in an overall system
with restricted memory capacity, the model size is restricted. Thus, the classifier
model should be sparse.
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costs of training and testing In praxis the training costs (in terms of time) are often
non-critical as long as they are finite. If not, the chosen classifier should at least
be as simple as possible concerning the calculation time. The testing costs are
often more critical, especially in real time applications. Thus, additionally to the
complexity of the resulting model the calculation time might be restricted as well.

interpretability Users in several areas of application have difficulties to accept so
called black box models like Neural Networks. In black box models the goal of the
concrete task might be achieved, but the learning process or the resulting model
are not comprehensible for the user. Thus, the interpretability of the training pro-
cedure and also the resulting model can be an important aspect for acceptance in
practical applications.

robustness Small deviations in the input data like adding or removing training data
points should not leas to a drastic change of the model. A robust model is not
sensitive according small modifications which is a crucial aspect in many appli-
cations.

extraction of extra information about data Beside solving the classification task, gain-
ing further information about the data might be relevant for the user as well. Ex-
amples include feature extraction, classification certainty or visualization ability
of the resulting model.

Data Properties

Not only the variety of applications is high, also the variety of data sets. In general,
data sets distinguish from each other in several aspects like the source, the complexity,
dimensionality, the reason/goal for capturing of the data, the goal for analysis and so
one.

In this category we can differ the following subgroups, which influence each other.

type of data An important issue is how the data information are given. In most appli-
cations each single data point is available. However, sometimes only the (dis-)
similarity between the data might be known. If data exist explicitly, then the fea-
tures can be vectorial, strings, intervals or other categories or objects. This issue
is important for the choice of the classification method. Often an algorithm can
only handle one type of data.

separability In general, it is distinguished between linear and non-linear separable
classification problems. Accordingly, the classifiers are subdivided the same way,
i. e. models which can only solve linear problems or models which are able to
solve non-linear problems as well. Yet, in many applications the data are not
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perfectly separable neither linear nor non-linear. Thus, the classifier should be
able to handle overlapping classes.

dimensionality The number of features of the data is a crucial fact. For vectorial data
it can be distinguished between low and high dimensional data. But, currently
definition of low and high is intensively discussed. The difficulties of high dimen-
sional data are due to the course of dimensionality1. Therefore, for high dimensional
classification problems the preprocessing as well as the choice of the dissimilarity
measure are important aspects.

data density/number of data The data density is directly correlated to the dimension-
ality and effects the same problems. The number of data points theoretically
needed is exponential to the number of features.

extra knowledge about the data Sometimes, additionally to the data further informa-
tion is available. This extra knowledge should be capable of being integrated in
the classification model and, accordingly, it should also be considered choosing
the classifier. One example for such extra information is available, when classify-
ing hyperspectra in remote sensing. This kind of data are high-dimensional, but
further there exist dependency between the neighbor dimensions (wavelengths).
Such spectra are also denoted as functional data (see Section 1.2). The elected
classifier should be able to integrate this knowledge, e. g. by using an adjusted
dissimilarity measure.

The Class Characteristics

The last properties are the class characteristics. These can be divided into the following
subgroups:

number of classes Basically, the classification and also the models are divided into
two-class or multi-class problems.

number of data per class Real world data sets can comprise several classes and in the
most cases the number of data per class are not balanced. Many algorithms opti-
mize indirectly the classification accuracy. But if the number of data per class are
unbalanced, a accuracy value may misleading.

labeled and unlabeled data The labeling of each data point can be very expensive. An
example can be again found in the remote sensing. The recorded area by a special
spectral camera can be very large. Yet, the number of pixel with characterization

1The course of dimensionality describes the problem of distance measuring in high dimensional data. In
high dimensional space all data are located at the border of a sphere and the Euclidean distance between
all data points is nearly identical.
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of the soil properties by an expert can be only a small fraction. Thus, sometimes
data sets with a few labeled data points and a huge amount of unlabeled points
exist.

crisp or fuzzy label In remote sensing, the resolution of a pixel can be several hundred
meters squared. Thus, in such an area may be more than one vegetation type
occur. The assignment to a unique soil conditions/class is not possible. At this
juncture the spectra can labeled by fuzzy assignments. A transformation to crisp
labels is possible, i. e. a unique assignment to only one class, but afflicted with
lost of information.

extra knowledge/conditions Beside the fact of unbalanced number of data per class,
the classes can also have different weightings in the application. Further, misclas-
sification from class A to class B can be more critical than the other way around.
If this extra information about the classes are available or there are special condi-
tions on the resulted model, the classifier should be able to take these into account.

Of course, the three categories with their subgroups interact with each other and can
not be seen alone. Moreover, the named aspects do not claim to be comprehensive. Yet,
before any classifier is chosen these aspects among others has to be taken into account.
A deep analysis of the given classification problem is indispensable.



3.3 Evaluation of Classification Results

A mentioned above, the classification accuracy might be not adequate for the validation
of the resulted model at all. If the classes are very unbalanced concerning the data
distribution, a high accuracy value might be misleading as pointed out in the following
small example from the medicine: Given are 2000 test persons with 100 of them are
disease-ridden and the other 1900 show no symptoms. A classifier achieve an accuracy
of 94.6%, which is might be a good result. However, if we have a closer look to the
class distribution of misclassification, we can observe that nearly all patients which
are disease-ridden are misclassified. In the following we discuss several classification
validity measures to overcome those difficulties. First of all we focus on measures for
binary class problems.

Binary-Class-Problems

The previous small example shows that validation using the accuracy is not suitable in
all cases especially if the number of data points per class is unbalanced. Particular for
two-class problems exists several more adequate measures are based on the confusion
matrix. In the confusion matrix the number of correct and incorrect data points per
class are itemized.

Due to the fact that the confusion matrix is often used in medicine, the two classes
are typically named positive and negative, i. e. C = {⊕,	}. We define the set of all data
points belonging to the positive class by V + = {v | c(v) = ⊕} and analog the set of
points belonging to the negative class by V − = {v | c(v) = 	}. They are also called the
set of real positives and real negatives, respectively. All data points which are predicted
to belong to the positive/negative class are collected in the set V̂ + = {v | ĉ(v) = ⊕}
and V̂ − = {v | ĉ(v) = 	}, respectively. In Table 3.1 some basic values related to the
confusion matrix are depicted.

Each value in Table 3.1 gives only a statement of the false or correct classification rate
of one class, respectively. Therefore, several evaluation measures combining these basic
values in different ways were introduced. Some common measures are [Fawcett, 2006],
[Powers, 2011]:

Modified Accuracy The modified accuracy sum up all values of the confusion matrix
which are weighted:

mAcc = α · tp+ β · tn− γ · fp− δ · fn

with α+ β + γ + δ = 1.

Matthews correlation coefficient is the correlation coefficient between observed and
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real positive real negative

predicted
positive

true positive
(tp)

false positive
(fp)

tp+
fp =
|V̂ +|

ppv = tp
tp+fp

(precision)
fdr = fp

fp+tp

predicted
negative

false negative
(fn)

true negative
(tn)

fn+
tn =
|V̂ −|

for = tn
fn+tn

npv =
tn

tn+fn

tp+ fn = |V +| fp+ tn =
|V −|

|V +|+ |V −| = |V̂ +|+ |V̂ −| = NV

tpr = tp
tp+fn

(sensitivity)
fpr = fp

fp+tn

fnr = fn
tp+fn

tnr = tn
fp+tn

(specificity)

Table 3.1: Confusion matrix of a binary problem with:
tpr - true positive rate fpr - false positive rate
fnr - false negative rate tnr - true negative rate

ppv - positive predicted value fdr - false discovery rate
for - false omission rate npv - negative predicted value

predicted classification:

mcc =
tp · tn− fp · fn√

(tp+ fp) · (fn+ tn) · (tp+ fn) · (fp+ tn)
(3.1)

with mcc ∈ [−1, 1] and mcc = 1 means a perfect prediction. This coefficient is
related to the χ2 - statistics for a 2× 2 contingency table.

Geometric mean/G-measure is the geometric mean between precision and recall: g =√
tpr · ppv.

F-measure is a widely used evaluation measure which is based on the parameter β ∈
[0,∞]:

Fβ2 =
(1 + β2) · tp

(1 + β2) · tp+ β2 · fn+ fp
. (3.2)

The parameter β controls the fraction of precision and recall, i. e. if β2 > 1, the re-
call is weighted higher than precision and on the other side if β2 < 1, the precision
is weighted higher than recall [Rijsbergen, 1979].

For the special case β2 = 1:

F1 =
2tp

2tp+ fn+ fp
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is the harmonic mean between precision and recall.

van Rijsbergen’s effectiveness measure is

Eα = 1− 1(
α
ppv + 1−α

tpr

) (3.3)

which is based on the Fβ and can be rewritten as E 1
1+β2

= 1− Fβ2

ROC-Curve The Receiver Operation Characteristic curve (ROC-Curve) is used to visu-
alize the results of classifiers. Thereby, the axis are the false positive rates (fpr)
and true positive rates (tpr). One classifier model provides only one point in this
diagram. Yet, many classifier depending on parameters influencing the fpr and
tpr. The ROC-Curve is obtained by the convex hull of the rates affected by these
parameters. A special point in the ROC-Curve is the Break-Even-Point. i. e. if recall
is the same as precision [Goutte and Gaussier, 2005].

AUROC A validity measure for two class problems is based on the ROC-Curve is the
area under the ROC-Curve (AUROC). An high AUROC-value represent a good
binary class model. The value can be maximal one[Fawcett, 2006].

PR-Curve Beside the ROC-Curves, the Precision-Recall curves (PR-Curves) are used
to visualize the results. Obviously, the axis are precision and recall
[T. Landgrebe and Bradley, 2006].

The listed evaluation measures for binary classifiers are the most com-
mon. Obviously, many more exists and also a lot of modifications. More-
over, the advantages and disadvantages of them are discussed in many paper
([?],[?],[Sokolova and Lapalme, 2009a]). The one and only evaluation measure does not
exist and the choice depends on the application problem.

Multi-Class-Problems

The confusion matrix can be provided for multi-class problems, too. Yet, the table in-
cludes several values and the comparison of different classifier models might be dif-
ficult. Until now, some heuristics exists, which generalize the binary measures for
multi-class problems and based roughly speaking on the principle one-versus-all or
one-versus-one class, respectively [Sokolova and Lapalme, 2009b, Holt et al., 2010].

A further evaluation possibility is the direct comparison of two classifier results. An
exemplar of such an measure is the Kappa-Index.
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Kappa-Index The κ-Coefficient is based on the Kappa Statistic was established by
Cohen [Cohen, 1960]. This coefficient is the ratio between the error rate of the classi-
fier model to the error rate of another model. Thus, the Cohen’s κ-Coefficient compares
two classifier, at which one of them can be a random solution, too. Given are the label
assignments of two classifier models Mi as vectors ĉMi(v) ∈ [0, 1]NC with ||ĉMi ||E = 1

and i ∈ {1, 2}.
The Cohen’s κ-Coefficient κC is given by:

κC(M1,M2) =
Po − Pe
1− Pe

(3.4)

where Po is the relative observed agreement and Pe the expected agreement of the two
classifiers [Geweniger, 2012]. These values can be calculated by:

Po =
1

NV

∑
v∈NV

ĉM1(v)T · ĉM2(v)

and

Pe =

NC∑
k=1

[pM1
]k · [pM2

]k ·
∑
v∈V

[ĉM1(v)]k · [ĉM1(v)]k

with the margin probabilities per class

[pMi
]k =

1

NV

∑
v∈V

[ĉMi(v)]k i ∈ {1, 2}

The κC-Index has the maximum value of one. A high value means agood agreement of
the two classifier and if κ is small , i. e. κ < 0.4, the classifiers have only a slight or no
agreement [Sachs, 1992].

Cohon’s κ-Index can only compare two classifier models. An extension is the Fleiss
κ for more models [Fleiss, 2003]. Further, these indexes were modified for evaluation
of fuzzy classifiers: the Fuzzy-Cohen’s κ-Index [Dou et al., 2007] and the Fleiss κ-Index
[Zühlke et al., 2009].
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3.4 The Classification Task as an Ill-Posed Problem

In the previous subsection the versatility of problem related to classification is de-
scribed. In this sense, classification could be taken as an ill-posed problem based on
the following definition by Hadamard ([Hadamard, 1902],[I.Kabanikhin, 2011]:

A problem is denoted as well-posed problem if all of the following requirements are
fulfilled:

a A solution for the problem exists.

b The solution is unique.

c The behavior of the solution changes continuously with the initial conditions.

If one of these requirements is violated the problem is denoted as ill-posed.

In general, the evaluation of the classification task by only looking at the accuracy
is not appropriate. As mentioned in the previous subsections other criteria should be
considered like e. g. the model complexity, additional problem specific outcome or costs
for misclassification. The quality of the model depends on the application and thus, the
one and only solution does not exist in classification. In view of all that, the requirement
b of well-posed problems is not fulfilled and thus, the classification task is an ill-posed
problem.





Chapter 4

Auxiliary Structure Information and
Appropriate Dissimilarity Adaptation

in Prototype Based Methods

Parts of the section are based on

M. Kästner, B. Hammer, M. Biehl, T. Villmann: Functional Relevance Learning in Gen-
eralized Learning Vector Quantization. Neurocomputing, 2012.

T. Villmann, M. Kästner, D. Nebel, and M. Riedel: Lateral Enhancement in Adaptive
Metric Learning for Functional Data, Neurocomputing, 2014.

4.1 Supervised Vector Quantization for Functional Data

Different kind of data structures are exists, e. g. functional data, textural data like DNA
sequences and image data set like handwritten digits. The specificity of functional data
is the lateral dependency in the features (see Note 1.1). Famous examples are continu-
ous spectra where the features are wavelengths/frequencies or time series, where the
data are collected over a time interval. As mentioned, the data sets are usually given as
discrete representations, i. e. as vectors v = (v1, v2, . . . , vD)T , which in fact are functions
v(t) over the wavelengths/resolution or time t, respectively. Moreover, in general this
data are very high dimensional, i. e. the number of features D can be up to hundreds or
thousands.

An overview of functional data analysis (FDA) and its properties can be found in
[Ramsay and Silverman, 2006]. The main property distinguishing functional data from
other high dimensional vectors is that the sequence of the vector dimensions carries
information and cannot be changed without information loss. Thus, this lateral infor-
mation should be integrated in the learning scheme for improving the results. Sev-
eral investigations take the feature dependency into account. One idea, which is men-
tioned in Section (2.4) is to use an adequate distance measure like the Sobolev distance
[Villmann, 2007]) or functional kernels [Villa and Rossi, 2005].

Data which are densities are a special kind of functional data, i. e.
∫
v(t)dt = 1 and

v(t) ≥ 0 ∀t or rather for the discrete case
∑D

k=1 vk = 1 and vk ≥ 0. Distance measures
handling only densities are the divergences (see Sec. 2.4). The divergences are based
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on information theory and measure the distance between two densities. A summary of
the integration of divergences in VQ methods can be found in [Haase, 2014].

A mentioned above, only a discretization of the functional data are given in general.
A possibility is to approximate the discrete vectors by a linear combination of functions
([Villa and Rossi, 2005], [Rossi et al., 2005]). In a nutshell: given is a basis system of
functions B = {bi(t)|i ∈ I} of L1[1, D] with the index set I. Examples for such a
basis system are Gaussian/Lorentzian functions (see page 87), a Fourier basis system
or spline functions [Ramsay and Silverman, 2006]. Thereby, the data points v(t) are a
superposition of basis functions 1 of a set B:

v(t) =

|I|∑
l=1

βl(v(t)) bl(t) (4.1)

with the linear combinations factors βl(v(t)) ≥ 0.
A further approach is the presentation of the prototypes as a linear combination of

basis functions after the same principle mentioned above:

w(t) =

|I|∑
l=1

β̂l(w(t)) bl(t) (4.2)

Thereby, only the linear combination factor β̂l(w(t)) of the basis functions are learned.
This idea is applied for the GLVQ in [Harth, 2012]. Thereby, the author learned beside
linear combination factors also parameters of the basis functions systems, and therefore
the basis function system is not fixed.

In this section we want use the natural dependency in the features, but for an im-
proved learning in the metric adaptation (see Sec. 2.4). Thereby, the first ansatz estimate
the relevance profile/matrix as a linear combination of basis functions. The second ap-
proach utilize the lateral dependency of the features in the relevance learning scheme.

