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Abstract  

Data mining can be said to have the aim to analyze the observational datasets to find 

relationships and to present the data in ways that are both understandable and useful. 

In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, 

Fuzzy C-means and decision tree are used to analyze several datasets. The techniques 

are used to provide flexible information processing capability for handling real-life 

situations. This thesis is concerned with the design, implementation, testing and 

application of these techniques to those datasets. The thesis also introduces a hybrid 

intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with 

the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems.  

This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the 

introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected 

labels crisp. This leads to a different output layer activation function and weight 

connection in the neural network (NN) structure obtained by mapping the FDT to the 

NN. A momentum term was also introduced into the learning process to train the 

weight connections to avoid oscillation or divergence. A new reasoning mechanism has 

been also proposed to combine the constructed tree with those weights which had 

been optimized in the learning process. This thesis also makes a comparison between 

the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT.  

SIx datasets ranging from material science to medical and civil engineering were 

introduced as case study applications. These datasets involve classification of composite 

material failure mechanism, classification of electrocorticography 

(ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave 



overtopping prediction. Different intelligent systems techniques were used to cluster 

the patterns and predict the classes although OWFDT was used to design classifiers for 

all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were 

used to cluster the acoustic event signals and classify those events to different failure 

mechanism, after the classification, OWFDT was introduced to design a classifier in an 

attempt to classify acoustic event signals. For the eye bacteria dataset, we use the 

bagging technique to improve the classification accuracy of Multilayer Perceptrons and 

Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select 

those most important sensors (features) so that the dimension of the data could be 

reduced. Those features which were most important were used to grow the OWFDT and 

the curse of dimensionality problem could be solved using this approach. The last 

dataset, which is concerned with wave overtopping, was used to benchmark OWFDT 

with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference 

System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical 

Method (GNMM) and Fuzzy ARTMAP. 

Through analyzing these datasets using these Intelligent Systems Techniques, it has 

been shown that patterns and classes can be found or can be classified through 

combining those techniques together. OWFDT has also demonstrated its efficiency and 

effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy 

Decision Tree. 
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Chapter I: Introduction to Data Mining 

1.1 INTRODUCTION TO DATA MINING 

1.2 DATA MINING AND KNOWLEDGE DISCOVERY IN DATABASES 

1.3 DATA MINING CHALLENGES 

1.4 DATA MINING TASKS 

1.5 INTELLIGENT DATA MINING TECHNIQUES 

1.6 RESEARCH OBJECTIVES 

1.7 THESIS OUTLINE 

1.1 Introduction to data mining 

Advances in data collection and storage technology have enabled researchers to 

accumulate vast amounts of data. With the enormous amount of data stored in files, 

databases, and other repositories, researchers from many areas have been stimulated 

to adopt and develop new techniques for data analysis in different fields of science.  

Powerful means of analyzing, interpreting and extracting interesting knowledge that 

could help in decision-making processes have also been designed (Gaber, 2010). Data 

mining is such a technology that combines data analysis methods (intelligent systems 

techniques) with sophisticated algorithms for processing large volumes of data. 
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Data mining is the process of applying neural networks, clustering, fuzzy logic and 

decision tree etc. to data with the intention of uncovering hidden patterns and 

extracting information (Kantardzic, 2002). It involves an integration of these different 

techniques from different disciplines which can facilitate the extraction of knowledge 

from a large amount of data (Tan, Steinbach, & Kumar, 2005).  

1.2 Data Mining and Knowledge Discovery in Databases 

The term ‘data mining’ is often regarded as an integral part of Knowledge Discovery in 

Databases (KDD), which is overall process of extracting implicit, previously unknown and 

potentially useful information from raw data (Larose, 2005). There have been notable 

successes in the use of statistical, computational and machine learning techniques to 

discover scientific knowledge in the field of engineering, biology, medicine and physics 

etc. 

The KDD process consists of applying data analysis and computing algorithms which 

produce a particular enumeration of patterns over data. In addition to that, KDD will 

also discover regularities to improve future decisions. Figure 1-1 shows the relationship 

between KDD and intelligent systems techniques (Venugopal, G.Srinivasa, & Patnaik, 

2009).  

http://en.wikipedia.org/wiki/Neural_networks
http://en.wikipedia.org/wiki/Data_clustering
http://en.wikipedia.org/wiki/Genetic_algorithms
http://en.wikipedia.org/wiki/Genetic_algorithms
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Figure 1-1: KDD and intelligent systems techniques 

The steps in the KDD process are briefly explained below (Venugopal, et al., 2009): 

The first step is concerned with data preprocessing which consists of the following four 

elements: 

 Data cleaning to remove noise and irrelevant data from collection; 

 Data integration which involves combining of multiple and heterogeneous data 

sources; 

 Data selection where data relevant to analysis task is retrieved from the 

database; 
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 Data transformation where consolidated data is transformed into forms 

appropriate for the mining procedure; 

The second step is concerned with data mining process which consists of the following 

two elements: 

 Data mining which is essential and where intelligent systems techniques are 

applied in order to discover and extract patterns from datasets; 

 Pattern evaluation where patterns representing knowledge are measured and 

identified; 

The third step is concerned with knowledge presentation which consists of the following 

element: 

 Knowledge presentation where knowledge is presented to final users in a 

visualized way to help them understand and interpret the mining results. 

Although data mining is not isolated with data preprocessing and knowledge 

presentation steps, this thesis will focus on the data mining process which involves 

design and implementation of intelligent systems techniques. 

Data mining is concerned with building models to determine patterns from observed 

data. The models play the role of inferring knowledge. A model is simply an algorithm or 

a set of rules that connects a collection of inputs to a particular target or output (Larose, 

2006). Neural Networks, fuzzy inference systems, decision trees, regression and other 

intelligent systems techniques covered in this thesis are all for creating models (Berry & 
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Linoff, 2004). Deciding whether the model reflects useful knowledge or not is a part of 

the overall KDD process. But in order to evaluate the knowledge discovered in the KDD 

process, the models are usually tested using a test dataset to evaluate the performance 

of the models. 

1.3 Data mining challenges 

Although traditional data mining techniques have achieved great success, they also 

encountered practical difficulties in meeting challenges posed by new type of datasets. 

Pang-Ning Tan et al. had identified the following challenging problems: mainly high 

dimensionality, heterogeneous and complex data and non-traditional analysis (Tan, et 

al., 2005): 

1.3.1 High Dimensionality 

A data set may have hundreds or even thousands of attributes (features) compared to 

several a few decades ago. One extreme exists in bio-informatics: microarray, consisting 

of an array series of thousands of microscopic spots, each containing a specific DNA 

sequence, has enabled gene expression in tens of thousands of features. For most of 

data analysis algorithms, the computational complexity increases exponentially as the 

dimensionality (the number of features) increases (Liu & Motoda, 2007). 

1.3.2 Heterogeneous and complex data 

Traditional datasets often contain attributes of the same type, either continuous 

numerical or categorical. As datasets and data mining applications in industry, business, 
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science, engineering, bio-informatics, medicine and other fields have grown, the need 

for techniques that can deal with heterogeneous attributes has also risen. Recent years 

have also seen the emergence of more complex data objects. 

1.3.3 Non-traditional analysis 

The traditional analysing approach is based on a hypothesize-and-test paradigm. In 

other words, the experiment design and data analysis are both related to the hypothesis. 

But this process can be extremely labour-intensive and could even stop working if the 

number of hypothesis and test paradigm is in the thousands (Cao, Wegman, & Solka, 

2005). As a result, there is no hypothesis-and-test procedure in the data mining and the 

process of hypothesis generation and evaluation is automatically incorporated in the 

algorithms.  

1.4 Data mining tasks 

Data mining tasks are generally divided into two major categories: predictive and 

descriptive. The former aims to predict the value of a particular attribute (target or 

dependent variable) based on values of other attributes and the latter will derive 

patterns (correlations, trends, clusters, trajectories and anomalies) which can typically 

denote the underlying relationships in data (Tan, et al., 2005). 

Figure 1-2 shows four of the core data mining tasks. Predictive modelling and cluster 

analysis are the main tasks for the datasets analysed in this thesis.  
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Figure 1-2: Four of the core data mining tasks (excerpt from Tan, et al., 2005) 

Association analysis aims at discovering patterns that lay behind the datasets and 

describing associated features in the data. The patterns discovered can typically be 

represented either in the form of implication rules or feature subsets (Lawrence, Kudyba, 

& Klimberg, 2008). The goal of association analysis is to extract the most interesting and 

representative patterns in an effective manner (Dunne, 2007).  

Anomalies are also referred to as outliers. Anomaly detection, sometimes referred to 

as outlier detection, involves detecting instances in a given dataset that do not conform 

to a pre-defined class set or identifying cases that are unusual with the dataset that is 

seemingly homogeneous. Anomaly detection is a very important tool in a variety of 

domains, such as fraud detection, fault detection, system health monitoring etc. 

http://en.wikipedia.org/wiki/Outlier
http://en.wikipedia.org/wiki/Fraud_detection
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Predictive modelling involves building a model to predict the target variable as a 

function of the explanatory variables (Larose, 2006). Two typical types of predictive 

modelling tasks are classification and regression. The former is used for discrete target 

variables and the latter is used for continuous target variables.  

Classification is one of the most common tasks in the data mining domain discussed in 

this thesis. It consists of examining the attributes of a newly presented instance and 

assigning it to one of a predefined set of classes. The classification task is characterized 

by a well-and-pre-defined definition of the classes, and a training data set consisting of 

pre-classified examples (Hand, Smyth, & Mannila, 2001). The task of classification is to 

build a model that can be applied to unclassified data instance in order to classify this 

unseen instance (Larose, 2006). 

Cluster analysis seeks to segment heterogeneous observations into a number of more 

homogeneous subgroups or clusters. Usually, the observations are grouped together 

based on self similarities, so observations that belong to the same cluster are most 

similar to each other than observations that belong to other clusters (Witten & Frank, 

2005). 

A class is a set of data samples with some similarity or relationship and all samples in 

this class are assigned the same class label to distinguish them from samples in other 

classes. A cluster is a collection of objects which are similar locally. Clusters are usually 

generated in order to further classify objects into relatively larger and meaningful 

categories (Wang & Fu, 2005). What distinguishes clustering from classification is that 
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the clustering process doesn’t assign and rely on a predefined class set. But in 

classification, each new instance is classified into a predefined class through some 

intelligent systems techniques which are trained with some predefined instances. 

Clustering can be employed for dealing with data which have not been put into classes. 

Some classification methods cluster data into small groups first before proceeding to 

classification (Berry & Linoff, 2004). In the context of intelligent systems technique, 

clustering can be regarded as a kind of unsupervised learning and classification can be 

regarded as supervised learning. 

This thesis will focus mainly on the following data mining tasks: classification and 

clustering, prediction and rule extraction. 

1.5 Intelligent data mining techniques 

Data mining may be chosen to deal with datasets which contain a huge amount of data 

and may be ambiguous and even partly conflicting. In order to make the data and 

information mining process more robust, intelligent systems techniques for searching 

and learning the data and information require tolerance toward imprecision, 

uncertainty and exceptions. The intelligent systems incorporating these intelligent 

systems techniques will have approximate reasoning capabilities and be capable of 

handling partial truth (Han & Kamber, 2006). These are also some typical characteristics 

of soft computing. 
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Since there is no generic term for intelligent computing techniques used in data mining. 

In this thesis, the term Intelligent Systems (ISs) will be used interchangeably with 

intelligent systems techniques and soft computing, although under most circumstances, 

Intelligent Systems (ISs) is preferred. Soft computing is an important technique domain 

in the area of data mining and intelligent and knowledge-based systems (Karray & Silva, 

2005). Soft computing differs from conventional (hard) computing because of its 

tolerance of imprecision, uncertainty, partial truth and approximation. So the main 

principle of soft computing is to exploit the tolerance for imprecision, uncertainty, 

approximation and partial truth in order to achieve tractability, robustness and low-cost 

solution (Han & Kamber, 2006; Venugopal, et al., 2009).  

The principal computing paradigms of soft computing are fuzzy logic, neural networks, 

probabilistic reasoning and genetic algorithms. These methodologies of soft computing 

are complementary and cooperative rather than competitive and exclusive (Engelbrecht, 

2002). A problem can be solved most effectively by combining different techniques such 

as fuzzy logic, neural networks, genetic algorithms and probabilistic reasoning rather 

than using them exclusively and individually. For example, ANFIS, which incorporates 

fuzzy logic and neural networks, has proved to be successful for solving many practical 

problems. These techniques can be viewed as a foundation component for intelligent 

computing in data mining techniques. 
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1.6 Research objectives 

Each of the IS techniques contributes a distinct methodology for addressing problems in 

its domain. This may be done in a cooperative, rather than a competitive, manner. The 

result is a more intelligent and robust system providing a human-interpretable, low-cost, 

approximate solution, as compared to traditional techniques (Ian & Jacek, 2000). 

The unique contribution of this thesis is in the implementation of a hybrid IS DM 

technique, which incorporates fuzzy logic, decision tree and neural networks, for solving 

novel practical problems, the detailed description of this technique (Optimized 

Weighted Fuzzy Decision Tree, OWFDT), and the illustrations of several applications 

solved by Optimized Weighted Fuzzy Decision Tree.  

The primary objective of this work is to design an IS system that can be applied 

effectively to some DM tasks such as those listed in Figure 1-2. The devised intelligent 

systems will also focus on solving the following issues particularly (Wang & Fu, 2005): 

 Achieve a high and acceptable classification or prediction accuracy; 

 Reduce the dimension of the data set and ease the computational complexity; 

 Extract some rules if applicable 

The thesis also aims to explore the possibilities of applying this hybrid IS DM technique 

to material, biological and civil engineering applications, since the problems in these 

fields are quite complex and the datasets available are in massive quantities. This thesis 

will explore the solution of such problems using newly-proposed systematic approach, 
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OWFDT. The thesis will also conduct a benchmark study between the proposed 

technique and other techniques to test the performance of the newly-proposed 

technique.  

1.7 Thesis outline 

Chapter one is a brief overview of data mining, including its concept, its challenges and 

tasks. The research objective and overall structure of the thesis is also listed in this 

chapter.  

Chapter two gives a brief introduction to the theoretical background of the techniques 

used in the thesis including fuzzy logic, neural networks (self-organizing map, multiple-

layer perceptron), decision tree and some other hybrid intelligent systems, such as 

Adaptive Neuro-Fuzzy Inference Systems, Fuzzy ARTMAP etc. 

Chapter three introduces the Optimized Weighted Fuzzy Decision Tree, which will be 

used in the following chapters. A detailed description is presented first, and this is 

followed by the simulation results after applying OWFDT to three datasets. 

Chapter four analyzes the datasets collected from material science and clustered the 

data in order to predict the possible composite material failure mechanism. The OWFDT 

is also used to construct a classifier for prediction and classification of those failure 

mechanisms.  

http://equipe.nce.ufrj.br/adriano/fuzzy/transparencias/anfis/anfis.pdf
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In chapter five an eye bacteria dataset collected using electronic nose is analyzed using 

bagging to Multi-Layer Perceptron and Decision Tree. OWFDT is also adopted as an 

intelligent systems technique to predict the eye bacteria species. 

Chapter six is concerned with the analysis of a wave overtopping dataset and 

conduction of a benchmark study between some well-established hybrid intelligent 

techniques and OWFDT.  

Chapter seven presents the conclusions and suggestions for further study. 

References 

Berry, M. J. A., & Linoff, G. S. (2004). Data mining techniques: for marketing, sales, and 

customer relationship management: Wiley. 

Cao, C. R., Wegman, E. J., & Solka, J. L. (2005). Handbook of Statistics: Data Mining and 

Data Visualization: Elsevier North-Holland. 

Dunne, R. A. (2007). A Statistical Approach to Neural Networks for Pattern Recognition: 

John Wiley & Sons,. 

Engelbrecht, A. P. (2002). Computational Intelligence: An Introduction. Chichester: John 

Wiley. 

Gaber, M. M. (2010). Scientific Data Mining and Knowledge Discovery: Principles and 

Foundations: Springer-Verlag. 

Han, J., & Kamber, M. (2006). Data mining: concepts and techniques. Amsterdam: 

Boston: Elsevier: San Francisco: CA Morgan Kaufmann. 



Chapter I: Introduction to Data Mining 

 

31 
 

Hand, D. J., Smyth, P., & Mannila, H. (2001). Principles of data mining: MIT Press. 

Ian, C., & Jacek, M. Z. (2000). Knowledge-based neurocomputing: MIT Press. 

Kantardzic, M. (2002). Data Mining: Concepts, Models, Methods, and Algorithms: Wiley-

IEEE Press. 

Karray, F. O., & Silva, C. W. D. (2005). Soft Computing and Intelligent Systems Design: 

Theory, Tools and Applications: Addison-Wesley. 

Larose, D. T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining: 

John Wiley & Sons, Inc. 

Larose, D. T. (2006). Data Mining Methods and Models. New Jersey: John Wiley & Sons, 

Inc. 

Lawrence, K. D., Kudyba, S., & Klimberg, R. K. (2008). Data Mining Methods and 

Application: Auerbach Publications Taylor & Francis Group. 

Liu, H., & Motoda, H. (2007). Computational Methods of Feature Selection (Chapman \& 

Hall/Crc Data Mining and Knowledge Discovery Series): Chapman \& Hall/CRC. 

Tan, P.-N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining, (First Edition): 

Addison-Wesley Longman Publishing Co., Inc. 

Venugopal, K. R., G.Srinivasa, K., & Patnaik, L. M. (2009). Soft Computing for Data Mining 

Applications. New York: Springer-Verlag. 

Wang, L., & Fu, X. (2005). Data Mining with Computational Intelligence (Advanced 

Information and Knowledge Processing): Springer. 

Witten, I. H., & Frank, E. (2005). Data mining : practical machine learning tools and 

techniques. Amsterdam Boston Mass: Elsevier/Morgan Kaufman. 



Chapter II: Introduction to Intelligent Systems Techniques 

 

32 
 

Chapter II: Introduction to Intelligent 

Systems Techniques 

2.1 ARTIFICIAL NEURAL NETWORK INTRODUCTION 

2.2 FUZZY LOGIC 

2.3 DECISION TREE 

2.4 OTHER HYBRID INTELLIGENT SYSTEMS TECHNIQUES 

2.5 CHALLENGES OF KNOWLEDGE PRESENTATION 

2.6 DATASETS 

2.7 SUMMARY 

Chapter one has introduced the concept of data mining and outlined the research 

objectives of the thesis. The current chapter will provide a solid theoretical background 

of some intelligent systems techniques which are widely used in the subject of data 

mining. This chapter will concentrate on these techniques including artificial neural 

networks (NN), fuzzy logic (FL) and decision tree (DT) which are core techniques that 

OWFDT is based on. The last section of this chapter will introduce some hybrid 

intelligent systems techniques. 

2.1 Artificial neural network introduction 
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Neural networks (NNs) first started to be developed in the 1940s, motivated by, for 

example, an attempt to simulate the human brain on computers. It has been 

successfully applied to prediction problems, pattern recognition, classification and 

optimization problems (Hagan, Demuth, & Beale, 1996; Haykin, 1999).  

Usually, ANNs consist of simple parallel interconnected and usually adaptive processing 

elements or neurons whose connectivity mimics the neurobiological system (Chow, 

2007). These neurons are typically distributed over several layers. Forward Neural 

Network (FNN) is one of the most popular network topologies. Normally, the neurons in 

a FNN are arranged into three layers as shown in Figure 2-1. Neurons in each layer 

perform a different activity as described in the following three steps (Kartalopoulos, 

1997): 

 

Figure 2-1: Basic architecture of a typical neural network 
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 (1) The input neurons receive information in the form of input values. They transfer the 

data to the next layer. Neurons in the input layer perform no neural function. 

(2) Hidden neurons receive the output from the input neurons or other hidden neurons 

through the connections. Each connection between input neurons and hidden neurons 

has a weight by which to multiply the signal before it enters the hidden neurons. A 

hidden neuron usually receives more than one signal. The signals will be combined and 

transferred to an appropriate activation function. The output of the activation function 

will then be usually transferred to output neurons but sometimes via hidden neurons 

(as shown in Figure 2-2).  Figure 2-2 shows the structure and the function of a neuron. 

 

Figure 2-2: An example artificial neuron 

 (3) Output layer neurons behave similarly to the ones in the hidden layer except that 

the pattern of the outcome from output neurons may be interpreted as the outcome of 

using the NN to process the input data. 

Training the system is the key to determining whether or not the NN will be able to 

process the input data appropriately. In a supervised NN the training process allows NNs 

to compare the output result with the desired output for every training input. The 
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difference between the generated output and the desired output is called the “error”. 

The NN will adjust the weight of each connection in such a way as to reduce the error 

(Du & Swamy, 2006). At the beginning, the NN might produce a large error. However, if 

the problem can be solved by NN then, after several cycles of training with the set of 

data, the error should reduce.  

Multilayer Perceptron (MLP) is one of fully connected FNN. 

2.1.1 Multilayer Perceptron (MLP) 

The multilayer perceptron (MLP) is able to learn arbitrarily complex non-linear 

relationships. Usually a three-layer feed-forward network, MLP is the most popular type 

of ANN in practical use.  Figure 2-1 shows the structure of an MLP, in which the 

processing elements are organized in a regular architecture (or topology) of three 

distinct groups of neurons (input, hidden and output layer) interconnected using 

unidirectional weights. The number of input nodes is typically set to correspond with 

the number of dimensions in the problem. The number of neurons in the hidden layer is 

determined experimentally and the number of output classes in the analyzed dataset 

determines the number of outputs. 

Each neuron in MLP performs a weighted sum of inputs and transforms it using a 

nonlinear activation function (e.g. sigmoid transfer function) (Haykin, 1999). An MLP is 

able to learn from data by adjusting the weights in the network using a gradient descent 

technique known as back-propagation (BP) of errors. MLP adopts a supervised training 

process in which both the training vectors and their associated targets are presented to 
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the network. During the forward pass, the MLP processes all of its input in a 

feedforward manner; the output of each neuron is calculated and feeds the next layer 

through to the output. Let us consider a neuron h, with jth input vector which consists 

of n elements 𝑥𝑖𝑗 (𝑖 = 1,…𝑛), the summation function 𝑎𝑗𝑕  accumulates the sum of the 

products of the input signals 𝑥𝑖𝑗  with associated weights 𝑤𝑖𝑕 . It assumes a fixed 

weight,𝜃𝑕 , which is then transformed by the activation function f(.) (e.g. sigmoid) to 

produce the single output 𝑧𝑗𝑕 , the overall computations follows that given in equation 

(1): 

 

𝑧𝑗𝑕 = 𝑓 𝑎𝑗𝑕 =
1

1 + exp −𝑎𝑗𝑕 
= 𝑓    𝑤𝑖𝑕𝑥𝑖𝑗 − 𝜃𝑕 

𝑛

𝑖=1

   

(𝑖 = 1,…𝑛) 

(1)  

The error is then calculated by determining the difference between the actual 

generated output 𝑧𝑗𝑕  and the target output 𝑡𝑗𝑕  using the expression 𝛿𝑗𝑕 = 𝑧𝑗𝑕 − 𝑡𝑗𝑕 . The 

error term is often called delta and hence when the delta learning rule is used, the 

component difference expression becomes 𝛿𝑗𝑕 = (𝑧𝑗𝑕 − 𝑡𝑗𝑕)(1 − 𝑡𝑗𝑕). In the backward 

pass, the stochastic approximation procedure back-propagates this error to adjust the 

weight values during each presentation of the jth training sample on each iteration (or 

epoch) 𝜏. Various training algorithms can be used to improve the operation of BP 

(Hagan, et al., 1996): 
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 BP gradient descent with momentum (BPGDM). The new set of weights 

𝑤𝑗𝑕
(𝜏)

 comprise of a combination of the old weight values, 𝑤𝑗𝑕
(𝜏−1)

 (from the 

previous epoch) and a weight update or delta, ∆𝑤𝑗𝑕
(𝜏)

 (see equation (2)). The 

change in weights here is based on two parameters; 1) 𝜂, the learning rate, a 

small positive number (the default is generally 0.9) that determines the rate of 

convergence to a solution of minimum error, and 2) 𝜇, the momentum term, a 

small positive number (default is generally 0.5) is often added to improve the 

speed and stability of the learning. 

 𝑤𝑗𝑕
(𝜏)

= 𝑤𝑗𝑕
(𝜏−1)

+  ∆𝑤𝑗𝑕
(𝜏)

= 𝑤𝑗𝑕
(𝜏−1)

−  𝜂𝛿𝑗𝑕𝑧𝑗𝑕
(𝜏)

+ 𝜇∆𝑤𝑗𝑕
(𝜏−2)

 (2)  

 Faster BP training. BPGDM is often too slow for practical problems and other 

high performance algorithms were introduced, such as conjugate gradient, 

quasi-Newton and Levenberg-Marquardt (BPLM) (Chow, 2007; Ham & Kostanic, 

2000). The BPLM was designed to approach a second-order training speed using 

the Jacobian matrix J, which contains the first derivatives of the network errors 

with respect to the weights and biases. The algorithm uses equation (3) where 𝜇 

is an updating (decreasing) scalar. 

 𝑤𝑗𝑕
(𝜏)

= 𝑤𝑗𝑕
(𝜏−1)

− [𝐉T𝐉 + 𝛍𝐑𝑗 ]−1𝐉T𝛿𝑗𝑕  (3)  

Using BP, the weights and biases associated with the neurons are modified to minimize 

the mapping error, when these stabilise, the network is said to be trained (the total sum 

squared error can be used to measure the network performance). The updating 
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procedure is repeated for a number of epochs until the network error has fallen to a 

small constant error level. Once the network is trained, it can be used to predict the 

membership of unseen samples in a validation set. The classification of new patterns is 

performed by propagating the new patterns through the network and the output 

neuron with the highest score indicates the predicted class. 

2.2.2 Self-organizing map (SOM) 

Here Self-Organizing Map (SOM) was chosen as the structure of neural networks for 

analyzing the material data set in the thesis, because it is an unsupervised learning 

technique suitable for datasets with no pre-defined classes.  

The SOM algorithm was developed by Kohonen to transform a data set of arbitrary 

dimensions into a one or more dimensional discrete map(Kohonen T, 1990). According 

to Kohonen, SOM’s are connectionist techniques capable of generating topology which 

can preserve clustering information. An example of the network architecture of a 

Kohonen SOM is shown in Figure 2-3 (Godin, Huguet, & Gaertner, 2005). It consists of a 

two dimensional array of m x m discrete units and the Kohonen network associates each 

of the vector inputs to a representative output. 
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Figure 2-3: Schematic of a Self Organizing Map topology 

Suppose 𝑤𝑖𝑗 are the components of the weight vector 𝑊𝑗 , connecting the inputs i to 

output node j; the 𝑥𝑖  are components of the input vector X, the output of the neuron is 

the quadratic (Euclidean) distance 𝑑𝑗  between the weight vector and the input vector 

(see Figure 2-3). The description of each step to use the data to train the SOM is 

summarized as follows (Ham & Kostanic, 2000): 

 Initialize all the weights to random values between 0 and 1. 