4.1.1 Functional Relevance/Matrix LVQ

As already mentioned, the functional data can be very high dimensional. This leads to
a huge number of free parameters to be adjusted in GRLVQ or GMLVQ during the met-
ric adaptation, respectively. In [Mendenhall and Merényi, 2008] it is exemplary shown
that for hyper-spectral images unstable behavior may occur in GRLVQ. The authors
also identify a possibility to avoid such instabilities for this special case. Through, in
this approach the functional properties are not used.

1It has to pointed out: the cardinality of a full basis functions system B is infinity in general. For
approximation of the data a finite subset of B has to be applied.
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In the standard GR/MLVQ the single relevance/matrix values are learned indepen-
dently, such that the functional characteristic of the data is not considered. In the fol-
lowing sections, this functional property will be incorporated in the relevance profile
adaption of the GRLVQ to reduce the number of free relevance parameters. Afterwards,
this idea is transfered to the GMLVQ.

Functional Relevance Learning

In the Generalized Functional Relevance Learning Vector Quantization (GFRLVQ) be-
side the data points v(t) and prototypes w(t), the relevance profile λ is interpreted as a
function λ(t) with λj = λ(tj).2 Thus, the weighted Euclidean distance 2.66 yields to

d2
E (v(t), w(t), λ (t)) =

∫
λ (t) (v (t)− w (t))2 dt (4.3)

with the normalization constraint: ∫
λ(t) dt = 1 . (4.4)

Compared to the standard GRLVQ the weighted Euclidean distance (2.66) is chosen
with simple λ (t) instead of λ2 (t). The principle is the same. An additional restriction
is λ (t) ≥ 0.

The idea is to approximate the relevance function by a superposition of simple positive
basis functions Kl depending on only a small parameter set Υl:

λ (t) =
K∑
l=1

βl Kl (t,Υl) . (4.5)

The weighting parameters βl ≥ 0 are restricted to be convex
∑K

l=1 βl = 1 and describe
the influence of a certain Kl. The positive weighting values also guaranty a positive
relevance profile λ (t) ≥ 0 for non-negative Kl.

Famous examples for Kl are the standard Gaussians:

KGl (t, τl, σl) =
1

σl
√

2π
exp

(
−(t− τl)2

2σ2
l

)
(4.6)

or the Lorentzians

KLl (t, τl, ηl) =
1

ηlπ

η2
l

η2
l + (t− τl)2 , (4.7)

2It has to be pointed out again, that the data points or prototypes do not has to be given as functions,
respectively. This approach also holds for the discrete representations, but the underlaying data might be
fulfilled the functional characteristic.
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Figure 4.1: Shape of the basis function Gaussian (left) and Lorentzian(right)

with the shifting parameter τl and the shaping parameter σl ≥ 0 or ηk ≥ 0, respectively
(see Fig 4.1).

The Gaussian or Lorentzian basis functions generate an orthogonal basis system of
quadratic integrable functions in the Hilbert space L2. Such orthogonal basis sys-
tems guaranty that any arbitrary approximation precision can achieve for an adequate
largeK-value ([Pekalska and Duin, 2005],[Kantorowitsch and Akilow, 1978]). If the ba-
sis system is orthonormal additionally, the normalization constraint (4.4) is fulfilled.
Yet, any basis system or even a mixture of several basis function can be applied. This
might lead to reduced precision and additional requirements concerning the normaliza-
tion. Obviously, a complete basis system is not realizable or constructive, respectively.
The cardinality of K has to be chosen in trade off good approximation and reduction of
free parameters. This might be treated as a sparsity problem as explained on page 94ff.

The weighted Euclidean distance (4.3) with the relevance functions (4.5) is

d2
E (v(t), w(t), λ (t)) =

K∑
l=1

βl

∫
Kl (t,Υl) (v (t)− w (t))2 dt . (4.8)

The adaptation of the relevance profile takes place by the learning of the weighting
parameter βl and the parameters of the basis function Υl, respectively. For this purpose,
again the stochastic gradient scheme is applied to the cost function of GFRLVQ:

EGFRLV Q(W,λ(t)) =
∑
v(t)∈V

fθ
(
µW,λ(t) (v(t))

)
(4.9)

with µW,λ(t) (v(t)) =
d+ (v(t), λ (t))− d− (v(t), λ (t))

d+ (v(t), λ (t)) + d− (v(t), λ (t))
(4.10)

and the monotone increasing transfer function fθ (2.38) and the distances
d± (v(t), λ (t)) = d2

E (v(t), w±(t), λ (t)). The update of an arbitrary parameter ϑl ∈
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(Υl ∪ βl) results in

ϑl ← ϑl − αϑ
∂EGFRLV Q

∂ϑl
(4.11)

with the learning rate 0 < αϑl << 1 and the partial derivatives of EGFRLV Q according
to

∂EGFRLV Q
∂ϑl

= ξ+
θ (v(t)) · ∂d

+(v(t), λ(t))

∂ϑl
+ ξ−θ (v(t)) · ∂d

−(v(t), λ(t))

∂ϑl
(4.12)

for a random chosen data point v(t).
More precisely, for the weighting factor βl it is obtained:

∂d±(v(t), λ (t))

∂βl
=

∫
Kl (t,Υl)

(
v (t)− w± (t)

)2
dt . (4.13)

Hereinafter, the derivatives of the exemplary Gaussian KGl and Lorentzian KLl basis
functions according to each parameter are listed:

∂KGl (t, τl, σl)

∂σl
=

1

σl

(
(t− τl)2

σ2
l

− 1

)
· KGl (t, τl, σl) (4.14)

∂KGl (t, τl, σl)

∂τl
=

1

σ2
l

(t− τl) · KGl (t, τl, σl) (4.15)

∂KLl (t, τl, ηl)

∂ηl
=

1

ηl

(t− τl)2 − η2
l

η2
l + (t− τl)2 · K

L
l (t, τl, ηl) (4.16)

∂KLl (t, τl, ηl)

∂τl
=

1

ηl

2 (t− τl)
η2
l + (t− τl)2 · K

L
l (t, τl, ηl) . (4.17)

Thereby, it is assumed that integration and differentiation can be interchanged. This
operation is allowed if the partial derivative |∂Kl(t,Υl)∂ϑl,i

| can be majored by an integrable
function φ in the sense of Lebesgue and Kl (t,Υl) is itself Lebesgue-integrable for each
ϑl [Kantorowitsch and Akilow, 1978].

The updated of the prototypes are analog to (2.39) applying the functional relevance
profile (4.5). Thus, the principle of GRLVQ is not changed.

The shape of the resulted relevance profile depends on the choice of the basis func-
tion, i. e. smooth basis functions like Gaussians lead to a smooth relevance profile or
rather sharply peaked Kl like Lorentzian for roughly structured profiles. Beside the
mentioned basis function other ones are thinkable like the locality improved kernels
(LIK) [Hammer et al., 2005] or the generalized hyperbolic skew Student t-distributions
[Aas and Haff, 2006]. A constraint for the basis function is the differentiability with re-
spect to their parameters or even an approximation of them. Obviously, a mixture of



90 4. Auxiliary Structure Information

different kind of basis functions is also possible to achieve diversity in the shape.
It has to be considered that each basis function parameter has its own learning rate αϑ.

These learning rates have to be chosen carefully, inter alia due to the fact that the single
parameters influence each other. Frequently, in functional data not only one feature is
relevant but a range of features, thus such a range can be covered by single, small basis
function with a high βl value or by a broad one. This interaction of the parameters
justifying the challenging learning and is already known from density estimation by
Parzen-Rosenblatt. [Principe, 2010].

In the Applications 4.1 the GFRLVQ is used to the Wine and Tecator data set described
in Section 1.2.

Application 4.1 (Functional Metric Adaption in GLVQ).

data set Tecator, Wine

methods GFRLVQ (compared with GRLVQ)

parameter settings
number of prototypes Tecator: NW ∈ {10, 20, 40}

Wine: NW ∈ {4, 8, 12}
distance function d2

E(v,w, λ), d2
E(v,w, λ(t))

learning rates αW = 0.01

GRLVQ αλ = 0.01

GFRLVQ αβ = 0.003

ασ = αη = 0.01

ατ = 0.1

transfer function parameter θ = 1

number of basis functions K = {1, 5, 10}
kind of basis function Tecator: Gaussians; Wine: Lorenzians

experimental settings
training/test see data description in Section 1.2

epochs GRLVQ: 5 000
GFRLVQ: 150 000
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descriptions
In these experiments we varied the number of prototypes as well as the number
of basis functions. Hence, the parameters for relevance learning are drastically
reduced to 3/15/30 from 100(Tecator) and 256 (Wine), respectively. Further, we
carefully adapt the heights, widths as well as the centers of the basis functions
during learning for both experiments. More precisely, at the first 50 000 training
epochs only the high β and location of the centers τ are adapted. Then, the high β
was fixed and the width of the basis function σ or η, respectively, was adapted in
also 50 000 training epochs. At the end, again the high β and location of the centers
τ were learned while fixing the width. According to the more smooth shape of the
spectra, we applied GFRLVQ using Gaussian basis functions for Tecator. For the
Wine data set we used the Lorentzians due to the more peaked spectra.

results in numbers accuracy in % (train/test)

Tecator Wine
K \ |W | 10 20 40 4 8 12

1
70.8 84.1 90.0 90.1 91.2 93.4
70.5 70.5 85.3 73.3 80.0 83.3

5
71.1 81.7 90.0 91.2 89.0 93.4
71.6 75.8 83.2 76.7 73.3 83.3

10
75.0 88.2 90.8 89.0 90.1 93.4
76.8 80.0 84.2 80.0 80.0 86.7

GRLVQ
71.7 87.5 94.2 93.4 91.2 93.4
70.5 77.9 83.2 83.3 86.7 80.0
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results in figures

Figure 4.2: Tecator: Global relevance profiles obtained using different number K of Gaus-
sian basis functions for functional relevance learning using 20 prototypes for learning. The
richness in shape increases with K while keeping the relative smoothness.

Figure 4.3: Tecator: Distribution of the K = 10 adapted Gaussians for the functional rel-
evance profile for the Tecator data set using 20 prototypes for learning with global metric
adaptation. The resulting relevance profile is shown in Fig.4.2.
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Figure 4.4: Wine: Global relevance profiles obtained using different number K of
Lorentzian basis functions for functional relevance learning using 12 prototypes for learn-
ing. As for the Tecator data set, the richness in shape increases with K while keeping the
relative smoothness.

Figure 4.5: Wine: Distribution of the K = 10 adapted Lorentzians for the functional rele-
vance profile using 8 prototypes.

resume As we can see in the table of the accuracies, the classification accuracy
of the GFRLVQ are comparable to those of standard GLVQ or other approaches
like in [Krier et al., 2009]. However, the results are obtained using a considerably
lower number of adapting parameters for relevance learning compared to standard
GRLVQ.
As can be expected, the shape of the relevance profile becomes richer with increas-
ing K-values (see Fig. 4.2 and Fig. 4.4), while keeping the smooth character ac-
cording to the smooth applied basis functions. In Fig. 4.3 and Fig. 4.5 the single
basis functions are pictured for K = 10. The superposition of these basis functions
yields to the relevance profile depicted in Fig. 4.2 and Fig. 4.4, respectively.
It has to be mentioned that the number of free parameters can be reduced drasti-
cally compared to standard relevance learning, Through, the number of learning
epochs is much higher in GFRLVQ. One reason for this is interaction of the basis
function parameters and thus, the adaptation of the σ/η and τ has to be performed
carefully.
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Structural Sparsity

An open question is the suitable choice of the number of basis functions K. It has to be
find a compromise between minimal free parameters to optimize and a good approxi-
mation of the relevance profile. Obviously, if K is set too high, the goal of reducing the
number of free parameters rigorously can not be achieved. Otherwise, if the number
of basis function is chosen too small, the relevance profile can not determined precisely
enough and the accuracy might be decline. This problem of finding a suitable K can be
seen as structural sparseness requirement.

In a learned relevance profile the number of weighting factors βl > 0 is equal of
the number of used basis function. Therefore, if we find a possibility to reduce the
number of βl > 0, we achieve structural sparsity. Possibilities to realize sparsity in
one parameter in gradient descent learning methods is already presented on page 67f
for features sparsity in GRLVQ. This scheme can simply adopted applying it to the
βl-values and therefore, suitable for the structural sparsity in ES−GFRLV Q.

However, this sparsity constraint does not lead to the effect of feature sparsity, be-
cause the basis functions may cover a broad range depending on the width. Thus, only
a structural model sparsity is obtained in this way.

Feature Sparsity

To achieve feature sparsity as in GRLVQ, we have to modify this approach in another
manner:

Exemplary, we apply the Shannon entropy. The additional feature sparsity term
Ef (λ(t)) yields to:

Ef (λ(t)) = −
∫ ( K∑

l=1

βl Kl(t, Υl)

)
log

(
K∑
l=1

βl Kl(t, Υl)

)
dt (4.18)

in
EsGFRLV Q = EGFRLV Q(W,λ(t)) + γ(ι)Ef (λ(t)) . (4.19)

The general derivatives ends up in:

∂Ef (λ)

∂ϑl
= −

∫
∂λ(t)

∂ϑl
[1 + log (λ(t))] dt . (4.20)

The structural and feature sparsity is applied in the GFRLVQ on the Tecator data set
(see Appl. 4.2).
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Generalized Functional Matrix LVQ (GFMLVQ)

A generalization of the GRLVQ is the GMLVQ (see 2.4). Moreover, the idea of func-
tional relevance learning can be extended to the GMLVQ. Thereby, it is assumed that
the mapping matrix Ω ∈ Rm×D in (2.68) is a discrete representation of a continuous
function Ω (t1, t2) [Riedel and Nebel, 2012].

Like in (4.8), this continuous function is approximated by a superposition of two-
dimensional basis functions Kl(t1, t2, Υ1,l, Υ2,l):

Ω (t1, t2) =

K∑
l=1

βl Kl(t1, t2, Υ1,l, Υ2,l) (4.21)

Let us again consider Gaussians and Lorentzians for exemplary basis functions. The
two-dimensional symmetric Gaussian is

Kl (t1, t2, τ1,l, τ2,l, σ1,l, σ2,l) =
1

σ1,l · σ2,l · 2π
exp

(
−

(
(t1 − τ1,l)

2

2σ2
1,l

+
(t2 − τ2,l)

2

2σ2
2,l

))

whereas the symmetric Lorentzian is gotten by

Kl (t1, t2, τ1,l, τ2,l, η1,l, η2,l) =
1

η1,l · η2,l · π2

(
η2

1,l

η2
1,l + (t1 − τ1,l)

2 ·
η2

2,l

η2
2,l + (t2 − τ2,l)

2

)
.

The number of basis K should be again smaller than the number of features D, more
precisely K � m×D .

It is evident, that the handling of (4.21) requires high computational effort and the
learning of the single parameters is more challenging compared to the one-dimensional
basis function in GFRLVQ. The authors of [Riedel and Nebel, 2012] show, that a fac-
torized version of (4.21) leads to an easier handling. For that manner, the property
of the slight self-regularization and row-wise structure known from the converged
squared matrix Ω in GMLVQ (see page 53 or [Schneider et al., 2010]) is utilized: In-
stead of two-dimensional basis functions for the whole Ω (t1, t2), only the rows Ωj(t2)

with j = 1, ...,m of Ω (t1, t2) are generated by one-dimensional basis functions:

Ωj (t2) =

K∑
l=1

βj,l Kj,l (t2) (4.22)

The one-dimensional basis functions Kj,l (t2) are easier to handle numerically. How-
ever, the number of weighting parameter βj,l is increased, from K to K × m. Obvi-
ously, examples for Kj,l (t2) are the one-dimensional Gaussian or Lorentzian functions
known from the GFRLVQ. Experiments show, that there is a vanishing quality loss of
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the relevance profile applying this factorized version compared to the full scheme (4.21)
[Riedel and Nebel, 2012].

Further, the approaches of structured and feature sparsity for the functional GRLVQ
can be easily transfered to the GFMLVQ. The cost function of GFMLVQ for structured
sparsity is extended to:

EkGFMLV Q = EGFMLV Q(W,Ω(t1, t2)) + γ(ι) Es(β)

with the weighting function γ(ι) and a sparsity requirement Es(β). Thereby, Es(β) can
be again a entropy function or based on a lp-norm (see page 67): The same is valid for
the feature sparsity

EsGFMLV Q = EGFMLV Q(W,Ω(t1, t2)) + γ(ι) Es(Ω(t1, t2)) .