 Randomly select an input vector X; present it to all the neurons of the network 

and evaluate the corresponding quadratic distance output 𝑑𝑗   according to the 

following equation: 

 𝑑𝑗 =  𝑋 −𝑊𝑗 
2

=  (𝑤𝑖𝑗 − 𝑥𝑖)
2

𝑛

𝑖=1

 (4)  
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             where n is the number of input vector components.  

 Select the neuron with the minimum output 𝑑𝑗   as the wining neuron, i.e. the 

nearest vector to the input vector. Let 𝑗∗denote the index of the winner, the 

minimum output will be:  

 𝑑𝑗 ∗ = min
𝑗∈[1,2,…,𝑚^2]

 𝑋 −𝑊𝑗 
2

 (5)  

              where m x m is the number of neurons.  

 Update the weight of the wining neuron according to Equation (6). 

 𝑤𝑖𝑗 ∗ 𝜏 + 1 = 𝑤𝑖𝑗 ∗ 𝜏 + 𝜂 𝜏 [𝑥𝑖 𝜏 − 𝑤𝑖𝑗 ∗ 𝜏 ] (6)  

              where 𝜏 is the learning iteration count and η is the gain term. 

 The neighbors of the wining neuron, defined by the neighborhood function 

𝑁(𝑗∗)  (the neighborhood function 𝑁(𝑗∗)  defines how many neurons in the 

neighborhood of the winning one will be updated for each learning input) are 

also updated following Equation (7) and (8): 

 𝑤𝑖𝑗  𝜏 + 1 = 𝑤𝑖𝑗  𝜏 + 𝜂 𝜏 [𝑥𝑖 𝜏 − 𝑤𝑖𝑗  𝜏 ] (7)  

              If ∈ 𝑁(𝑗∗) ,  neighborhood of 𝑗∗ 

 𝑤𝑖𝑗  𝜏 + 1 = 𝑤𝑖𝑗  𝜏  (8)  

              If ∉ 𝑁(𝑗∗) ,  neighborhood of 𝑗∗ 
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 Repeat the learning process until all the input vectors X have been used at least 

once. 

2.2 Fuzzy logic 

The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at the 

University of California at Berkley, and presented as a way of processing data by 

allowing partial set membership rather than crisp set membership or non-membership 

(Babuska, 1998). It is basically a multi-valued logic that allows intermediate values to be 

defined between conventional evaluations.  

2.2.1 Fuzzy sets 

A fuzzy set is a set without a crisp and clearly-defined boundary or without binary 

membership characteristics. Unlike an ordinary set where each object (or element) 

either belongs or does not belong to the set, fuzzy set can contain elements with only a 

partial degree of membership. In other words, there is a ‘softness’ associated with the 

membership of elements in a fuzzy set (Kartalopoulos, 1997). An example of a fuzzy set 

could be ‘the set of tall people.’ There are people who clearly belong to the above set 

and others that cannot be considered as tall. Since the concept of ‘tall’ is not precisely 

defined (for example, >2m), there will be a gray zone in the associated set where the 

membership is not quite obvious. As another example, consider the 

variable ’temperature’. It can take a fuzzy value (e.g., cold, cool, tepid, warm, and hot). 

Each fuzzy value such as ‘hot’ is called a fuzzy descriptor. It may be represented by a 
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fuzzy set because any temperature that is considered to represent ‘hot’ belongs to this 

set and any other temperature does not belong to the set. A crisp set or a precise 

temperature interval such as 25 °C to 30 °C cannot be indentified to represent warm 

temperatures. 

2.2.2 Membership function 

A fuzzy set can be represented by a membership function. This function indicates the 

grade (degree) of membership within the set, of any element of the universe of 

discourse (e.g. the set of entities over which certain variables of interest in some formal 

treatment may range). The membership function maps every element of the universe to 

numerical values in the interval [0, 1]. Specifically, 

 𝜇𝐴 𝑥 : 𝑋 →  0, 1  (9)  

where 𝜇𝐴 𝑥  is the membership function of the fuzzy set A in the universe X. Stated in 

another way, fuzzy set A is defined as a set of ordered pairs (H. Li, Philip, & Huang, 2000): 

 𝐴 = { 𝑥, 𝜇𝐴 𝑥  ; 𝑥 ∈ 𝑋, 𝜇𝐴 𝑥 ∈ [0, 1]} (10)  

The membership function 𝜇𝐴 𝑥  represents the grade of possibility that an element x 

belongs to the set A. It is a curve that defines how each point in the input space is 

mapped to a membership value. A membership function value of zero indicates that 

corresponding element is definitely not an element of the fuzzy set. A membership 

function value of unity implies that the corresponding element is definitely an element 

of the fuzzy set. A grade of membership greater than 0 and less than 1 corresponds to a 

http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Entities
http://en.wikipedia.org/wiki/Variable_(mathematics)
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non-crisp (or fuzzy) membership, and the corresponding elements fall on the fuzzy 

boundary of the set. The closer the 𝜇𝐴 𝑥  is to 1 the more the x is considered to belong 

to A, and similarly, the closer it is to 0 the less it is considered to belong to A. 

The following is a summary of the characteristics of fuzzy set and membership function 

(Tsoukalas & Uhrig, 1996): 

 Fuzzy sets describe vague concepts (e.g., fast runner, hot weather, and weekend 

days). 

 A fuzzy set admits the possibility of partial membership in it. (e.g., Friday is sort 

of a weekend day, the weather is rather hot). 

 The degree to which an object belongs to a fuzzy set is denoted by a 

membership value between 0 and 1. (e.g., Friday is a weekend day to the degree 

0.8). 

 A membership function associated with a given fuzzy set maps an input value to 

its appropriate membership value. 

2.2.3 Considerations of fuzzy decision-making 

Instead of being represented as a set of complex, nonlinear differential equations, a 

complex system can be represented by a fuzzy knowledge base as a simple set of input-

output relations (or rules). These rules contain fuzzy terms which are common linguistic 

expressions of knowledge about a practical situation such as small, fast, high, and very. 

Designing the rule base is an important step in the development of a fuzzy knowledge-

based system. Inferences can be made either by matching a set of available information 
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(or observation, or data) with the rule base of the system or by matching data with 

individual rules and then combining (aggregating) these individual rule-based inferences 

(say, using the max operation) (Karray & Silva, 2005). Combining individual rule-based 

inferences gives identical inferences to what one would get by applying the 

compositional rule of inference, albeit more conveniently.  

A typical rule consists of the antecedent part(s) and the consequent part. The 

antecedent part of a rule corresponds to the input variables (input space) of the fuzzy 

decision-making system. The input variables may be connected by AND connectives; for 

example, ’IF Temperature is Si AND Humidity is Dj, AND… ’ Here, Si and Dj are fuzzy 

states of the corresponding fuzzy variables. Different rules in the rule base will involve 

different fuzzy states of the antecedent variables. Each antecedent variable is assumed 

to be orthogonal to (independent of) other antecedent variable, and occupies a disjoint 

subspace of the input space (Nauck, Klawonn, & Kruse, 1997). But there exists some 

overlap between various fuzzy states of a particular antecedent variable, as provided in 

a fuzzy context where, in the real world, changes are not abrupt but rather smooth. 

The inferred decision or conclusion is presented by the consequent part of a rule. Since, 

with loss of generality, multiple decision variables can be separated into multiple rules 

with single decision variables, it is practical to only consider rules with single consequent 

variables. 

2.2.4 Extensions to fuzzy decision-making 

A typical fuzzy rule explored so far can be formed as:  
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 𝐼𝐹 𝑥 𝑖𝑠 𝐴𝑖  𝐴𝑁𝐷 𝐼𝐹 𝑦 𝑖𝑠 𝐵𝑖  𝑇𝐻𝐸𝑁 𝑧 𝑖𝑠 𝐶𝑖  (11)  

where 𝐴𝑖 , 𝐵𝑖  and 𝐶𝑖  are fuzzy states governing the i-th rule of the rule base. Here, the 

knowledge base (rule) is represented as fuzzy protocols of the equation (11) and 

represented by membership functions for 𝐴𝑖 , 𝐵𝑖  and 𝐶𝑖 , and the inference is obtained by 

applying the compositional rules of inference. Such rules are referred to as the 

Mamdani approach (Mamdani system or Mamdani model) (N. K. Kasabov, 2002), named 

after the person who proposed the application of this approach. The consequent part 

(result) of the rule is a fuzzy membership function, which typically has to be defuzzified 

for use in practical tasks. 

But there are advantages to consider crisp or special shape membership functions for 

the consequent part as well. Such variation has resulted in Sugeno model (or Takagi-

Sugeno-Kang model or TSK model), where the output variable is presented in terms of a 

functional relation of the inputs (N. K. Kasabov, 2002). Such rules (with crisp functions as 

the consequent) are typically written as:  

 𝐼𝐹 𝑥 𝑖𝑠 𝐴𝑖  𝐴𝑁𝐷 𝐼𝐹 𝑦 𝑖𝑠 𝐵𝑖  𝑇𝐻𝐸𝑁 𝑐𝑖 = 𝑓𝑖(𝑥, 𝑦) (12)  

For rule i, where 𝑓𝑖  is a crisp function of the input variables (antecedent) x and y. When 

𝑓𝑖  is a constant, rules of equation (12) constitutes a zero order Sugeno model and when 

𝑓𝑖   is a first order polynomial, it is called a first-order Sugeno model.  Note that the 

antecedent parts of this rule are the same as for the Mamdani model in equation (11), 

where 𝐴𝑖 , and 𝐵𝑖  are fuzzy sets whose membership functions are functions of x and y, 

respectively. But the consequent part is a crisp function of the condition variables which 
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differs from the Mamdani model (Tsoukalas & Uhrig, 1996). The inference 𝑐 (𝑥, 𝑦) of the 

fuzzy knowledge-based system of Sugeno model is obtained directly as a crisp function 

of the input variables x and y, as follows. 

 First, a weighting parameter 𝑤𝑖(𝑥, 𝑦) for rule i is obtained corresponding to the 

input membership functions, as in the case of Mamdani approach, by using 

either the ‘min’ operator or the ‘product’ operator. For example, using the ‘min’ 

operator we form 

 𝑤𝑖 𝑥, 𝑦 = min⁡[𝜇𝐴𝑖
 𝑥 , 𝜇𝐵𝑖

 𝑦 ] (13)  

 Then the crisp inference 𝑐  𝑥, 𝑦  is determined as a weighted average of the 

individual rule inferences (crisp) 𝑐𝑖 = 𝑓𝑖(𝑥, 𝑦) according to 

 𝑐 (𝑥, 𝑦) =
 𝑤𝑖𝑐𝑖
𝑟
𝑖=1

 𝑤𝑖
𝑟
𝑖=1

=
 𝑤𝑖(𝑥, 𝑦)𝑓𝑖(𝑥, 𝑦)𝑟
𝑖=1

 𝑤𝑖(𝑥, 𝑦)𝑟
𝑖=1

 (14)  

where r is the total number of rules. For any data x and y, the knowledge-based action 

𝑐 (𝑥, 𝑦) can be computed from equation (14), without requiring any defuzzification 

(Karray & Silva, 2005).  

Mamdani type and Sugeno type of inference systems vary in the way outputs are 

determined. The Sugeno model is particularly useful when the consequents are 

described analytically through crisp functions, as in conventional crisp control, rather 

than linguistically. The Sugeno approach is commonly used in applications of direct 

control and in simplified fuzzy models. The Mamdani approach, even through popular in 



Chapter II: Introduction to Intelligent Systems Techniques 

 

47 
 

low-level direct control, is particularly appropriate for knowledge representation and 

processing in expert systems and in high-level (hierarchical) control systems (H. Li, et al., 

2000). 

2.2.5 Fuzzy C-means algorithm 

Fuzzy C-means algorithm (FCM) is widely used as a clustering tool to find the cluster 

within a dataset. The objective of cluster analysis is to classify objects according to 

similarities among them, and organize a dataset into subsets. Usually, clustering 

techniques are considered to be among the unsupervised methods, they do not use 

prior information about groupings before clustering. Fuzzy C-means algorithm can 

detect the underlying structure in a data set, thus it can be used for classification and 

pattern recognition (Höppner, Klawonn, Kruse, & Runkler, 1999). 

Different kinds of definitions of a cluster can be formulated, depending on the objective 

of the clustering. Usually we regard a cluster as a group of objects which bear more 

similarities to one another than to the members of other clusters. We can define 

similarity by means of a distance norm. It can be measured among the data vectors 

themselves, or as a distance from a data vector to some prototypical object (perspective 

center) of the cluster (Theodoridis & Koutroumbas, 1999). The prototypes are vectors of 

the same dimension as the data objects and are usually not known beforehand, and 

usually they are sought by the clustering algorithms heuristically with the partitioning of 

the data. 
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The Fuzzy C-means algorithm, also known as Fuzzy ISODATA, is a data clustering 

technique wherein each data point belongs to a cluster to some degree that is specified 

by a membership grade. This technique was originally introduced by Jim Bezdek in 1984 

(Bezdek, Ehrlich, & Full, 1984). It provides a method that shows how to group data 

points that populate some multidimensional space into a specific number of different 

clusters. The FCM-based algorithms are in practice the most widely used fuzzy clustering 

algorithms. 

The objective of the FCM clustering algorithm is to minimize an objective function called 

C-means functional (Lampinen, Laurikkala, Koivisto, & Honkanen, 2005), which is 

formulated as: 

 𝐽 𝑈, 𝑉 =   (𝜇𝑖𝑗 )𝑚 𝑥𝑖 − 𝑣𝑗 
2

𝑁

𝑖=1

𝐶

𝑗=1

 (15)  

where 𝑋 =  𝑥1 , 𝑥2 , … , 𝑥𝑁 , 𝑥𝑖 ∈ 𝑅𝑛  represents a given set of feature data.  𝑉 =

 𝑣1 , 𝑣2 , … , 𝑣𝐶  are the cluster centers.  𝑈 = (𝜇𝑖𝑗 )𝑁×𝐶  is a fuzzy partition matrix, in which 

each member 𝜇𝑖𝑗   indicates the degree of membership between the data vector 𝑥𝑖   and 

the cluster j. The values of matrix U should satisfy the following conditions 

 𝜇𝑖𝑗 =  0,1 , 1 ≤ 𝑖 ≤ 𝑁;  1 ≤ 𝑗 ≤ 𝐶 (16)  

  𝜇𝑖𝑗 = 1, 1 ≤ 𝑖 ≤ 𝑁 

𝐶

𝑗=1

 (17)  

The exponent 𝑚 ∈ [1, ∞) is the weighting exponent, which determines the fuzziness of 

the clusters. The larger the exponent weight m is, the fuzzier the partition matrix 
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becomes. The most commonly used distance norm is the standard Euclidean distance 

𝑑𝑖𝑗 =  𝑥𝑖 − 𝑣𝑗  , although Babuska suggests that other distance norms could produce 

better results (Babuska, 1998). 

Minimization of the cost function J (U, V) is a nonlinear optimization problem, which can 

be achieved with the following iterative algorithm (Bezdek, et al., 1984): 

Step 1: Initialize the membership matrix U with random values so that the conditions in 

Equations (16) and (17) are satisfied. 

Choose appropriate exponent m and the termination criteria. 

Step 2: Calculate the cluster centers V according to the equation:  

 𝑣𝑗 =
 (𝜇𝑖𝑗 )𝑚𝑁
𝑖=1 𝑥𝑖
 (𝜇𝑖𝑗 )𝑚𝑁
𝑖=1

, ∀ 𝑗 = 1,2, … , 𝐶 (18)  

Step 3: Calculate the new distance norms: 

 𝑑𝑖𝑗 =  𝑥𝑖 − 𝑣𝑗 , ∀ 𝑖 = 1,2, … , 𝑁, ∀ 𝑗 = 1,2, … , 𝐶 (19)  

Step 4: Update the fuzzy partition matrix U: 

If  𝑑𝑖𝑗 > 0 (indicating that 𝑥𝑖 ≠ 𝑣𝑗  ) 

 
𝜇𝑖𝑗 =

1

 (
𝑑𝑖𝑗

𝑑𝑖𝑘
)

2
𝑚−1𝐶

𝑘=1

 
(20)  

Else  𝜇𝑖𝑗 = 1 

Step 5: If the termination criterion has been met, stop.  
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Else go to Step 2.  

We can see that the FCM algorithm is a simple iteration through Equations (18) to (20). 

A suitable termination criterion will be used to evaluate the cost function (Equation 15) 

and to see whether it is below a certain tolerance value or if its improvement, compared 

to the previous iteration, is below a certain threshold. We can also use the maximum 

number of iteration cycles as a termination criterion. 

2.3 Decision Tree 

2.3.1 Introduction to the decision tree 

A decision tree partitions the input space (also known as the feature or attribute space) 

of a dataset into mutually exclusive regions, each of which is assigned a label, a value or 

an action to characterize its data points. It is a tree structure consisting of nodes and 

branches, whose nodes are designated as an internal or terminal node. An internal node 

is one that splits into two children, while a terminal node, also known as a leaf, does not 

have any children and is associated with a label or value that characterizes the given 

data. Figure 2-4 shows a typical decision tree and its function to partition the space into 

different subspaces. 
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Figure 2-4: the Architecture of a basic Decision Tree 

Decision trees used for classification problems are often called classification trees, and 

each terminal node contains a label that indicates the predicted class of a given feature 

vector. In the same vein, decision trees used for regression problems are often called 

regression trees, and the terminal node labels may be constants or equations that 

specify the predicted output value of a given input vector. To construct an appropriate 

decision tree, an algorithm first grows the tree extensively based on a sample (training) 

dataset, and then prunes the tree back based on a minimum cost-complexity principle. 

The result is a sequence of trees of various sizes; the final tree selected is the tree that 

performs best when another independent (test) dataset is presented (J.-S. R. Jang & Sun, 

1997). Generally, the algorithm does this through two phases: tree growing and tree 

pruning, which will be explained in the following sections. 
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2.3.2 How to build a tree 

Usually, there are exponentially many decision trees that can be constructed from a 

given set of attributes. Finding the optimal tree which is more accurate than others is 

computationally infeasible because of the exponential size of the searching space. 

Nevertheless, efficient algorithms have been developed to induce a reasonably accurate, 

albeit suboptimal, decision tree in a reasonable amount of time. These algorithms 

usually employ a greedy strategy that grows a decision tree by making a series of locally 

optimum decisions about which attribute to use for partitioning the data. One such 

algorithm is Hunt’s algorithm, which is the basis of many existing decision tree induction 

algorithms, including ID3, C4.5, and CART (Classification and Regression Tree algorithm). 

In Hunt’s algorithm, a decision tree is grown in a recursive fashion by partitioning the 

training records into successively purer subsets (P.-N. Tan, Steinbach, & Kumar, 2005).  

Let 𝐷𝑡  be the set of training records that are associated with node t and 𝑦 =

{𝑦1 , 𝑦2 , … , 𝑦𝑐} be the class labels. The following is a recursive definition of Hunt’s 

algorithm. 

Step 1: if all the records in 𝐷𝑡  belong to the same class 𝑦𝑡 , then t is a leaf node labeled 

as 𝑦𝑡 . 

Step 2: if 𝐷𝑡  contains records that belong to more than one class, an attribute test 

condition is selected to partition the records into smaller subsets. A child node is 

created for each outcome of the test condition and the records in 𝐷𝑡  are distributed to 
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the children based on the outcomes. The algorithm is then recursively applied to each 

child node. 

2.3.3 Design issues of decision tree induction 

A learning algorithm for inducing DTs must address the following two issues: 

 How to choose the best criteria to split the training instances. Each recursive 

step of the tree-growing process must select an attribute test condition to divide 

the records into smaller subsets; to implement this step, the algorithm must 

provide a method for specifying the test condition for different attribute types as 

well as an objective measure for evaluating the goodness of each test condition 

(Ian & Jacek, 2000). 

 What the stopping rule is to terminate the splitting procedure. A stopping 

condition is needed to terminate the tree-growing process. One possible choice 

is to continue splitting internal nodes until each one contains observations from 

the same class, in which case some nodes might have only one observation in 

the node. Another option is to continue splitting nodes until there is some 

maximum number of observations left in a node or the terminal node is pure (all 

observations belong to one class). 

2.3.4 Measures for selecting the best split 

Many measures can be used to determine the best way to split the training instances. 

These measures are defined in terms of the class distribution of the instances before 

and after splitting. 
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Let 𝑝 𝑖 𝑡  denote the fraction of instances belonging to class i at a given node t. we 

sometimes omit the reference to node t and express the fraction as 𝑝𝑖 . In a two class 

problem, the class distribution at a node can be written as (𝑝0, 𝑝1), where 𝑝0 + 𝑝1 = 1.  

The measures developed for selecting the best split are often based on the degree of 

impurity of the child nodes. The smaller the degree of impurity, the more skewed the 

class distribution. For example, a node with class distribution (0,1) has zero impurity, 

whereas a node with uniform class distribution (0.5, 0.5) has the highest impurity. Three 

of the most widely accepted impurity measures are (Umanol, et al., 1994): 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑡 = − 𝑝 𝑖 𝑡 𝑙𝑜𝑔2

𝐶

𝑖=1

𝑝 𝑖 𝑡  (21)  

 𝐺𝑖𝑛𝑖 𝑡 = 1 − 𝑝 𝑖 𝑡 2

𝑐

𝑖=1

 (22)  

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑡 = 1 − max
𝑖

[𝑝 𝑖 𝑡 ] (23)  

where C is the number of classes and 0𝑙𝑜𝑔0 = 0 is defined in entropy calculations. 
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Figure 2-5: A comparison of three different impurity measures 

Figure 2-5 shows a comparison of the values of the impurity measures for binary 

classification problems. It shows that all three measures attain their maximum value 

when the class distribution is uniform and achieve the minimum values for the 

measures when all the records belong to the same class. 

2.3.5 Pruning the tree 

 The decision trees, as some other classifiers, may be subject to problems such as 

overfitting problem. As the number of nodes of the decision tree increases, the tree will 

have fewer training and test error. However, once the tree becomes too large, its test 

error rate begins to increase even though its training error rate continues to decrease. 

So obviously, the size and the complexity of the decision tree have a determining effect 

on the overfitting, which makes the pruning process necessary to overcome this issue. 
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The pruning process will determine the ideal size and complexity of the decision tree 

which will produce the lowest generalization error. The most popular way to estimate 

the generalization error of the induced tree is to do so by using resubstitution error 

(similar to training error which is the misclassification error committed on training 

instances). 

It is assumed that the training set is a good representation of the overall data. 

Consequently, the resubstitution estimate approach using the training error, otherwise 

known as resubstitution error, can be used to provide an optimistic estimate for the 

generalization error (Martinez & Martinez, 2007). Under this assumption, a decision tree 

induction algorithm simply selects the model that produces the lowest training error 

rate as its final model. 

After a decision tree is grown to its maximum size, the pruning procedure will be 

introduced to trim the fully grown tree in a bottom up fashion. Trimming can be done by 

replacing a subtree with (P.-N. Tan, et al., 2005): 

 a new leaf node whose class label is determined from the majority class of 

records affiliated with the subtree, or  

 the most frequently used branch of the subtree.  

The tree pruning step terminates when no further improvement is observed. Unlike pre-

pruning (the tree-growing process is terminated before generating a fully grown tree 

that perfectly fits the entire training data) which can suffer from premature termination 
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of the tree-growing process, post-pruning tends to give better results than pre-pruning 

because it makes the pruning process based on the fully grown tree. 

2.3.6 Classify a new instance 

 In general, a decision tree is employed as follows: First, a datum (usually a vector 

composed of several attributes or elements) is presented to the starting node (or root 

node) of the decision tree. Depending on the result of a decision function used by an 

internal node, the tree will branch to one of the node's children. This is repeated until a 

terminal node is reached and a label or value is assigned to the given input data 

(Martinez & Martinez, 2007). 

2.4 Other Hybrid intelligent systems techniques 

Hybrid Neural fuzzy systems are based on an architecture which integrates in an 

appropriate parallel structure a neural network and a fuzzy logic based system 

(Tsoukalas & Uhrig, 1996). These two parts work as one synchronized entity. 

Hybrid neuro-fuzzy systems have a parallel architecture, and exploit similar learning 

paradigms, as is the case for neural networks. The parallelism of the system can be 

viewed as a mapping of the fuzzy system into a neural network structure (N. K. Kasabov, 

2002). In other words, each functional module of the fuzzy logic system corresponds to 

a particular layer of the neural network. The resulting system can be interpreted either 

as a neural network or a fuzzy logic system. 
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Hybrid neuro-fuzzy systems have the same architecture as that of traditional fuzzy 

systems except that a layer of hidden neurons performs each of the tasks of the fuzzy 

inference system. As such, a fuzzy logic inference system can be implemented as a five-

layer neural network. This type of architecture is the most commonly used among 

neuro-fuzzy inference systems, and it uses the Sugeno-type fuzzy inferencing (J.-S. R. 

Jang & Sun, 1997).  

2.4.1 ANFIS 

The acronym ANFIS derives its name from adaptive neuro-fuzzy inference system. It was 

proposed by J S Jang (J. S. R. Jang, 1993) and has become a standard technique that has 

been widely used in many applications (J.-S. R. Jang & Sun, 1997; Lin & Lee, 1996). It uses a 

hybrid-learning algorithm to identify parameters for Sugeno-type fuzzy inference systems. It 

applies a combination of the least-squares method and the gradient descent method for 

training membership function (MF) parameters to emulate a given training dataset (Karray 

& Silva, 2005; Soyguder & Alli, 2009). 

ANFIS is a multilayer feed forward network where each node performs a particular function 

on incoming signals. It is normally represented by a six-layer FNN as shown in Figure 2-6. To 

perform a desired input-output mapping, adaptive learning parameters are updated based 

on gradient learning rules (J. S. R. Jang, 1993; Soyguder & Alli, 2009). Both square and circle 

node symbols in Figure 2-6 are used to represents different properties of adaptive learning, 

among which the rule layer represents a set of fuzzy rules. The ANFIS model is one of the 

implementation of a first order Sugeno fuzzy inference system, and the rules are of the form: 
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𝑅𝑝 : 𝐼𝑓 𝑥1  𝑖𝑠 𝐴1,𝑝  𝑎𝑛𝑑  𝑥2 𝑖𝑠 𝐴2,𝑝 …𝑎𝑛𝑑  𝑥𝑛  𝑖𝑠  𝐴𝑛,𝑝𝑡𝑕𝑒𝑛 𝑜𝑝

= 𝛼0,𝑝 + 𝛼1,𝑝𝑥1 + ⋯+ 𝛼𝑛,𝑝𝑥𝑛  
(24)  

where 𝑥𝑖  is ith input variable associated with a linguistic term in the antecedent part of 

the pth rule with 𝑖 = 1,2, … , 𝑛 and  𝐴𝑖,𝑝 is the linguistic label associated with it in that 

rule. 𝐴𝑖,𝑝 has its associated fuzzy membership function given by 𝜇𝐴𝑖,𝑝
(𝑥𝑖). 𝑜𝑝  is the 

consequent output of the p-th rule and 𝛼0,𝑝, 𝛼1,𝑝, … , 𝛼𝑛,𝑝 are the Sugeno parameters. 

 

Figure 2-6: A six layer ANFIS structure 

Specifically, ANFIS only supports Sugeno-type systems, and these must have the 

following properties: 

 Be first or zeroth order Sugeno-type systems. 

 Have a single output, obtained using weighted average defuzzification. All output 

membership functions must be the same type and either be linear or constant. 



Chapter II: Introduction to Intelligent Systems Techniques 

 

60 
 

 Have no rule sharing. Different rules cannot share the same output membership 

function, namely every rule has a specific output function so the number of 

output membership functions must be equal to the number of rules. 

 Have unity weight for each rule. 

2.4.2 Evolving Fuzzy Neural Network (EFuNN)  

The Evolving Fuzzy Neural Network (EFuNN) proposed by Kasabov (N. Kasabov, 1998, 2007; 

N. Kasabov, 2008) implements a strategy of dynamically growing and pruning the 

connectionist (i.e. NN) architecture and parameter values. EFuNN is implemented in the 

NeuCom package developed at Auckland University of Technology1.  

A typical EFuNN structure consists of five layers (Figure 2-7).  

 

Figure 2-7: Architecture of Evolving Fuzzy Neural Network (N. Kasabov, 2007) 

                                                       
1  The NeuCom project homepage: http://www.aut.ac.nz/research/research-institutes/kedri/research-
centres/centre-for-data-mining-and-decision-support-systems/neucom-project-home-page 

http://www.aut.ac.nz/research/research-institutes/kedri/research-centres/centre-for-data-mining-and-decision-support-systems/neucom-project-home-page
http://www.aut.ac.nz/research/research-institutes/kedri/research-centres/centre-for-data-mining-and-decision-support-systems/neucom-project-home-page
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The input layer represents input variables. The second layer of nodes (fuzzy input 

neurons or fuzzy inputs) represents fuzzy quantization of each input variable space. For 

example, two fuzzy input neurons can be used to represent “small” and “large” fuzzy 

values for a particular input variable. Different membership functions can be attached to 

these neurons. The number and the type of MF can be dynamically modified. The task of 

the fuzzy input nodes is to transfer the input values into membership degrees to which 

they belong to the membership function (del-Hoyo, Martin-del-Brio, Medrano, & 

Fernandez-Navajas, 2009). 

The third layer contains rule (case) nodes that evolve through supervised and/or 

unsupervised learning. The rule nodes represent prototypes (exemplars, clusters) of 

input–output (I/O) data associations that can be graphically represented as associations 

of hyperspheres from the fuzzy input and the fuzzy output spaces. Each rule node is 

defined by two vectors of connection weights— and the latter (W2 as in Figure 2-7) 

being adjusted through supervised learning based on the output error, and the former 

(W1 as in Figure 2-7) being adjusted through unsupervised learning based on similarity 

measure within a local area of the problem space. A linear activation function, or a 

Gaussian function, is used for the neurons of this layer (N. Kasabov, 1998; N. Kasabov, 

2001). 

The fourth layer of neurons represents fuzzy quantization of the output variables, 

similar to the input fuzzy neuron representation. Here, a weighted sum input function 

and a saturated linear activation function is used for the neurons to calculate the 
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membership degrees to which the output vector associated with the presented input 

vector belongs to each of the output membership functions. 

The fifth layer represents the values of the output variables. Here a linear activation 

function is used to calculate the defuzzified values for the output variables (N. Kasabov, 

2001). 

Each rule node, e.g., 𝑟𝑗  , represents an association between a hypersphere from the 

fuzzy input space and a hypersphere from the fuzzy output space, the 𝑤1(𝑟𝑗 ) 

connection weights representing the coordinates of the center of the sphere in the fuzzy 

input space, and the 𝑤2(𝑟𝑗 )  connection weights representing the coordinates in the 

fuzzy output space. 

Through the process of associating (learning) of new data points to a rule node 𝑟𝑗 , the 

centers of this node hyperspheres adjust in the fuzzy input space depending on the 

distance between the new input vector and the rule node through a learning rate𝑙𝑗  and 

in the fuzzy output space depending on the output error through the Widrow–Hoff least 

mean square (LMS) algorithm (delta algorithm). This adjustment can be represented 

mathematically by the change in the connection weights of the rule node 𝑟𝑗  from 

𝑤1(𝑟𝑗
𝑡)  and 𝑤2(𝑟𝑗

𝑡) to 𝑤1 𝑟𝑗
𝑡+1 and 𝑤2(𝑟𝑗

𝑡+1), respectively, according to the following 

vector operations (N. Kasabov, 2001): 

 𝑊1 𝑟𝑗
 𝑡+1 

 = 𝑊1 𝑟𝑗
 𝑡 

 + 𝑙𝑗 ,1 ∗ (𝑊1 𝑟𝑗
 𝑡 

 − 𝑥𝑓) (25)  



Chapter II: Introduction to Intelligent Systems Techniques 

 

63 
 

 𝑊2 𝑟𝑗
 𝑡+1 

 = 𝑊2 𝑟𝑗
 𝑡 

 + 𝑙𝑗 ,2 ∗  𝐴2 − 𝑦𝑓 ∗ 𝐴1  𝑟𝑗
 𝑡 

  (26)  

where 𝐴2 = 𝑓2(𝑊2 ∗ 𝐴1) is the activation vector of the fuzzy output neurons in the 

EFuNN structure when x is presented; 𝐴1 𝑟𝑗
 𝑡  = 𝑓2(𝐷(𝑊1 𝑟𝑗

 𝑡  , 𝑥𝑓))is the activation 

of the rule node; 𝑙𝑗 ,1 and 𝑙𝑗 ,2 are the current learning rates of rule node 𝑟𝑗  for its input 

layer and its output layer of connections respectively. 

Equations (25) and (26) have defined a standard EFuNN structure that has the first part 

updated in an unsupervised mode based on a similarity measure and the second in a 

supervised mode based on output error. 

2.4.3 Fuzzy ARTMAP 

Fuzzy ARTMAP is a self-organizing architecture that is capable of rapidly learning to 

recognize, test hypotheses and predict the consequences of virtually any input. It 

involves a combination of neural and fuzzy operations that together give these useful 

capabilities. Like other versions of Adaptive Resonance Theory (ART), its use is almost 

exclusively for classification, and it has only one user-selectable parameter which 

determines the fitness or coarseness of the patterns into which the inputs are fitted. It 

can learn virtually every training pattern in a few training iterations in an unsupervised 

mode.  

Fuzzy ARTMAP adapts a competitive learning model based on ART. It is an extension of 

ART1 (for binary inputs) and ART2 (for continuous inputs) for fuzzy inputs (G. A. Carpenter, 

Grossberg, Markuzon, Reynolds, & Rosen, 1992; Gail A. Carpenter, Grossberg, & Rosen, 
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1991; Georgiopoulos, Huang, & Heileman, 1994). Fuzzy ARTMAP consists of two ART 

modules, i.e. ARTa and ARTb, as in Figure 2-8. Both ARTa and ARTb are fuzzy ARTs (i.e. 

accepting fuzzy inputs), each of which is comprised of three layers: normalization layer, 

input layer and recognition layer. The main purpose of the map field Fab is to classify a fuzzy 

pattern into the given class, or to re-start the matching procedure (Liu & Li, 2004). 

 

Figure 2-8: Fuzzy ARTMAP architecture (Mannan, Roy, & Ray, 1998) 

Fuzzy ARTMAP has proven itself as a supervised incremental learning system in pattern 

recognition and M-to-N dimensional mapping (Downs, Harrison, Kennedy, & Cross, 

1996). The two fuzzy ARTs are connected using a series of weight connections between 

the 𝐹2 layers both in 𝐴𝑅𝑇𝑎  and𝐴𝑅𝑇𝑏 . Those connections are weighted with a value 

between 0 and 1. Learning in Fuzzy ARTMAP encompasses the recruitment of new 

prototype vectors and expansion of the boundary of existing prototype vectors in the 

feature space. Like other incremental NNs, the Fuzzy ARTMAP growth criterion is subject to 

a similarity measure between the input pattern and the prototypes stored in the network (S. 
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C. Tan, Rao, & Lim, 2008). The Matlab package implementation of Fuzzy ARTMAP is 

available from the lab led by Carpenter2. 

2.4.4 GNMM 

GNMM was proposed by Jianhua Yang in 2009 (Yang, 2009). Utilizing GAs and MLPs, this 

technique is capable of pattern classification and analysis. It not only inherits the 

advantages of ANN, such as robustness and nonlinearity but also incorporates a GA and 

mathematical programming to optimize input feature selection and rule extraction. By 

incorporating GA, GNMM can optimize the number of input features to the MLP 

automatically. By employing a mathematical programming module, GNMM is also able 

to identify regression rules extracted from the trained MLPs. 

It consists of three steps: (1) GA-based input feature selection, (2) Multi-Layer 

Perceptron (MLP) modeling and (3) rule extraction based on mathematical programming 

(Yang, 2009). In the first step, GAs are introduced in order to get an optimal set of MLP 

inputs. The mutation rate and hence the exploration/exploitation balance are adjusted 

using an adaptive method which is based on the average fitness of successive 

generations. The elite group and appearance percentage are also introduced to 

minimize the randomness associated with GAs. In the second step, MLP modeling is the 

core part of this data mining technique for performing classification/prediction tasks. 

Before the training process, an Independent Component Analysis (ICA) based weight 

initialization algorithm is used to determine optimal weights. The LM algorithm is used 

to achieve a second-order speedup compared to conventional BP training (Chow, 2007; 

                                                       
2 CNS Tech Lab, Boston University, http://techlab.bu.edu/resources/software 



Chapter II: Introduction to Intelligent Systems Techniques 

 

66 
 

Ham & Kostanic, 2000). In the third step, mathematical programming can be used to 

identify the parameters of extracted multivariate polynomial rules. In addition to that, 

mathematical programming can also explore features from the extracted rules based on 

data samples associated with each rule. Therefore, the methodology can provide 

regression rules and features not only in the separate multi-dimensional spaces with 

data instances, but also in the spaces without data instances. 

2.5 Challenges of Knowledge Presentation 

Although neural networks and fuzzy logic can be powerful in dealing with practical 

problems, they don’t provide a friendly interface for humans to understand. Neural 

networks are often referred as ‘black-boxes’ because it is quite difficult to understand 

the results or otherwise to extract transferrable knowledge from the results and the 

neural network structure. When the neural networks are successfully trained, no 

information in symbolic form is available, which present obstacles for humans to verify 

or interpret.  

This issue has to be addressed by using neural networks to extract knowledge to replace 

human specialists for knowledge acquisition. In general, rules can be extracted at the 

level of hidden and output units or can be extracted by mapping inputs directly into 

output which evaluate the input-output relationship as closely as possible. But this 

process could be tedious especially when rules are extracted at the level of hidden and 

output units or infeasible when the rules are extracted by mapping input into output. 
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In order to overcome these difficulties, hybrid systems can be introduced to both train 

the neural networks and represent knowledge which is interpretable to humans. For 

example, when neural networks are combined with fuzzy logic, the extracted rules or 

knowledge will present a different perspective. The connections between neurons can 

be mapped as knowledge rules and labeled with confidence, possibility measures or 

certainty factors. The architecture and computational algorithm of the created network 

will implement the set of rules and their fuzzy combinations. The network which is 

initiated from fuzzy rules can be trained using original dataset to revise or update the 

extracted knowledge or rules. During the learning process, only the parameters of the 

rules (e.g. certainty factor or importance weights of the rules) are updated while the 

rules themselves are preserved. These hybrid systems are a powerful set of tools for 

solving problems in pattern recognition, data processing and prediction. They offer an 

effective approach for handling large amounts of dynamic, non-linear and noisy data, 

especially when the underlying physical relationships are not fully understood.  

2.6 Datasets 

In order to design, implement and test different intelligent system based approaches, 

including the proposed OWFDT, several datasets will be introduced in the following 

parts to compare the classification results for different techniques. 

Iris Data: A dataset with 150 random samples of flowers from three iris species named 

setosa, versicolor, and virginica collected by Anderson (1935). For each species there are 
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50 observations with four attributes named sepal length, sepal width, petal length, and 

petal width in cm (Black & Merz).  This dataset was used by Tsang (Tsang, Wang, & 

Yeung, 2000) to verify the learning accuracy of the weighted fuzzy decision tree over BP 

algorithm. It will be introduced in chapter three to compare Optimized Weighted Fuzzy 

Decision Tree (OWFDT) with weighted fuzzy decision tree both in terms of accuracy and 

number of training epochs to show the merits of OWFDT. 

Wisconsin Breast Cancer: In this dataset, each pattern has 30 features and an 

associated class label (benign or malignant). The total number of instances are 569, of 

which 357 instances are classified as ‘benign’ and 212 instances are classified as 

‘malignant’ (Black & Merz). Although this dataset was widely used as a benchmark 

dataset, no research had been conducted by using fuzzy decision tree approach. In 

addition to that, the fuzzy production rules produced by OWFDT can be linked with the 

attributes to enhance the interpretability of relationship between the attributes and the 

actual class labels. 

Brain Computer Interface: This dataset is from dataset I of the BCI Competition 2005. 

In this motor imagery experiment of the left small finger or the tongue, ECoG was  

recorded by using 8×8 ECoG platinum electrode grids, placed on the contralateral motor 

cortex. Data was sampled at 1000 Hz with trial length of three seconds. After extraction 

of features using Common Spatial Patterns (CSP) and their derivatives, the dimension of 

the data was managed to be reduced to 12 features with two different classes (Singh, Li, 

Hines, & Stocks, 2007). In order to make classifications to the possible ECoG signals, this 
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dataset will be used to construct a fuzzy decision tree and produce some fuzzy 

production rules. The dataset consists of 278 training instances and 100 testing 

instances respectively. 

Eye Bacteria Data: This dataset was collected through a joint collaboration between 

researchers from the University of Warwick and Doctors from Heartlands Hospital and 

Micropathology Ltd. All the eye bacteria strains were grown under a prescribed medical 

condition. An electronic nose, Cyranose 320, based on a 32-sensor array of conducting 

polymers which produce a unique response signature representative of the test smell, 

was used to detect different odor features of six different eye bacteria species. 180 

sample readings were recorded to form this dataset. Each reading contains 32 features 

(Boilot, et al., 2002; Dutta, Hines, Gardner, & Boilot, 2002; Gardner, Boilot, & Hines, 

2005). Boilot (Boilot, et al., 2002; Gardner, et al., 2005) also applied V-integer GA using 

PNN to reduce the dimension of the dataset and obtained an optimal subset. But 

classification accuracy using the selected features is still subject to improvement. In 

chapter 5, bootstrap aggregating to decision tree will be used to select the most 

important features and the learning results using OWFDT will be compared with results 

obtained by Boilot (Boilot, et al., 2002; Gardner, et al., 2005) to show the improvement 

of OWFDT. 

Composite Material Data: The data was collected by Warwick Manufacturing Group 

(WMG) to detect the failure mechanisms in composite material. When the composite 

material is being used, some failures may occur, such as fiber breakage, matrix cracking 
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or fiber/matrix debonding, accompanied by characteristic audible noises. These are 

captured as sound signals and analyzed as follows. Four frequencies for each signal were 

collected after filtering using a Fast Fourier Transform (FFT). 7 samples which are 

different in terms of the fiber/matrix orientation (0°, 15°, 30°, 45°, 60°, 75°, 90°) were 

used for the experiments which in turn leads to 7 subsets. Each subset may contain 

three or four classes of failure mechanisms dominating in the corresponding samples 

and the number of instances ranges from 534 to 7052 (X. Li, et al., 2008a, 2008b).  

Although there are some researches which focus on utilizing frequencies as descriptors 

to differentiate different failure mechanisms, no study using hybrid intelligent 

computing techniques has been conducted. Chapter 4 will provide a detailed analysis of 

these datasets and the construction of a classifier using OWFDT. The introduction of 

fuzzy rules also produces a new perspective to classify different failure mechanisms 

which are also quite fuzzy in nature. 

2.7 Summary 

The current chapter has briefly reviewed some intelligent DM techniques including NNs, 

FL, DT and some hybrid techniques including ANFIS, EFuNN, Fuzzy ARTMAP, GNMM etc. 

The technique proposed in the next chapter had successfully combined FL, NN and DT 

together and a benchmarking study in chapter VI has also proved its efficiency over 

some hybrid techniques introduced in this chapter such as ANFIS, EFuNN in terms of its 

accuracy and the number of rules. 
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Chapter III: Improving Classification Rate 

Using Optimized Weighted Fuzzy Decision 

Trees 

3.1 INTRODUCTION 

3.2 FUZZY DECISION TREE ALGORITHM 

3.3 OPTIMIZED WEIGHTED FUZZY DECISION TREE 

3.4 SIMULATION RESULTS 

3.5 CONCLUSION 

 

Chapter two had introduced some theoretical background to NN, FL and DT. This 

chapter will introduce the Optimized Weighted Fuzzy Decision Tree which is a classifier 

based on FL, ANN and DT. This chapter proposes an optimized WFDT, incorporating the 

introduction of Fuzzy C-Means to fuzzify the input instances but keep the expected 

labels crisp. This leads to a different output layer activation function and weight 

connection in the NN structure obtained by mapping the WFDT to NN. The chapter also 

introduces a momentum term in the learning process to train the weight connections to 

avoid oscillation or divergence. A new reasoning mechanism has also been proposed to 
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combine the constructed tree with those weights which had been optimized in the 

learning process. These improvements of the Optimized Weighted Fuzzy Decision Tree 

(OWFDT) will be verified using two benchmark datasets and one dataset collected from 

our projects in this chapter. Three other datasets will also be applied to OWFDT in the 

following three chapters to demonstrate those improvements. 

3.1 Introduction 

Decision tree learning is one of the most widely used and accepted techniques for 

inductive inference. After partitioning the feature space, a tree is formed of nodes and 

branches. If a node does not have any children, it is classified as a leaf node. Every leaf 

node is associated with a label or value that characterizes the given data (Breiman, 

Friedman, Stone, & Olshen, 1984). 

Many learning algorithms have been proposed for decision trees in the past. The most 

popular one was developed by Quinlan and is known as Interactive Dichotomizer 3 (ID3) 

(Quinlan, 1986). During the past several decades, many efforts have been made to 

combine fuzzy set theory with decision tree technique (Janikow, 1998; Levashenko, 

Zaitseva, & Puuronen, 2007; Yuan & Shaw, 1995; Zhiheng, Gedeon, & Nikravesh, 2008). 

Fuzzy set provides a theoretical background for fuzzy representation and fuzzy modeling 

of language related uncertainties. The combination of fuzzy sets with decision tree 

enables the latter to handle the uncertainty and enhances its approximate reasoning 
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capability without sacrificing comprehensibility and ease of application (R.Weber, 1992; 

X. Wang, Chen, Qian, & Ye, 2000). 

3.2 Fuzzy Decision Tree Algorithm 

The fuzzy decision tree differs from the traditional crisp decision tree in two aspects: it 

uses splitting criteria based on fuzzy restrictions and uses a different inference 

procedure. 

3.2.1 ID3 Algorithm Introduction 

 

The ID3 algorithm is based on information entropy theory. It examines all the features 

and chooses the one which has the greatest information gain or the greatest entropy 

decrease. Entropy is defined as   (−𝑝𝑖𝑖 𝑙𝑜𝑔
2
𝑝𝑖) where pi  is the possibility of occurrence 

for class  i in the whole dataset.  

Suppose we have L labeled patterns which fall into 𝐶𝐾 clusters belonging to 𝐶𝐾 classes. 

The ID3 algorithm for constructing a decision tree is outlined below: 

 Compute the information content at the current node; 

 Select the feature which results in the maximum decrease of entropy as the 

feature to be split at this node; 

 Build the leaves of the current node using the selected feature; 

 Repeat step 1 to 3 until all the leaves contain a pure class thus the tree’s entropy 

is zero. 
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In Fuzzy ID3 algorithm, input attributes are automatically discretized in linguistic terms, 

based on the distribution of pattern points in the feature space.  Input feature values 

are described in terms of some combination of overlapping membership values in the 

linguistic property sets such as the most widely used low (L), medium (M) and high (H). 

An n-dimensional pattern 𝐼 = [𝐹1 , 𝐹2 , …  𝐹𝑛] will be represented by a 3n-dimensional 

pattern after being fuzzified: 

                𝐼 = [𝜇𝑙𝑜𝑤 
 𝐹1 , 𝜇𝑚𝑒𝑑

 𝐹1 , 𝜇𝑕𝑖𝑔𝑕
 𝐹1 , 𝜇𝑙𝑜𝑤 

 𝐹2 , 𝜇𝑚𝑒𝑑
 𝐹2 , 𝜇𝑕𝑖𝑔𝑕

 𝐹2 , …, 

𝜇𝑙𝑜𝑤   𝐹𝑛 , 𝜇𝑚𝑒𝑑  𝐹𝑛 , 𝜇𝑕𝑖𝑔𝑕 𝐹𝑛 ] 

 =  𝐹1,𝑙 , 𝐹1,𝑚 , 𝐹1,𝑕 , 𝐹2,𝑙 , 𝐹2,𝑚 , 𝐹2,𝑕 , … , 𝐹𝑛,𝑙 , 𝐹𝑛,𝑚 , 𝐹𝑛,𝑕                

(1)  

where µ is the membership functions of the corresponding linguistic terms low, medium 

and high along every feature. 

The fuzzy ID3 algorithm is very similar to ID3, except that rather than selecting the 

attribute based on the information gain (computed based on the probability of 

unfuzzified data) it computes the information gain based on the probability of the 

membership values in the dataset. The Fuzzy ID3 algorithm is extended so as to be 

applicable to a fuzzy set of data (a dataset with membership grades) and generate a FDT 

using fuzzy sets defined for all attributes. A fuzzy decision tree consists of nodes for 

testing attributes, edges for branching by membership values of fuzzy sets and leaves 

for deciding class names with certainties. 
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3.2.2 Construction of a Fuzzy Decision Tree Based on Fuzzy ID3 

 

Suppose we have a data set D with m instances and each instance has n features which 

can be denoted as  𝐼 = [𝐹1 , 𝐹2 , …  𝐹𝑛] and I has been classified as a certain class in the 

class set 𝐶 = [1, 2, … 𝐶𝐾] . The input features can be fuzzified as 

[𝐹1,𝑙 , 𝐹1,𝑚 , 𝐹1,𝑕 , 𝐹2,𝑙 , 𝐹2,𝑚 , 𝐹2,𝑕 , … , 𝐹𝑛,𝑙 , 𝐹𝑛,𝑚 , 𝐹𝑛,𝑕 ] . Let  𝐷𝐶𝑘   be a fuzzy subset in D which 

just includes a pure class  𝐶𝑘  and let  𝐷  be the sum of the membership values in a fuzzy 

set of data D. The fuzzy ID3 algorithm to generate a fuzzy decision tree can be 

summarized as follows (Umanol, et al., 1994): 

 Generate the root node that has a set of all data, i.e., a fuzzy set of all data with 

the membership value 1. 

 If a node t with a fuzzy set of data D satisfies the following conditions: 

(a) the membership value proportion of a sub dataset which has a pure class  𝐶𝑘   

is greater than or equal to a threshold  𝜃𝑟  , that is, 

 
 𝐷𝐶𝑘  

 𝐷 
≥ 𝜃𝑟  (2)  

(b) the number of instances in a dataset is less than a threshold  𝜃𝑛  , that is,    

  𝐷 𝑙𝑒𝑛𝑔𝑡 𝑕 < 𝜃𝑛  (3)  

(c)  there are no attributes for further classification, 

Then it is a leaf node and will be assigned to a class name (more detailed method is    

described in step 3). 
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 If the node t does not satisfy the conditions in previous step, it is not a leaf node 

and the child nodes are generated as follows: 

a) For any feature 𝐹𝑖(𝑖 = 1,2, … , 𝑛) in the dataset, calculate the information 

gain  𝐺 𝐹𝑖 , 𝐷 , as formulated in equations 4 to 8, and select the test 

attribute𝐹𝑚𝑎𝑥 , that maximizes  them. 

b) Divide dataset D into three fuzzy subsets 𝐷𝑙 , 𝐷𝑚 , 𝐷𝑕  according to 𝐹𝑚𝑎𝑥 , 

where the Membership value of the data in 𝐷𝑗 ,  𝑗 = 𝑙, 𝑚, 𝑕   is updated 

to the product of the membership value in D and the prospective 

membership value of 𝐹𝑚𝑎𝑥 ,𝑗  𝑗 = 𝑙, 𝑚, 𝑕  of the feature 𝐹𝑚𝑎𝑥  in D. 

c) Generate new nodes 𝑡1, 𝑡2, 𝑡3 , for fuzzy subsets 𝐷𝑙 , 𝐷𝑚 , 𝐷𝑕 ,  and label the 

fuzzy sets 𝐹𝑚𝑎𝑥 ,𝑗  𝑗 = 𝑙, 𝑚, 𝑕   to edges that connect between the nodes 

𝑡𝑖  and root t. 

d) Replace D by 𝐷𝑖 𝑖 = 𝑙, 𝑚, 𝑕  and repeat from 2 recursively. 

The information gain 𝐺 𝐹𝑖 , 𝐷  for the attribute 𝐹𝑖  in the dataset D is defined by: 

 𝐺 𝐹𝑖 , 𝐷 = 𝐼 𝐷 − 𝐸(𝐹𝑖 , 𝐷) (4)  

where 

 𝐼 𝐷 = −  (𝑝𝑘

𝐶𝑘

𝑘=1

∗ 𝑙𝑜𝑔2𝑝𝑘) (5)  

 𝐸 𝐹𝑖 , 𝐷 =  (𝑝𝑖,𝑗

𝑗

∗ 𝐼  𝐷𝐹𝑖,𝑗
 )(𝑗 = 𝑙, 𝑚, 𝑕) 

(6)  
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 𝑝𝑘 =
 𝐷𝐶𝑘  

 𝐷 
 (7)  

 𝑝𝑖,𝑗 =
 𝐷𝐹𝑖,𝑗

 

 𝑗  𝐷𝐹𝑖,𝑗
 

(𝑗 = 𝑙, 𝑚, 𝑕) (8)  

As for assigning the class name to the leaf node, Fuzzy ID3 proposes two typical 

methods as follows:  

 The node is assigned to the class name whose membership value holds the 

largest proportion of the whole membership vales in the dataset associated with 

this leaf node; 

 The node is assigned to all class names with prospective possibilities which are 

calculated as the proportion of the prospective class membership value to the 

whole membership vales in the dataset associated with this leaf node. 

If the Wisconsin Breast Cancer dataset (Black & Merz) was applied to the procedures 

listed as above, the feature which has the biggest information gain in the tree root will 

be the sixth feature (𝐹6) in this dataset. According to (𝐹6), the original dataset D can be 

divided into three fuzzy subsets 𝐷6,𝑙 , 𝐷6,𝑚 , 𝐷6,𝑕 . Three child nodes were then created for 

the root node, and three subsets 𝐷6,𝑙 , 𝐷6,𝑚 , 𝐷6,𝑕  were assigned to three child nodes. This 

process was repeated until equation 2 or 3 was satisfied. Figure 3-1 shows a part of a 

fuzzy decision tree constructed using the Wisconsin Breast Cancer dataset. This dataset 

consists of 569 samples. Each of these samples is denoted by 30 attributes and is 
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classified as either ‘benign’ or ‘malignant’. The FDT was constructed using half of the 

samples as a training dataset. 