Application 4.2 (GFRLVQ with feature and structural sparsity).

data set Tecator

methods sGRLVQ with LASSO, sGFRLVQ and kGFRLVQ

parameter settings

number of prototypes 20
distance function d2

E(v,w, λ(t))

learning rates αW = 0.01

αβ = 0.003

ασ = 0.01

ατ = 0.1

transfer function parameter θ = 1

number of basis functions K = 10 (ι = 0)

kind of basis functions Gaussians

experimental settings

training/test split (see data description in Section 1.2)
initialization learned GRLVQ/GFRLVQ model

epochs sGRLVQ: 5000, sGFRLVQ: 4500, kGFRLVQ: 1200
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descriptions In the beginning, the GFRLVQ model were trained applyingK = 10

Gaussians. After this basic training the influence of the sparsity constraint was
slowly increased by linear growth of the weighting factor γS (τ) for structural and
γF (τ) for feature sparsity, respectively. Thereby, the widths of the single basis func-
tion give information about the feature sparsity. Small Gaussians imply a small
number of non-vanishing features.

results in numbers

GFRLVQ GRLVQ
kind of sparsity non structural feature Tib-

LASSO
K 10 3 10 -
D 100 100 75 74

accuracy 88.2% 88.5% 90.0% 91.7%

results in figures

Figure 4.6: Structural sparsity: Development in time ι of weighting coefficients βl. The
weights βl vanish with growing sparsity pressure except only a single remaining for max-
imum sparseness.
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Figure 4.7: Structural sparsity: Development in time ι of the accuracy. The accuracy is still
high if at least 3 basis functions are weighted to be active. After one more function becomes
inactive, the accuracy decreases significantly indicating an substantial information loss.

Figure 4.8: Structural sparsity: Relevance profiles at the beginning of the structural sparsity
optimization (blue -solid), just before the critical transition (red - dashed) and in the final
phase (green - dotted).
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Figure 4.9: Feature sparsity: Development in time ι of the width σl of the Gaussians. The
coefficients vanish with growing sparsity pressure except only a single remaining for max-
imum sparseness.

Figure 4.10: Feature sparsity: Development in time ι of the accuracy. The accuracy is still
high for at least 800 time cycles. After these, the accuracy decreases significantly indicating
an substantial information loss while 5 basis functions vanish at this time, see Figure 4.9.
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Figure 4.11: Feature sparsity: Relevance profiles for the sGRLVQ with LASSO (black -
dashed) and for GFRLVQ at the beginning of the feature sparsity optimization (blue -
solid), just before the critical phase transition (red - dashed) and in the final phase (green
- dotted). Thereby, the number of non-vanishing features are: 95 (blue), 50 (red) and 40

(green).

resume In case of structural sparsity judged by the entropy HS of the weighting
coefficients βl, this leads to a subsequent fading out of the several basis functions
(see Fig. 4.6). In the beginning the accuracy level is kept. Above a critical spar-
sity, a drastic decrease of accuracy can be observed indicating the transition from
sparseness optimum to a very low level (around time epoch 2500 and three non-
vanishing βl, see Fig.4.7). The related relevance profiles at the beginning of the
structural sparsity optimization, just before the critical transition and in the final
phase are depicted in Fig.4.8. As one can see, the loss of the relevance peak around
wavelength 870nm leads to the breakdown.
In the second experiment the feature sparsity was investigated. Again, we observe
a drastic loss of accuracy after approximately 800 time epochs corresponding to
vanishing σl-values for 5 basis functions (see Fig. 4.10 and Fig. 4.11). The re-
maining model is too poor to keep the information. The number of non-vanishing
features are 75 at ι = 800. This is comparable to the feature sparsity approach of
the standard GRLVQ with LASSO.

4.1.2 Enhancement Generalized Relevance/Matrix LVQ

The functional relevance or matrix learning described in the section before shows good
performance and together with the structural sparsity the number of parameters to
learn can be drastically reduced for high dimensional data sets. However, the adaption
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of the single basis function parameters is hard to handle for the GFRLVQ and even
more in the matrix learning. Therefore, the functional G(R/M)LVQ is to laborious for
practical applications.

In spite of this fact, the high number of independent parameters to adapt for func-
tional data is still a challenge. The lateral enhancement G(R/M)LVQ (eG(R/M)LVQ) is an
approach which does not reduce the number of parameters like the GF(R/M)LVQ, but
still utilizes the dependency of features in functional data sets and, therefor, regularizes
the learning of the relevance profile or mapping matrix, respectively. The basic idea for
the eGRLVQ is: for adapting a relevance value λi the lateral surrounding neighborhood
of the dimension i is also taken into account. The consideration of the lateral neighbor-
hood is modeled by the Gaussian known from the neighborhood cooperativeness of
the prototypes in SOM 2.1.2 or NG 2.1.3.

More precisely, for the relevance learning the Gaussian enhancement function is set
to:

hσ(i, j) = exp

(
−(i− j)2

2σ2

)
(4.23)

which should specify the influence of a dimension j for the update of λi depending on
the width σ. If we assume the squared scaled Euclidean distance in the GRLVQ for data
dissimilarity, the partial derivation in the update of the relevance value λi should be of
the form:

∂dλ(v,w, hσ)

∂λi
=

D∑
j=1

hσ(i, j) [v −w]2j (4.24)

This idea is illustrated in Fig. 4.12. Thus, the distance function is obtained by integra-
tion of (4.24):

dλ(v,w, hσ) =
D∑
k=1

λiϕk(v,w, hσ) (4.25)

with the local distortion

ϕk(v,w, hσ) =
D∑
l=1

hσ(k, l)[v −w]2l (4.26)

The width σ describes the influence range of the neighborhood cooperativeness. For
σ ↘ 0 we obtain the standard GRLVQ3. The principle of the shifting of the prototypes
is kept, only the distance measure is replaced by dλ(v,w, hσ).

The idea of lateral neighborhood cooperativeness can be transfered to the matrix
learning, too. Therefore, we let Ω ∈ Rm×D the mapping matrix (see 2.4) and Hσ ∈

3Like in the GFRLVQ the λ2
i is replaced by λi with the additional requirement of λi ≥ 0.
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Figure 4.12: Illustration of the idea of lateral enhancement learning for a relevance weight λi
including the neighborhood cooperativeness (top: standard relevance learning, bottom: lateral
enhancement according to (4.24)

RD×D be a lateral enhancement matrix, with the entries:

Hσ
i,j = hσ(i, j) (4.27)

are based on the enhancement function (4.23) for i, j = 1, . . . , D.

Hence, the respective distance becomes:

dΩ (v,w, Hσ) =

m∑
i=1

(
D∑
k=1

Ωi,k ϕk(v,w, H
σ)

)2

(4.28)

analog to (4.25) with the local distortion:

ϕk(v,w, H
σ) =

D∑
s=1

Hσ
k,s [v −w]s (4.29)
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Moreover, the distance dΩ (v,w, Hσ) allows a shortened notation:

dΩ (v,w, Hσ) = (ΩH (v −w))2 (4.30)

=
(

Ω̂ (v −w)
)2

(4.31)

which can be easily obtained by transferring the matrices multiplication into sums.
Consequently, the introducing of the enhancement matrix H ends up in an additional
linear mapping or an modified mapping Ω̂ = ΩH , respectively. However, this addi-
tional linear mapping including prior knowledge about the data, e. g. the lateral neigh-
borhood cooperativeness of the dimensions in functional data.

The update of the mapping matrix Ω in eGMLVQ is likewise the update in (2.73) with
the partial derivations:

∂dΩ (v,w, Hσ)

∂Ωi,j
= 2 [Hσ (v −w)] j

[
Ω̂ (v −w)

]
i

. (4.32)

The enhancement matrix Hσ also influences the classification correlation matrix Λ

(2.76), i. e. Λ̂ = (ΩHσ)T (ΩHσ). If the Gaussian function is used to generate Hσ with
σ > 0, Λ̂ is smoother, which is expected for functional data. Again, for σ = 0, Hσ is the
identity matrix and the standard GMLVQ holds.

Like in GF(R/M)LVQ, other choices of enhancement functions h(i, j) or matrix H

are thinkable, depending on the knowledge about the data. Examples are the above
mentioned Lorentzians (see 4.1) or the skew Student’s t-distribution.

Moreover, the enhancement function or matrix could include further prior correla-
tion information about the features given by an expert. We give a illustrative example
in spectral classification: In general, the dimensions in spectra are wavelengths ω(i).
In some data sets these wavelengths are not equidistant or in the data set some wave-
lengths are cut due to chemical characteristics like water bands (see the Indian Pine
data set in section 1.2). In these cases, the enhancement matrix can be defined by using
the distance between the neighbored dimensions, i. e.

h̃σ(i, j) = exp

(
−(ω(i)− ω(j))2

2σ2

)
(4.33)

Thus this prior knowledge about the data dimension are taken into account. An appli-
cation is given in Application 4.4.

Further, the eG(R/M)LVQ can be applied to non-functional data sets, too, by inte-
gration of knowledge about given correlations between the dimensions/features. An
example thereof can be found in [T. Villmann and Riedel, 2012].

It is well known that the neighborhood cooperativeness in the local costs of NG or
SOM stabilizes and accelerate the convergence process, beside the fact that the sensi-
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tivity of the initialization is reduced. These advantages hold also for the eG(R/M)LVQ
(see Appl. 4.4). Moreover, the principle of cooling the neighborhood range during the
learning is suitable for eG(R/M)LVQ, too.

Additionally to the stabilization and acceleration, a better generalization might be
also achieved. Indeed the number of parameters to optimized are not directly reduced
like in the functional G(R/M)LVQ, but an inherent regularization is achieved due to the
impact of lateral neighbored features (see Appl. 4.4).

Application 4.3 (eGRLVQ).

data set Wine

methods GRLVQ, eGRLVQ

parameter settings

number of prototypes NW = 2 (one per class)
distance function dλ(v,w) (2.66)

dλ(v,w, hσ) (4.25)
learning rates αW = 0.01

αλ = 0.1 · αW
transfer function parameter θ = 1

enhancement neighborhood range σ(ιstart) = 10

σ(ιend) = 0.5 (linear decay)

experimental settings

training/test 4 fold cross validation
number of initializations per fold 25

epochs 2000

results in numbers

accuracy GRLVQ eGRLVQ
training 87, 2% 87, 0%

test 85, 4% 87, 0%
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results in figures

Figure 4.13: Relevance profiles of GRLVQ for several training epochs from a typical run
during the cross-validation procedure, i. e. the other relevance profiles have an averaged
relative error of about 2.05% for each band.

Figure 4.14: Relevance profiles of eGRLVQ several training epochs obtained from a typical
run during the cross-validation procedure (averaged relative error of 0.41% for each band).
Note, in comparison to Fig. 4.13, the scale is doubled.
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Figure 4.15: Averaged training and test accuracies for GRLVQ and eGRLVQ for the first
1000 epochs for 4-fold CV with one initialization. The eGRLVQ uses the enhanced rele-
vance learning achieving a good performance faster than standard GRLVQ.

Figure 4.16: Averaged training and test accuracies for 25 times 4-fold CV with random
initialization

Figure 4.17: Standard deviations of the averaged performance of the accuracy curves (see
Fig. 4.16). The eGRLVQ shows improved stability in comparison to GRLVQ indicated by
lower deviations.



4.1. Supervised Vector Quantization for Functional Data 107

resume The wine data set, which contains absorbing spectra, is a functional data
set. The spectra are relatively smooth and thus, this property is expected for the
relevance profile, too. The final relevance profile (i. e. after 2000 epochs) of the
eGRLVQ (see Fig. 4.14 is smoother compared to λ learned by the GRLVQ (see Fig.
4.14). Moreover, the relevance peaks for eGRLVQ are better calibrated although
both algorithms emphasize the relevances ranging around 4 µm and 14 − 15 µm.
These spectral ranges are also marked as important for class description as it was
obtained in [Krier et al., 2008]. The approach in [Krier et al., 2008] is a feature selec-
tion scheme based on information theoretic concepts and the authors pointed out,
that the first peak in the relevance profiles corresponds to the absorption range of
the O–H bond present in alcohol and, hence, is a clear indicator for the alcoholic
level.
Further, we observe that the enhanced relevance learning leads to a slightly im-
proved convergence behavior as expected by neighborhood cooperativeness in
learning, see Fig.4.15. High performance is achieved after a few epochs for the
enhanced model whereas the original relevance learning needs considerably more
epochs. Both approaches achieve the final accuracies after approximately 550

epochs. After this time only the relevance profiles are further improved (see Fig-
ures 4.13 and 4.14).
For each of the four cross folds we started with 25 random initializations, whereas
all other parameters were kept for both GRLVQ and eGRLVQ from the previous
runs. The achieved accuracy curves, averaged over all cross folds and random
initializations, are plotted in Fig. 4.16. The respective curves of standard deviations
are depicted in Fig. 4.17. These results give at least a hint that the eGRLVQ is robust
and converges faster than standard GRLVQ without enhancement learning.
Investigating these simulation results we can conclude for eGRLVQ a faster con-
vergence with improved stability compared to GRLVQ. Thus, the enhancement
learning leads to a more stable behavior with reduced sensitivity according to ini-
tialization as already proposed on page 104.
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Application 4.4 (eGMLVQ).

data set Indian Pine

methods GMLVQ, eGMLVQ

parameter settings

number of prototypes 108
distance function dΩ (v,w) (2.68)

dΩ

(
v,w, H̃σ

)
(4.30)

dimension of Ω m = 11 (Ω ∈ R11×200)

learning rates αW = 0.01

αΩ = 0.1 · αW
transfer function parameter θ = 1

basis function GFMLVQ: K = 10 Gaussians
enhancement neighborhood range σ(ιstart) = 10

σ(ιend) = 1

experimental settings
training/test 25% of data for training, 75% for test

number of initializations per fold 25

descriptions
The number of prototypes per class are chosen according to the class distribution
of the data set and sum up to 108. As described in 1.2, around 1.33µm and 1.75µm

we removed 20 wavelengths, because they mainly affected by water content. Thus
around these wavelengths, the neighborhood cooperativeness of the dimensions is
violated. Therefore, this should be reflected in the enhancement matrixH , too. The
according matrix at the beginning is depicted in 4.18. The value of σ(ιstart) = 10

at the beginning of the training realizes a large lateral inhibitions for fast learning
while the flexibility of the relevance profile is reduced. The flexibility increases
while the linear decreasing of the lateral interaction range to the remaining final
cooperativeness according to σ(ιend) = 1.
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Figure 4.18: Enhancement matrix H̃ with the removed neighborhood cooperativeness
around affected water bands.

results in numbers

accuracy GMLVQ GFMLVQ eGMLVQ
training 90.0% 67.7% 87.4%

test 81.6% 74.0% 81.4%

results in figures

Figure 4.19: Classification correlation matrix Λ1 learned by the standard GMLVQ
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Figure 4.20: Classification correlation matrix Λ2 learned by the functional GMLVQ with
K = 20 Gaussians.

Figure 4.21: Classification correlation matrix Λ3 learned with eGMLVQ and enhancement
matrix H̃ (see Fig. 4.18)

resume The reduced accuracy of the GFMLVQ compared to standard GMLVQ
shows the difficulty to learn an appropriate matrix representation by the Gaus-
sians. This effect can be observed also in the visualization of the matrix Λ2. The
classification correlation matrix Λ2 of the functional GMLVQ only show signifi-
cant correlations lower wavelengths (see Fig. 4.20). Yet, this is in contrast to Λ1

learned by the standard GMLVQ. In Figure 4.19 can be observed that also correla-
tions between higher wavelengths are taken into account for a better classification.
However, Λ1 is not smooth as we would expect from the smooth shape of the data,
compare Figure 1.9.
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Applying the eGMLVQ with the data set adjusted enhancement matrix H̃ the per-
formance is drastically improved compared to GFMLVQ. A test accuracy of 81.1%

is achieved similar in comparison to GMLVQ. The matrix Λ3 is smoother compared
to Λ1, which demonstrates the regularizing ability of the enhancement learning.
This property can also concluded from the decreased discrepancy between train-
ing and test error compared to GMLVQ and GFMLVQ.
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4.2 Fuzzy Information About the Labels

Until now, we had a closer look to the characteristics of the data, e. g. we use the
functional property in the relevance learning. In this section, we concentrate on the
information about the classes. On pages 37ff the semi-supervised task and some
methods are described closer. A short review: The training data set is split into
two subsets: the unlabeled and the labeled data points. The motivation in semi-
supervised Vector Quantization is to learn a classifier which use both subsets of the
data set for the training. Examples are the Learning Associations by Self-Organizing
(LASSO [Midenet and Grumbach, 1994]) or the Fuzzy Labeled SOM/NG (FLSOM
[Schleif et al., 2007a], FLNG [Villmann et al., 2006a]). The FLSOM is a generalization
of the LASSO. However, the theoretical justification is tricky and raise practical diffi-
culties [Schleif, 2014]. Thus, we develope a novel semi-supervised approach.