 

Figure 3-1: the architecture of a Fuzzy Decision Tree 

3.2.3 Fuzzy Decision Tree Inference Mechanism 

 

In addition to the heuristic algorithm for generating the FDT, another aspect associated 

with FDT induction is the reasoning mechanism. After generating the FDT, we need a 

mechanism to predict the classification of novel examples or to test the classification of 

training examples. 

A FDT is composed of a set of internal nodes which denote the attributes used to 

construct the FDT and a set of leaf nodes which represents the degree of certainty of 

the node belonging to each class. The connection from root to leaf is called a branch or 

a path. The connection between two adjacent nodes (parent node and child node) in 
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one path is called a segment of the path. All segments in one path are considered to 

have equal importance to the classes labeled at the leaf. 

Suppose a FDT grows m leaf nodes, which leads to m paths. Each  𝑝𝑎𝑡𝑕
𝑖
, (𝑖 =  1,2,…𝑚) 

consists of several segments denoted by 𝑠𝑒𝑔𝑚1
𝑖 , 𝑠𝑒𝑔𝑚2

𝑖 , … 𝑠𝑒𝑔𝑚𝑛𝑖
𝑖  . The certainty 

degree of that leaf node belonging to each class is denoted as a vector: 

[𝛼𝑖,1, 𝛼𝑖,2, … , 𝛼𝑖,𝐶𝐾
]. For example, leaf node 1 in Figure 3-1 is a path which consists of 

two segments 𝑠𝑒𝑔𝑚1
1 (𝐹6,𝑙) and  𝑠𝑒𝑔𝑚2

1  (𝐹3,𝑙). The numerical value associated with 

every segment is a membership value of that attribute on that linguistic term (Tsang, 

Wang, & Yeung, 2000). An instance is classified by starting from the root node to reach 

every leaf along the corresponding path. Let e be the new example to be tested on the 

tree. For every 𝑝𝑎𝑡𝑕
𝑖
 , (𝑖 =  1,2,…𝑚) the membership value on every segment can be 

denoted as 𝐹1
𝑖 , 𝐹2

𝑖 , … 𝐹𝑛𝑖
𝑖  . The mechanism for classifying the class of the example e is 

summarized as follows: 

 For each leaf node (path) 𝑖(1 ≤ 𝑖 ≤ 𝑚), compute the possibilities of the input 

sample e falling into each class using: 

 𝑝𝑖
𝑒 =   𝐹𝑛𝑖

𝑖

𝑛𝑖

 ∗ [𝛼𝑖,𝐶1
, 𝛼𝑖,𝐶2

, … , 𝛼𝑖,𝐶𝐾
]  (9)  

 Aggregate the possibilities of each leaf node (path) for the sample e: 

𝐶𝑒 =  𝑝𝑖
𝑒

𝑚

𝑖=1
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 The inferred result  𝐶𝑒  is regarded as a fuzzy vector  𝑐1
𝑒 , 𝑐2

𝑒 , … 𝑐𝑘
𝑒  where  𝑐𝑘

𝑒   is 

the value which indicates to what degree the example e belongs to class 

𝑘, (𝑘 = 1,2, … 𝐶𝐾). When a crisp inferred result is needed, the maximum value  

𝑐𝑚𝑎𝑥
𝑒 (1 ≤ 𝑚𝑎𝑥 ≤ 𝐶𝐾) can be regarded as the final result, which infers the 

instance to be class max(1 ≤ 𝑚𝑎𝑥 ≤ 𝐶𝐾). 

It should be noted that the inference mechanism can be converted into a set of fuzzy 

production rules (FPR), which will be discussed in the following section, section 3.3. 

3.3 Optimized Weighted Fuzzy Decision Tree 

The weights in the fuzzy decision tree refer to those parameters in each path. The most 

commonly used parameters are GW and LW, which are explained as follows (Tsang, et 

al., 2000; X. Z. Wang, Yeung, & Tsang, 2001): 

 The degree of certainty that the leaf node belongs to a certain class which is 

called the Global Weight (GW). 

In the FDT, every leaf node is assigned a possibility of belonging to all the existing classes 

by aggregating the possibilities of each leaf node (path) for every sample. The inference 

mechanism of the FDT will aggregate all the leaf nodes together to determine the 

possibility of its instance’s belongingness to the classes. In a weighted FDT, since there is 

generally more than one leaf node having the same classification, after assigning a GW 

to the leaf node (path), we introduce a different degree of importance to each node 

contributing to the final classification results. In (X. Wang, et al., 2000), only a certain 
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number of leaf nodes have global weight connections due to fuzzification of the output. 

However in our proposed technique, every leaf node has a weight connection to the 

final output, as demonstrated in Figure 3-2, since we did not fuzzify the expected output.  

 The degree of importance of each segment in a path which leads to the 

classification of that leaf node which is called Local Weight (LW). 

In the FDT inference mechanism, the weights of those segments in one path from the 

root to a leaf are considered to be equal. While in a weighted FDT, an LW is initiated and 

assigned to every segment in one path to demonstrate the relative degree of 

importance of that segment contributing to the leaf’s classification. 

After a leaf node (path) is converted to fuzzy production rule (FPR), which is similar to 

the inference mechanism in ID3, a segment in the path corresponds to a proposition in a 

FPR. The introduction of the concept of LW indicates that diverse propositions in one 

FPR should have a different degree of importance contributing to its consequent 

(classification). Actually, these weights also indicate the importance of all the attributes 

and their corresponding linguistic terms. 

We modify the weighted fuzzy production rules proposed by (X. Z. Wang, et al., 2001; 

Yeung, Wang, & Tsang, 1999) in four ways, mainly input fuzzification, modified weighted 

FPRs, the approach mapping weighted fuzzy decision tree to neural networks and an 

improved learning process for the constructed neural networks: 
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3.3.1 Fuzzify Input 

 

When the attributes are categorical, the fuzzyfication is quite straightforward. Each 

possible value can be regarded as a fuzzy subset in which the membership value is 

either zero or one. For numerical attributes, we introduced the Fuzzy C-Means (FCM) 

clustering algorithm to cluster the attribute values into three clusters representing three 

linguistic terms. The choice of the number of clusters was set to be three since it was 

guided by the notion that a value can typically be thought of as being low, medium, or 

high. We generated the memberships based on a triangular membership function. 

Three cluster centers and the maximum and minimum values along each feature will be 

used as parameters in the function. Let  𝐹𝑗 ,𝑚𝑎𝑥  and 𝐹𝑗 ,𝑚𝑖𝑛  be the maximum and 

minimum values and  𝐹𝑗 ,𝑕𝑖𝑔𝑕 , 𝐹𝑗 ,𝑚𝑒𝑑  and  𝐹𝑗 ,𝑙𝑜𝑤  be the three sorted cluster centers along 

feature 𝐹𝑗  considering N training patterns  𝐹𝑗
1 , 𝐹𝑗

2, … , 𝐹𝑗
𝑛  . The membership values of an 

input pattern along the jth feature, corresponding to the three-dimensional linguistic 

term, are formulated as Equations 10, 11 and 12 (Mitra, Konwar, & Pal, 2002). 

 𝜇𝑙𝑜𝑤  𝐹𝑗  =

 
 
 

 
 

0 𝑖𝑓 𝐹𝑗 ≥  𝐹𝑗 ,𝑚𝑒𝑑

𝐹𝑗 ,𝑚𝑒𝑑 − 𝐹𝑗

𝐹𝑗 ,𝑚𝑒𝑑 − 𝐹𝑗 ,𝑙𝑜𝑤
               𝑖𝑓 𝐹𝑗 ,𝑙𝑜𝑤 ≤ 𝐹𝑗 <  𝐹𝑗 ,𝑚𝑒𝑑

1               𝑖𝑓 𝐹𝑗 ,𝑚𝑖𝑛 ≤ 𝐹𝑗 <  𝐹𝑗 ,𝑙𝑜𝑤

  (10)  

 𝜇𝑚𝑒𝑑  𝐹𝑗  =

 
  
 

  
 

𝐹𝑗 − 𝐹𝑗 ,𝑚𝑖𝑛

𝐹𝑗 ,𝑙𝑜𝑤 − 𝐹𝑗 ,𝑚𝑖𝑛
                  𝑖𝑓 𝐹𝑗 ,𝑚𝑖𝑛 ≤ 𝐹𝑗 <  𝐹𝑗 ,𝑙𝑜𝑤

1                   𝑖𝑓 𝐹𝑗 ,𝑙𝑜𝑤 ≤ 𝐹𝑗 <  𝐹𝑗 ,𝑚𝑒𝑑

𝐹𝑗 ,𝑕𝑖𝑔𝑕 − 𝐹𝑗

𝐹𝑗 ,𝑕𝑖𝑔𝑕 − 𝐹𝑗 ,𝑚𝑒𝑑
                 𝑖𝑓 𝐹𝑗 ,𝑚𝑒𝑑 ≤ 𝐹𝑗 <  𝐹𝑗 ,𝑕𝑖𝑔𝑕

0 𝑖𝑓 𝐹𝑗 ≥  𝐹𝑗 ,𝑕𝑖𝑔𝑕

  (11)  
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 𝜇𝑕𝑖𝑔𝑕 𝐹𝑗  =

 
 
 

 
 

0 𝑖𝑓 𝐹𝑗 < 𝐹𝑗 ,𝑚𝑒𝑑

𝐹𝑗 ,𝑕𝑖𝑔𝑕 − 𝐹𝑗

𝐹𝑗 ,𝑕𝑖𝑔𝑕 − 𝐹𝑗 ,𝑚𝑒𝑑
                 𝑖𝑓 𝐹𝑗 ,𝑚𝑒𝑑 ≤ 𝐹𝑗 <  𝐹𝑗 ,𝑕𝑖𝑔𝑕

1                 𝑖𝑓 𝐹𝑗 ,𝑕𝑖𝑔𝑕 ≤ 𝐹𝑗 ≤  𝐹𝑗 ,𝑚𝑎𝑥

  (12)  

In our dataset and simulations, each instance belongs to a single class, so unlike the 

usual weighted fuzzy decision trees, we did not fuzzify the class labels, which will result 

in different mapping structure from the weighted fuzzy decision tree and reasoning 

mechanism as discussed in the following sections. 

3.3.2 Modified Weighted Fuzzy Production Rules 

 

Usually, a rule consists of propositions in the antecedent and a conclusion in the 

consequent part. In (Tsang, et al., 2000; Yeung, et al., 1999) a generic form of fuzzy 

production rule was proposed by introducing LW and GW. LW indicates the importance 

of each proposition and GW indicates the importance of the entire rule. For instance, a 

generic type of FPR can be denoted as: 

 𝑅𝑖 : If  𝑉1  is 𝐴1
(𝑖)

 and 𝑉2 is 𝐴2
(𝑖)

… and 𝑉𝑛𝑖
 is  𝐴𝑛𝑖

(𝑖)
 (13)  

Then 

 𝑈 is 𝐵𝑖 , 𝐿𝑊1
(𝑖)

, 𝐿𝑊2
(𝑖)

, … , 𝐿𝑊𝑛𝑖

(𝑖)
, 𝐺𝑊(𝑖) (14)  

The propositions in the rule specify the attribute values as: 

Proposition  1: 𝑉1 is  𝐶1
(𝑖)

 ; Proposition 2 ∶ 𝑉2  is  𝐶2
(𝑖)

, …,  Proposition  𝑛𝑖 : 𝑉𝑛𝑖 
 is  𝐶𝑛𝑖

(𝑖)
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where  𝑉1 , 𝑉2 , … , 𝑉𝑛𝑖
  are attributes and  𝐷1

(𝑖)
, 𝐷2

(𝑖)
, … , 𝐷𝑛𝑖

(𝑖)
 are observed fuzzy values of 

these attributes. 𝐵𝑖  is the output of the fuzzy rule,  𝐿𝑊𝑖   is the weight assigned to each 

attribute and  𝐺𝑊(𝑖)  is the weight for this rule contributing to the final conclusion.  

For each rule, the similarity between the proposition 𝐴𝑗
(𝑖)

 and the observed attribute-

value 𝐷𝑗
(𝑖)

 is defined as the membership value which indicates to what degree the 

example belongs to the corresponding linguistic term. This similarity is denoted by𝑆𝑀𝑗
(𝑖)

 .  

So the overall similarity of the rule can be defined as: 

 𝑆𝑀(𝑖) =  𝑀𝑖𝑛 1≤𝑗≤𝑛𝑖 (𝐿𝑊𝑖 ∗ 𝑆𝑀𝑗
(𝑖)

) (15)  

Suppose there are 𝐶𝐾  classes denoted by 𝐶𝑙𝑎𝑠𝑠1 , 𝐶𝑙𝑎𝑠𝑠2 , … , 𝐶𝑙𝑎𝑠𝑠𝐶𝐾
. The inferred result 

is regarded as a fuzzy vector  𝑥1 , 𝑥2 , … , 𝑥𝐶𝐾
  where  𝑥𝑘(𝑘 = 1,2, … , 𝐶𝐾)  is the value 

which indicates to what degree the observed object belongs to  𝐶𝑙𝑎𝑠𝑠𝑘(𝑘 = 1,2, … , 𝐶𝐾) . 

The degree is determined by the following: 

 𝑥𝑘 =  𝐺𝑊(𝑖) ∗ 𝑆𝑀(𝑖)

𝑩(𝑖)=𝐶𝑙𝑎𝑠𝑠 𝑘(𝑘=1,2,…,𝐶𝐾 )

 
(16)  

3.3.3 Mapping weighted fuzzy Decision Tree to Neural Networks 

 

In order to gain better prediction results, the next step is to optimize both the local and 

global weights associated with the rules. Inspired by the NN principles, those rules can 

be mapped to the NN structure so that the weights can be updated through learning 

(Suarez & Lutsko, 1999; Tsang, et al., 2000). Figure 3-2 shows the structure of the 
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converted NN and the relationship between the NN and the rules. This structure is 

based on a part of Wisconsin Breast Cancer fuzzy decision tree showed in Figure 3-1. 

The weights between the input and hidden layers were set to be the LWs and the 

weights between the hidden layer and the output layer were set to be GWs. The 

following is a specific description of the three layers in the network structure. 

 

Figure 3-2: The Mapping Structure from FPR to Neural Network 

Input Layer: Nodes in the input layer represent the propositions in the antecedent. 

The input of each node is regarded as the degree of similarity between the observed 

attribute value and the corresponding linguistic term (proposition) of the antecedent in 

a fuzzy rule. In our simulation, the input value was set to be the membership value for 

the prospective linguistic terms. 

Hidden Layer: The nodes in this layer represent the leaf nodes in the fuzzy decision 

tree or the rules in the fuzzy production rules. Unlike the usual neural networks in which 
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every node in the input layer has a weight associated with the hidden node, ONLY those 

nodes which appear in the antecedent part of the rule will have weights (LWs) assigned 

to connect to the associated nodes in the hidden layer. The activation function in this 

layer was set to: 

 𝐻𝑗 = 𝑀𝑖𝑛(𝐿𝑊1,𝑗 ∗ 𝑥1 , 𝐿𝑊2,𝑗 ∗ 𝑥2 , … , 𝐿𝑊𝑁𝑜 ,𝑗 ∗ 𝑥𝑁𝑜
) (17)  

Output Layer: The nodes in this layer denote the expected classes for each input. 

Unlike the conventional fuzzy production rules, we did not fuzzify the output labels, the 

connection weights existed between every node in the hidden layer and output layer as 

in the standard NN structure. These weights refer to the global weights (GW) which 

indicate the degree of importance of a certain rule contributing to the expected class. 

The output of each node represents the degree to which the input pattern belongs to 

the classes corresponding to the node. The activation function in this layer was set to: 

 𝑂𝑘 =   𝐺𝑊𝑗 ,𝑘 ∗ 𝐻𝑗  ,  𝑘 = 1,2, … , 𝐶𝐾 

𝑗

 
(18)  

3.3.4 Neural Network Learning Process  

We introduced the backpropagation algorithm to train the Neural Network, since it is 

the most popular and typical training algorithm in neural network (Yong, Xi-Zhong, & 

Qiang, 2003). The input layer 𝑦𝑖
 0 

(𝑖 = 1,2, … , 𝑁0) (𝑁0 is the number of neurons in the 

input layer) is initialized to the membership values of the associated linguistic terms.  
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According to the weighted production rules, the hidden layer 𝑦𝑗
(1)

and the output layer 

𝑦𝑘
(2)

 can be calculated respectively as: 

 𝑦𝑗
(1)

=   𝐿𝑊𝑖,𝑗 ∗ 𝑦𝑖
 0 

 𝑗 = 1,2, … , 𝑁1

𝑁0

𝑖=1

 (19)  

 𝑦𝑘
(2)

=   𝐺𝑊𝑗 ,𝑘 ∗ 𝑦𝑖
 1 

 𝑘 = 1,2, … , 𝑁2

𝑁1

𝑗 =1

 (20)  

where 𝑁1 and 𝑁2 are the number of neurons in the hidden layer and output layer 

respectively. We define the differentiable mean-square-error function as the error cost 

function of the OWFDT to be: 

 𝐸 =
1

2𝑁
  (𝑦𝑘

2,𝑛 − 𝑑𝑘
2,𝑛)2

𝑁2

𝑘=1

𝑁

𝑛=1

 (21)  

Where N is the total number of training instances, 𝑑𝑘
2,𝑛

  is the desired output for this  𝑛𝑡𝑕  

input pattern while 𝑦𝑘
2,𝑛  is the actual output. The error E is the function with respect to 

LW and GW, which needs to be updated and optimized. According to the gradient 

descent method, the updating rules for weights should be written as: 

 𝐿𝑊𝑖𝑗 = 𝐿𝑊𝑖𝑗 − 𝛼
𝜕𝐸

𝜕𝐿𝑊𝑖𝑗
 ; (22)  

 𝐺𝑊𝑗𝑘 = 𝐺𝑊𝑗𝑘 − 𝛽
𝜕𝐸

𝜕𝐺𝑊𝑗𝑘
 ; (23)  

where 𝛼 and 𝛽 are learning rates for the hidden layer and output layer respectively. In 

this gradient descent algorithm, small learning rates often lead to a very low 
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convergence speed, while large learning parameters will inevitably result in oscillations 

or even divergence. To avoid this issue, we naturally introduced the momentum term to 

our training process in which the change of the weights of the current iteration is made 

dependent partly on the weight changes of the previous iteration. These updated 

weights lead to a uniform decrease of error function. This can be achieved by adding a 

momentum term to equation 22 and 23, which leads to a modified weight update 

equation (Karray & Silva, 2005): 

 𝐿𝑊𝑖𝑗
𝑡 = 𝐿𝑊𝑖𝑗

𝑡 − 𝛼
𝜕𝐸𝑡

𝜕𝐿𝑊𝑖𝑗
𝑡 + 𝛾∆𝐿𝑊𝑖𝑗

𝑡−1 ; (24)  

 𝐺𝑊𝑗𝑘
𝑡 = 𝐺𝑊𝑗𝑘

𝑡 − 𝛽
𝜕𝐸𝑡

𝜕𝐺𝑊𝑗𝑘
𝑡 + 𝛾∆𝐺𝑊𝑗𝑘

𝑡−1 ;  

where t is the iteration number. The two partial derivatives in Equation 24 can be 

expressed as Equations 25 and 26 which can be derived using differentiation to equation 

21. 

3.3.5 Optimized Weighted Fuzzy Decision Tree Reasoning Mechanism 

 

To improve the classification accuracy, we propose a new reasoning mechanism which 

combines the global weights and the constructed fuzzy decision tree. First, we redefine 

the certainty factor of each leaf node. Recall from the mapping process of FDT that each 

node will classify the input instance to different classes with a different certainty. This 

was determined when the FDT was constructed.  
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𝜕𝐸𝑡

𝜕𝐺𝑊𝑖𝑗
𝑡 =  

 𝑦𝑘
2,𝑡 − 𝑑𝑘

2,𝑡 ∗ 𝑦𝑗
(1)

     if 𝐺𝑊𝑗𝑘 ∗ 𝑦𝑗
(1)

≥  (𝐺𝑊𝑞𝑗 ∗ 𝑦𝑞
(1)

)
𝑞≠𝑗

 

0                                otherwise

  (25)  

𝜕𝐸𝑡

𝜕𝐿𝑊𝑖𝑗
𝑡

=

 
 
 

 
   𝑦𝑘

2,𝑡 − 𝑑𝑘
2,𝑡 𝐺𝑊𝑗𝑘

𝑡 ∗ 𝑦𝑗
 0,𝑡 

𝑁2

𝑘=1

0

 

  if 𝐺𝑊𝑗𝑘 ∗ 𝑦𝑗
(1)

≥  (𝐺𝑊𝑞𝑗 ∗ 𝑦𝑞
(1)

)
𝑞≠𝑗

      and 𝐿𝑊𝑗𝑘 ∗ 𝑦𝑗
(0)

≤  (𝐿𝑊𝑝𝑗 ∗ 𝑦𝑝
(0)

)
𝑝≠𝑖

otherwise

 

(26)  

Take leaf  node  m as an example, the certainty factor of that leaf node can be calculated 

as: 

 𝛼𝑚 =  
 𝐷𝑚

𝐶1  

 𝐷𝑚  
,
 𝐷𝑚

𝐶2  

 𝐷𝑚  
, … ,

 𝐷𝑚
𝐶𝐾  

 𝐷𝑚  
  (27)  

As a hierarchical structure, a FDT shares the membership values along the paths leading 

to each leaf node from the root node. In Figure 3-1, 𝑝𝑎𝑡𝑕2 has two segments 𝑠𝑒𝑔𝑚6,𝑙𝑜𝑤  

and 𝑠𝑒𝑔𝑚3,𝑚𝑒𝑑  , so the membership degree of  𝑝𝑎𝑡𝑕2 can be calculated as: 

 𝜇𝑝𝑎𝑡 𝑕2

𝑖 = 𝜇𝑙𝑜𝑤  𝐹6
𝑖 ∗ 𝜇𝑚𝑒𝑑  𝐹3

𝑖 =  𝐹6,𝑙
𝑖 , 𝐹3,𝑚

𝑖   (28)  

For an arbitrary path m and input pattern i , the membership degree of 𝑝𝑎𝑡𝑕2 can be 

denoted as: 

 𝜇𝑝𝑎𝑡 𝑕𝑚

𝑖 =  𝜇 𝑙𝑜𝑤 ,𝑚𝑒𝑑𝑖𝑢𝑚 ,𝑕𝑖𝑔𝑕 

𝑗

(𝐹𝑗
𝑖) 

(29)  

Figure 3-1 shows the basic structure of the FDT for the breast cancer dataset, in which 

seven leaf nodes are combined to produce a final conclusion. In our proposed reasoning 
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mechanism, the certainty factor and the membership value of that path (leaf node) as 

well as the global weights are incorporated together to infer the classification result. For 

a random input pattern i , the possibility of falling into class 𝑘(𝑘 = 1,2, … , 𝐶𝐾) at  𝑝𝑎𝑡𝑕2 

is given by: 

 𝜇𝑝𝑎𝑡 𝑕𝑚

𝑖 ∗ 𝛼𝑚,𝑘 ∗ 𝐺𝑊𝑚𝑘  (30)  

As a result, the prediction of all the leaf nodes for a particular class  𝑘(𝑘 = 1,2, … , 𝐶𝐾) is 

combined to produce the possibility 𝑦𝑘
𝑖 (𝑘 = 1,2, … , 𝐶𝐾) for the 𝑖𝑡𝑕   pattern: 

 𝑦𝑘
𝑖 =  𝜇𝑝𝑎𝑡 𝑕𝑚

𝑖

𝑀

𝑚=1

∗ 𝛼𝑚,𝑘 ∗ 𝐺𝑊𝑚𝑘  (31)  

In Figure 3-1, the predicted possibilities for ‘Benign’ (y1)  and ‘Malignant’  (y2) can be 

calculated respectively as: 

 𝑦1
𝑖 =  𝜇𝑝𝑎𝑡 𝑕𝑚

𝑖

𝑀

𝑚=1

∗ 𝛼𝑚,1 ∗ 𝐺𝑊𝑚1 (32)  

 𝑦2
𝑖 =  𝜇𝑝𝑎𝑡 𝑕𝑚

𝑖

𝑀

𝑚=1

∗ 𝛼𝑚,2 ∗ 𝐺𝑊𝑚2 (33)  

If a crisp classification result is required, the class with the highest possibility can be 

selected as the expected class. For the breast cancer dataset, to classify a given instance 

either as ‘Benign’ or ‘Malignant’, the class corresponding to the maximum prediction 

possibility will be selected as: 
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 𝑂𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑦1
𝑖 , 𝑦2

𝑖   (34)  

3.4 Simulation Results 

In order to evaluate the performance of the proposed technique, we applied it to 

several benchmark datasets which were introduced in chapter two. 

Table 3-1: Summary of the Datasets Employed  

Database 

 

Domain Classes Attributes Samples 

Iris Botanic 3 4 150 

Wisconsin Breast Cancer Medical 2 30 569 

Eye Bacteria Medical 6 32 180 

Brain Computer Interface Medical 2 12 378 

Composite Material Material 3-5 4 534-7052 

 

Table 3-1 summarizes all the datasets. The Iris dataset and Wisconsin dataset are widely 

used as benchmark datasets to test the performance of the intelligent systems 

techniques. The three other datasets were also introduced to evaluate the performance 

of OWFDT. 

 For the BCI dataset, where a training dataset (278 instances) and a test data set (100 

instances) are present, the test dataset was classified based on the constructed and 

optimized OWFDT using the training dataset. For the other datasets, we randomly chose 
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50% of the dataset to grow, update and optimize the weights of the OWFDT and the 

other 50% was used as a test dataset to test the accuracy of the OWFDT.  

Table 3-2: Testing accuracy of the employed datasets (in percentage) 

Dataset Fuzzy ID3 WFDT OWFDT 

Iris 90.67 93.33 96.00 

Wisconsin Breast Cancer 92.98 93.31 96.49 

Brain Computer Interface 89.00 90.00 92.00 

 

Table 3-3: Training epochs of WFDT and OWFDT 

Dataset Fuzzy ID3 WFDT OWFDT 

Iris n/a 186 50 

Wisconsin Breast Cancer n/a 479 143 

Brain Computer Interface n/a 354 208 

 

Table 3-2 summarizes the mean test accuracies of the datasets employed. The 

classification accuracy was calculated as: 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑛𝑟 𝑛 ∗ 100 , where n is the total 

number of test instances and nr is the number of instances which had been correctly 

classified. This simulation was repeated five times for each dataset. The accuracy was 

the average of the five. The table shows that the proposed optimization methods can 

improve the WFDT’s accuracy for these datasets. The improvement is generally 2 to 3 

percent higher than straight WFDT and typically 3 to 6 percent higher than Fuzzy ID3 in 

terms of accuracy. 
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Table 3-3 shows the average epochs OWFDT used to reach the minimum mean square 

error. The number of epochs was also calculated as the average of five simulations. It 

can be seen that OWFDT need less average epochs than WFDT in order to optimize the 

weights between the layers, so it demonstrates the efficiency of OWFDT over the 

weighted FDT while maintaining its effectiveness. 

3.5 Conclusion 

The incorporation of the attribute weights and the leaf nodes (paths) weights has 

enhanced the representational power and improved the accuracy of the WFDT. After 

mapping and converting the weighted fuzzy decision tree to a NN, these weights can be 

updated towards a convergent position. The learning performance and testing accuracy 

are improved in terms of the following aspects in our technique: 

 The fuzzification of the input instances is more efficient and effective if the Fuzzy 

C-Means technique is introduced to determine the possible cluster centers, 

which can be used to fuzzify the data in terms of each linguistic term. 

 Incorporating a momentum term to the gradient descent algorithm to train the 

NN can help the learning process to avoid local minima. In addition, it can avoid 

oscillations or divergence due to an inappropriately large learning rate or a low 

convergence rate due to a relatively small learning rate. 

 The new reasoning mechanism proposed in our OWFDT has combined the leaf 

nodes weights with the leaf nodes certainty to infer the expected classification 
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results. This not only overcomes drawbacks in terms of not considering the leaf 

nodes’ degree of importance in inferring the results of the traditional FDT 

inference mechanism but also enhances WFDT’s reasoning mechanism by 

combining each leaf node’s degree of importance with leaf nodes (path) weights 

to infer an unknown test instance. 

The proposed OWFDT technique has shown its ability to improve the prediction 

accuracy of the Fuzzy ID3 and enhancement of WFDT’s ability to precisely infer an 

unseen instance through the weighted production rules. 

In the next three chapters, OWFDT will be introduced to be applied to three datasets to 

evaluate its performance over traditional FDT and weighted FDT. In chapter six, a 

benchmarking study will be conducted to compare its effectiveness, in terms of its 

accuracy and the number of rules generated by OWFDT, with some other hybrid 

techniques such as ANFIS, EFuNN etc.  
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Chapter IV: Pattern Recognition of Fiber-

Reinforced Plastic Failure Mechanism: Using 

Intelligent Systems Techniques 

4.1 INTRODUCTION 

4.2 TEST APPARATUS AND PROCEDURE 

4.3 DATA ANALYSIS 

4.4 TEST RESULTS 

4.5 DISCUSSION AND CONCLUSIONS 

4.6 CLASSIFIER DESIGN USING OPTIMIZED WEIGHTED FUZZY DECISION TREE 

4.7 CONCLUSIONS  

Chapter three introduced the Optimized Weighted Fuzzy Decision Tree (OWFDT) which 

is theoretically based on FL, ANN and DT and verified its efficiency and effectiveness 

using several benchmark datasets. In this chapter OWFDT will be used to design a 

classifier to predict the possible failure mechanisms in composite materials. Before 

designing the classifier, seven datasets were collected by sampling acoustic emission 

events signals in an attempt to find out the possible failure mechanisms in composite 
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material. SOM and FCM will be used to cluster the datasets into different groups 

representing different failure mechanisms. 

4.1 Introduction 

The identification of the type of discontinuities or failure mechanisms within fiber-

reinforced plastic (FRP) structures normally requires the use of local nondestructive 

testing (NDT) methods, among which, acoustic emission or acoustic event (AE) has been 

widely used due to its high sensitivity. AE is a source of elastic waves when external 

stimuli such as mechanical loading are imposed to composite material. AE is generated 

by the material itself and once generated, will be detected by AE sensors and acquired 

by the AE data acquisition system. The recorded AE data are in the form of signal 

parameters, such as amplitude, duration, signal strength and the number of acoustic 

events. These are the key parameters in the structural evaluation of the material. 

Normally, FRPs consist of more than one material. As a result, the failure mechanism will 

occur in one or a combination of materials. The various types of damage mechanism in 

FRP are matrix cracking, fiber breakage, fiber-matrix debonding, delamination, and fiber 

pullout (Ativitavas, Pothisiri, & Fowler, 2006). 

Many research works have focused on observing AE signal parameters to identify failure 

mechanisms (Godin, Huguet, Gaertner, & Salmon, 2004; Huguet, Godin, Gaertner, 

Salmon, & Villard, 2002; Johnson, 2002). This is usually done by using some Intelligent 

Systems Techniques (ISTs) to perform pattern recognition of AE data relating to 
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different failure mechanisms. The aim of the present study is to use intelligent systems 

to identify the unique characteristics of different failure mechanisms from AE data so 

that it can recognize the distinctive pattern of an unknown composite material failure 

mechanism. 

For the current study, pattern recognition by means of ISTs is applied to a group of AE 

bursts rather than to individual sensor hits. This is because an individual hit, which may 

be one among thousands, is not likely to be representative of emission. In the work here 

we use two widely used approaches Self-Organizing Map (SOM) and Fuzzy C-means 

(FCM). These two techniques are used to classify AE bursts into different groups which 

represent different failure mechanisms. After that OWFDT is introduced to design the 

classifier to predict possible failure mechanism. 

4.2 Test Apparatus and Procedure 

In this section we first give a brief introduction to the AE equipment and the AE 

software system. After that a description of the test procedure is included in the second 

subsection. 

4.2.1 Acoustic emission equipment 

Due to the requirement to have a flexible and feasible process for manufacturing the 

test coupons in the current research, ‘hand lay up’ was the most suitable solution, 

because by using ‘hand lay up’ it is possible to control fibre volume fraction, fibre 

orientation and curing parameters. The fiber glass volume fraction that is normally 
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achieved by this manufacturing process is 57%. All the Glass/Polyester plates were 

manufactured in-house in order to have a closer control of the parameters that 

influence the mechanical properties and ultimately the acoustic response of the 

materials. These parameters included fiber orientation and the dimensions of the 

coupons which will be used for the test. The coupon dimensions for the current 

research were 20 mm x 200 mm x 1.8 mm with three layers of unidirectional glass tape. 

Each plate was cut into different orientations in 15° steps against the direction of the 

load, which lead to seven different species (0°, 15°, 30°, 45°, 60°, 75° and 90°). 

A broadband WD piezoelectric sensor manufactured by Physical Acoustic Corporation 

was used to capture the stress waves (AE events). The acoustic emission software was 

the TRA (transient recorder package) from Physical Acoustics Corporation 2001 (Pollock, 

1989). The hardware was a sound card AEDSP-32 (Acoustic Emissions Digital Signal 

Processor) with a digital signal processor by Texas Instruments (TMS320C40). It has a 

maximum sampling speed of 8 MHz and 16 bit resolution, between 20 and 100 dB. After 

capturing the event, the piezoelectric sensor transforms the mechanical deformation of 

the material surface into an electrical signal. This signal is transferred to the sound card, 

which processes it and displays it as a wave signal as shown in Figure 4-2. The software 

used with this sound card can display on screen the transient waveform for each event. 

Each event can then be individually exported to an ASCII file, which is then processed by 

a program written in the “R” programming language (open source code language). With 

this program it is possible to perform and visualize a Fast Fourier Transformation (FFT) 

of each event and select the most dominant frequencies, which are to be used as the 
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descriptor of the event. The distribution of these dominant frequencies as the test 

progresses and the changes of orientation will show the trends of the events occurring 

in the test specimen. 

From the literature review (de Groot, Wijnen, & Janssen, 1995; Eduard, Hines, Gardner, 

& Franco, 1999; El Kadi, 2006; Godin, et al., 2004), it appears that there are several 

different approaches to the task of event recognition analysis, from simple hit analysis 

to amplitude-based and frequency-based studies. But the amplitude recorded at a 

sensor depends upon the distance the sensor is from the source of the emission and the 

amplitude of an acoustic wave is attenuated as the wave passes through the material. 

As compared with the amplitude, the frequency can be recorded and analyzed in a more 

objective and accurate way. Based on this, the dominant frequency of the signals was 

considered to be the most relevant characteristic for the present study. 

4.2.2 Test procedure 

According to Qi (Qi, 2000), 90% of AE activities for glass fiber reinforced (GFR) 

composite materials are concentrated in the frequency range 10–550 kHz. One wide 

band sensor as shown in Figure 4-1 was attached to the specimen by means of a G 

aluminum clamp with a plastic screw. The surface of the sensor was covered with silicon 

grease in order to provide good acoustic coupling between the specimen and the sensor. 

The signal was detected by the sensor and enhanced by a 2/4/6-AST pre-amplifier.  
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Figure 4-1 shows the test configuration, with the sensor clamped to the test specimen 

and the INSTRON grips where used to apply the tensile force.  

 

Figure 4-1: Test configuration, sensor coupled to the specimen using a G clamp. 

 

4.3 Data Analysis 

Initially, the MISTRAS software that records the acoustic events from each test was used 

(Pollock, 1989). It was observed that as each test progressed, the number of events 

increases significantly. Nevertheless, the data do not provide any information about the 

type of failure or the location of the failure. The TRA software, although using the same 

hardware, acquires the information in a different way; it records the complete 
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waveform and stores the event. A Fourier transformation is then applied to define the 

frequencies related with these waveforms. According to Qi (Qi, 2000) these frequencies 

are useful when one is trying to ‘‘distinguish different AE signals from various possible 

failure modes in fiber reinforced composites’’. A waveform event contains several 

component frequencies, and it is not possible to determine them visually, therefore a 

FFT was introduced for each waveform to produce a power vs. frequency graph of a 

waveform (power spectrum). Higher powers contained at particular frequencies are 

then shown as peaks on this representation of the waveform. If no single frequency is 

dominant on the waveform, more than one frequency which account for the power will 

be extracted as the descriptors of the waveform. 

 

Figure 4-2: (a), (top) waveform of a transient acoustic event; (b) (bottom) FFT power spectrum 

Although previous publications suggested that the frequency should be employed to 

differentiate between events, only one frequency is mentioned (Bohse, 2000; de Groot, 

et al., 1995; Godin, Huguet, & Gaertner, 2005). These studies had shown that frequency 
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could be used as an identifier for different failure events in composite materials, 

nevertheless studies also showed that using only the first frequency as a descriptor is 

not enough to produce optimal results (Giordano, Calabrò, Esposito, Salucci, & Nicolais, 

1999; Sause & Horn, 2010).  

Tests conducted by Ramirez-Jimenez had found that although the 1st highest frequency 

may contribute about 50% of the total power of the waveform (Ramirez-Jimenez, et al., 

2004), the remaining highest power frequencies also contribute a significant amount of 

the power. So even though the frequency with the highest power value can be used as 

an identifier for the events, however, this frequency was not enough to thoroughly 

describe the behavior of the composite material. 

The program that generates the FFT identifies by default the five frequencies from each 

signal which have the highest power peaks as shown in Figure 4-2: (a) transient event 

waveform; and (b) FFT power spectrum. Sometimes the power difference between the 

highest power frequency and the subsequent lower power frequencies is so close to 

each other that it can be assumed that a single frequency cannot constitute the 

definition of that waveform.  So it will be more practical to use the first two highest 

frequencies to characterize each acoustic event. 

The FFT power spectrum of a typical AE event in Figure 4-2 shows several peaks, the 

highest one being 280 kHz and having a second higher peak at 236 kHz. The FFT power 

spectrum can be used as a “fingerprint” for each event and therefore may be used as a 

means of distinguishing between them.  Because a single acoustic event may consist of 
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several individual sources, and each source exhibits a specific frequency and no single 

frequency can dominate in the power spectrum, which can explain why a single 

waveform has to be denoted by different frequencies. 

 

Figure 4-3: Relationship between the 1st and 2nd highest power frequencies 

Figure 4-3 shows a plot of the 1st frequency against the 2nd frequency from one set of 

FFTs calculated from waveforms recorded on a tensile test of 0° Carbon/Polyester. It can 

be seen that there is some clustering of values where a relationship could be drawn, 

however according to Papadakis (Papadakis, 2004), a simple presentation of these 

frequencies is not enough to differentiate the events that originated each waveform.  

In what follows, a Principal Component Analysis (PCA) is conducted to explore possible 

clustering and hence inform the classification of the AE data recorded from the tests. 

The aim of PCA exploration is to figure out whether or not simple clusters exist in the 
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dataset and how the patterns cluster in the representation of the frequency space. 

Figure 4-4 shows the result of the PCA analysis using the 1st, 2nd, 3rd and 4th highest 

power frequencies from a tensile test of Glass/Polyester 0°. 

 

Figure 4-4: PCA for the frequencies from Glass/Polyester 0° 

In the result of PCA in Figure 4-4, the first two principal components were kept which 

accounted for 91% of the variance, and there is no clear discrimination between the 

various clusters representing the frequency.  But after a linear projection of 

multidimensional data onto different coordinates, the PCA analysis had eliminated 

those less significant components and reduced the dataset to those components which 

are responsible for the most significant contribution. So the information on the 

coordinates of data points in the new coordinates can be obtained and used to study 
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the clustering of data. In the following study the two principal components will be used 

as the data input to SOM in an attempt to investigate the possible clusters.  

4.4 Test Results 

In the following sections two widely used IS techniques, mainly SOM and FCM are 

introduced in order to find any patterns in the dataset and link any patterns found with 

possible failure mechanism using two principal components information. 

We applied SOM and FCM to 7 datasets from 7 different Glass/Polyester fiber 

orientations tests shown in Figure 4-5 as follows: 

 

Figure 4-5: Diagram of fiber orientations 
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Figure 4-6: Behaviour of fibre pull out for three different configurations, 0°, 30° and 90° Glass/Polyester 
subjected to tensile load 

Figure 4-6 shows the behavior of the fibers as the composite is subjected to tensile load 

by presenting three different and typical configurations as 0°, 30° and 90°. 

The SOM and FCM clustering processes are usually unsupervised. They will result in the 

best solution after a number of iterations (Babuska, 1998; Kohonen, 2001; Lampinen, 

Laurikkala, Koivisto, & Honkanen, 2005). 

The SOM was constructed to consist of 5 neurons since there are no more than 5 classes 

in all the seven tests, namely matrix cracking, fiber/matrix debonding, fiber/matrix pull 

out and fiber and matrix breakage.  These classes were defined based on the clustering 

of the neurons. For some tests a single class may capture more than one neuron, 

therefore that class is denoted by the acoustic events represented by more than one 

neuron. The bar plot for each test will be shown next to the SOM output map where the 

clusters for each corresponding class have been drawn. 
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The FCM algorithm starts with an initial guess for the cluster centers, which are 

intended to mark the mean location of each cluster. The initial guess for these cluster 

centers is most likely to be incorrect. Additionally, FCM assigns every data point a 

membership grade for each cluster. By iteratively updating the cluster centers and the 

membership grades for each data point, FCM iteratively moves the cluster centers to 

the right location within this dataset. This process is based on minimizing an objective 

function that represents the distance from any given data point to a cluster center 

weighted by that data point's membership grade. In the following simulations two 

highest frequencies denoting every AE were used as input for FCM clustering. 

We will now consider Glass/Ployester response at 0°, 15°, 30°, 45°, 60°, 75° and 90°. 

4.4.1 0° Fiber orientation 

The clustering process can be supervised or unsupervised as explained in chapter two. A 

supervised clustering process is presented with expected output, for example a fixed 

number of classes, whereas the unsupervised process will result in the best solution 

after several repetitions. Based on the process explained in chapter two, SOM and FCM 

were applied to the data from the 7 different fibre orientations as shown in Figure 4-5. 

Here we focus on the 0° degree test as the example.  

Figure 4-7 shows the SOM output map with the 5 neurons positioned on their 

correspondent locations after 1,000 iterations. Notice that some of the neurons are 

closer to each other (i.e. neurons 4 and 5, neuron 1 and 2), these neurons are grouped 
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into a single class by the SOM. Therefore the values that had been related to each 

neuron by the network will be considered to belong to that class. Once those neurons 

that are in the same vicinity are identified by the network as belonging to the same class, 

then a plot with the number of events corresponding to each neuron is created. 

 

Figure 4-7: SOM output for 0° Glass/Polyester 

Apart from that we have some useful visualized figures which enable us to interpret the 

results from a more straightforward perspective. Figure 4-8 shows the neighbor neurons 

distances within the SOM map, which indicates the distances between neighboring 

neurons. The blue pentagons represent the neurons and the line connects neighboring 

neurons. The color containing the lines indicates the distance between neurons; with 

dark colors representing larger distances and light colors representing smaller distances. 

As we can see, a group of light colored segments appears in the upper and bottom 
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regions respectively, bounded by some darker segments. This grouping indicates that 

the data relating to the neuron 1 and 2 should be clustered into a single group and 

neuron 4 and 5 should be clustered into a single group as well. These groups can also be 

seen in Figure 4-7. The left region of Figure 4-7 contains several tightly clustered 

neurons. The corresponding weights are closer together and the positions are tighter in 

this region, which is indicated by the lighter colors in the neighbor distance Figure 4-8. 

The color in the middle region of Figure 4-8 is darker than those in the upper and lower 

regions, since the distance from neuron 2 to neuron 3 is larger. This color difference is 

understood to indicate that data points in this region are farther apart, which is 

confirmed in Figure 4-7. 

 

Figure 4-8: SOM Neighbor Weight Distances 
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In addition, we have also produced another figure which directly shows how many data 

points are associated with each neuron. It can be seen from Figure 4-9 that this dataset 

is concentrated a little more in the upper region; with neuron 4 denoting 4429 events 

and neuron 5 denoting 1292 events in the test. 

 

Figure 4-9: SOM sample hits for each neuron 

The SOM result can also be justified using FCM (see chapter two). The FCM algorithm 

starts with an initial guess for the cluster centers, which is intended to mark the mean 

location of each cluster. The ‘initial guess’ for these cluster centers is subject to training 

and updating. Additionally, FCM assigns every data point a membership grade for each 

cluster. By iteratively updating the cluster centers and the membership grades for each 

data point, FCM iteratively moves the cluster centers to the right location within this 

dataset. This process is based on minimizing an objective function that represents the 

distance from any given data point to a cluster center weighted by that data point’s 
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membership grade. As indicated in chapter two, the success of the clustering depends 

heavily on the choice of the prospective number of the classes. Fortunately, a number of 

clustering indices can be used as guidance as to how many clusters or classes are 

present in a data set although they are not the absolute indicators for deciding how 

many clusters there existed. Figure 4-10 shows 7 possible clustering indices for the 0◦ 

degree data. For many of the indices, mainly the Partition Coefficient (PC), Classification 

Entropy (CE), Partition Index (PI), Xie and Beni Index (XB) and Dunn Index (DI) (Balasko, 

Abonyi, & Feil, 2004), there appears to be a strong implication of 3 clusters, justifying 

the conclusion that the dataset should be classified as three clusters.  

 

Figure 4-10: Clustering indexes showing the No. of classes versus the index 
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The FCM algorithm converges after 13 iterations. Figure 4-11 shows three clusters in the 

map which were all represented by a cluster center. The first cluster occurred at about 

2.5 kHz, while the second and the third occurred at about 4.5 kHz and 5.5 kHz 

respectively. Each cluster consists of some events (with the first cluster having 5761 

events, the second and the third cluster 457 and 834 events respectively) which amount 

to 7052 events in total. 

In order to compare the consistency of these two algorithms, we plotted a vertical bar 

graph showing the percentage of events in each class for each algorithm. Figure 4-12 

shows the number of events per class. The X axis accounts for the 5 different classes 

found during the training process whilst the Y axis has been normalized against the 

number of total events for that test. This is done so that it is easier to compare the 

relative population for each class per test across all the tests. 

 



Chapter IV: Pattern Recognition of Fiber-Reinforced Plastic Failure Mechanism: Using 

Intelligent Systems Techniques 

 

121 

 

Figure 4-11: FCM output for 0° Glass/Polyester 

  

 

Figure 4-12: Normalized events per class for 0° Glass/Polyester 

 

4.4.2 15° Fiber orientation 

Figure 4-13 shows the SOM output map for 15° Glass/Polyester. The output neurons 

have been positioned by the network in different locations compared to those found for 

0° Glass/Polyester, see Figure 4-7.  

For this test a new class has appeared (Class 1) corresponding to neuron 5. Class 2 

contains the values gathered using neurons 3 and 4 accounting for almost 60% of the 

total events of the test, see Figure 4-13.  
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Figure 4-13: SOM output for 15° Glass/Polyester 

Figure 4-14 shows the FCM output after it converges after 23 iterations. This was 

achieved after analyzing the same index listed in Figure 4-10. There are clearly four 

clusters in the map and each is represented by a cluster center. As in the case of the 

SOM, the cluster which consists of 3027 events dominates the classes while the other 

three consists of 806, 768 and 850 events respectively.  
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Figure 4-14: FCM output for 15° Glass/Polyester. 

 

Figure 4-15: Normalized events per class for 15° Glass/Polyester 
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Figure 4-15 shows a bar graph of the percentage of events per class for 15° 

Glass/Polyester. Although there are some slight differences between FCM and SOM, 

again Class 2 accounts for the majority of the events while the other three classes (Class 

1, Class 4 and Class 5) account for about 15% each for both algorithms. 

4.4.3 30° Fiber orientation 

Figure 4-16 and Figure 4-17 show the SOM and FCM output map for 30° Glass/Polyester. 

Four classes were found in both figures; in Figure 4-16, neuron 5 corresponded to Class 

5, neurons 4 to Class 4, neurons 3 and 2 to Class 2 and neurons 1 to Class 1. FCM 

converges after 41 iterations. And both algorithms indicate that the second class 

dominates all the events. The distribution of events across the classes in Figure 4-18 for 

the 30° fiber orientation, showed a similar tendency to that for the 15° bar chart shown 

in Figure 4-15. Nevertheless the total number of events is significantly different for both 

tests; the 15° fiber orientation has almost 5 times more events (5451) than the 30° test 

(1251).  
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Figure 4-16: SOM output for 30° Glass/Polyester 

 

Figure 4-17: FCM output for 30° Glass/Polyester 
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Figure 4-18: Normalized events per class for 30° Glass/Polyester 

Figure 4-18 shows the normalized number of events corresponding to each class for the 

SOM and FCM. It can be seen that for both algorithms Class 3 has no events for 30° 

fibber orientation and class 2 contributes with almost 70% of the events. The other 

classes contributes less than 40% for the rest of the events. 

4.4.4 45° Fiber orientation 

One special fiber configuration is the 45° against the direction of the load; its SOM 

output and FCM output are shown in Figure 4-19 and Figure 4-20 respectively. 4 Classes 

are identified for the 45° test, which is a natural output following the previous fiber 

orientation test results (Figure 4-12, Figure 4-15, and Figure 4-18) as they rotate away 

from the direction of the load. The number of events for each class for the 45° fiber 

orientation test results showed a more even distribution than the previous ones, 20% 
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for Class 1, 36% for Class 2, 18% for Class 4 and 26% for Class 5 in the case of SOM and 

20% for Class 1, 40% for Class 2, 18% for Class 4 and 22% for Class 5 in the case of FCM. 

 

Figure 4-19: SOM output for 45° Glass/Polyester 

 

Figure 4-20: FCM output for 45° Glass/Polyester 
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Figure 4-21: Normalized events per class for 45° Glass/Polyester 

 

Figure 4-21 shows the classes that were constructed from the 45° Glass/Polyester SOM 

neuron map and FCM clustering respectively. The micro-mechanical events appearing 

during this test are the most evenly distributed in all the seven tests due to the 

orientation of the fibers. 

Between 15° and 45° fiber orientations, all the classes were represented except for Class 

3. For the 0° fiber orientated material Class 1 was also missing. Consideration of the 

phenomenon related to their micro-mechanical failure events will be described in the 

following sub-sections in this section. 
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4.4.5 60° Fiber orientation 

From the test for 60°and up to the 90° Classes 4 and 5 were not represented and instead 

Class 3 appeared. As can be seen in Figure 4-22 the SOM output neurons and in Figure 

4-23 the FCM clusters for 60° show a clustering of neurons in classes where Classes 4 

and 5 are not present. 

 

Figure 4-22: SOM output for 60° Glass/Polyester 

 In the case of the SOM algorithm, neurons 4 and 5 represent Class 1; neurons 3 and 2 

represent Class 2 and neurons 1 is grouped into Class 3. In the case of FCM (Figure 4-23) 

it converges to three typical classes after 54 iterations. Starting from this fiber 

orientation and up until the 90° configuration Class 3 appeared and showed an increase 

in the number of events related to it as the fiber rotates away from the direction parallel 
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to the load. On the other hand for this same offset of the fibers, Class 2 has gradually 

reduced in size as tests proceed from 60° to 90°. 

 

Figure 4-23:  FCM output for 60° Glass/Polyester 

 

Figure 4-24: Normalized events per class for 60° Glass/Polyester 
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Figure 4-24 shows a normalized events bar chart for 60° fiber orientation of 

Glass/Polyester for both algorithms. It is noticeable that for this fiber configuration 

there are no events that could be related to either Class 4 or Class 5. Class 1 does not 

show any obvious pattern in terms of the change of its size as the fiber orientation turn 

around away from the direction parallel to the load. 

4.4.6 75° Fiber orientation 

Figure 4-25 shows the SOM output neurons for 75° Glass/Polyester along with the 

circled clusters obtained from these neurons. Figure 4-26 plots three cluster centers 

which were represented by cluster centers after FCM converged. As described in  the 

case of 60° fiber orientation, Class 3 has appeared now and the number of events 

associated with it increases as the fiber orientation rotates away from the direction 

parallel to the load for the 60°, 75° and 90° tests. The number in Class 1 appears to 

increase in the first few configurations (between 0° and 60°) after this fiber 

configuration as we will see in the next orientation. 
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Figure 4-25: SOM output for 75° Glass/Polyester 

 

Figure 4-26: FCM output for 75° Glass/Polyester 



Chapter IV: Pattern Recognition of Fiber-Reinforced Plastic Failure Mechanism: Using 

Intelligent Systems Techniques 

 

133 

 

 

Figure 4-27: Normalized events per class for 75° Glass/polyester 

Figure 4-27 shows the class normalized population for the 75° Glass/Polyester. Class 3 

continues presenting an increase in the number of events compared to previous fiber 

configurations. Class 4 and Class 5 remain empty and the number in Class 1 continues to 

decrease as the fibers continuous to rotate away from the direction parallel to the load.  

4.4.7 90° Fiber orientation 

Figure 4-28 shows the SOM output neurons for the 90° fiber orientated Glass/Polyester. 

Class 1 is formed by neuron 5, Class 2 is populated by neurons 4 and 3, and finally Class 

3 embraces neurons 2 and 1. FCM also converges to three clusters, after 30 iterations, 

and all the cluster centers are less than 4.5 kHz. This last configuration with the fiber in a 

direction perpendicular to the direction of the load (90°) is another special case in this 

present analysis. This is because in this configuration we will obtain an entire collection 
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of events with characteristics different to those found in the test where the fiber are 

parallel (0°) to the direction of the load, as shown in Figure 4-12. The tests with steps in 

between will present a combination of events that gradually drift from those existing at 

0°, at one end of the spectrum to 90°, the other end.  

The classification of events across the entire set of seven tests suggests the evolutions 

of these different failure mechanisms that appear in more or less quantity over different 

fiber configurations. 