In the following two sections the Fuzzy Semi-Supervised SOM (FSSOM) and Fuzzy
Semi-Supervised NG (FSNG) are deduced, respectively. Thereby, the distance measure
in the data space of the standard Heskes-SOM or NG is substituted by a distance mea-
sure including the label information. The integration of the label information takes
place in a multiplicative manner by preserving the structural framework of Heskes-
SOM or NG, respectively. Thus, the proposition of convergence and stability can be
transfered two the new models. The areas of application of these new approaches are
manifold. On the one side it is a classical semi-supervised method, i. e. labeled as well
as unlabeled data points are considered, on the other side the methods are also able to
handle fuzzy information about the labels like it is known from FLSOM/FLNG. Fur-
ther, extensions like metric adaptation or sparsity requirements can be applied.

4.2.1 Fuzzy Semi-Supervised Self-Organizing Maps

At first, in the following the class assignment for the data point v and prototypes wr
are modeled by an assignment vector c(v) = (c1(v), . . . , cNC (v)) ∈ [0, 1]NC or y(W ) ∈
[0, 1]NC×NW , whereby NC is the number of classes and NW the number of prototypes,
respectively. We distinguish between possibilistic, probabilistic (

∑NC
l=1 cl(v) = 1) and
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crisp labeling (
∑NC

l=1 cl(v) = 1, cl(v) ∈ {0, 1}). Further, we introduce the following
parameter sets ν = {vi, c(v)}, ωr = {wr,y(wr)} andW = {W,y(W )}, respectively.

For the development of the FSSOM model we consider the cost function of the
Heskes-SOM:

EFSSOM =

∫
P (v) lcFSSOM (ν,W, σ, γ) dv (4.34)

but with the local costs:

lcFSSOM (ν,W, σ, γ) =
∑
r∈A

hSOMσ (ŝ (ν) , r)Dε (ν, ωr, γ) . (4.35)

where ŝ (ν) is the winner determination by Heskes (2.10) depending on the novel de-
viation measure Dε (ν, ωr, γ). Dε (ν, ωr, γ) combines the distance d(v,wr) between data
point and prototype in the data space and the distance between the labels δ(c(v),y(wr))

in a multiplicative manner:

Dε (ν, ωr, γ) = (γ · δ (c(v),y(wr)) + εδ) · ((1− γ) · d (v,wr) + εd)− εδεd (4.36)

The weighting parameter γ ∈ [0, 1] determines the influence of the class information
with γ = 0 yielding the standard Heskes-SOM. Further, εδ, εd ≥ 0 obtained from the
parameter vector ε = (εδ, εd) is an offset term necessary in Dε to prevent unexpected
behavior of the FSSOM under certain conditions concerning the update, which will be
explained a bit later.

If the Euclidean distance is chosen for d(v,wr) as well as for δ (c(v),y(wr)), the dis-
tance Dε is only a quasi metric (see Note 2.1), because the triangle inequality is not
fulfilled. Obviously, other differential dissimilarity measures are conceivable for d or δ
(see page 116ff).

The FSSOM model leads to a prototype adaptation influenced by the class agreement
δ (c(v),y(wr))

4wr = (1− γ) · (γ · δ (c(v),y(wr)) + εδ) · hSOMσ (ŝ (v) , r) · ∂d (v,wr)

∂wr
(4.37)

accompanied by a label adaptation

4 y(wr) = γ · ((1− γ) · d (v,wr) + εd) · hSOMσ (ŝ (v) , r) · ∂δ (c(v),y(wr))

∂y(wr)
(4.38)

such that both, prototype vectors and their class assignment vectors are parallel
adapted.

Obviously, if the squared Euclidean distance is chosen in both cases, adaption of the
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prototype and its label ends up in a vector shift:

∂d (v,wr)

∂wr
= −2 (v −wr)

∂δ (c(v),y(wr))

∂y(wr)
= −2 (c(v)− y(wr)) . (4.39)

Yet, in the recall phase the winner determination only depends on d (v,wr) and thus
differs to the determination in the learning phase. This disadvantage is already known
from LASSO and FLSOM (see Section 2.3.1).

An advantages of the FSSOM is the additional visualization possibility. As mentioned
on page 23, for the SOM exists a lot of visualization abilities like the component planes
or the U-matrix. These visualization methods can be directly transfered to the FSSOM.
An example is given in the application 4.5.

4.2.2 Fuzzy Semi-Supervised Neural Gas

The idea realized in the FSSOM can be directly transfered to the Neural Gas, i. e. the
distance d(v,wi) in the NG cost function (2.17):

EFSNG =
1

C(σ)

∫
P (v) lcFSNG(v,W, σ) dv (4.40)

especially the distance between the data points and prototypes in the local costs lcFSNG

(2.16) is replaced by the novel distance Dε (ν, ωj , γ):

lcFSNG(ν,W, σ, γ) =

NW∑
j=1

hσ (rkj (ν,W, γ)) Dε (ν, ωj , γ) (4.41)

It has to be pointed out that the rank function rkj (ν,W, γ) based on the distance
Dε (ν, ωj , γ) in the learning phase. In the recall phase, the winner determination can
only depend on d(v,w) like it is known from the FSSOM or FLNG (see Section 2.3.3).

The learning procedure is the same like in FSSOM. The updates are derived in the
same manner:

wj = wj − αW · 4wj

with 4wj = (1− γ) · (γ · δ (c(v),y(wj)) + εδ) · hσ (rkj) ·
∂d (v,wj)

∂wj

y(wj) = y(wj)− αY · 4y(wj)

with 4 y(wj) = γ · ((1− γ) · d (v,wj) + εd) · hσ (rkj) ·
∂δ (c(v),y(wj))

∂y(wj)

where αW , αY ≥ 0 are the according learning rates.
The proof of the convergence for symmetric Dε can be found in the appendix A.3. In



4.2. Fuzzy Information About the Labels 115

the following we only concentrate on the FSNG, beside the ideas are also transferable
to the FSSOM.

The Meaning of ε

We introduced the parameter vector ε = (εδ, εd) in the novel distance Dε, due to case; if
either the prototype or the label perfectly match, the update should not vanishing:

1. d (v,w) = 0 and δ (c(v),y(w)) 6= 0, i. e. the prototype is perfectly placed but its
label is not adequate: In that case a non-vanishing term

∂Dε (ν, ωj , γ)

∂y(wj)

∣∣∣∣
d(v,wj)=0

= (1− γ) · εd ·
∂δ (c(v),y(wj))

∂y(wj)
(4.42)

remains, which guarantees the label adaptation.

2. d (v,wj) 6= 0 and δ (cv,y(wj)) = 0, i. e. the prototype label perfectly matches but
the prototype itself is not optimally adjusted: In that case

∂Dε (ν, ωj , γ)

∂wj

∣∣∣∣
δ(c(v),y(wj))=0

= γ · εδ ·
∂d (v,wj)

∂wj
(4.43)

is non-vanishing such that prototype learning is still possible.

In the case that both the prototype as well as its labeling are perfectly matching, i. e.
d (v,wj) = 0 as well as δ (cv,y(wj)) = 0 the distance Dε = 0 and the update of the
prototype and its label is zero, too.

The Parameter for Controlling the Influence of the Labels During Learning

The quasi-metricDε (v,wi, γ) depends on the balancing parameter γ weighting the un-
supervised and supervised aspects. Experiences from earlier models like FLNG (see
2.3.3) suggest a careful control of this parameter beginning with γ (0) = 0 and later
(adiabatic) increase up to a final value γmax, which should be chosen as γmax < 1 to
avoid instabilities as known from FLNG. This can be interpreted as a remaining influ-
ence of unsupervised learning in the supervised learning phase of FSNG.

Furthermore, in semi-supervised tasks labeled and unlabeled data are given. Both
kind of data can be used in FSNG. If the data are unlabeled, the wighting parameter is
set to zero and thus, no update for the labeling is performed. An example for using the
FSNG for such an data set can be found in Application 4.6.
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Integration of Different Kinds of Dissimilarity measures

Like in other supervised or unsupervised VQ models, the distance d(v,wj) and
δ(c(v),y(wj)) should be chosen data and task dependent. Other possibilities than Eu-
clidean are for example kernel-, lp- or weighted Euclidean distances.

Moreover, the learning of a linear mapping of the data can be improve the perfor-
mance known from the GMLVQ. Therefore, the Euclidean distance in the data space
d2
E(v,w) is replaced by the matrix counterpart d2

E(v,w,Ω) (2.68). The update of the
mapping matrix Ω yields to:

Ωkl ← Ωkl − αΩ · 4Ωkl

with 4 Ωkl = −
NW∑
j=1

(1− γ) · (γ · δ (c(v),y(wj)) + εδ) ·

hσ (rkj (ν,W, γ)) ·
∂d2

E(v,wj ,Ω)

∂Ωkl

and
∂d2

E(v,wj ,Ω)

∂Ωkl
= [v −wj ]m [Ω(v −wj)]l .

An example of learning the mapping matrix Ω and the resulting fuzzy classification
correlation matrix Λ = ΩTΩ is given in Application 4.6.

Evaluation

The output of the FSNG are fuzzy labels, i. e. the assignment of a prototype might be not
unique. To ensure a probabilistic labeling, the additional requirement of

∑NC
k=1 y(wj)

k =

1 has to be added after each update in the learning scheme.
To evaluate fuzzy classifier the classification error might be not longer suitable.

Therefore another evaluation measure is mandatory. One simple possibility is the
scaled Euclidean norm:

sEN =
1√

2 ·NV

∑
v∈V
‖c(v)− y(ws(v))‖E (4.44)

For crisp assignments, the sEN is identical with the classification error CE (2.28).
Another more adequate measure is the Cohens Kappa (see page 81), which compare

two classifier and was extended to the Fuzzy Cohens Kappa [Geweniger, 2012].
Nevertheless, if a crisp classification is desirable, each prototype can be assign by an

unique label:
ycrisp(w) = argmax

k=1,...,C

(
yk(w)

)
and thus the standard classification accuracy can be used.
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Sparsity Constraints Concerning the Label Vector

Although, fuzzy labels are given, in the resulted classification model the labels should
focus only on a few classes. Until now, no requirements on the labeling are imposed
and thus, the FSNG could end up with very fuzzy labels. To focus the labels to only
a few classes per prototype, we include sparsity requirements. On page 2.4.2 we al-
ready introduce sparsity constraints. However, we used it for feature sparsity, the same
concept can be applied to the labeling.

For a probabilistic labeling a suitable choice is an entropic penalty term:

EHs (y(W )) =

NW∑
j=1

(
−

NC∑
k=1

yk(wj) log(yk(wj))

)
(4.45)

adding to the cost function of the FSNG (4.40):

EsFSNG = EFSNG(W) + γ(ι)EHs (y(W )) (4.46)

with the weighting function γ(ι) ≥ 0 increasing slowly and monotonic after conver-
gence of the FSNG model. The extra term EHs (y(W )) in the cost function leads to an
additional update for the labels:

4y(wj) =
∂EFSNG(W)

∂y(wj)
+
∂EHs (y(W ))

∂y(wj)

with
∂EHs (y(W ))

∂y(wj)
= log(y(wj)) + 1 .

Application 4.5 (FSSOM with Visualization Possibilities).

data set Colorado with 25% labeled data

methods GLVQ, FLSOM, FSSOM

parameter settings

SOM
number of prototypes 7× 6 (rectangular lattice)

neighborhood range σ(ι = 0) = 5, σ(ι = end) = 0.1

distance function squared Euclidean distance
learning rate αW = 0.001
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GLVQ
number of prototypes 42 (class distributed)

transfer function fθ, θ(ι = 0) = 1, θ(ι = end) = 10

distance function squared Euclidean distance
learning rate αW = 0.01

FLSOM
number of prototypes 7× 6 (rectangular lattice)

neighborhood range σ(ι = 0) = 0.1,σ(ι = end) = 0.01

weighting parameter γ(ι = 0) = 0.5, γ(ι = 0) = 1

distance function Dadd (ν, ωj , γ) (2.49)
ε εδ = 0.1, εd = 0.1

d(v,wj) sq. Euclidean distance
δ(c(v),y(wj)) sq. Euclidean distance
learning rates αW = 0.01

αY = 0.1

FSSOM
number of prototypes 7× 6 (rectangular lattice)

neighborhood range σ(ι = 0) = 0.1, σ(ι = end) = 0.01

weighting parameter γ γ(ι = 0) = 0 and γ(ι = 0) = 1

distance function Dε (ν, ωj , γ)

d(v,wj) sq. Euclidean distance
δ(c(v),y(wj)) sq. Euclidean distance
learning rates αW = 0.001

αY = 0.01

experimental settings

training set 1% of whole data set with 25% are labeled
test set 10% of whole data set

initialization SOM: prototypes assigned to data points
GLVQ: prototypes assigned to data points
FLSOM/FSSOM: trained SOM

epochs SOM: 500
GLVQ/FLSOM: 250
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experimental description For demonstrating the idea of semi-supervised learn-
ing we split the training data set (NV = 170 111) into a labeled and unlabeled part.
We removed the label of 75% of the data randomly, which is practical realistic. For
the GLVQ we could only use the remaining 25% of the data. For SOM, FLSOM,
and FSSOM we use all data training points. The SOM prototypes are post labeled,
i. e. the prototypes are assigned by the label of the best matching data point. The
test data set consists of 340 216 (10% of the whole data set) labeled data points.

results in numbers

SOM GLVQ FLSOM FSSOM
accuracy in % 28.2 41.9 30.4 34.6

wEN 0.74 0.58 0.63 0.61

results in figures

Figure 4.22: Confusion matrix of the GLVQ model (left) and FSSOM model (right).
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Figure 4.23: Barplots of the fuzzy class labels according to the FSSOM-lattice (Colors con-
formal to Tab. 1.1 and Fig. 1.7).

Figure 4.24: Component planes of the SOM model.