 

Figure 4-28: SOM output for 90° Glass/Polyester 
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Figure 4-29: FCM output for 90° Glass/Polyester 

 

Figure 4-30: Normalized events per class for 90° Glass/Polyester 
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 Bar graph Figure 4-30  shows the normalized event distribution for the classes found in 

both algorithms for 90° Glass/Polyester. Notice that Class 3 presents the largest 

contribution to the total number of events in the test with nearly 60%, which can be 

found in both the case of SOM and FCM.  

Also, it can be seen in Figure 4-30  that Classes 4 and 5 are not present; Class 2 and Class 

1 both contribute around 20% of the total number of events.  

4.5 Discussion and Conclusions 

The overall transition in both SOM and FCM of the relative contribution per class for 

each test can be seen in Figure 4-31. Class 2 shows a progressive decrease in its 

contribution to the total number of events. Class 3 on the other hand appears from the 

60° fiber orientation and increases towards the transverse orientation. 
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Figure 4-31: Comparison of results for the 7 tests 

It can also be seen in Figure 4-31 that Classes 4 and 5 exist only for configurations below 

45°; whereas they are not present for 60°, 75° and 90°. Class 1 appears in all the tests 

with a variable contribution to the total events except for the 0° configuration where it 

does not appear at all. 

In addition to the bar chart which presents a straightforward comparison, we also made 

a comparison between the two methods for all the seven tests.  
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Table 4-1 shows the conclusions of these two techniques from which we can determine 

the consistency of these two results. Take the 0° test as an example, it indicates that 

81.13% of the events had been classified as class 2, 6.14% of the events as class 4 and 

12.73% as class 5 by SOM while FCM had labeled 81.69% of the events as class 2, 6.48% 

of the events as class 4 and 11.83% as class 5. In addition to that, another parameter 

‘similarity’ was also introduced to evaluate the consistency of these two results. 

Similarity is defined as the ratio of the number of events which were classified as the 

same class by both SOM and FCM to the number of all the events. Take 0° test as an 

example again, we can conclude that 92.24% of all of the events (that is 6505 events) 

had been assigned the same classes. It should be noted that the results generated by 

SOM and FCM separately bear a high similarity (from 88.2% to 98.9%) and consistency 

which again justified our conclusion. 

Table 4-1: Similarity Comparison of Two Results by FCM and SOM 

Test 0° 15° 

Classes 2 4 5 1 2 4 5 

SOM 81.13% 6.14% 12.73% 14.49% 54.65% 12.09% 18.77% 

FCM 81.69% 6.48% 11.83% 14.09% 55.55% 14.77% 15.59% 

Similarities 0.9224 0.8914 

Test 30° 45° 

Classes 1 2 4 5 1 2 4 5 

SOM 18.07% 66.19% 4.40% 11.35% 17.19% 40.69% 23.34% 18.77% 
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FCM 18.55% 66.59% 5.28% 9.59% 18.22% 39.98% 20.35% 21.45% 

Similarities 0.9888 0.9450 

Test 60° 75° 

Classes 1 2 3 1 2 3 

SOM 50.63% 20.71% 28.66% 27.90% 21.54% 50.56% 

FCM 49.72% 20.42% 29.85% 28.28% 22.66% 49.06% 

Similarities 0.9616 0.9172 

Test 90° 

Classes 1 2 3 

SOM 20.17% 25.96% 53.88% 

FCM 20.79% 22.75% 56.46% 

Similarities 0.8821 

Carlos Jimenez, who did these experiments and collected the dataset, also conducted an 

analysis from a material property perspective using scanning electron microscope (SEM) 

images in his thesis. Figure 4-32 and Figure 4-33 shows the SEM images of some of the 

experiments. After conducting research on the physical evidence seen on the SEM 

images for all the seven tests, he concluded that Class 1, Class 2 and Class 3 can be 

related to matrix cracking, fiber/matrix debonding and fiber/matrix pull out respectively, 

and Class 4 and 5 can be related to fiber and matrix breakage (Jimenez, 2007). 
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Figure 4-32: SEM image of the 0° Glass/Polyester test (left: from the upper face of, right: from side of 
the failure zone)(Jimenez, 2007) 

 

Figure 4-33: SEM image from the failure zone of Glass/Polyester test (left: 75°, right: 60°)(Jimenez, 2007) 

In order to verify the correlation between classes and micro-mechanical failure events 

described in the previous seven tests, a test with 0°/90° Glass/Polyester was carried out. 

This type of configuration is known to present all the types of events described 

previously, fiber breakage, fiber/matrix debonding, fiber/matrix pull out and matrix 

cracking. 
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Figure 4-34 shows the SOM output neurons for the 0°/90° with each class denoted by 

each neuron. FCM converges after 46 iterations. Figure 4-35 shows all five clusters in the 

map which were all represented by a cluster center. From this figure we can see that the 

cluster which is around 2.5 kHz dominates all the classes, although each cluster 

comprises some events. 

 

Figure 4-34: SOM output for 0/90° Glass/Polyester 
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Figure 4-35: FCM output for 0/90° Glass/Polyester 

 

Figure 4-36: Normalized events per class for 0/90° Glass/Polyester 
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The bar chart (Figure 4-36) showed all 5 Classes which are just slightly different for SOM 

and FCM. This agrees with the hypothesis proposed in the present document since the 

0°/90° configuration being a combination of the two configurations, it is expected to 

present micro-mechanical failure events (and their corresponding AE events) from the 

two fiber configurations.  

Conclusions can be drawn as follows: 

Frequency based analysis from AE technologies can be used to correlate micro-

mechanical failure events in composite materials to their corresponding AE signature. 

Two intelligent system techniques, SOM and FCM, have been used as reliable 

classification and clustering tools for AE events recorded from damage in composite 

materials. 

From the plots obtained from the SOM and FCM classification of AE events, Class 1 

appears in all seven tests except 0° orientation while Class 2 appear in all seven tests as 

well and dominates in 0° and 15° orientation. Class 4 and Class 5 didn’t appear in 60°, 75° 

and 90° configurations, where, in 60° orientation, Class 1 dominates and in 75° and 90° 

orientation, Class 3 dominates. 

4.6 Classifier design using Optimized Weighted Fuzzy Decision 

Tree 
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After the data was clustered, it was concluded that those acoustic events would fall into 

five categories. It would be helpful, if a classifier can be devised to detect what kind of 

failure it is after the signal is recorded. This classifier was designed using a FDT 

technique. 

4.6.1 Fuzzy decision tree growing 

Following the procedure of growing a tree in section 3.2.2, the following tree was 

constructed: 

 

Figure 4-37: Architecture of FDT for Zero Degree Dataset 

Figure 4-37 shows a fuzzy decision tree constructed using the 0° Fiber orientation test 

data. This dataset consists of 7052 samples and each of these samples is denoted by 4 

features and classified to three classes. 50% of the samples were randomly selected to 

grow the FDT.  
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After the construction process, the FDT consists of 3 internal nodes and 7 leaf nodes. 

Each leaf node represents a rule and in the following reasoning mechanism, these 7 leaf 

nodes will be considered as 7 reasoning rules. 

4.6.2 Optimized weighted fuzzy decision tree 

4.6.2.1 Fuzzify input 

The features of each instance (acoustic event) will be fuzzified into three membership 

values according to three linguistic terms. As introduced in chapter 3.3.1, FCM was used 

to cluster the feature values into three clusters. Three cluster centers and the maximum 

and minimum values along each feature will be used as parameters to fuzzify the 

features. 

Let 𝐹𝑗 ,ℎ𝑖𝑔ℎ  , 𝐹𝑗 ,𝑚𝑒𝑑  and 𝐹𝑗 ,𝑙𝑜𝑤  be the three sorted cluster centers along every feature. The 

cluster centers along these four features are listed as: 

 

𝐹1,ℎ𝑖𝑔ℎ 𝐹2,ℎ𝑖𝑔ℎ 𝐹3,ℎ𝑖𝑔ℎ 𝐹4,ℎ𝑖𝑔ℎ

𝐹1,𝑚𝑒𝑑 𝐹2,𝑚𝑒𝑑

𝐹1,𝑙𝑜𝑤 𝐹2,𝑙𝑜𝑤

𝐹3,𝑚𝑒𝑑 𝐹4,𝑚𝑒𝑑

𝐹3,𝑙𝑜𝑤 𝐹4,𝑙𝑜𝑤

 =

 
112.0972 5.3204e + 05 5.1030e + 05 4.9052e + 05
107.3586 2.8033e + 05
80.0960 2.6012e + 05

3.7376e + 05 4.8838e + 05
2.6230e + 05 2.5675e + 05

  

The fuzzified membership values of an input pattern are formulated as Equations 10, 11 

and 12 in chapter three. 
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4.6.2.2 Mapping weighted fuzzy decision tree to neural networks and the learning process 

In order to optimize both the local and global weights associated with the rules, these 

rules were mapped to a NN structure so that the weights can be updated and optimized. 

 

Figure 4-38: Neural Network Structure of Mapped FPR 

Figure 4-38 shows the structure of the converted NN. This structure is based on the FDT 

showed in Figure 4-37. The input layer comes from the splitting features and the hidden 

layer denotes the leaf nodes or paths. 

After the structure is established, the network is trained through the learning process 

illustrated in chapter 3.3.5. 
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4.6.3 Reasoning mechanism 

First, the certainty factor of each leaf node was defined. Since each node will classify the 

input instance into different classes with a different certainty, the certainty of each 

node can be calculated as (taking node four in Figure 4-37 for example): 

𝛼4 =  
 𝐷4

𝐶1  

𝐷4
,
 𝐷4

𝐶2  

𝐷4
,
 𝐷4

𝐶3  

𝐷4
  

The certainty factors associated with the 7 leaf nodes for the classes are: 

 
 
 
 
 
 
 
𝛼11 𝛼12 𝛼13

𝛼21

𝛼31
𝛼41

𝛼51
𝛼61

𝛼71

𝛼22

𝛼32
𝛼42

𝛼52
𝛼62

𝛼72

𝛼23

𝛼33
𝛼43

𝛼53
𝛼63

𝛼73 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
0.0377 0.9605 0.0019
0.0009
0.0015
0.1879
0.7283
0.4774
0.0755

0.9991
0.9931
0.6190
0.2717
0.4182
0.0445

0
0.0054
0.1932

0
0.1044
0.8800 

 
 
 
 
 
 

 

The constructed FDT shares the membership values along the paths leading to each leaf 

node from root node. In Figure 4-37, 𝑝𝑎𝑡ℎ4 has two segments 𝑠𝑒𝑔𝑚3,𝑚𝑒𝑑   

and 𝑠𝑒𝑔𝑚2,ℎ𝑖𝑔ℎ , so the membership degree of 𝑝𝑎𝑡ℎ4 can be calculated as: 

𝜇𝑝𝑎𝑡 ℎ4

𝑖 = 𝜇𝑚𝑒𝑑  𝐹3
𝑖 ∗ 𝜇ℎ𝑖𝑔ℎ 𝐹2

𝑖 = [𝐹3,𝑚
𝑖 , 𝐹2,ℎ

𝑖 ] 

Figure 4-38 shows the basic structure of the FDT for the zero degree data, in which 

seven leaf nodes are combined to produce a final conclusion. In the reasoning 

mechanism of OWFDT, the certainty factor and the membership value of that path (leaf 

node) as well as the global weights are incorporated together to infer the classification 

result. 
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4.6.4 Simulation Results 

Seven datasets from seven fiber orientation experiments used in section 4.4 were tested 

using this classifier. In each test, 50% of the dataset was randomly chosen to grow, 

update and optimize the weights of the WFDT and the other 50% was used as a test 

dataset to test the accuracy of the OWFDT. The simulation was repeated five times for 

every dataset. The accuracy was the average of the five. In order to compare its 

performance, the conventional FDT and Weighted FDT with no optimization were also 

introduced as benchmark classifiers. 

Table 4-2 summarizes the mean test accuracies for the datasets employed. The 

classification accuracy was calculated as:  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑟

𝑛
∗ 100% , where n is the total 

number of test instances and 𝑛𝑟  is the number of instances which had been correctly 

classified. 

Degree (event No., class 

No., Attribute No.) 
Fuzzy ID3 WFDT OWFDT 

 00 (7052,3,4) 94.46% 94.55% 95.12% 

150 (5451,3,4) 90.53% 92.29% 93.61% 

300 (1251,4,4) 89.47% 93.30% 95.22% 

450 (1268,4,4) 83.98% 82.31% 84.83% 
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600 (1434,3,4) 87.01% 88.83% 90.50% 

750 (534,3,4) 80.60% 92.86% 95.11% 

800 (967,3,4) 86.31% 92.53% 95.49% 

Table 4-2: Testing Accuracy for the material datasets 

The table shows that the proposed optimization methods can improve the WFDT’s 

accuracy for these datasets. The improvement is generally 2 to 3 percent higher than 

straight WFDT and typically 3 to 9 percent higher than Fuzzy ID3 in terms of accuracy. 

4.7 Conclusion 

In this chapter, we have successfully used some ISTs to analyze the data generated by 

the failure mechanism when composite materials are subject to load. The results have 

shown that there are different failure mechanisms in different applications. In order to 

detect those potential damages, a classifier can be designed to cluster and classify them. 

Our research has shown that OWFDT can be used as the technique to classify failure 

mechanisms with accuracy better than traditional FDT and weighted FDT. 

Possible areas of future work include: 

Following the methodology explained in the current chapter, there is scope for locating 

the damage source for large size components, i.e. plates or actual components.  
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Based on the current results there would be scope for analyzing the behavior of 

sandwich structures under different types of loads, tensile, compression and flexural. 

A more complex and systematic classifier should be designed which incorporates 

recoding raw data and preprocessing them and ultimately predicting the failure 

mechanisms. 

In the next chapter, OWFDT will be used to design a classifier to classify eye bacteria 

species for speed diagnosis of eye disease. 
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Chapter V: Enhancing the Classification of 

Eye Bacteria Using Bagging to Multilayer 

Perceptron and Decision Tree 

5.1 INTRODUCTION 

5.2 EXPERIMENT AND DATA COLLECTION 

5.3 DATA COLLECTION AND PROCESSING 

5.4 INTRODUCTION TO THE CLASSIFICATION TECHNIQUES 

5.5 SIMULATION RESULT 

5.6 FEATURE SELECTION 

5.7 CLASSIFIER DESIGN USING OPTIMIZED WEIGHTED FUZZY DECISION TREE 

5.8 CONCLUSION 

After designing the classifier using OWFDT to predict the possible failure mechanism in 

composite material, this chapter will design a classifier to classify the eye bacteria. In 

this chapter the aim is to classify different kinds of eye bacteria after the data were 

collected using the Electronic Nose. First the Multi-layer perceptron (MLP) and Decision 

Tree (DT) are introduced as the algorithms and the base classifiers. This is followed by 
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the introduction of the bagging technique to both algorithms.  It shows that the bagging 

technique can improve the accuracy of both MLP and DT. Finally a classifier is designed 

using OWFDT to predict the possible bacteria classes for the diagnosis of eye disease. 

The classifier is able to extract rules and improve the accuracy of standard FDT and 

weighted FDT.   

5.1 Introduction 

The eye is one of the main human organs which links to the inner body and is 

continuously exposed to a harsh outside environment where it is continually in contact 

with pathogenic airborne organisms. Although the eyelid may help to protect the eye, 

the warm, moist, enclosed environment between the conjunctiva and the eyelid also 

enables contaminating bacteria to establish an infection. The number of organisms 

responsible for infection of eye is relatively small, but they can proliferate rapidly and 

cause serious and irreversible damage to the eyes, which makes rapid diagnose essential 

(J. W. Gardner, Boilot, & Hines, 2005). Usually this kind of diagnosis is based on the 

study of symptoms, such as changes in bodily appearance, feel or functions etc (Dutta, 

Hines, Gardner, & Boilot, 2002). Since different diseases produce distinctive smells 

sometimes specific characteristic odors, smelling the bacteria becomes a significant part 

of diagnosis. 

Fortunately, after 20 years of development, electronic noses (ENs) have been very 

successful in terms of health and safety issues and the task of diagnosing medical 
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conditions through analyzing odors. An electronic nose is an instrument, which 

comprises of an array of electro chemical sensors with partial specificity and an 

appropriate pattern recognition system, capable of recognizing simple or complex odors 

(Julian W. Gardner & Bartlett, 1994). Many of the initial applications of ENs were 

concerned with the detection and classification of bacteria, which suggests EN can be 

used for medical diagnosis purposes in the detection of bacteria associated with eye 

diseases (Dutta, Hines, Gardner, Udrea, & Boilot, 2003; Llobet, Hines, Gardner, & 

Franco, 2004). 

In this chapter, we focus on the use of the Cyranose 320 (Cyrano Sciences Inc.) for the 

detection of bacteria responsible for eye infections using pure laboratory cultures. The 

project represented a joint collaboration between researchers from the University of 

Warwick and Doctors from Heartlands Hospital and Micropathology Ltd. (a medical 

laboratory specializing in the detection of these pathogens) (Boilot, et al., 2002). 

5.2 Experiment and Data Collection 

5.2.1 Instrumentation 

Although the number of organisms responsible for infection of the eye is relatively 

small, the damage caused may be irreversible and this has made rapid diagnosis of 

organisms causing the damage essential. Techniques such as a neural network based 

ENs have been used to detect and classify odorous volatile components and diagnose 

the nature of the infection as quickly as possible. The ENs, which are able to mimic the 
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human sense of smell have been the subject of much research at the University of 

Warwick over the past 20 years or so (Dutta, et al., 2002). 

The EN used here was Cyrano Sciences' Cyranose 320, currently used in diverse 

industries including petrochemical, chemical, medical, food, packaging etc. The 

diagnosis of disease often relies on invasive testing methods, subjecting patients to 

unpleasant procedures. A tool such as the Cyranose 320 will enable physicians and 

dentists to provide immediate, accurate diagnosis of chemical components and 

microorganisms in breath, wounds and bodily fluid. 

The Cyranose 320 is a portable system which consists of 32 individual polymer sensors 

blended with carbon black composite, configured as an array. It works by exposing this 

array of polymer composite sensors to the chemical compounds in a vapor state. When 

the sensors come in contact with the vapor, the polymer expands like a sponge, 

changing the conductivity of the carbon pathways and causing a resistance change of 

the polymer composites. The change in resistance is measured as the sensor signal and 

captured as the digital pattern representing the test smell (J. W. Gardner, et al., 2005). 

And from that measurement, a distinct response signature for each vapor was recorded. 

5.2.2 Experimental Materials 

The eye bacteria experiments were conducted under typical lab conditions. The most 

common bacteria responsible for eye infection is conjunctivitis and organisms such as 

Staphylococcus aureus (sar), Haemophilus influenzae (hai), Streptococcus pneumonia 

(stp), Escherichia coli(eco), Pseudomonas aeruginosa (psa) and Moraxella catarrhalis 
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(moc). All bacteria strains were grown on blood or lyse blood agar in standard petri 

dishes at 37° C in a humidified atmosphere of 5% 𝐶𝑂2 in air. After overnight culturing, 

the bacteria were suspended in a sterile saline solution (0.15 M NaCl) to concentrations 

of approximately 108, 105, 104 colony forming units (cfu)/ml. A ten-fold dilution series 

of bacteria in saline was prepared and these three dilutions were sniffed using the EN. 

The numbers of viable bacteria present were confirmed by plating out a small aliquot of 

the diluted samples and counting the resultant colonies after overnight incubation 

(Dutta, et al., 2002). 

5.3 Data Collection and Processing 

When the sensors are exposed to vapors or aromatic volatile compounds the sensors 

swell, changing the conductivity of the carbon pathways and causing an increase in the 

resistance value that is monitored as the sensor signal. The resistance changes across 

the array are captured as a digital pattern that is representative of the test smell. The 

sensor technology yields a distinct response signature for each vapor regardless of its 

complexity; the overall response to a particular sample produces a 'smell print' specific 

to a stimulus. For each solution of our eye bacteria tests, the datalogger was introduced 

manually into a sterile glass vial containing a fixed volume of bacteria in suspension (4 

ml) to collect samples. The operation was repeated ten times for each one of the three 

dilutions for each one of the six bacteria species, to give a total of 180 readings. These 

data were gathered over the course of a whole week. After that, the key features were 

extracted from the raw data files which were saved during the data collection. All the 
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data was normalized using a fractional difference model:𝑑𝑅 = (𝑅 − 𝑅0)/𝑅0 where R is 

the response of the system to the sample gas and 0R  is the baseline reading with the 

reference gas being the ambient room air. The complete bacteria data set was then 

normalized by dividing each dR (values between [1.1, 18.2]  mΩ ) by the maximum value 

for each sensor, in order to set the range of each sensor parameter to [0, 1]. 

Figure 5-1 shows the statistical values of the dataset. It can be seen that the maximum 

value for each sensor varies within a small range. This is because all the signals were 

produced by the same type of carbon black polymer composite resistors. But both the 

minimum values and the mean values presented a stronger variation, due to the fact 

that the EN sensors react differently to different odours. This feature helps in 

distinguishing odours using the EN data. It is noticeable that the standard deviations of 

sensors 8, 23, 24 and 32 are considerably larger than the average ones. These findings 

may indicate sensors that would appear in the optimal subset of sensors. 
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Figure 5-1: Statistical values for the dataset. 

Principal Component Analysis (PCA) was conducted to visualize the data and explore the 

possible data clusters in order to analyze the patterns. The objective of the PCA 

exploration was to establish whether or not simple classes exist for the different 

bacteria species, and to see whether or not data clusters could be found before the 

pattern recognition stage. The PCA results are shown in Figure 5-2 in which three 

principal components were presented in a 3D space. These three components 

accounted for 97.37% of the variance and six categories appeared to be evident with 

little overlapping, so that the bacteria were completely separated in the principal 

component space. The PCA analysis also found that the variance of the first principal 

component is around 80% and that of the second principal component is around 16% 

and that of the third principal component is around 1.5%, showing a high variance and 
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low cross-correlation between the sensors. It is worth noting that no conclusions can be 

drawn from this analysis and that PCA is only used for data visualization. 

 

Figure 5-2: Principal component scatter plot with colored clusters 

5.4 Introduction to the classification techniques 

The goal of designing the pattern recognition classifiers when applied to EN data is 

typically to generate a class predictor for an unknown odor vector from a discrete set of 

previously learned patterns. The techniques we used here are artificial neural networks 

and Decision trees. But as a classifier, both ANN and DT endure unstable performance, 

since a small change in the learning set or the classification parameters may lead to a 

significant change of the results (Wendy & Angel, 2007). In order to combine classifiers 
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and produce a stable performance, the bagging technique was introduced as a way of 

combining ensembles of classifiers. 

5.4.1 General bootstrap methodology and bootstrap aggregation 

The concept of the bootstrap methods was first proposed by Efron and Tibshirani (Efron 

& Tibshirani, 1993). There is no generic and consistent terminology in the literature 

indicating what techniques are considered to be a bootstrap method. Here, we use 

bootstrap to refer to Monte Carlo simulations that treat the original sample as the 

pseudo-population or as an estimate of the population(Mooney & Duval, 1993). Thus, 

we now resample from the original sample instead of sampling from the pseudo-

population (Davison & Hinkley, 1997). In this section, we will discuss the general 

bootstrap methodology. The application of it to the MLP and decision tree will be 

discussed in section 5.5.  

The bootstrap method is a method of resampling with replacement and generating the 

random samples from an underlying population. We obtain each bootstrap replica by 

randomly selecting N observations out of N with replacement, where N is the dataset 

size. Suppose we denote the original sample as 𝑥 = (𝑥1 , … , 𝑥𝑛). We can denote the new 

sample obtained from this method by 𝑥∗ = (𝑥1
∗, … , 𝑥𝑛

∗) . Since we sample with 

replacement from the original samples, there is a possibility that some points will 

appear more than once in 𝑥∗ or not at all.  

If 𝑥 =  𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 = (𝑎, 𝑏, 𝑐, 𝑑), the possible samples can be: 

𝑥∗1 =  𝑥1
∗1, 𝑥3

∗1, 𝑥3
∗1, 𝑥2

∗1 = (𝑎, 𝑐, 𝑐, 𝑏) 
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or                                        𝑥∗2 =  𝑥2
∗2, 𝑥4

∗2, 𝑥3
∗2, 𝑥1

∗2 = (𝑏, 𝑑, 𝑐, 𝑎) 

Bagging, the acronym for "Bootstrap Aggregation", is a method for generating an 

aggregate classifier by using multiple versions of a classifier. Each version of the 

classifier is trained by using a set of bootstrap replica as the training dataset, which 

means each version of the training set is created by randomly selecting n<=N samples of 

a training dataset. And then each training dataset is used to train a classifier model, 

resulting in n classifiers. To classify a new observation, we find the class predicted by 

each of the bootstrap classifiers and assign the class label with the result that appears 

most often among the bootstrap classifiers or by the average of all the results of the 

classifiers (Jang, Sun, & Mizutani, 1997; Wendy & Angel, 2007). 

Bagging works by reducing variance of an unbiased base classifier such as a Multilayer 

perceptron (MLP) or a decision tree (DT). In order to justify the use of bagging, the base 

classifier must be unstable; its configuration must vary significantly from one bootstrap 

replica to another.  

5.5 Simulation Result 

In this section we first propose the use of basic MLP and DT to classify Eye bacteria data. 

In each subsection, we introduce the bagging technique to enhance their performance. 

5.5.1 Using MLP as base classifier 

MLP is a forward network that consists of an input layer, one or more hidden layer and 

an output layer. The number of the input layer neurons is determined by the number of 
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features of the input pattern. Here for the eye bacteria data, we have 32 sensors which 

subsequently generate a 32-dimension feature dataset. In addition to that, the number 

of hidden layers, the number of neurons in each hidden layer, the number of training 

epochs and the learning rate and the momentum are the parameters which may 

influence the network's performance. These parameters have to be carefully selected to 

guarantee the performance through cross validation. The most frequently employed 

training algorithm for MLP is Back Propagation (BP). Usually, BP is executed in two 

phases: forward phase and backward phase. The forward phase involves feeding an 

input pattern into the input layer and propagating the signal to the output layer to 

generate the predicted class which is then compared to the target output to compute 

the prediction error. In the backward phase, the error is backpropagated to adjust the 

weights between the hidden layer and the output layer and the weights between the 

hidden layer and the input layer. Two most popular training algorithms for feed-forward 

MLP are either back-propagation with gradient descent (GD) or Levenberg-Marquardt 

(LM). Here we choose both of these two as the back-propagation training algorithm. 

For our eye bacteria experiment, the objective is to discriminate samples in terms of 

bacteria species. So we set the number of neurons in the input layer to be 32 and the 

number of neurons in the output layer to be 1. The whole dataset was divided into three 

subsets: training set, validation set and test set. After carrying out the test procedure, 

we found that a standard MLP cannot achieve a stable result which can show a good 

regression between the predicted response and the corresponding target.  
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In order to improve the accuracy, we introduced the bagging techniques to MLP. This 

technique consists of creating new training data sets to generate a base classifier by 

applying a learning algorithm. The final prediction is determined by the average 

predictions of each created classifier. In order to minimize the standard error, we 

decided to produce 100 replicas to establish 100 ensemble classifiers. The procedure 

was outlined below: 

 Generate a bootstrap sample of size 180 by sampling from the original data set. 

60% of the instances will be selected as the training dataset, 20% of the 

instances will be selected as the validation dataset, and the remaining 20% will 

be regarded as the test dataset. 

 Construct and train a base MLP classifier with the bootstrap sample from step 1.  

 Repeat step one and step two 100 times in order to yield 100 classifiers. 

 Take the test dataset to each of the classifiers. Assign a classification result to the 

test instance using each of the 100 classifiers.  

For each classifier, we randomly select 108 (60 percent of all the samples) instances as 

training dataset, 36 instances as validation dataset (20 percent of all the samples) and 

36 instances (20 percent of all the samples) as test dataset. After repeating this process 

and training the classifiers 100 times, every instance will be assigned a certain number 

of class labels. The number of class labels will be the times the instance was selected in 

the test datasets.  Thus we constructed a parameter called Mean Magnitude Error 

(MME) to evaluate the accuracy of bagging MLP technique. The MME was defined as: 
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𝑀𝑀𝐸 =
1

𝑛
  (𝑂𝑖 − 𝑇)2

𝑛

𝑖=1

 

where 𝑂𝑖  is the predicted class label from a classifier and T is the targeted output for 

this instance, and n is the number of times this instance was selected by the ensemble 

classifiers. According to the definition of MME, a lower value of MME will suggest a 

better prediction result. Ideally an MME value of zero will indicate a perfect 

classification result. If the value of MME is less than a specified threshold, that instance 

can be regarded as being classified correctly (Braga, Oliveira, Ribeiro, & Meira, 2007). 

Figure 5-3 shows the MME values for all the instances generated by the ensemble. 

 

Figure 5-3: MME for the entire instance 



Chapter V: Enhancing the Classification of Eye Bacteria Using Bagging to Multilayer 

Perceptron and Decision Tree 

 

166 

 

Table 5-1 shows the relationship between the MME threshold and accuracy. It can be 

seen that the accuracy can be as high as 100% if the MME threshold was set to 0.6, an 

accuracy which cannot be achieved using basic MLP classifier. Figure 5-4 shows the 

linear regression relationship between the network outputs and the corresponding 

targets. The Regression values (the correlation coefficients between the network 

response and the target, with 1 meaning perfect correlation) have proved that the 

network outputs for both test data and validation data fit well with the targeted ones. 

Table 5-1: MME vs. Accuracy 

 MME threshold Accuracy for LM Accuracy for GD 

0.6 100.00% 98.89% 

0.5 99.44% 98.33% 

0.4 97.78% 95.00% 

0.3 97.22% 87.22% 

0.2 95.00% 65.00% 
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Figure 5-4: Regression of testing and validation data 

 

5.5.2 Using Decision tree as the base classifier 

 

The idea behind a classification tree is to split the high dimensional data into smaller 

and smaller partitions, such that the partitions become purer in terms of the class 

membership. It first grows an overly large tree using a criterion that generates optimal 

splits for the tree. Usually, these large trees fit the training data set very well, but they 

do not generalize well, so the rate at which we correctly classify new patterns is low (see 

chapter two). 

The eye bacteria dataset was used to grow the tree. It consists of 13 leaf (terminal) 

nodes and 12 internal nodes. Each leaf node is a reasoning path or rule. Figure 5-5 

shows a cluttered-looking tree using a series of rules such as " 23 0.648033X  " to 

classify each pattern into one of 13 terminal nodes. To determine the input pattern 
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assignment for an observation, the decision tree starts at the top node and applies the 

rule. If the point satisfies the rule the tree takes the left path, and if not it takes the right 

path. Ultimately it reaches a terminal node that assigns an input pattern to one of the 

six categories. 

 

Figure 5-5: Classification tree structure before pruning 

 

A large and complex tree over fits the training data and will not generalize well to new 

patterns. This will cause large generalization error. So the "true" error rate this large and 

complex classification tree would incur by using it to classify new data should be taken 

into account. But usually, a simpler tree that performs as well as or even better than a 

more complex tree can be found through a pruning process. The suggestion made by 
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Breiman, et al (Breiman, Friedman, Olshen, & Stone, 1984) is to find a nested sequence 

of subtrees by successively pruning branches of the overly large tree. The best tree from 

this sequence is chosen based on the misclassification rate estimated by cross-validation 

or an independent test sample. That means a simpler subset of that tree may give a 

smallest error, because some of the decision rules in the full tree hinder rather than 

help. Figure 5-6 shows the tree test result using a tenfold cross-validation in which a 

subset of 10% of the data was set aside for validation and the remaining 90% of the data 

was used for training. First the resubstitution error or training error (the proportion of 

the original observations that were misclassified by various subsets of the original tree) 

was computed. Then cross-validation was used to estimate the true error for trees of 

various sizes. Figure 5-6 indicates that the resubstitution error is overly optimistic. It 

decreases as the tree size grows, but the cross-validation results show that beyond a 

certain point, increasing the tree size increases the error rate. The tree with the smallest 

cross-validation error was chosen. While this may be satisfactory, Breiman, et al 

(Breiman, et al., 1984) suggested that the preferred way is to use a simpler tree if it is 

roughly as good as a more complex tree. This tree is even smaller than the tree with the 

smallest cross-validation error. The rule he proposed is to take the simplest tree that is 

within one standard error of the minimum. This is shown in Figure 5-6. It was obtained 

by computing a cutoff value that is equal to the minimum cost plus one standard error. 

It can be seen from Figure 5-6 that the tree with the smallest cross validation error, 

which is 0.20, has 10 leaf nodes. One standard error (0.0290) was added to the 

minimum cost to get the cutoff value of 0.2290. The best pruned is the smallest tree 
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under this cutoff. The solid line shows the estimated cost for each tree size, the dashed 

line marks one standard error above the minimum, and the square marks the smallest 

tree under the dashed line. Figure 5-7 displays the pruned classification tree, which has 

9 leaf nodes as indicated in Figure 5-6 as the best choice. It is the smallest tree under 

the cutoff value and has a cross validation error of 0.2056. And for this Eye bacteria data, 

the misclassification error cost is 20.56%. 

 

Figure 5-6: The estimated error for cross validation and resubstitution 
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Figure 5-7: The optimal tree with nine terminal nodes after pruning 

 

In order to decrease the misclassification error cost, the bagging technique was also 

introduced to the decision tree. It is statistically proven1 that drawing N out of N 

observations with replacement omits on average 37% of observations for each decision 

tree (Tan, Steinbach, & Kumar, 2005). These are called "out-of-bag" observations. The 

out-of-bag observations can be served as test data set. They can be used to estimate the 

predictive power and feature importance. For each observation, the out-of-bag 

prediction was estimated by averaging over predictions from all trees in the ensemble 

for which this observation is out of bag. Then the computed prediction was compared 

against the true response for this observation. By comparing the out-of-bag predicted 

                                                       
1 Each sample has a probability 1 − (1 −

1

𝑁
)𝑁  of being selected in each bootstrap sample. If N is 

sufficiently large, this probability converges to1 − 1/𝑒 ≅ 0.632. 
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responses against the true responses for all observations used for training, the average 

out-of-bag error was achieved. This out-of-bag average is an unbiased estimator of the 

true ensemble error. The solid line in Figure 5-8 shows the out-of-bag error curve for the 

ensemble classifier. It can be seen that the misclassification error cost has decreased 

significantly to 9.44%. 

 

Figure 5-8: Misclassification error cost curve 

5.6 Feature selection 

Usually the prediction ability should depend more on important feature and less on 

unimportant features. Another attractive feature of bagged decision trees is its ability to 

select the important features by randomly permuting the value of this feature across all 
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of the observations in the data set and measuring and estimating the increase of the 

out-of-bag mean squared error due to this permutation. The larger the increase, the 

more important the feature is. Thus, we do not need to supply test data for bagged 

ensembles because we can obtain reliable estimates of the predictive power and 

feature importance in the process of training, which is an attractive feature of bagging. 

Through selecting the most important features, the dimension of the training data can 

be reduced significantly and the computation cost can be lower. Figure 5-9 shows the 

out-of-bag feature importance for all the 32 features. Using an arbitrary cutoff at 0.6, 

the most important 8 features were selected. The lower dimensional data (the selected 

features) was then used to train the ensemble classifier following the same procedure. 

The dotted line in Figure 5-8 shows the out-of-bag error using the selected features. The 

performance is obviously at least as good as the one using all of the data. 

The optimal subset selected by Bagging Decision tree (i.e. 2, 6, 8, 9, 11, 23, 24, 32) is 

different compared with results obtained by Boilot (Biilot, 2003; Boilot, et al., 2002; J. 

W. Gardner, et al., 2005) (i.e. 1, 8, 9, 11, 14, 15, 17, 23, 31, 32), who applied the so-

called V-integer GA using PNN classification algorithm. They achieved an accuracy of 

average 82.0% with these ten features. Their experiment also showed that as the 

number of features to be selected becomes 8, the accuracy decreased to 78.6% as well. 

The application of our techniques in the following paragraph and section will show a 

better classification result using the selected 8 features. 
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Figure 5-9: Feature importance histogram 

 

After the features were selected, the Bagging MLP simulation process was repeated 

again using the selected features to test the efficiency. Table 5-2 shows the relationship 

between the MME threshold and accuracy after using the selected features to train MLP 

using two different algorithms. It can be seen that the accuracy can reach 100% if the 

MME threshold was set to 0.5. Figure 5-10 shows the linear regression relationship 

between the network outputs and the corresponding targets using selected features. It 

can be seen that the output tracks the target well for both test and validation set, both 

with a significantly high regression value. 
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Table 5-2: MME vs. Accuracy 

MME threshold Accuracy for LM Accuracy for GD 

0.6 100.00% 99.44% 

0.5 100.00% 98.33% 

0.4 98.33% 94.44% 

0.3 96.67% 88.89% 

0.2 94.44% 66.67% 

 

 

Figure 5-10: Regression of test and validation data using selected features 

 

An ensemble of classifiers is a set of classifiers whose individual classifier decisions are 

combined in a way to classify a new instance. It performs well when the single classifier 

is unstable. In our example, the performance of the ensemble classifiers has significantly 

improved. Bagging to decision tree has decreased the error from above 20 percent to 

below 10 percent while bagging to MLP can achieve accuracy as high as 100 percent. 
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5.7 Classifier design using Optimized Weighted Fuzzy Decision 

Tree 

In order to classify the eye bacteria data successfully, a classifier should be designed to 

make correct predictions of those possible bacteria. Following the procedure listed in 

Chapter 3.2.2, a fuzzy decision tree is designed using Eye Bacteria data. After the tree 

construction process, the FDT consists of 29 internal nodes and 41 external (leaf) nodes. 

Each leaf node is a reasoning path and is represented as a rule in the following 

reasoning mechanism. 41 leaf nodes will be considered as 41 reasoning rules. 

5.7.1 Fuzzify input 

The features of each instance of eye bacteria data will be fuzzified into three 

membership values according to three linguistic terms. As introduced in Chapter 3.3.1, 

FCM was used to cluster the feature values into three clusters. Three cluster centers and 

the maximum and minimum values along each feature will be used as parameters to 

fuzzify the features. 

Let  𝐹𝑗 ,ℎ𝑖𝑔ℎ  , 𝐹𝑗 ,𝑚𝑒𝑑  and 𝐹𝑗 ,𝑙𝑜𝑤  be the three sorted cluster centers along each feature. The 

cluster centers along these eight features are listed as: 

 

𝐹1,ℎ𝑖𝑔ℎ 𝐹2,ℎ𝑖𝑔ℎ 𝐹3,ℎ𝑖𝑔ℎ 𝐹4,ℎ𝑖𝑔ℎ    𝐹5,ℎ𝑖𝑔ℎ    𝐹6,ℎ𝑖𝑔ℎ   𝐹7,ℎ𝑖𝑔ℎ   𝐹8,ℎ𝑖𝑔ℎ

𝐹1,𝑚𝑒𝑑 𝐹2,𝑚𝑒𝑑

𝐹1,𝑙𝑜𝑤 𝐹2,𝑙𝑜𝑤

𝐹3,𝑚𝑒𝑑 𝐹4,𝑚𝑒𝑑    𝐹5,ℎ𝑖𝑔ℎ    𝐹6,ℎ𝑖𝑔ℎ    𝐹7,ℎ𝑖𝑔ℎ   𝐹8,ℎ𝑖𝑔ℎ

𝐹3,𝑙𝑜𝑤 𝐹4,𝑙𝑜𝑤    𝐹5,ℎ𝑖𝑔ℎ    𝐹6,ℎ𝑖𝑔ℎ    𝐹7,ℎ𝑖𝑔ℎ    𝐹8,ℎ𝑖𝑔ℎ

 =

 
0.8398 0.8549 0.8720 0.7910   0.8611   0.8551   0.8148   0.8529
0.7911 0.7911
0.6843 0.5645

0.7460 0.7812   0.7694   0.7397   0.7848   0.7782
0.5987 0.6496   0.4941   0.5518   0.6482   0.5675
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The fuzzified membership values of an input pattern along the 𝑗𝑡ℎ  feature, 

corresponding to the three-dimensional linguistic term are formulated as Equations 10, 

11 and 12 in chapter three. 

5.7.2 Reasoning mechanism 

Following the procedure of mapping weighted fuzzy decision tree to neural networks in 

Chapter 3.3.5, the local and global weights can be updated and optimized through the 

learning process. After the weights have been finalized, the reasoning mechanism will 

be introduced to give certainty factors to each leaf node. 

First the certainty factor of each node was defined. Since each node will classify the 

input instance to different classes with a different certainty, the certainty of each node 

can be calculated as Equation 27 in Chapter three (taking node one for example): 

𝛼1 = {
𝐷1

𝐶1

𝐷1
,
𝐷1

𝐶2

𝐷1
,
𝐷1

𝐶3

𝐷1
,
𝐷1

𝐶4

𝐷1
,
𝐷1

𝐶5

𝐷1
,
𝐷1

𝐶6

𝐷1
} 

Certainty factors associated with all the 41 leaf nodes for the classes are listed below: 
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𝛼1,1    𝛼1,2     𝛼1,3    𝛼1,4    𝛼1,5    𝛼1,6 

𝛼2,1    𝛼2,2     𝛼2,3    𝛼2,4    𝛼2,5    𝛼2,6  
𝛼3,1    𝛼3,2    𝛼3,3    𝛼3,4    𝛼3,5    𝛼3,6  

.

.

.
𝛼39,1  𝛼39,2  𝛼39,3  𝛼39,4  𝛼39,5  𝛼39,6  
𝛼40,1  𝛼40,2  𝛼40,3  𝛼40,4  𝛼40,5  𝛼40,6  
𝛼41,1  𝛼41,2  𝛼41,3  𝛼41,4  𝛼41,5  𝛼41,6   

 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 

0.0535 0.0190 0.0193 0.0000 0.8674 0.0407
0.0000 0.8120 0.0023 0.0000 0.1856 0.0000
 0.0000 0.9015 0.0046 0.0000 0.0939 0.0000

.

.

.
0.0401 0.0209 0.0350 0.1595 0.0000 0.7446
0.0080 0.0313 0.2386 0.3738 0.0000 0.3483
0.0000 0.0199 0.2095 0.7068 0.0000 0.0639 

 
 
 
 
 
 
 
 

 

The certainty factor of each leaf node indicates the certainty of classifying an instance 

into different classes. Taking leaf node 39 as an example, this leaf node has a certainty 

of 0.7446 to classify an instance into class six while it has a certainty of 0 of classifying 

this instance into class five. For each leaf node, the certainty factor and the membership 

value of that path (leaf node) as well as the global weights are incorporated together to 

infer the classification result as detailed in Chapter 3.3.5. To get the final result, all the 

forty-one leaf nodes are combined together to produce the prediction. 

5.7.2 Simulation Results 

After the construction process, the eye bacteria dataset was tested using this classifier. 

Half of the dataset was randomly chosen to grow, update and optimize the weights of 

the decision tree and the other 50% was used as a test dataset to test the accuracy of 

the tree. The training and test process will be repeated five times. The accuracy was the 
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average of five. In order to compare its performance, the conventional Fuzzy Decision 

Tree (FDT) and Weighted Fuzzy Decision Tree (WFDT), which doesn’t include the 

optimization process for weight updating, were also introduced as benchmark classifiers. 

The growing process has found that if the features cannot be selected and dimensions 

cannot be reduced, the fuzzy decision tree would face the problem of the curse of 

dimensionality. So the dataset which incorporates the selected features will be used for 

the testing purpose. The classification accuracy was calculated as:  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑟

𝑛
∗

100% , where n is the total number of test instances and 𝑛𝑟  is the number of instances 

which had been correctly classified. It has been found that the Optimized Weighted 

Fuzzy Decision tree can enhance the classification accuracy from 78.33% for Fuzzy 

decision tree to 85.56% while the weighted fuzzy decision tree reached an accuracy of 

82.17%. 

In addition to the improvement of the accuracy, OWFDT has also been able to reduce 

the iteration numbers used to train the mapped neural network, which has made the 

optimization of the weights more efficient. The simulation has found OWFDT took an 

average of 197 epochs to reach the optimal weights while weighted FDT needed 487 

epochs to finish the training process. 

5.8 Conclusion 

In the simulation, we try to classify six kinds of bacteria which are responsible for eye 

infection. First the MLP and the decision tree were employed in order to discriminate 
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between these six bacteria species. Although a single MLP can classify the data set, the 

accuracy was not high enough and the results were highly unstable and dependent on 

the network initialization. The decision tree constructed was able to discriminate 

different bacteria classes to some extend but with a high error cost. By introducing the 

bagging technique to MLP, we were not only able to enhance the accuracy but also 

stabilize the performance of both classifiers. By bagging the decision tree, we have 

successfully extracted several most important features and reduced the dimensionality 

of the original data. In addition to that, the error cost of the classification tree has also 

reduced significantly making the decision tree more reliable. By using the selected 

features to grow the fuzzy decision tree, the problem of curse of dimensionality had 

been solved. The optimized weighted fuzzy decision tree had also enhanced the 

accuracy of the conventional FDT as well as reduced the iteration epochs of weighted 

FDT. 
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Chapter VI: Classification of CLASH Dataset using 

OWFDT and other Intelligent Systems 

Techniques 

6.1 INTRODUCTION AND MOTIVATION 

6.2 DATASET 

6.3 NEURAL NETWORK SIMULATION RESULTS 

6.4 OWFDT RESULTS 

6.5 SIMULATION RESULTS OF OTHER BENCHMARKING TECHNIQUES  

6.6 CONCLUSION  

In the previous chapters, the effectiveness and efficiency of OWFDT has been evaluated 

through a comparison of its classification results with fuzzy decision tree and weighted 

fuzzy decision tree. In chapter 3 these three techniques were compared using Iris data, 

Wisconsin Breast Cancer data and Brain Computer Interface data. Chapter 4 utilized 

composite material data and chapter 5 introduced eye bacteria data to evaluate 

OWFDT’s performance. In this chapter, a benchmark study using the CLASH dataset will 

be conducted to compare and evaluate the effectiveness and efficiency of OWFDT as 

compared to some other widely used hybrid ISTs including ANFIS, EFuNN, GNMM, Fuzzy 

ARTMAP etc. in order to explore the relative merits of adopting OWFDT. 



Chapter VI: Classification of CLASH Dataset Using OWFDT and other Intelligent Systems Techniques 

 

184 
 

6.1 Introduction and motivation 

Wave Overtopping (WO) is defined as the sea water which is flowing over the crest of a 

coastal structure land-inward. WO occurs when the highest run-up levels reach the crest 

of the structure and exceed the free board and pass over it. Accurate prediction tools 

for wave overtopping are necessary in order to improve the water management 

efficiency in coastal zones (Geeraerts, Troch, De Rouck, Verhaeghe, & Bouma, 2007).  

There are two existing approaches to measuring and assessing WO at coastal structures. 

The first approach deals with the overtopping volume per overtopping wave. The 

second approach considers mean overtopping discharges over certain time intervals and 

per meter structure width. The second approach is widely accepted because of the 

uneven distribution of overtopping in time and in space caused by irregular wave action 

(Verhaeghe, De Rouck, & van der Meer, 2008).  

6.2 Dataset 

The database was collected for the European research project CLASH (Crest Level 

Assessment of Coastal Structure by full scale monitoring, neural network prediction and 

Hazard analysis on permissible wave overtopping) (Meer, W., Verhaeghe, & 

G.J.Steendam, 2005).  This extensive database on wave overtopping consists of two 

phases. A first preliminary phase composed of overtopping information originating from 

before 2003, and consisted of about 6500 tests, which was released within CLASH in 

August 2003 as an intermediate result. In the second phase, from August 2003 to 
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December 2004, this preliminary database was enlarged and improved to a final 

database, consisting of 7107 overtopping tests, originating from 163 independent test 

series (Verhaeghe, Meer, & J.W., 2003; Verhaeghe, Meer, J.W., et al., 2003).  

In the dataset, each test was denoted by a fixed number of parameters. These 

parameters had to be chosen in such a way that an as complete as possible overall view 

of the overtopping test was represented by these parameters. These parameters can be 

categorized into two groups: hydraulic parameters and structural parameters. The 

hydraulic parameters describe the wave characteristics and the measured overtopping, 

whereas the structural parameters describe the coastal structure. (van der Meer, 

Verhaeghe, & Steendam, 2009). 

The extensive overtopping database provides the data for the development of 

intelligent systems techniques, but more information on the overtopping measurements 

than strictly needed for the development of the prediction method has been included in 

the database. Hadewych Verhaeghe examined the experimental model and eliminated 

those parameters which are considered to be irrelevant to the NN prediction model. 

After that, 16 parameters were selected to be used for the construction of neural 

network model (Verhaeghe, 2005). The 16 selected parameters, consisting of 5 

hydraulic parameters, 11 structural parameters are used as input and output parameter.  

 

Table 6-1 shows the 16 parameters as well as their function in the development of the 

prediction models. 
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Table 6-1: Parameters in the dataset and their function in the application 

Nature Parameters Function 

hydraulic 𝐻𝑚0 𝑑𝑒𝑒𝑝 [𝑚] input 

𝐻𝑚0 𝑡𝑜𝑒 [𝑚] input 

𝑇𝑚−1,0 𝑡𝑜𝑒 [𝑠] input 

𝛽 [°] input 

𝑞 [𝑚3/𝑠/𝑚] output 

structural 𝑕 [𝑚] input 

𝑕𝑡[𝑚] input 

𝐵𝑡[𝑚] input 

𝛾𝑓[− ] input 

𝑐𝑜𝑡𝛼𝑑 [− ] input 

𝑐𝑜𝑡𝛼𝑢 [− ] input 

𝑅𝑐[𝑚 ] input 

𝑕𝑏 [𝑚 ] input 

𝐵𝑕 [𝑚 ] input 

𝐴𝑐[𝑚 ] input 

𝐺𝑐[𝑚 ] input 

6.2.1 Output parameter 

The mean overtopping discharge is the most common approach used to the design of 

coastal structures (TAW, 2002). The huge amount of available data regarding mean 
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overtopping discharge measurements was an extra benefit of considering mean 

overtopping discharges as the output in this work (Lykke Andersen & Burcharth, 2009). 

Within this dataset, mean overtopping discharge, denoted as q in 𝑚3/𝑠/𝑚, logically 

serves as the output parameter for the prediction models. 

According to its practical meaning, mean overtopping discharge may either be regarded 

as important or eligible for human activity, so the output was guided to two classes in 

order to design the classifiers. For this reason the output parameter q is replaced for the 

classifier by 2 possible values, referring to two ‘classes’ of overtopping: 

 the value of q is replaced by ‘+1’ if the overtopping discharge q is assessed to be 

significant and important to human activities; 

 the value of q is replaced by ‘-1’ if the overtopping discharge q is equal to zero or 

assessed to be negligible. 

6.2.2 Preprocessing the data according to the Froude model scaling 

The Froude scaling law was introduced to scale the dataset because the data were 

collected from different tests which were set up in different conditions. Usually, Froude 

scaling is applied to model flows. The Froude number is defined as the ratio of a 

characteristic velocity to a gravitational wave velocity. In fluid mechanics, the Froude 

number is used to determine the resistance of an object moving through water, and 

permits the comparison of objects of different sizes. The majority of hydraulic models in 

coastal engineering are scaled according to Froude model law (Ingram, Gao, Causon, 

Mingham, & Troch, 2009; van Gent, van den Boogaard, Pozueta, & Medina, 2007). 

http://en.wikipedia.org/wiki/Fluid_mechanics
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According to Hadewych Verhaeghe (Verhaeghe, 2005), the parameter 𝐻𝑚0 𝑡𝑜𝑒  is one of 

the most important parameters regarding the overtopping phenomenon, and is in 

addition always positive. These characteristics have made it the best choice as scaling 

parameter. After scaling all tests with 𝐻𝑚0 𝑡𝑜𝑒  as scaling parameter, all the test can be 

regarded as been scaled to a fictive situation in which the value of 𝐻𝑚0 𝑡𝑜𝑒  = 1m. In this 

chapter, Hadewych Verhaeghe’s scaling process was adopted to scale the dataset as 

listed in Table 6-2. 

Table 6-2: parameter scaling according to Froude model law 

Input Output 

𝐻𝑚0 𝑑𝑒𝑒𝑝 /𝐻𝑚0 𝑡𝑜𝑒  𝑞/ (𝐻𝑚0 𝑡𝑜𝑒 )1.5 

𝑇𝑚−1,0 𝑡𝑜𝑒 / (𝐻𝑚0 𝑡𝑜𝑒 )0.5 

𝛽  

𝑕 /𝐻𝑚0 𝑡𝑜𝑒  

𝑕𝑡/𝐻𝑚0 𝑡𝑜𝑒  

𝐵𝑡/𝐻𝑚0 𝑡𝑜𝑒  

𝛾𝑓  

𝑐𝑜𝑡𝛼𝑑  

𝑐𝑜𝑡𝛼𝑢  

𝑅𝑐/𝐻𝑚0 𝑡𝑜𝑒  

𝑕𝑏/𝐻𝑚0 𝑡𝑜𝑒  

𝐵𝑕/𝐻𝑚0 𝑡𝑜𝑒  

𝐴𝑐/𝐻𝑚0 𝑡𝑜𝑒  

𝐺𝑐/𝐻𝑚0 𝑡𝑜𝑒  
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Table 6-2 shows the parameter characteristics after scaling to 𝐻𝑚0 𝑡𝑜𝑒  = 1m according to 

Froude model law. 

Table 6-3: Statistical characteristics for the dataset 

Parameter Minimum Maximum Mean Standard 

Deviation 

𝐻𝑚0 𝑑𝑒𝑒𝑝  0.692 6.304 1.119 0.333 

𝑇𝑚−1,0 𝑡𝑜𝑒  2.721 86.244 5.070 3.134 

𝛽 0 80.000 3.517 11.218 

𝑕 0.904 64.476 3.900 3.311 

𝑕𝑡  0.429 45.429 3.364 2.887 

𝐵𝑡  0 50.000 0.923 2.057 

𝛾𝑓  0.330 1 0.697 0.274 

𝑐𝑜𝑡𝛼𝑑  0 7.000 1.943 1.446 

𝑐𝑜𝑡𝛼𝑢  -5.000 9.706 1.859 1.723 

𝑅𝑐  0 62.390 1.571 1.152 

𝑕𝑏  -2.294 8.411 0.053 0.446 

𝐵𝑕  0 38.462 0.694 2.160 

𝐴𝑐  0 62.390 1.470 1.168 

𝐺𝑐  0 39.000 0.989 1.537 
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Table 6-3 and Figure 6-1 show the statistical values for the dataset. The scaling process 

had successfully dismissed the distinction between small and large scale test. In addition 

to that, the scaled minima and maxima give a more comparable overall view of the tests. 