Figure 4.25: Component planes of the FSSOM model
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Figure 4.26: False color of the Colardo image, classes assigned with FSSOM

resume The accuracy values seems to be very small, but it has to be considered
that only 1% of the data were used for training and furthermore, only 25% of them
are labeled. Additionally, the Colorado data set is a classification problem with 14

very unbalanced classes (see Table 1.1). The unsupervised SOM ends up with 26%

correct classified data samples. Adding the class information arises the accuracy
values up to 30.4% in FLSOM and 34.6% in FSSOM. Thus, the FSSOM achieves a
better accuracy value than the FLSOM. Further, the FLSOM show instable behav-
ior in training, i. e. the results are very sensitive concerning the parameter (γ and
learning rates) selection. Yet, the result of FSSOM are lower compared to the pure
classifier GLVQ which use only 25% of the whole training data. One reason for
this, might be the very unbalanced class distribution, e. g. for class 9, 10, and 14 re-
main less than 100 data points for training. This classes are represented by at least
on prototype in GLVQ (initialization). Yet, the FSSOM is not able to cover these
classes due to the underrepresented number of data samples. This aspect can is
also reflected in the confusion matrices (see Fig. 4.22). Here the underrepresented
classes like class 6, 9 and 14 are not covered by the FSSOM prototypes. Instead, the
GLVQ classified this classes better, which leads to the better over all accuracy of the
GLVQ. Further, we demonstrate the visualization capabilities of FSSOM. For this
investigation we used a two-dimensional FSSOM-lattice A of 7 × 6 neurons. The
fuzzy labels of the neurons are displayed in Fig.4.23 according to the topological
structure of the neuron lattice A. Thereby, the 14 bars in each fuzzy label subplot
are assigned to different labels (the colors and sequence corresponding to Tab. 1.1).
It can be seen that the prototypes ends up with very fuzzy labels, i. e. more than
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one values of y(w) is significantly greater than zero. Moreover, if we concentrate
on one special class, e. g. class 1 (Scotch pine), the probabilistic values [y(w)]1 are
structured in the lattice. Further, the underrepresented classes like class 9 are not
considered, i. e. [y(w)]9 = 0∀ w. On the other side, similar classes can be also
cull out of the barplots. The label values of the similar classes are simultaneously
significantly greater than zero or equal to zeros. This is exemplary reflected in the
values for the labels of classes 3 (Pine/fir) and 4 (Mixed pine fir).
The component planes of SOM and FSSOM differ from each other (see Fig. 4.24
and 4.25), which implies that the incooperation of the label information changes
the prototype position. Beside the the small accuracy values the false color image
is still meaningful (see Fig. 4.26), yet not such detailed like the original one (see
Fig. 1.8).
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Application 4.6 (FSNG with Metric Adaptation).

data set Colorado packed

methods FLNG, FSNG, FSMNG

parameter settings

number of prototypes 42
FLNG

distance function Dadd (ν, ωj , γ) (2.49)
ε εδ = 0.1, εd = 0.1

d(v,wj) sq. Euclidean distance
δ(c(v),y(wj)) sq. Euclidean distance
learning rates αW = 0.01

αY = 0.1

neighborhood range σ(ι = 0) = 12, σ(ι = end) = 0.0001 (linear decrease)
weighting parameter γ(ι = 0) = 0.05, γ(ι = 0) = 0.75 (linear increase)

FSNG
distance function Dε (ν, ωj , γ)

d(v,wj) sq. Euclidean distance
δ(c(v),y(wj)) sq. Euclidean distance

ε εδ = 0.1, εd = 0.1

learning rates αW = 0.01

αY = 0.1

neighborhood range σ(ι = 0) = 12, σ(ι = end) = 0.0001 (lin. decrease)
weighting parameter γ(ι = 0) = 0.05, γ(ι = 0) = 0.75 (lin. increase)

FSMNG
distance function Dε (ν, ωj , γ,Ω)

d(v,wj ,Ω) sq. Euclidean distance of mapped data (Ωv, Ωwj)
δ(c(v),y(wj)) sq. Euclidean distance

ε εδ = 0.1, εd = 0.1

learning rates αW = 0.01

αY = 0.1

αΩ = 10−5

neighborhood range σ(ι = 0) = 0.5, σ(ι = end) = 0.0001 (lin. decrease)
weighting parameter γ(ι = 0) = 0.15, γ(ι = 0) = 0.5 (lin. increase)
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experimental settings

initialization FLNG, FSNG - randomly
FSMNG - FSNG model

training/test 3-fold cross validation
epochs 500

results in numbers scaled Euclidean norm sEN (4.44)

FLNG FSNG FSMNG
training 0.226(±0.005) 0.211(±0.003) 0.185(±0.003)

test 0.226(±0.006) 0.212(±0.002) 0.186(±0.005)

results in figures

Figure 4.27: Mean relevance matrix learned with the FSMNG.
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resume In data set Colorado packed the labels are fuzzy, i. e. a label vector contain
the percentage value of the according soil condition in an area. In this case, a stan-
dard classifier like GLVQ can not be applied. Yet, the FSNG and FLNG are able to
handle such fuzzy label vectors. The FLNG ends up with a mean scaled Euclidean
norm of 0.226. Applying the FSNG a slightly better value of 0.212 is obtained. Yet,
the most benefit we obtain with the matrix learning in FSNG. The sEN falls down
to 0.185. In the classification correlation matrix the dimension 2 has the highest
value and additionally the dimension 1 and 3 are emphasized. Moreover, the di-
mension 2 is negative correlated to dimension 1 and 3. Thus, the visible spectra
play an important roll to distinguish the ground covers.





Chapter 5

Variants of Classification Costs and
* Class Sensitive Learning in Prototype
* Based Methods

This section is based on

M. Kaden, M. Riedel, W. Hermann, and T. Villmann: Border-sensitive Learning in Gen-
eralized Learning Vector Quantization: an Alternative to Support Vector Machines.
Soft Computing, 2015.

5.1 Border Sensitive Learning in Generalized LVQ

A significant difference between the SVM and the standard GLVQ is the kind of margin
which is optimized. The SVM optimizes the separation margin, i. e. the optimization
concentrates to the class borders and to the finding of an optimal decision hyperplane
(see appendix A.2). In contrast, the GLVQ optimizes the hypothesis margin and end
ups frequently with class describing prototypes. In e. g. [?] it is pointed out that the
task of class separation and class description might be conflicting in the general case.
In theory, only the LVQ 1 generate class typical prototypes, but this statement does not
hold for the GLVQ. Yet, in [Hammer et al., 2014b] are shown possibilities to achieve
class typical prototypes in cost function based LVQ variants.

In this Section, we want to end up with class border sensitive prototypes for LVQ-
learning and describe two approaches to modify the GLVQ accordingly. The first ansatz
is adding a penalty term to force the prototypes to the decision border (P-GLVQ) and
in the second approach the transfer function fΘ (2.38) of the GLVQ cost function (2.37)
is considered closer (BS-GLVQ).

5.1.1 Border Sensitivity by Additive Penalty Function

In [Hammer et al., 2014b] is pointed out a possibility to achieve class typical proto-
types by adding a penalty function to the standard cost function of the GLVQ. This
idea can be transfered to obtain class border typically prototypes like in the SVM, the
Penalty-GLVQ (P-GLVQ). Therefore, the cost function of the GLVQ (2.37) is extended
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by a weighted additive penalty term:

EP−GV LQ = (1− γ)EGLV Q + γPNG (5.1)

This penalty term PNG should force the prototypes to the decision border and the pa-
rameter γ ∈ [0, 1] control the influence of this constraint. A possibility is to choose the
penalty term as neighborhood attentive attraction force (NAAF):

PNG =
∑
v∈V

∑
k:wk∈W−(v)

hNGσ (rkk(w
+,W−(v)) d(w+,wk) (5.2)

with the set W−(v) = {w|y(w) 6= c(v)} including all prototypes of the incorrect class
of the sample v. Further, the neighborhood function known from the Neural Gas (2.15)

hNGσ
(
rkj
(
w+,W−(v)

))
= exp

(
−rkj (w+,W−(v))

2σ2

)
(5.3)

defines the rank of the prototypes in W−(v) via the dissimilarity function

rkj
(
w+,W−(v)

)
=

∑
wk∈W−(v)

H
(
d
(
w+,wk

)
− d

(
w+,wk

))
(5.4)

with the Heaviside function H(x) (2.14).

Thus, NAAF (5.2) sums up the costs or distances for all data points, respectively,
between the winning prototype and the prototypes of a different class weighted by
their ranks. This term causes an additional term in the prototype update (2.40) of the
standard GLVQ

∂PNG
∂w+

=
∑

k:wk∈W−(v)

hNGσ
(
rkk

(
w+,W−(v)

))
· ∂d(w+,wk)

∂w+

∂PNG
∂wj

= hNGσ
(
rkj
(
w+,W−(v)

))
· ∂d(w+,wj)

∂wj
wj ∈W−(v)

which gradually attract all prototypes of W−(v) to the winning prototype w+ depend-
ing on the rank rkj (w+,W−(v)) and the neighborhood range σ ≥ 0. Especially, the
next prototype wj ∈ W−(v) to w+, i. e. d(w+,wj) ≤ d(w+,wk) ∀wk ∈W−(v) has the
rank zero and will be moved towards w+ strongest. Further, the parameter γ regulates
the influence of NAAF and thus the strength of the border typical constrain.

The additive NAAF term in 5.1 forces the prototypes closer to the decision border
and hence, the prototypes become more border sensitive implicitly. An advantage of
this method is that only a subset of prototypes can be restricted by this penalty term.
Therewith, on the one side there are prototypes learned with the standard GLVQ, which
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Figure 5.1: The shape of the sigmoid and sigmoid prime function depending on the parameter
θ.

ends up class typical. On the other side there are prototypes learned with the P-GLVQ
and these prototypes are class-border representative.

Yet, an additional control of the weighting parameter γ is required, which is not easy
to handle (see Application 5.1). Therefore, an approach which is more GLVQ-inherent
would be desirable.

5.1.2 Border Sensitivity by Parameterized Transfer Function

In Section 2.2 we mentioned that the cost function GLVQ approximate the classification
error. The classifier function µW (v) < 0 (2.34), iff the data point is correct classified.
Particularly, when using the transfer function from (2.38):

fθ(x) =
1

1 + e−θ·x
,

with the parameter θ > 0 determines the shape of increase especially of the interval
µW (v) ∈ [−1, 1] (see Fig. 5.1). If θ = 1, the sigmoid function is nearly linear in the
interval [−1, 1] and thus the training in GLVQ has the same behavior, than the identical
function is chosen for the transfer function. Moreover, for θ ↗ ∞, the fθ(x) converges
to the Heaviside function. Thus, the following remark is valid:

Remark 5.1. If θ ↗ ∞, the cost function of the GLVQ converters to the classification
error.

This perception yields to further applications of the GLVQ-principle (see Sec. 5.2).
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Figure 5.2: Illustration of the active set Ξ̂(V,W ) and the passive set Ξ(V,W ) for the prototypes
w1 and w2.

The derivative

f ′θ(x) = θ · fθ(x) · (1− fθ(x)) (5.5)

of the sigmoid function appears as scaling factor in the update of the prototypes (2.39).
In Figure 5.1 is also apparent: the higher θ, the smaller the range of the classifier value
µW (v) with no vanishing values for f ′θ(µW (v)). Thus, a significant prototype update,
i. e. |ξ±| � 0 (2.41), holds only for |µW (v)| � 1, which implies d+(v) ≈ d−(v). To
describe the set of data points influencing the prototype update at least moderately, we
define the active set

Ξ̂(V,W ) =

{
v ∈ V |µW (v) ∈

[
−1− µθ

1 + µθ
,
1− µθ
1 + µθ

]}
(5.6)

with |f ′θ(µθ)| < ε given a small ε > 0. In Figure 5.2 an example of an active set with the
counter part the passive set Ξ(V,W ) = V \Ξ̂(V,W ) is visualized. Thus, the data points
belonging to the active set contribute to a prototype shift, and on the other side, all data
points belonging to the passive set have no or only a very small impact to the learning.

As can easily be seen, data points along the decision boundary belonging into the
active set. The range around the boundary depends on the parameter θ, i. e. as smaller
θ, as smaller the active set and therefore, as smaller the range around the boundary.
Further, the active set can be interpreted as a generalized window rule known from the
LVQ 2 (2.33) with ω = θ [Witoelar et al., 2010]. Obviously, the active sets idea holds also
for the metric adaption like in GRLVQ, GMLVQ (Sec. 2.4) or DK-GLVQ (Sec. 2.4.1).

A good choice of the parameter θ is task dependent. As higher the value for θ, as bet-
ter the approximation of the classification error and additional the prototypes become
more border sensitive. It has to be taken into account: a high value for θ also implies a
contribution of only a small set of data points to the learning, i. e. the range of the active
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set around the decision border become very small. This might be cause a worse gener-
alization, because only the data around the decision border is focused and sensitive for
outliers in this region.

Another aspect is the numerical instability if θ is too high. This is based on the fact
that f ′θ(µW (v)) gets infinity if θ does. Therefore, in [Strickert, 2011] is suggested to re-
place the SGD by a 2nd order optimization scheme. Another possibility is to increase
slowly the parameter θ during the learning process. Thereby, we start with θ = 1,
where all data points has nearly the same influence in the update concerning the factor
f ′θ(µW (v)) and then slowly increase the value for θ. This strategy is applied in Appli-
cation 5.1.

In summary, the border sensitivity can be controlled by the parameter θ when us-
ing fθ as transfer function in GLVQ. Yet, it has to pointed out, that border sensitive
prototypes does not imply that the prototypes are next to the decision border in this
approach. We abbreviate this approach by BS-GLVQ. Thus BS-GLVQ differs from P-
GLVQ.

If the BS-GLVQ is combined with DK-GLVQ, we achieve a model which generates
border sensitive prototypes equipped with differentiable kernels dκ. In Subsection 2.4.1
it is shown that the spaces (V, dκ) (DK-GLVQ) and (Iκ, dκ) where dκ is an universal
kernels provides the same topological richness. Hence, together with the additional
requirement of border sensitivity, we obtain a counterpart model to the SVM.

In Application 5.1, experiments on artificial data sets show the principles of BS-GLVQ
and P-GLVQ. Further, the BS-GLVQ is compared to the SVM in an example in Applica-
tion 5.2.

Application 5.1 (Possibilities for Border-Sensitive Prototypes in GLVQ).

data set Czech-flag

methods GLVQ, P-GLVQ, BS-GLVQ

parameter settings

number of prototypes 3|15 (equal class distributed)
distance function d2

E

learning rates αW = 0.01

transfer function GLVQ, P-GLVQ: θ = 1

BS-GLVQ: θ(ιstart) = 1,θ(ιend) = 20

balancing parameter γ = 0.5 for P-GLVQ
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results in numbers

|W | GLVQ P-GLVQ BS-GLVQ
3 89.7% 91.1% 97.2%

15 97.4% 91.2% 99.4%

results in figures

Figure 5.3: The resulting prototypes of the standard GLVQ with linear transfer function
ends up with class typical prototypes.

Figure 5.4: Left: Applying only three prototypes, the P-GLVQ results in class border sen-
sitive prototypes. Right: In contrast, the P-GLVQ with five prototypes per class ends up
only with a subset of prototypes which are next to the class border. A few prototypes a still
remains class representative.
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Figure 5.5: The position of the resulting three prototypes of BS-GLVQ seems neither class
nor class border representative. Yet, they are border-sensitive due to the theory of the active
sets.

resume This toy example shows the diversity of class representative versus class
border representative as well as representative versus discriminative prototypes
obtained by P-GLVQ and BS-GLVQ, respectively.
The GLVQ ends up with class representative prototypes (see Fig. 5.3). Yet, the
GLVQ model can not achieve the same performance like the BS-GLVQ even for the
sparse model (NW = 3) like the P-GLVQ.
The three prototypes learned with the P-GLVQ (see Fig. 5.4) laying on the decision
border and class border representative according to the three classes. If more pro-
totypes are applied, only a subset of prototypes ends up near the decision border
whereas the others are still representative (see Fig. 5.4).
The best accuracy is achieved by BS-GLVQ. The reason for this results is that the ap-
proximation of the goal (minimizing the classification error) gets better with higher
θ. Hence, the resulting prototypes are neither class nor class border representative
(see Fig. 5.5), but class border sensitive. The active set for θ = 20 consist of 313 data
points (31% of whole data set).
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Application 5.2 (DK-GLVQ vs SVM).

data set Morbus Wilson (2cl)

methods DK-GLVQ, SVM

parameter settings

DK-GLVQ
number of prototypes 12 (6 per class)

initialization prototypes assigned to data points
distance function dκRBF with initialized σj = 2.5

(local, adapted)
learning rates αW = 0.1

ασ = 0.0005

SVM
kernel κlin

κRBF , σ = 0.015 (systematic search)
penalty value C = 200

experimental settings

number of CV-folds 10
epochs 2500

descriptions In the DK-GLVQ, we learn beside the prototypes also the parame-
ters of the RBF-kernel for each prototype σwk

. In the SVM we determine the pa-
rameter σ and C by systematic search.
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results in numbers accuracy (± standard deviation) in %

DK-GLVQ BS-DK-GLVQ SVM
θ = 1 θ = 2.5 θ = 5 lin RBF

training 87.8 91.9 90.4 86.1 87.5
(±0.013) (±0.015) (±0.014) (±0.012) (±0.015)

test 81.9 82.6 87.4 85.5 87.4
(±0.086) (±0.086) (±0.090) (±0.013) (±0.137)

NP = 12 NP = 12 |SV | = 43.3 |SV | = 45.5

resume The Morbus Wilson data set with the two classes neurological and non-
neurological is not easy to distinguish by the electrophysiological impairment pro-
file (see Sec. 1.2). Yet, the given classifier achieve an averaged accuracy for the test
data sets up to 87.4%. Thus, a distinction of the two classes is possible. The results
of the BS-DK-GLVQ and the SVM each with the RBF-kernel equipped ends up with
the same results in the test accuracy. However, on the one side the BS-DK-GLVQ
has an smaller standard deviation, which suggest an more stable behavoir. On the
other side the model complexity in the BS-DK-GLVQ is smaller compared to the
SVM, i. e. the number of prototypes is smaller as the averaged number of Support
Vectors.
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5.2 Optimizing Different Validation Measures by the GLVQ

In Section 3 it is already mentioned that an optimal accuracy is not always the goal of
a classification task. Depending on the classification problem with the underlying data
and class properties other evaluation measures might be more appropriate. Examples
are the weighted accuracy or statistical measures based on the confusion matrix like
F-measure, G-measure or the Matthews correlation coefficient (see Sec. 3.3). In the
Remark 5.1, we pointed out that the GLVQ approximated the classification accuracy or
the error, respectively, i. e. if θ ↗ ∞, then EGLV Q ≈ err(V,W ). This insight enables
the extension of the GLVQ for optimizing statistical classification evaluation measures.
In Section 5.2.2 an approach is introduced which optimizes any differentiable statistical
measure based on the confusion matrix by keeping the GLVQ principle.
Unfortunately, the most statistical measures are only for two-class problem. General-
izations are often only heuristics and based on the one-versus-all principle. However
in multi-class problems, measures beside the accuracy might become important if the
class distribution is very unbalanced or even single classes are more important due to
the application. Thus, a generalization of the accuracy is the weighted accuracy, which
consider different class priors. Further, not only the classes per se are important, but
several misclassifications might be avoided or have different costs, respectively. This is
for example known from medicine: It is given a group of persons. To one subgroup be-
long persons, suffering from a medical condition whereas the others do not. Now, if an
healthy person is misclassified, unnecessary costs of drugs occur and the person might
be suffer from undesirable side effects. The other way around, if an affected person
is misclassified to be healthy, he does not get an appropriate treatment. This example
show, that different misclassifications lead to diverse aftermaths or costs, respectively.
These costs depend on the application and should be given by an expert. A general
ansatz to consider auxiliary knowledge about the classes or asymmetric misclassifica-
tions cost is given in the next subsection.

5.2.1 Attention Based Learning Strategy

In the cost function of the GLVQ (2.37) the term fθ(µW (v)) is approximated 1 if v is
misclassified and for a large θ. Thus, to weight the importance of single classes or to
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penalty different misclassifications, the cost function of the GLVQ can be extended by
a multiplicative function ϕ:

Eϕ−GLV Q =
∑
v∈V

ϕ(ΦV (v, c(v)),ΨW (W,Y (W ))) · fθ(µW (v)) (5.7)

The formal function ϕ should reflects the auxiliary assumptions or restriction about the
vector space including the labeling and the prototypes coded in the free parameters
ΦV (v, c(v)) and ΨW (W,Y (W )), respectively. The specific structure of ϕ reflect the ex-
ternal conditions on the classification problem and, hence, is task dependent. In the
following, we describe two possibilities for ϕ closer.

Class Priors

Assume, in a given application the number of example of a class is very unbalanced,
e. g. in the Indian Pine data set (see Sec. 1.2). Nevertheless, the comparatively under-
represented classes might be not less important. Thus, the standard accuracy might be
not appropriated to evaluate unbalanced data set regarding the class distribution. A
simple alternative is to use the weighted accuracy

waccβ(V,W ) =
1

NV

∑
v∈V

β(c(v)) δc(v),ĉ(v) (5.8)

with δi,j the Kronecker delta (2.29) and the weighting vector β ∈ RNC with components
β(k) > 0 ∀k. The vector β, given by an expert, might include the class priors or relative
importances of the classes.
Beside the modified validation measure, the classifier should take these class weights
into account, too. The integration of β in GLVQ cost function is very simple: The formal
weighting function ϕ from (5.7) becomes

ϕ(ΦV (v, c(v)),ΨW (W,Y (W ))) = β(c(v)). (5.9)

The respective update of the prototypes is obtained as

w± ← w± − αW β(c(v)) ξ±θ (v) · ∂d
±(v)

∂w±
(5.10)

with the local learning rate αW β(c(v)) and ξ±θ (v) given in (2.41). Thus, the update can
also be interpreted as a kind of attention based learning [Herrmann et al., 1994]. In this
case, the attention based learning is concentrated on the classes. A finer resolution can
be obtained, if the weighting vector β depends on v. Then, each data point is equipped
with a separate data point dependent learning rate.



138 5. Variants of Classification Costs and Class Sensitive Learning

Asymmetric Misclassification Assessment

In several applications not the single classes have different priors, but the misclassifi-
cations from one class to another might have different costs. An example can be found
if a classification problem consists of main classes, which are divided into sub classes.
Thereby it might be less costly if we misclassify data points within the main classes, but
more costly if a data point is failed the main classes.
In other words, the non-diagonal elements in a confusion matrix have different conse-
quences in the performance of a classifier model. To take these misclassification costs
into account a weighted error can be designed:

werrΓ(V,W ) =
∑
v∈V

Γ(c(v), ĉ(v)) (1− δc(v),ĉ(v)) (5.11)

with the asymmetric misclassification assessment matrix (AMAM) Γ ∈ RNC×NC and the
single entries γ(i, j) ≥ 0. Thereby, γ(i, j) ∈ Γ defines the costs of a misclassification of a
point of class i to class j ∀i 6= j and γ(i, i) can be set arbitrary, because theses values do
not contribute in (5.11), i. e. δi,i = 1. Further, we assume a non-symmetric matrix Γ to
assure asymmetric misclassification costs. The AMAM Γ has to be given by an expert
in advanced.
Obviously, the AMAM can be integrated into the GLVQ cost function to regulate the pe-
nalizing for misclassifications of class c(v) to ĉ(v). Thereto, the function ϕ of Eϕ−GLV Q
(5.7) is set to:

ϕ(ΦV (v, c(v)),ΨW (W,Y (W ))) = γ(ĉ(v), c(v)) (5.12)

Again, for the update we obtain:

w± ← w± − αW · γ(c(v), ĉ(v)) · ξ±θ (v) · ∂d
±(v)

∂w±
(5.13)

which can be also interpret as attention based learning, but in this case concerning the
explicit penalizing of specific misclassifications.
Evidently, the weighting of a class and also the costs of misclassification can be merged.
Thereby, the main diagonal elements of the AMAM are set to the class weights, i. e.
γ(i, i) = β(i) with β(i) from (5.8).
Thus, with these weighted variants of the GLVQ it is possible to integrate auxiliary
knowledge about the classes or misclassifications, respectively. This can be a ranking
according the importance of the classes, the class priors coded in the weighting vector
β, or the specific costs of misclassifications coded in the penalty matrix Γ. However, β
or Γ have to be given in advanced by an expert.
The respective β−GLVQ and Γ−GLVQ are applied on a toy example to demonstrate
the behavior of the positions of the prototype with respect to β or Γ, respectively (see
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Appl. 5.3). Furthermore, we applied the attention based learning GLVQ on a real world
application to give an example of choosing β or Γ, respectively (see Appl. 5.4). Other
variants can easily be creative analogously.
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Application 5.3 (Attention Based Classification Learning in GLVQ - Artificial Data
Set).

data set 4-data

methods β-GLVQ, Γ-GLVQ

parameter settings
number of prototypes 6 (2 per class)

initialization GLVQ: randomly chosen data
β-GLVQ, Γ-GLVQ:GLVQ model

distance function d2
E

learning rates αW = 0.0001

transfer function parameter θ(ιstart) = 1,θ(ιend) = 10

experimental settings
training all data points
epochs 1000

descriptions For the toy example the weighting vector β, the AMAM Γ1, and
the combination of both Γ2 are chosen arbitrary to demonstrate the effect on
the localization of the learned prototypes and the effect of the integration of the
weights/costs to the confusion matrix

β(c(v)) =

5

1

1

 Γ1(c(v), ĉ(v)) =

1 5 1

1 1 5

5 1 1



Γ2(c(v), ĉ(v)) =

5 5 1

1 1 5

5 1 1


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results in numbers confusion matrices

GLVQ
real

◦ + ∗

predicted
◦ 88 % 6 % 10 %

+ 7 % 86 % 4 %

∗ 5 % 8 % 86 %

β-GLVQ
real

◦ + ∗

predicted
◦ 99 % 22 % 29 %

+ 0 % 70 % 4 %

∗ 1 % 8 % 67 %

Γ1-GLVQ
real

◦ + ∗

predicted
◦ 83 % 1 % 16 %

+ 15 % 90 % 4 %

∗ 2 % 9 % 80 %

Γ2-GLVQ
real

◦ + ∗

predicted
◦ 91 % 5 % 15 %

+ 7 % 87 % 4 %

∗ 2 % 8 % 81 %

results in figures
The Triangle data set with the data points of the three classes labeled with ◦, + and
∗, respectively. The prototypes are drawn as � with the color according to their
classes. The crosses ×mark the misclassified points.

Figure 5.6: Position of the learned prototypes with standard GLVQ (left) and weighted
β-GLVQ



142 5. Variants of Classification Costs and Class Sensitive Learning

Figure 5.7: Position of the learned prototypes with Γ1-GLVQ (left) and Γ2-GLVQ (right)

resume In the triangle data set the 3 classes overlap each other in the corner. The
overlapping is nearly equal distributed (see Fig. 5.6). This data behavior is reflected
in the nearly symmetric confusion matrix of the GLVQ. The β-GLVQ weighted the
first class ◦ twice as much as the second + and third ∗ class. This effects a nearly
perfect correct classification of class ◦, of course to the detriment of accuracy of the
other two classes. The weighted accuracy is waccβ = 139 (compare for standard
GLVQ waccβ = 100)
Applying the AMAM Γ1 effects an asymmetric confusion matrix whereby the rates
of misclassifications with high costs are drastically dropped down. Yet, the mis-
classification with low costs arises more frequently. The weighted error decrease
from werrΓ1(V,W ) = 100 of GLVQ to werrΓ1(V,W ) = 75 learned with Γ1-GLVQ.
The position of the prototypes reflect this behavior, too (see Fig. 5.7): The two pro-
totypes of class ◦moves to left. Thus the number misclassification of ◦→ ∗ reduces
and on the other side the number of misclassification ◦ → + increase.
The combination of both, i.e. the weighting of the classes and weighted penalizing
of misclassification causes a compromise between the two. The weighted error is
werrΓ2(V,W ) = 85 and the weighted accuracy waccβ = 607.
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Application 5.4 (Attention Based Classification Learning in GLVQ - Real World
Application).

data set Morbus Wilson (EIP4)

methods Γ-GLVQ

parameter settings
number of prototypes 8 (2 per class)

initialization GLVQ: randomly chosen data
Γ-GLVQ: GLVQ model

distance function d2
E

learning rates αW = 0.01

transfer function parameter θ(ιstart) = 1, θ(ιend) = 15

experimental settings
number of CV folds 8

epochs 1000

descriptions To differentiate the single classes (disease stages) of Wilson Disease
(WD) is very difficult (see Sec. 1.2). Even to detect WD if the patient is in the
non-neurological phase without detailed and costly medical investigation is chal-
lenging. The electro-physiological investigation is comparable cheap. Yet, an early
detection of WD is mandatory to prevent the fast degeneration by pharmaceutical
treatment. Further, the medical treatment depends on the phase (NN, N) and clear
distinction between the classes is desired. These medical expert knowledge can be
roughly modeled by the AMAM

Γ =


1 1 5 5

1 1 5 5

5 5 1 1

10 10 10 1

 .
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results in numbers

real
GLVQ PS PP+MT NN V

pr
ed

ic
te

d PS 53.10 % 12.50 % 0 % 0 %

PP+MT 34.40 % 31.25 % 6.25 % 6.25 %

NN 6.25 % 12.50 % 37.50 % 2.08 %

V 6.25 % 43.8 % 56.25 % 91.67 %

real
Γ-GLVQ PS PP+MT NN V

pr
ed

ic
te

d PS 50.00 % 12.50 % 0 % 0 %

PP+MT 31.25 % 25.00 % 12.50 % 6.25 %

NN 15.63 % 12.50 % 37.50 % 2.08 %

V 3.13 % 25.00 % 31.25 % 64.58 %

resume Considering the confusion matrix, it becomes clear that with the
Γ−GLVQ we get an improvement of the class distinction according to the desired
diagnostic behavior. Particularly, the false-classification of NN-persons to the class
V is drastically reduced although false-classifications still remain. This result is
also reflected in the averaged weighted error: for the GLVQ we obtain werr = 38.3

whereas for the Γ−GLVQ it is dropped down to werr = 33.3. Thus, applying the
asymmetric GLVQ we are able to reflect medical expert knowledge seriously.

5.2.2 Optimizing Statistical Validation Measurements for Binary Class
Problems in the GLVQ

In the last section we have shown up possibilities to integrate auxiliary information
about the importance of classes or costs of misclassifications. Thereby, we used the
fact of approximation of the classification error by the GLVQ cost function applying the
sigmoid transfer function fθ (2.38) (see Sec. 5.1). Further, in chapter 3 we pointed out
that beside the classification accuracy/error other statistical evaluation measures exist.
Especially for 2-class problems with the positive and negative classes (C = {⊕,	}), a
lot of such measures based on the confusion matrix are used for evaluation. Thus, it
seems reasonable to modify the GLVQ optimizing such evaluation measures.

For this propose, an expression fitting to the GLVQ-principle of the single entries
of the confusion matrix is needed. The transfer function of the classifier function is
assumed to approximate the Heaviside function, i. e. fθ(µW (v)) ≈ 1 if v would be mis-
classified by the classifier, i. e.d−(v) < d+(v). Analogously, f̂θ(µW (v)) = fθ(−µW (v)) ≈
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1 applies if v is correct classified. Obviously, the cost function of the GLVQ utilizes
f̂θ(µW (v)) to count the number of correct classified data points for high θ.

Thus, we can approximately express all quantities of the confusion matrix in term of
f̂θ(µW (v)):

true positives: tpW (V ) ≈
∑
v∈V

δ⊕,c(v) · f̂θ(µW (v)) (5.14)

false positives: fpW (V ) ≈
∑
v∈V

δ	,c(v) ·
(

1− f̂θ(µW (v))
)

(5.15)

true negative: tnW (V ) ≈
∑
v∈V

δ⊕,c(v) ·
(

1− f̂θ(µW (v))
)

(5.16)

false negatives: fnW (V ) ≈
∑
v∈V

δ	,c(v) · f̂θ(µW (v)) (5.17)

with the Kronecker function δ⊕,c(v) and δ	,c(v). Exemplary, the true positive value
tpW (V ) approximates the number of correct classified data points v of the positive
class c(v) = ⊕. Apparently, the functions (5.14)-(5.17) are differentiable with respect
to µW (v) and, therefore, with respect to the prototypes w:

∂tpW (v)

∂w
= δ⊕,c(v) ·

∂f̂θ(µW (v))
∂w (5.18)

∂fpW (v)

∂w
= −(1− δ⊕,c(v)) ·

∂f̂θ(µW (v))
∂w (5.19)

∂fnW (v)

∂w
= −δ⊕,c(v) ·

∂f̂θ(µW (v))
∂w (5.20)

∂tnW (v)

∂w
= (1− δ⊕,c(v)) ·

∂f̂θ(µW (v))
∂w (5.21)

In the following, we suppose a general statistical evaluation measure
S (tpW (V ), fpW (V ), tnW (V ), fpW (V )) based on the confusion matrix, which has
to be optimized. The only conditions on the measure S is the continuity and
differentiability with respect to tpW (V ), fpW (V ), tnW (V ) and fpW (V ).

The basic precision

π(tpW (V ), fpW (V )) =
tpW (V )

tpW (V ) + fpW (V )
(5.22)

or recall

ρ(tpW (V ), fnW (V )) =
tpW (V )

tpW (V ) + fnW (V )
(5.23)
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as well as the established F-measure (3.2)

Fβ2 (tpW (V ), fnW (V ), fpW (V )) =
(1 + β2) · tpW (V )

(1 + β2) · tpW (V ) + β2 · fnW (V ) + fpW (V )

are examples for such a measure function S. The respective derivatives are:

precsion
∂π

∂f̂θ (µW (v))
=
δ⊕,c(v)fpW (v) + (1− δ⊕,c(v))tpW (v)

(tpW (v) + fpW (v))2

recall
∂ρ

∂f̂θ (c(v))
=
δ⊕,c(v)fpW (v) + δ⊕,c(v)tnW (v)

(tpW (v) + fnW (v))2

F-measure

∂Fβ2

∂f̂θ (µW (v))
=

(1 + β2)
(
δ⊕,c(v)

(
β2fnW + fpW + (β2 − 1)tpW

)
+ tpW

)
((1 + β2)tpW + β2fnW + fpW )2

Hence, the principle of the learning methodology of standard GLVQ stay the same.
Only the underlaying cost function is replaced by an arbitrary differentiable stochastic
evaluation measure S (tpW (V ), fpW (V ), tnW (V ), fpW (V )). This offers new fields of
application for the GLVQ, particularly, in medicine.

Other proper measures would be the modified accuracy or G-measure (see Section
3.3). Yet, it has to be emphasized that the GLVQ only approximates the confusion matrix
entries. Thus, if the statistical measurement is complex like the Matthews correlation
coefficient (3.1), the modified GLVQ may become instable.

Of course, the idea of metric adaption or replacing of the Euclidean distance by an
other differential dissimilarity is straight forward. Exemplary, we optimize different
Fβ2-measures for the medicine data set Morbus Wilson in Application 5.5.
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Application 5.5 (Optimizing Statistical Measures Using the GLVQ Principle).

data set Morbus Wilson (PET2)

methods Fβ2-GLVQ

parameter settings
number of prototypes 2 (1 per class)

distance function d2
E

learning rates αW = 0.01

transfer function parameter θ(ιstart) = 1,θ(ιend) = 15

experimental settings
number of CV-folds 8

epochs 1000

results in numbers confusion matrices for the test data

GLVQ F0.5-GLVQ F1-GLVQ F2-GLVQ
true true true true

conf mat. N NN N NN N NN N NN
N 90.9 % 28.0 % 88.5 % 7.2 % 93.6 % 11.1 % 96.7 % 15.4 %

NN 9.1 % 72.0 % 11.5 % 92.8 % 6.4 % 88.9 % 3.2 % 84.6 %

F0.5 0.790 0.907 90.1 88.7

F1 0.816 0.902 0.910 0.906

F2 0.845 0.896 0.918 0.926
precision 0.741 0.918 0.885 0.852

recall 0.909 0.885 0.936 0.968
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resume Looking at the confusion matrices, we observe the best Fβ2 value for the
GLVQ-model optimizing the according Fβ2-measure. Small values for β give the
precision an higher influence on the Fβ2-measure, such the best precision are ob-
tained by the F0.5-GLVQ model. Further, the best recall value is achieved for the
F2-GLVQ model. Otherwise, the standard GLVQ is never yielded the best Fβ2-
measure, as expected. Thus, this exemplary experiment show the ability of the
modified GLVQ to optimizes statistical evaluations measurements based on the
confusion matrix.
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M. Kästner, W. Hermann, and T. Villmann: Integration of Structural Expert Knowledge
about Classes for Classification Using the Fuzzy Supervised Neural Gas. Proc. of ESANN,
2012.

5.3 Integration of Structural Knowledge about the Labeling in
Fuzzy Supervised Neural Gas

In several applications of classification problems the labeling of each data points can
be very costly or sometimes it is subjected to uncertainty, i. e. the labeling need a lot of
expertise. Let us assume an example: Given is a medical classification problem. The
patients are divided into five stages in breast cancer: healthy or without symptoms, pre-
cancerous/ non-invasive (level 0), invasive with different sizes and state of spreading to
axillary lymph nodes (levels 1-3), and invasive breast cancer that has spread beyond the
breast and nearby lymph nodes to other organs of the body (level 4) [Edge et al., 2010].
Especially, the assignment of a patient to level 1-3 is very challenging and not always
unambiguous. Otherwise, the distinction between level 0 and the other ones is very
clear. In general, such uncertainty in the labeling should be integrated in the training
of a classifier model to represent the given problem in a better way. In this section,
we figured out a possibility of a respective expert knowledge integration in the FSNG
model (see Sec. 4.2.2), which is transferable to the FSSOM (see Sec. 4.2.1).

As known from Section 2.3, the FSNG is a semi-supervised method which can take
into a account fuzzy labels. The above described uncertainty in label can be reflect by
the help of fuzzy assignments. In the FSNG model, beside the data point distance a
dissimilarity between the labels are taken into account during the learning. Thus, the
integration of expert knowledge by modifying the dissimilarities between the labeling
δ(c(v),y(w)) is obviously.

One simple strategy is to define δ(c(v),y(w)) as a quadratic form

δK(c(v),y(w)) = (c(v)− y(w))T K (c(v)− y(w))T (5.24)

with a positive definite expert knowledge matrix K. Thus, δK(c(v),y(w)) is a positive
definite belinear form. Another choice is a diagonal matrix K, where the Kii > 0 imply
the class weighting related to their importance. This is in analogy to the weighted
Euclidean distance for the class weighting vector β in the GLVQ (see page 137).

To integrate the uncertainty of the labeling between specific classes, we consider the
conditional probability p(l|k) ≥ 0 that a data vector belonging to class k could be as-
signed to class l. In the following we denote such a misclassification as failure event
(fe). These information are collected in an uncertainty matrix U ∈ [0; 1]NC×NC with the
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entries Uk,l = p(l|k). It is essential that
∑NC

l=1 Uk,l =
∑NC

l=1 p(l|k) = 1. Further, for proba-
bilistic interpretation we suppose that p(l|l) > p(l|k) ∀k 6= l. Yet, p(l, l) can be less than
1 which reflects the uncertainty in assignments of class l. Under this assumption the
matrix U has non-vanishing off-diagonal elements, a failure event should be less con-
tribute to an error criterion. For this purpose, we introduce the unification dissimilarity
for data and prototype label vectors c(v) and y(w)

Dk,l =

(
[c(v)]k + [c(v)]l

2
− [y(w)]k + [y(w)]l

2

)2

(5.25)

with respect to the classes k, l ∈ C. Therefore, we obtain the unification dissimilarity
matrix D, where the entries Dk,l describes the deviation of class vector entries if the
classes k and l would be merged.

Both aspects, uncertainty and unification distance are combined in the class dissimi-
larity measure

δU(c(v),y(w)) = Fr(U ◦D) (5.26)

where A ◦ B is the Hadamard product between matrix A and B and Fr(A) denotes
the Frobenius norm of matrix A. Generally, δU(c(v),y(w)) is not a metric but still a
dissimilarity measure (see Note 2.1).

We emphasize at this point that the uncertainty matrix does not explicitly code the
classification goal like in the section before. An application on the proposed approach
is presented in Application 5.6.

In this section, we gave a possibility how to integrate auxiliary knowledge about the
labeling into the FSNG by use of an uncertainty matrix. Obviously, other possibility
might be considered and has to be verified for specific problems.

Application 5.6 (Integrate Uncertainty of Labeling in FSNG).

data set Morbus Wilson (6cl)

methods U -FSNG

parameter settings
number of prototypes 11

distance function d2
E(v,w),
δβ(c(v),y(w)),
δU(c(v),y(w))

learning rates αW = 0.01
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experimental settings
training/test training and test on whole data set

epochs 2000
initialization random data point

descriptions
The main task for the Wilson disease (WD) classification is to distinguish between
neurological and non-neurological case (see Sec. 1.2). A subdivision between these
main class is very difficult and it is not clear whether a precise classification is based
on the EIP data set is possible [Hermann et al., 2003].
A first possibility is to weight the single WD-subtypes, such that a better detection
of the volunteer group is desirable to prevent a gratuitous treatment. According to
medical expertise, we used a class weighting vector β (5.27).
The structural medical expert knowledge is available (as common sense) for failure
events in clinical classification of patients. It is fed into the uncertainty matrix U
(5.27) in this way that the non-diagonal elements in each row (diagnosis) of U de-
scribe the probability for detecting the respective diagnosis (column) instead. Thus,
the entries uij of the uncertainty matrix U reflect the common conditional proba-
bility of a fe assigning class i to the (true) class j. For example: the assignment of
a health people is relatively reliable in contrast of the MT class.

β =



2

2

2

1

1

10


(5.27)

U =



0.6 0.15 0.25 0 0 0

0.1 0.6 0.3 0 0 0

0.25 0.25 0.5 0 0 0

0 0 0 0.8 0.15 0.05

0 0 0 0.15 0.60 0.25

0 0 0 0 0.05 0.95


(5.28)
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results in numbers confusion matrix (absolute values)

N NN
FSNG

PS PP MT HT AT V

N
PS 16 8 6 2 2 0

N PP 0 10 1 0 2 1
MT 2 1 4 0 0 1

NN
HT 0 6 0 1 0 3

NN AT 0 0 0 0 4 4
V 0 15 1 0 10 22

N NN
β-FSNG

PS PP MT HT AT V
PS 17 2 12 0 2 1

N PP 0 11 1 0 2 1
MT 0 1 6 0 0 1
HT 0 6 0 1 0 3

NN AT 0 0 0 0 4 4
V 0 14 1 0 8 25

N NN
U-FSNG

PS PP MT HT AT V

N
PS 16 4 11 1 2 0

N PP 0 1 1 5 2 5
MT 0 1 6 1 0 1
HT 0 0 0 4 0 5

NN AT 1 0 0 0 4 4
V 0 0 1 1 10 36

resume In the standard FSNG, a high misclassification number of the volunteers
(V) to the neurological group especially to the pseudo-parkinsonian (PP) class oc-
cur. The integration of expert knowledge reduces these effects: In application the
weighting β-FSNG achieved only a small improvement. Yet, the integration of ex-
tended expert knowledge about the uncertainty of medical doctors classification
leads to a substantial improvement. In particular, the volunteer group is clearly
separated from the neurological class. A remaining violation is due to the asymp-
tomatic subtype. This effect is in agreement with clinical findings, because the AT-
group usually show very weak symptoms [Hermann et al., 2002]. Furthermore,
the separation between the neurological and the non-neurological types is also im-
proved. Yet, the confusions within these groups are not solved reflecting the struc-
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tural expert knowledge.
To sum up, a classification of Wilson’s disease types based on neurophysiology
measurements is possible if structural expert knowledge is additional used for the
task specific classification scheme. Without this expert information a precise classi-
fication is difficult at least.





Chapter 6

Conclusion and Future Work

In this thesis, we had a closer look at the problem of classification in context of proto-
type based vector quantization and the respective model learning. The motivation of
this work was to consider problems around evaluation of classifiers beyond the simple
accuracy and their incorporation into the model description. Thereby, one of the key
aspects was the integration of expert knowledge to obtain problem specific models. In
this view, classification can be regarded as an ill-posed problem as pointed out in Section
3.4.

The aspects dealt with in this thesis, can be subdivided into the following main topics:

1. misclassification costs beyond accuracy

2. integration of structural information about data into model learning exemplified
by processing functional data

3. semi-supervised learning and integration of uncertainty in labeling

Of course, these topics are neither independent nor complete. Usually they interact
and are additionally influenced by further aspects which, however, may be unknown
for the user. In this sense this thesis is a contribution for those classification tasks,
where explicit knowledge about the data, classification costs or structural information
is available.

One of the most powerful and also intuitive prototype based classifiers is the LVQ
as introduced by Kohonen. We restricted us to the cost variant Generalized Learning
Vector Quantization. In particular we focused on GLVQ to consider other evaluation
statistical classification measures beside accuracy and integrated knowledge about clas-
sification weights or misclassification costs. One essential outcome of the thesis is the
interpretation of the GLVQ cost function as an approximation of counting misclassifica-
tions: the border sensitive GLVQ (see Sec. 5.1). This perception allows us to modify the
GLVQ such that the direct optimization of statistical evaluation measures based on the
confusion matrix by keeping the principle of GLVQ becomes possible. This idea was
demonstrated with the Fβ-GLVQ, where the cost function approximated the F-measure
(see Sec. 5.2.2). Another option is the modification of the GLVQ cost function to regard
asymmetric misclassification costs like they often occur in medical environments (see
Sec. 5.2.1).
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Another topic of this thesis was the integration of structural information about the
data into the relevance learning scheme of GLVQ. We exemplified these ideas for func-
tional data leading to the functional relevance learning (GFR/MLVQ, see Sec. 4.1.1) and
the enhanced GR/MLVQ (eGR/MLVQ, see Sec. 4.1.2). Both algorithms integrate the
lateral dependencies of the neighboring dimensions of functional vector data into the
learning scheme. In the GFR/MLVQ instead of learning each dimension independently,
the relevance profile is composed by a linear combination of non-linear and smooth ba-
sis functions and the number of parameters to adapt was decreased significantly. Yet,
in the experiments the GFR/MLVQ shows difficulties learning these parameters. In
contrast to GFR/MLVQ, in eGR/MLVQ the number of free parameters was indirectly
reduced by adding a neighborhood function for relevance learning. The eGR/MLVQ
leads to more stable results compared to the GR/MLVQ and experiments show a speed
up in learning. Further, the eGR/MLVQ can be applied also to other kinds of data with
structural information about the dependencies in the data.

The third topic was the integration of label information in unsupervised vector quan-
tization principles to obtain semi-supervised methods. Therefore, the distance mea-
sures in Neural Gas and Self Organizing Maps are extended to incorporate label in-
formation in a multiplicative manner (FSSOM/FSNG, see Sec. 4.2.1 and 4.2.2). The
resulting FSNG/FSSOM can handle labeled as well as unlabeled data where the label
can be either crisp or fuzzy. The obtained models including of prototypes with fuzzy
labels provide a broad range of applications. The FSNG/FSSOM model can be extened
to handle also uncertainty in data labeling as explained in Section 5.3.

Summarizing all topics, as mentioned above, the considered model extensions and
modifications of vector quantizers are neither comprehensive nor covering all aspects
of classification learning. Although many real classification tasks and applications of
vector quantization can be tackled in this manner, there are still opportunities for fur-
ther improvements and perspectives. For example, we could think about other evalu-
ation measures like the AUROC-measure as optimization objective for GLVQ. Another
possibility would be to identify outliers or doubtful data samples in classification and
to sensitize the GLVQ model for those data.

Further, so far only binary classification evaluation measures were covered in this
thesis, when alternative misclassification costs were considered. There also exist gen-
eralizations of statistical measures to evaluate models for multi-class problems. An
extension of the GLVQ for such problems might be feasible and desired.

Although this thesis concentrates on the standard GLVQ, a transfer to Relational or
Median variants can be considered.
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Appendix A

Appendix

A.1 Stochastic Gradient Descent (SGD)

The stochastic gradient descent (SGD) is a suitable method for minimizing non-linear
and non-convex optimization problems with the real valued cost function E : RD →
R. In this thesis, we concentrate on minimizing of vector quantization cost functions
E(V,W,Φ) based on single example presentation v ∈ V with the prototypes W and
further parameters Φ. The principle sequence is specified in Algorithm 1.

This SGD-principle is easy to implement and flexible for every kind of cost function.
The only assumption is the differentiability with respect to the parameters. Further,
several parameters can be optimized simultaneously like the prototypes W and the
distance based parameters Φ (see Section 2.4).

Yet, this great flexibility causes challenges, too. The convergence of the SGD to
the global optima are guaranteed under some requirements. However, two require-
ments are the adiabatic decrease of the learning rates and the infinity time of learning
[Kushner and Clark, 1978]. Unfortunately, this is not practicable. Thus, in application
the SGD ends up with a local optima and the handling of the learning of the parameters
is challenging especially if more than one parameter is adapted simultaneously.

Nevertheless, the SGD is an established optimization tool in machine learning partic-
ularly in prototype based vector quantization.
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Algorithm 1 Stochastic Gradient Descent principle

1: procedure SGD(V )
2: Initialize the parameters W and Φ
3: Choose a data point v ∈ V randomly
4: Determine all prototypes wk ∈ W and further parameters φl ∈ Φ which are

responsible for v
5: Calculate the partial derivatives according to the parameter wk, φl:

∆wk =
∂E(v,W, Φ)

∂wk
∆φl =

∂E(v,W, Φ)

∂φl
∀k, l

6: Update the parameters with a suitable step size/learning rate αw(ι), αΦ(ι):

wk ← wk − αw(ι) ·∆wk

φl ← φl − αΦ(ι) ·∆φl

7: Decrease the learning rates with a decreasing factor ε > 0:

αw(ι+ 1) = (1− ε)αw(ι) αΦ(ι+ 1) = (1− ε)αΦ(ι)

8: Repeat steps 1-5 until convergence or manual stop
9: end procedure
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A.2 Support Vector Machine

This section gives a short review of basic ideas of the Support Vector Machine
(SVM,[Schölkopf and Smola, 2002]). The SVM developed by Vapnik based on the
statistical learning theory and the Vapnik-Chervonenkis dimension (VC-dimension)
[Vapnik, 1995]. One goal in classification is to obtain a good generalization of a learned
model, i. e. simply stated a model should not only perform well on training data but
also on new data, the test data. The statistical learning theory deals among others with
such a generalization ability of a model.

The idea of the SVM is to optimizes the separation margin between two classes. If
a binary and linear separable classification problem with C = {−1,+1} is given the
following convex optimization problem with constraints has to been solved:

min
n∈RD,b∈R

1

2
〈n,n〉E (A.1)

subject to c(v) · (〈n,v〉E + b)− 1 ≥ 0 ∀v ∈ V , (A.2)

whereby n ∈ RD, b ∈ R called weight vector and bias, respectively. The term 〈·, ·〉E
is the inner product in RD. Thereby (〈n,v〉E + b) describes the hyperplane and can
interpret as classifier function whereby

sgn(〈n,v〉+ b) =


> 0,v belongs to − 1

< 0,v belongs to + 1

= 0,v layes on the decision hyperplane

(A.3)

and sgn(x) returns the sign of x.

The convex optimization problem can be transfered into the Wolfe dual problem
which ends up in:

max
α

NV∑
i=1

αi −
NV∑
i=1

NV∑
j=1

c(vi)c(vj)αiαj 〈vi,vj〉E (A.4)

subject to
NV∑
i=1

c(vi)αi = 0 (A.5)

αi ≥ 0 ∀i = 1, . . . , NV (A.6)

This optimization problem depends only on the Lagrange vector α. However the hy-
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perplane parameters can be derived from α:

n =

NV∑
i=1

αi · c(vi) · vi (A.7)

b =
1

NV

NV∑
j=1

(
c(vj)−

NV∑
i=1

αi · c(vi) · 〈vj ,vi〉E

)
(A.8)

Therefore, the decision function is:

ĉ(v) = sgn

(
NV∑
i=1

αi · c(vi) · 〈v,vi〉E + b

)
(A.9)

Further, out of the Karush-Kuhn-Tucker condition it ensues that αi > 0 iff vi is Support
Vector (SV), i.e. only the SV are needed for the calculation of the decision function.
Thus, the model complexity in the test phase depends directly on the number SV. A
detailed mathematical derivation can be found in [Schölkopf and Smola, 2002].

Until now, the optimization problem (A.1) or (A.4), respectively, can only solve lin-
ear separable problems. A first solution for overlapping classes is to introduce slack
variables

ξ(v) ≥ 0 (∀v ∈ V ) (A.10)

which relax the constraints in (A.1) to

c(v) · (〈n,v〉E + b)− 1 + ξ(v) ≥ 0 ∀v ∈ V (A.11)

It ends up on a Soft Margin Classifier with the cost function:

min
n∈RD,b∈R

1

2
〈n,n〉E + C

NV∑
i=1

ξ(vi) (A.12)

and the constraints (A.10) and (A.11). The parameter C determines the trade off be-
tween maximization of the margin and minimization of the training error. This param-
eter has to be defined in advanced carefully. Another possibility to realize a Soft Margin
Classifier is the ν-SVM described in [Schölkopf and Smola, 2002].

However, the optimization problem (A.12) still ends up with decision hyperplane.
This is may be not an adequate solution for several applications. One of the most pow-
erful concepts realized in SVM remains the idea of kernel mapping or also called kernel
trick, which is described on page 2.4ff.

The SVM is a binary classifier. For multi-class problems exists only heuristic, e. g.
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one-versus-all or one-versus-one [Bishop, 2006]. However, these heuristics are very ef-
fective and therefore the SVM can be applied also for multi-class problems. Due to
the great success of the SVM in classification, a lot of variations and extensions are
developed e. g. Relevance SVM [Tipping, 2001], ν-SVM, or the SVM for regression
[Schölkopf and Smola, 2002].
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Table A.1: List of common kernels with their related distance measures
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Parts of the section are based on

• M. Kästner, T. Villmann: Fuzzy Supervised Neural Gas for Semi-supervised Vector
Quantization – Theoretical Aspects. Machine Learning Reports 5 (MLR-2-2011)
1–16, 2011.

A.3 Fuzzy Supervised Neural Gas Algorithm Solved by
Stochastic Gradient Descent

In the following it is shown that the adaptation dynamic of prototypes (4.42) and labels
(4.42) of Fuzzy Semi-Supervised Neural Gas algorithm (FSNG, see section 4.2.2) follows
a stochastic gradient descent on the cost function given in (4.40). Thus it overcomes the
difficulties in the convergence proof of Fuzzy Labeld Neural Gas (FLNG, see section
2.3.3), where we have to distinguish discrete and continuous data distributions.

To proof the convergence, we have a closer look to the derivatives of the cost function
according with respect to the parameters [Martinetz et al., 1993]. On the one side the
derivatives ∂EFSNG

∂wj
according to the prototypes and on the other side the derivatives

∂EFSNG
∂y(wj)

according to the label assignment has do be considered.
First, we analyzes the prototype dynamic:

∂EFSNG

∂wj
= Rj +

∫
P (v)hNGσ (rkj (v,wj))

∂Dε (ν, ωj , γ)

∂wj
dv (A.13)

with the derivative

∂Dε (ν, ωj , γ)

∂wj
= (γ · δ (c(v),y(wj)) + εδ) · (1− γ) · ∂d (v,wj)

∂wj
.

The term Rj is obtained as

Rj =
∑
j

∫
P (v)

∂hσ (rkj (ν,W, γ))

∂wj
Dε (ν, ωj , γ) dv (A.14)

with
∂hσ (rkj (ν,W, γ))

∂wj
= [hσ]

′
(rkj (ν,W, γ)) · ∂rkj (ν,W, γ)

∂wj

and [hσ]
′
(•) denotes the derivative of hNGσ (•). If Rj is vanishing, then the derivative

(A.13) yields the prototype learning rule (4.42) of FSNG. We decompose Rj into Rj =

Rj,1 +Rj,2 such that

Rj,1 =

∫
P (v) [hσ]

′
(rkj (ν,W, γ)) ·Dε (ν, ωj , γ)

∂d (v,wj)

∂wj

∑
l

h (4jl) dv
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and

−Rj,2 =
∑
j

∫
P (v) [hσ]

′
(rkj (ν,W, γ)) ·Dε (ν, ωj , γ) · ∂d (v,wj)

∂wj
· h (4tl) dv

with 4mk = d (v,wm) − d (v,wk). Thereby we used the fact that the derivative of the
Heaviside function H (x) (2.14) is the Dirac distribution h(x), which is zero iff x 6= 0

and
∫
h (x) dx = 1. It has to be mentioned that the rank function rkj (ν,W, γ) depends

only on the dissimilarities d (v,wj) whereas the cost function depends on the extended
dissimilarity Dε (ν, ωj , γ), which incorporates also the class dissimilarities h (cv,yj).

For Rj,2 we can interchange integration and summation. Further, Rj,2 is non-
vanishing only for d (v,wt) = d (v,wj) according to the Dirac distribution h(x). For
those data points obviously the equation∑

k

h (4jk) =
∑
k

h (4tk)

holds implying immediately the equivalence rkj (ν,W, γ) = rkt (ν,W, γ). At this end,
we obtain

−Rj,2 =

∫
P (v) [hσ]

′
(rkj (ν,W, γ)) ·Dε (ν, ωj , γ) · ∂d (v,wj)

∂wt
·
∑
l

h (4tl) dv

which leads to Rj,1 = −Rj,2 paying attention to the fact that h (x) is symmetric: h (x) =

h (−x).
Further, using the derivative ∂Dε(ν,ωj ,γ)

∂wj
, the gradient ∂EFSNG

∂wj
in (A.13) finally reduces

to

∂EFSNG

∂wj
= (1− γ)

∫
P (v)hσ (rkj (ν,W, γ)) (γ · δ (cv,yj) + εδ) ·

∂d (v,wj)

∂wj
dv,

which is exactly the averaged prototype dynamic (4.42). This completes the proof for
the prototype dynamic.

It remains to investigate the dynamic for the class labels yj . We have

∂EFSNG

∂yj
= R̃j + γ

∫
P (v)hσ (rkj (v,wj))

∂Dε (ν, ωj , γ)

∂yj
dv

with
R̃j =

∑
j

∫
P (v)

∂hσ (rkj (v,wj))

∂yj
Dε (ν, ωj , γ) dv.

Yet, hσ (rkj (v,wj)) is independent from the labels yj and, therefore, the respective
derivative ∂hσ(rkj(v,wj))

∂yj
is zero such that we get R̃j = 0 for this case, immediately.
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Hence, using the result for ∂Dε(ν,ωj ,γ)
∂yj

from (4.42), we finally obtain for the averaged
label dynamic

∂EFSNG

∂yj
= γ

∫
P (v)hσ (rkj (v,wj)) ((1− γ) · d (v,wj) + εd) ·

∂δ (cv,yj)

∂yj
dv

corresponding to (4.42). This completes the proof for the desired FSNG dynamic.
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[Taşdemir and Merényi, 2011] Taşdemir, K. and Merényi, E. (2011). A validity index for
prototype-based clustering of datasets with complex structures. IEEE Transactions on
Systems, Man, and Cybernetics, 41(4):1039–1053.

[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. Journal of the Royal Society, 58(1):267–288.

[Tipping, 2001] Tipping, M. E. (2001). Sparse bayesian learning and the relevance vec-
tor machine. Journal of Machine Learning Research, 1:211–244.

[Tsao et al., 1994] Tsao, E. C.-K., Bezdek, J. C., and Pal, N. R. (1994). Fuzzy kohonen
clustering networks. Pattern Recognition, 27(5):757 – 764.

[Ultsch and Semon, 1990] Ultsch, A. and Semon, H. P. (1990). Kohonen’s self-
organizing feature maps for exploratory data analysis. International Neural Network
Conference, pages 305–308.



BIBLIOGRAPHY 183

[Umer and Khiyal, 2007] Umer, M. F. and Khiyal, M. S. H. (2007). Classification of tex-
tual documents using learning vector quantization. Information Technology Journal, 6
(1):154–159.

[v. d. Maaten et al., 2009] v. d. Maaten, L., Postma, E., and v. d. Herik, J. (2009). Di-
mensionality reduction: A comparative review. Technical report, Tilburg centre for
Creative Computing, Tilburg Univers.

[v. Luxburg, 2007] v. Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and
Computing, 17 (4).

[Vapnik, 1995] Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-
Verlag, New York.

[Vesanto, 1999] Vesanto, J. (1999). Som-based data visualization methods. Intell. Data
Anal., 3(2):111–126.

[Villa and Rossi, 2005] Villa, N. and Rossi, F. (2005). Support vector machine for func-
tional data classification. In In Proceedings of ESANN 2005, pages 467–472. Miscella-
neous.

[Villmann, 2006] Villmann, T. (2006). Neural Maps and Learning Vector Quantization for
Data Mining - Theory and Application -. PhD thesis, University of Leipzig.

[Villmann, 2007] Villmann, T. (2007). Sobolev metrics for learning of functional data
- mathematical and theroretical aspects. Technical Report MLR-03-2007, Machine
Learning Reports,.

[Villmann et al., 2015] Villmann, T., Haase, S., and Kaden, M. (2015). Kernelized vector
quantization in gradient-descent learning. Neurocomputing, 147(0):83 – 95. Advances
in Self-Organizing Maps Subtitle of the special issue: Selected Papers from the Work-
shop on Self-Organizing Maps 2012 (WSOM 2012).

[Villmann and Hammer, 2009] Villmann, T. and Hammer, B. (2009). Functional princi-
pal component learning using oja’s method and sobolev norms. In Principe, J. C. and
Miikkulainen, R., editors, Workshop on Self Organizing Maps, pages 325–333. Srpinger-
Verlag Berlin Heidelberg. LNCS 5629.

[Villmann et al., 2006a] Villmann, T., Hammer, B., Schleif, F., Geweniger, T., and Her-
mann, W. (2006a). Fuzzy classification by fuzzy labeled neural gas. Neural Networks,
19(6-7):772–779.

[Villmann et al., 2008] Villmann, T., Hammer, B., Schleif, F.-M., Hermann, W., and Cot-
trell, M. (2008). Fuzzy classification using information theoretic learning vector
quantization. Neurocomputing, 71:3070–3076.



184 BIBLIOGRAPHY

[Villmann and Lange, 2015] Villmann, T. and Lange, M. (2015). A comment on the
functional lTSp - measure regarding the norm propertie. Machine Learning Reports,
2:1–13.

[Villmann et al., 2007] Villmann, T., Schleif, F., Merényi, E., and Hammer, B. (2007).
Fuzzy labeled self-organizing map for classification of spectra. In Computational and
Ambient Intelligence, 9th International Work-Conference on Artificial Neural Networks,
IWANN 2007, San Sebastián, Spain, June 20-22, 2007, Proceedings, pages 556–563.

[Villmann et al., 2003] Villmann, T., Schleif, F. M., and Hammer, B. (2003). Supervised
neural gas and relevance learning in learning vector quantization. In Proc. Interna-
tional Workshop on Self-Organizing Maps (WSOM’2003), pages 47–52, Kitakyushu.

[Villmann et al., 2006b] Villmann, T., Seiffert, U., Schleif, F.-M., Brüß, C., Geweniger,
T., and Hammer, B. (2006b). Fuzzy labeled self-organizing map with label-adjusted
prototypes. In Schwenker, F. and Marinai, S., editors, Artificial Neural Networks in
Pattern Recognition, volume 4087 of Lecture Notes in Computer Science, pages 46–56.
Springer Berlin Heidelberg.

[Witoelar et al., 2010] Witoelar, A., Ghosh, A., de Vries, J. J. G., Hammer, B., and Biehl,
M. (2010). Window-based example selection in learning vector quantization. Neural
Computation, 22(11):2924–2961.

[Zalik and Zalik, 2011] Zalik, K. R. and Zalik, B. (2011). Validity index for clusters of
different sizes and densities. Pattern Recognition Letters, 32(2):221 – 234.

[Zhang et al., 2009] Zhang, H., Y.Xu, and J.Zhang (2009). Reproducing kernel banach
spaces for machine learning. Journal Machine Learning Research, 10:2741–2775.

[Zühlke et al., 2009] Zühlke, D., Geweniger, T., Heimann, U., and Villmann, T. (2009).
Fuzzy fleiss-kappa for comparison of fuzzy classifiers. In ESANN 2009, 17th Euro-
pean Symposium on Artificial Neural Networks, Bruges, Belgium, April 22-24, 2009, Pro-
ceedings.



BIBLIOGRAPHY 185

Selbstädigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten
Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sin-
ngemäßaus veröffentlichten oder unveröffentlichten Schriften entnommen wurden,
und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialen oder
erbrachten Dienstleistungen als solche gekennzeichnet.

Declaration

I hereby testify that I have written the whole of this thesis myself and used no sources
or aids (including electronic media and online sources) other than those named. All
passages taken from a source, whether verbatim or in substance, have been indicated
as such.

Name:

Mittweida, the


	Acknowledgements
	Symbols and Abbreviations
	Introduction
	Motivation and Problem Description
	Utilized Data Sets

	Prototype Based Methods
	Unsupervised Vector Quantization
	C-means
	Self-Organizing Map
	Neural Gas
	Common Generalizations

	Supervised Vector Quantization
	The Family of Learning Vector Quantizers - LVQ
	Generalized Learning Vector Quantization

	Semi-Supervised Vector Quantization
	Learning Associations by Self-Organization
	Fuzzy Labeled Self-Organizing Map
	Fuzzy Labeled Neural Gas

	Dissimilarity Measures
	Differentiable Kernels in Generalized LVQ
	Dissimilarity Adaptation for Performance Improvement


	Deeper Insights into Classification Problems  - From the Perspective of Generalized LVQ-
	Classification Models
	The Classification Task
	Evaluation of Classification Results
	The Classification Task as an Ill-Posed Problem

	Auxiliary Structure Information and Appropriate Dissimilarity Adaptation in Prototype Based Methods
	Supervised Vector Quantization for Functional Data
	Functional Relevance/Matrix LVQ
	Enhancement Generalized Relevance/Matrix LVQ

	Fuzzy Information About the Labels
	Fuzzy Semi-Supervised Self-Organizing Maps
	Fuzzy Semi-Supervised Neural Gas


	Variants of Classification Costs and Class Sensitive Learning
	Border Sensitive Learning in Generalized LVQ
	Border Sensitivity by Additive Penalty Function
	Border Sensitivity by Parameterized Transfer Function

	Optimizing Different Validation Measures by the GLVQ
	Attention Based Learning Strategy
	Optimizing Statistical Validation Measurements for Binary Class Problems in the GLVQ

	Integration of Structural Knowledge about the Labeling in Fuzzy Supervised Neural Gas

	Conclusion and Future Work
	My Publications
	Appendix
	Stochastic Gradient Descent (SGD)
	Support Vector Machine
	Fuzzy Supervised Neural Gas Algorithm Solved by SGD

	Bibliography