It also gives an idea of the minima and maxima which would have appeared if all tests 

were performed with wave heights of 1m at the toe of the structure, keeping all other 

parameters in proportion. 

 

Figure 6-1: Statistical characteristics for the dataset 

Principal Component Analysis (PCA) was used to visualize the data and explore the data 

clustering. Figure 6-2 shows the percentage of the first five principal components in 

CLASH data. It indicates that there is a clear break in the amount of variance accounted 

for by the first and second principal components. While the first component accounts 
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for nearly 75% of the variance and the second component explains 9% of the variance, 

the first two principal components account for 85% of the variance. It is obviously 

reasonable to assert that these two principal components represent the dataset. But 

these two classes are also evident with some overlapping, which suggests that these 

two classes are somehow separable. 

 

Figure 6-2: Principal component analysis for the dataset 

6.3 Neural Network Simulation results 

60 percent of the samples were used as training dataset, 20 percent of the samples 

were used as validation set and the left 20 percent were regarded as test dataset. After 

training an MLP model with the training dataset, the independent test set is used to 
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assess the performance of the constructed NN. The Root-Mean-Square Error (RMSE) of 

this independent test set, which is defined in equation 1, was introduced to assess its 

performance (the scaled parameters will be denoted with a left superscript s): 

𝑟𝑚𝑠𝑒 =  
1

𝑁𝑡𝑒𝑠𝑡
 [( 𝑞𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑠
𝑛

) − ( 𝑞𝑁𝑁
𝑠

𝑛
)]2

𝑁𝑡𝑒𝑠𝑡

𝑛=1

                  (1) 

where 𝑁𝑡𝑒𝑠𝑡  indicates the number of test data, 𝑞𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑠

𝑛
 refers to the predicted 

output and 𝑞𝑁𝑁
𝑠

𝑛
 refers to the output desired by the NN. The values of 𝑞𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑠
𝑛

 

and 𝑞𝑁𝑁
𝑠

𝑛
  are both expressed as the logarithm of the mean overtopping discharges 

which are in 𝑚3/𝑠/𝑚. 

The lower the value of RMSE, the better the overall prediction capability of the 

considered NN will be. 

The MLP model consists of one input layer with 15 input neurons to accommodate 15 

parameters (all the parameters have been scaled according to Froude, with the value of 

𝐻𝑚0 𝑡𝑜𝑒  as scaling parameter), one hidden layer with hidden neurons and an output 

layer with the preprocessed, scaled according to Froude, mean overtopping discharge, 

𝑙𝑜𝑔( 𝑞𝑠 ), as the output parameter. 

The number of hidden neurons is determined by training and testing several models, 

where the number of hidden neurons is varied. The optimal acceptable number of 

hidden neurons is determined by comparing the performance of the models with 

different number of hidden neurons. 
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It should be noticed that one extra hidden neuron leads to a significant increase of the 

network complexity. Figure 6-3 shows the value of RMSE for trained models with the 

number of hidden neurons varying from 15 up to 30. Since the input layer has 15 

neurons, we set the minimum number of hidden neurons to be 15. In case of 15 input 

parameters and 1 output parameter, 16 additional parameters have to be determined 

during the training process for one extra hidden neuron, so the maximum number of 

neurons in hidden layer was set to be 30, although this number is still subject to testing. 

Simulations were run with the training sets and test sets chosen randomly and the 

initialization of the weights and biases set arbitrarily for each model. Consequently, the 

final result as well as the value of RMSE depends on these random choices, which 

explains the slight fluctuation of the curve in Figure 6-3. 

Generally speaking, the higher the number of hidden neurons, the lower the value of 

RMSE will be. But there is no evidence of a solid relationship between the RMSE and the 

number of hidden neurons. As can be seen from Figure 6-3, there is no significant 

improvement for a number of hidden neurons larger than 22. As simplicity is preferred 

over needless complexity, the optimal number of hidden neurons is chosen to be 22. 
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Figure 6-3: RMSE VS number of hidden neurons 

The training process stopped when the validation error increased for six iterations, 

which occurred at iteration 25. Figure 6-4 shows a plot of the training errors, validation 

errors, and test errors. For the CLASH data, the result is reasonable because the final 

mean-square error is small and the test dataset error and the validation dataset error 

have similar characteristics. And in addition to that no significant overfitting has 

occurred by iteration 25 (where the best validation performance occurs). 
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Figure 6-4: Training performance of neural networks 

 

A linear regression between the network outputs and the corresponding targets was 

also performed in order to analyze the network response. Figure 6-5 shows the 

regression results. It indicates that the output tracks the targets very well for training, 

test, and validation datasets, and the regression value is above 0.90 for test dataset and 

over 0.93 for the entire dataset.  
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Figure 6-5: Regression results for 1) training, 2) validation, 3) test and 4) all the datasets 

6.4 OWFDT results 

As introduced in Chapter 3.3.1, each feature (attribute) of the data was fuzzyfied into 

three membership values according to three linguistic terms using Fuzzy C-Means (FCM) 

clustering algorithm. The FCM algorithm was used to cluster the data and find the three 

cluster centers. Three cluster centers and the maximum and minimum values along each 

feature are used to fuzzify the features using equations 10, 11, 12 in chapter three. 
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Let  𝐹𝑗 ,𝑕𝑖𝑔𝑕  , 𝐹𝑗 ,𝑚𝑒𝑑  and 𝐹𝑗 ,𝑙𝑜𝑤  be the three sorted cluster centers along each feature. The 

cluster centers along these fifteen features are listed as follows: 

 

𝐹1,𝑕𝑖𝑔𝑕 𝐹2,𝑕𝑖𝑔𝑕 𝐹3,𝑕𝑖𝑔𝑕 𝐹4,𝑕𝑖𝑔𝑕  …   𝐹12,𝑕𝑖𝑔𝑕    𝐹13,𝑕𝑖𝑔𝑕   𝐹14,𝑕𝑖𝑔𝑕   𝐹15,𝑕𝑖𝑔𝑕

𝐹1,𝑚𝑒𝑑 𝐹2,𝑚𝑒𝑑

𝐹1,𝑙𝑜𝑤 𝐹2,𝑙𝑜𝑤

𝐹3,𝑚𝑒𝑑 𝐹4,𝑚𝑒𝑑   …  𝐹12,𝑚𝑒𝑑    𝐹13,𝑚𝑒𝑑    𝐹14,𝑚𝑒𝑑   𝐹15,𝑚𝑒𝑑

𝐹3,𝑙𝑜𝑤  𝐹4,𝑙𝑜𝑤    …   𝐹12,𝑙𝑜𝑤    𝐹13,𝑙𝑜𝑤    𝐹14,𝑙𝑜𝑤    𝐹15,𝑙𝑜𝑤

 =

 
1.0109 0.1060 4.2900 0.3442 …    0.0185   0.4920   1.1510   0.4398;
1.0399 0.1730
1.1348 0.1731

4.3587 0.8491 …    0.0304   0.5267   1.1612   0.7426
5.0886 37.4091 …  0.3762   1.1805   1.2920   0.9409

  

The constructed FDT consists of 21 internal nodes and 43 leaf nodes. Each leaf node 

represents a reasoning rule. Certainty factors associated with all the 43 leaf nodes for 

the classes are used to infer the classification results and listed below: 

 
 
 
 
 
 
 
 
 

𝛼51    𝛼5,2     

𝛼9,1    𝛼9,2     
𝛼10,1    𝛼10,2     

.

.

.
𝛼62,1  𝛼62,2  
𝛼63,1  𝛼63,2   
𝛼64,1  𝛼64,2    

 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
 

0.9581 0.0419 
0.0000 1.0000 
 1.0000 0.0000 

.

.

.
0.9252 0.0748 
0.0000 1.0000 
0.8777 0.1223  

 
 
 
 
 
 
 
 

 

The certainty factor and the membership value of each leaf node as well as the global 

weights of that node are incorporated together to infer the classification result. To get 

the final result, all the forty-three leaf nodes are combined together to produce the 

prediction. 

After the tree was constructed, the CLASH dataset was tested using OWFDT. Half of the 

dataset was randomly chosen to grow, update and optimize the weights of the decision 

tree and the other half was used as a testing dataset to test the accuracy of the tree. 
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The classification accuracy was calculated as:  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑟

𝑛
∗ 100% , where n is the 

total number of test instances and 𝑛𝑟  is the number of instances which had been 

correctly classified. After the testing process, it has been found that the OWFDT can 

achieve a classification accuracy of 79.28% using its 43 weighted rules which outpaced 

the accuracy of 72.37% of traditional FDT and 74.12% of weighted FDT.  

6.5 Simulation results of other benchmarking techniques  

6.5.1 ANFIS  

ANFIS applies a combination of the least-squares method and the back propagation 

gradient descent method for training Fuzzy Inference System membership function 

parameters to emulate a given training dataset. It was also utilized to analyze the CLASH 

dataset as well. 

When the CLASH data was processed using the ANFIS system with its default grid 

partitioning of the input space (Cornelius, 1999; Karray & Silva, 2004), the system fails to 

converge because of the problem of the curse of dimensionality, since ANFIS generates 

as many as 32768 (i.e. 215) rules when two MFs are used for each input and 14348907 

(i.e. 315 )  rules when three MFs are used for each input, which are huge and 

unacceptable numbers of rule permutations. Meanwhile, ANFIS will end up with the 

problem of the curse of dimensionality and cannot converge as well when the FCM 

clustering algorithm was used to partition the input space. However, if the ANFIS 

structure is generated using subtractive clustering, which considerably reduces the 
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number of rules, ANFIS managed to achieve a good classification results as will be 

shown in the next paragraph.  

After 300 iterations, ANFIS reached a RMSE of 0.32 with a classification accuracy of 

64.54%. Figure 6-6 shows the ANFIS structure where six membership functions for each 

input pattern and six rule nodes are displayed. 

 

Figure 6-6: Overview of ANFIS structure 
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Figure 6-7: ANFIS prediction results and error distribution 

 

Figure 6-8: Rule extracted from ANIFS system 
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The target/ANFIS output labels and prediction errors for each sample are shown in 

Figure 6-7. It can be seen in Figure 6-7 that the error distribution is quite random, which 

implies that a first-order Sugeno-type FIS may not be suitable for this problem. Compared 

with the OWFDT result, this classification results is slightly worse (64.54% vs. 79.28%). 

However, ANFIS converges much faster, due to its hybrid learning and its ability to construct 

reasonably good input MFs (Ozkan, 2006).  

Figure 6-8 shows a view of the resulting rules from ANFIS. Six rules in total are extracted 

from the system. Each of these six rules consists of 15 antecedents (i.e. 15 attributes), 

which makes the rules difficult to interpret. Also note that the rule antecedent and 

consequent parts remain unchanged throughout the training process, as shown in 

Figure 6-8. It is also evident that no membership degrees are displayed. The consequent 

part of each rule represents a single MF (i.e. the number of rules is equal to the number 

of output MFs) with the same unit weights and there is no rule sharing in the ANFIS 

system. Thus, the ANFIS training adjusts parameters such as MFs and network weights 

instead of manipulating rules and network structures as some other systems such as 

EFuNN do in their training process.  



Chapter VI: Classification of CLASH Dataset Using OWFDT and other Intelligent Systems Techniques 

 

202 
 

 

Figure 6-9: ANFIS rule viewer 

 

Figure 6-10: Membership function for attribute 9 
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Figure 6-11: ANFIS rule surface viewer 

Figure 6-10 shows the membership functions associated with attribute 9 and Figure 6-11 

shows the rule surface formed by the first two attributes. From these two figures, it can 

be seen that the concept representation rules learned by ANFIS are easier to 

understand (Boilot, et al., 2002), because the inputs to the ANFIS rule space are just 

attribute outputs. However, ANFIS cannot provide an insight into the data distribution 

and rule importance due to its fuzzy nature, as each input belongs to different sets to 

different degrees (Yang, 2009). On the other hand, OWFDT does assign a degree of 

importance to each rule by determining the degree of possibilities of data samples 

falling into all the possible classes.  
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Furthermore, Kasabov also points out that ANFIS has limited abilities for incremental, 

online learning (Kasabov, 2007) because of its structure that cannot adapt to the data at 

hand.  

6.5.2 EFUNN 

The EFuNN system achieved an RMSE of 0.3778 when it was applied to CLASH data. The 

system also produced 1293 rules and each of the rules has 15 antecedents. Due to its 

large size, it cannot be displayed here easily.  Figure 6-12 shows the training and 

prediction results if one tenth of the data samples were exacted to feed the system. The 

training dataset consists of 711 samples and the training process produced 438 rules 

when it stopped at a RMSE of 0.4681. It is evident that too many rules affect the 

interpretability of the system.  

Figure 6-13 shows the EFuNN rules which are quite different from the ANFIS rules as 

shown in Figure 6-8. The aim of EFuNN training is to find connection nodes that 

associate fuzzy inputs and outputs, which is different to the case in ANFIS where 

subtractive partitioning is applied and where training is performed mainly to adjust MF 

parameters. Thus, EFuNN rules show the membership degrees that each input/output 

belongs to as indicated in Figure 6-13. Take rule No. 2, which is highlighted in Figure 6-13, 

for an example. This rule shows that if attribute 1 belongs to its 1st/2nd/3rd MF to a degree of 

0.809/0.191/0.000 and attribute 2 belongs to its 1st/2nd/3rd MF to a degree of 

0.824/0.176/0.000 respectively etc., then the fuzzy output is [0.837 0.084 0]. Based on these 

fuzzy output values, aggregations can be performed to produce predicted output values.  
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Figure 6-12: EFuNN prediction results and targets 

 

Figure 6-13: Rules exacted from EFuNN system 
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The membership functions in the EFuNN system do not change during the training process, 

but there are many parameters that need to be set before training, which highlights a 

potential important disadvantage for EFuNN. These parameters include sensitivity threshold, 

error threshold and the number of MF for each input variable and the learning rates etc. 

(Figure 6-12). Even though a trial and error approach is available and practical, when the 

dataset involves a large number of samples and features, determining the optimal 

parameters may be computationally expensive (Abraham & Nath, 2001). 

6.5.3 Decision Tree 

The principle of a Decision Tree (DT) is that it tries to split the high dimensional data into 

partitions, which are purer in terms of the class membership. An overly large tree will be 

grown using a criterion that generates optimal splits for the tree. To classify the new 

patterns, the DT starts at the top node and applies the rule. If the node satisfies the rule 

the tree takes the left path, and if not it takes the right path. Ultimately it reaches a 

terminal node that assigns an input pattern to one of the two categories. This large tree 

fits the training dataset very well, but does not generalize well to new patterns, so the 

rate at which new patterns are correctly classified is low with a misclassification error 

cost of 33.42%. For the CLASH data, a tree with 501 nodes was grown (it could not 

displayed here due to its large size). 
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Figure 6-14: Estimated error for cross validation and resubstitution 

 

Figure 6-15: The pruned tree view 
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In order to find a smaller and simpler tree, a nested sequence of subtrees by pruning 

branches of the large tree were examined, which was based on the misclassification rate 

estimated by cross-validation or an independent test sample. Figure 6-14 shows tree 

test results using a ten folder cross validation in which a subset of 10% of the data was 

set aside for validation and the remaining 90% of the data was used for training. It 

indicated that the re-substitution error (the proportion of the original observations that 

were misclassified by various subsets of the original tree) decreased as the tree size 

grows. But the cross-validation results, which were used to estimate the true error for 

trees of various sizes, showed that beyond a certain point, increasing the tree size 

increases the error rate.  As discussed section 2.3.5 in chapter Two, the simplest tree 

that is within one standard error of the minimum cost will be chosen as the pruned tree. 

Figure 6-14 shows the cutoff value which is equal to the minimum cost plus one 

standard error. The best level of pruning is the smallest tree under this cutoff. After 

setting the cutoff value, the pruned tree was obtained using the best level and the 

estimated misclassification cost was computed. Figure 6-15 displays the pruned 

classification tree. And for the CLASH data, the misclassification error is 28.60%. 

6.5.4 Fuzzy ARTMAP  

Fuzzy ARTMAP was trained using 90% percent of the CLASH dataset and tested using the 

other 10% of the data. It achieved an RMSE of 0.4849 with an accuracy of 76.51% for 

test dataset. The system also produced 131 committed coding nodes. Figure 6-16 shows 

the predicted and target class values and the prediction errors using 1% of the samples 

for display purpose.  As can be seen from the figure, Fuzzy ARTMAP’s predicted outputs 
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are integer values. This is different from some other intelligent systems techniques, such 

as ANFIS and EFuNN which produce some non-integer and continuous values. This will 

also result in a relatively large value of RMSE even when the Fuzzy ARTMAP classifies 

most of the input samples correctly. 

 

Figure 6-16: Fuzzy ARTMAP output results and prediction error 

Fuzzy ARTMAP has the advantage of converging very quickly and requiring no fine 

tuning of parameters compared to OWFDT. And all the training information and the 

parameters are stored in the system. According to Mahadevan and Raghavendra, Fuzzy 
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ARTMAP system does not suffer from temporal instability during on-line training 

(Mahadevan & Raghavendra, 1997).  

Its disadvantages are also quite obvious. Since Fuzzy ARTMAP only provides integer 

values as prediction results for the input samples, it can only be regarded as a predictor 

but not a generalizer.  

When Carpenter et al. first proposed Fuzzy ARTMAP in 1992; they did not extract any 

rules from the training system. In order to increase its interpretability, by focusing on 

the clusters formed by committed nodes, some researchers have proposed methods in 

successive research to extract rules for Fuzzy ARTMAP systems (Andrés-Andrés, Gómez-

Sánchez, & Bote-Lorenzo, 2005; Carpenter & Tan, 1995; Daxin, Yanheng, & Jian, 2006). 

But most of the research had encountered a bottleneck: there seems to be a tradeoff 

between the interpretability and the performance. Increasing the interpretability is 

always at the cost of damaging the system performance (Connolly, Granger, & Sabourin, 

2008; Granger, Connolly, & Sabourin, 2008). 

6.5.5 GNMM 

First of all, in section 6.3, an MLP was trained using CLASH data with all available 

attributes using the LM algorithm. As a result, within 25 epochs it achieved an RMSE of 

0.8674 with a regression value of 0.9363.  Applying GNMM to the CLASH Data, the NN 

was trained for 200 iterations. By using the default cross folder validation, 90 percent of 

the dataset was used as training data and 10 percent of the data was used as validation 

data. The minimum RMSE value of 0.6952 was achieved at iteration 79. 2152 rules were 
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extracted for training dataset and 496 rules were extracted using validation dataset. 

GNMM achieved an accuracy of 75.88% for the whole dataset. 

Compared to an MLP, GNMM can reduce the instability of a NN structure caused by 

random weight initialization. By training GNMM in a number of iteration, it can find the 

minimum RMSE value which will help to achieve a higher accuracy. One obvious 

drawback is that GNMM is very computationally expensive. It took a CPU time of 

12281.81 seconds to finish the simulation process. 

Table 6-4: Comparison of different IST results for CLASH data 

Methods Accuracy RMSE Rule Numbers 

OWFDT 79.28 0.4698 43 

ANFIS 64.54 0.3324 6 

EFuNN 74.40 0.3778 1293 

DT 71.40 0.3581 59 

GNMM 75.88 0.6952 2648 

Fuzzy ARTMAP 76.51 0.4849 N/A 

6.6 Conclusion  

Table 6-4 shows a comparison of different IST results. Both OWFDT and Fuzzy ARTMAP 

produced discrete and integer values as outputs and this made the RMSE values slightly 

larger than of other techniques, which produced continuous values as output. But 

OWFDT’s capability to have a better control on the splitting degree of the input features 

has resulted in less rules. This is in contrast to EFuNN which adopted a fuzzy-space-
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mapping approach. In addition to that, OWFDT’s fuzzifying the input feature process has 

resulted in a higher accuracy compared to DT and other first-order fuzzy inference 

systems. OWFDT had demonstrated its ability to achieve a better classification accuracy 

whilst reducing the number of rules as shown in Table 6-4. 

Table 6-5 summarizes the main features of all the intelligent systems techniques used in 

this chapter. Although a comprehensive study would be required to benchmark the 

performance of OWFDT against others, the current study within this chapter provides an 

overview of its outstanding characteristics. From Table 6-4 and Table 6-5 it is evident 

that compared with DT, OWFDT’s fuzzifying input feature process can enhance its 

classification performance. Compared with FIS based systems such as ANFIS, which 

produces similar and low-interpretability rules, OWFDT can generate variable rules 

which can link them with membership functions. Compared to other NN based 

approaches such as EFuNN and Fuzzy ARTMAP, OWFDT presents the advantage of 

producing fewer rules.  

One possible disadvantage is that when the algorithm tries to split the feature space 

into a smaller one, it may face the problem of the curse of dimensionality. It is very 

computationally expensive when the terminal nodes contain a pure feature. 
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Table 6-5: Summary of Features of OWFDT with other intelligent systems techniques 

Technique Core technique System Input Training method Rule extraction 

 
OWFDT 

 
Back propagation 

Fuzzified input 
according to 
membership 

function 

 
Weight updated and 

gradient descent 

 
Dividing fuzzified input space 

 
ANFIS 

 
Sugeno-type FIS 

 
Fixed 

Least square estimator 
and the gradient 
descent 

 
Fuzzy rules, no rule sharing 

 
GNMM 

 
MLP 

 
Fixed 

 
Levenberg- Marquardt 

 
Dividing input space 

 
EFuNN 

 
Mamdani-type FIS 

 

 
Evolve over 
iterations 

 

 
Hybrid unsupervised 

and supervised 
learning 

 

 
Fuzzy rules, increase 

dramatically when more 
data presented 

 

 
Decision Tree 

 
Dichotomy 

 
Original data 

 
Probability theory 

 
Dividing original data 

 
Fuzzy ARTMAP 

 
           ART 

 

 
Fuzzy inputs 

 
Incremental supervised 

Rule extraction based on 
committed nodes 
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Chapter VII: Conclusions and Suggestions for 

Future Work 

7.1 OVERVIEW OF MAIN RESEARCH RESULTS 

7.2 ADVANTAGES AND DISADVANTAGES 

7.3 FURTHER WORK 

 

This chapter summarises the main findings of this research, presents the conclusions 

and provides an outline of main results. It also includes suggestions for further research. 

7.1 Overview of main research results 

The main findings and the major original contributions to knowledge are presented as 

follows: 

7.1.1 Optimized Weighted Fuzzy Decision Tree 

The OWFDT technique proposed in this thesis has demonstrated its capacity to improve 

the prediction accuracy compared with that of Fuzzy ID3 and enhancing WFDT’s ability 

to precisely classify an unseen instance through the weighted production rules. OWFDT 

has achieved its advantage through the following modifications as compared with 

traditional FDT: 
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(1) The Fuzzy C-Means algorithm makes the fuzzification of the input instances more 

efficient and effective when it is introduced to determine the possible cluster 

centers, which can be used to fuzzify the data in terms of each linguistic term; 

(2) A momentum term to the gradient decent algorithm to train the neural network 

helps the learning process to avoid local minima. In addition, it can avoid 

oscillations or divergence which may be due to an inappropriately large learning 

rate or a low convergence rate due to a relatively small learning rate; 

(3) By combining the leaf nodes weights with the leaf nodes certainty to infer the 

expected classification results, OWFDT proposed a new reasoning mechanism. 

This mechanism not only overcomes drawbacks in terms of not considering the 

leaf nodes’ importance degree in inferring the results of the traditional FDT 

inference mechanism but also enhances WFDT’s reasoning mechanism by 

combining each leaf node’s degree of importance with leaf nodes (path) weights 

to infer an unknown test instance. 

7.1.2 Case study results 

7.1.2.1 Composite material failure mechanism classification 

In chapter four, the signals recorded when composite materials encounter failure have 

been successfully used to classify the possible failure mechanisms. SOM and FCM were 

introduced to cluster the datasets into different groups representing different failure 

mechanisms. Five categories of failure mechanisms, mainly matrix cracking, fiber/matrix 

debonding, fiber/matrix pull out, fiber breakage and matrix breakage were detected.  
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Both FCM and SOM have resulted in similar cluster conclusions for seven datasets with a 

similarity ranging from 88.2% to 98.9%. Classifier designed using OWFDT also achieved 

better results (with the highest accuracy of 95.49% for 90° degree), which are 0.66% to 

14.51% higher than traditional FDT. 

7.1.2.2 Eye bacteria dataset 

 In chapter five, in order to classify six kinds of bacteria which are responsible for eye 

infection, MLP and DT were introduced to recognize the possible classes. Although a 

single MLP can classify the dataset, the accuracy was not high enough and the results 

were highly unstable and dependent on the network initialization. The decision tree 

constructed was able to discriminate different bacteria classes but with a high error cost 

of 20.56%. We have managed not only to enhance the accuracy but also stabilize the 

performance of MLP classifiers by introducing the bagging technique to MLP.  Bagging 

MLP achieved accuracy as high as 100% and regression value for test dataset and 

validation dataset are above 0.97, which shows MLP outputs fit well with the targeted 

ones. By bagging the decision tree, we have successfully extracted eight most important 

features and reduced the dimensionality of the original data. In addition to that, the 

error cost of the classification tree has also reduced significantly to 9.44% making the 

decision tree more reliable. 

7.1.2.3 OWFDT case study results 

A total of six datasets were used in chapter three, four, five and six of the thesis to 

illustrate the implementation and demonstrate the usefulness of OWFDT. A summary of 

these case study datasets and results is shown in Table 7-1. Although these datasets 
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belong to different categories, i.e. material, medical and civil engineering, they can all 

be regarded as prediction and classification. 

Data I is concerned with the classification of iris species, namely setosa, versicolor, and 

virginica. Data II is concerned with breast cancer in order to predict whether it is benign 

or malignant. These two dataset are widely used as benchmarking study data for many 

newly-developed algorithms. Data III is concerned with Brain Computer Interface. Data 

IV is concerned with composite material failure mechanisms. Data V deals with the EN 

sensed eye bacteria data. In chapter six, a wave overtopping dataset is used to 

benchmark OWFDT with some existing intelligent systems techniques which bear some 

similarities to OWFDT. Although OWFDT was implemented to six datasets, the emphasis 

is different for the different datasets. For dataset I-V, OWFDT was used to illustrate the 

effectiveness and efficiency of OWFDT compared with traditional FDT and Weighted FDT 

in terms of the accuracy and the number of iterations used to train the neural networks. 

For dataset VI, emphasis was placed on OWFDT’s improvement of achieving a higher 

accuracy (see table 6-4 in chapter six) while producing less reasoning rules compared to 

ANFIS, EFuNN, Fuzzy ARTMAP, DT and GNMM.  

7.2 Advantages and Disadvantages 

By combing decision tree with fuzzy logic and neural networks, OWFDT is capable of not 

only classifying a dataset with a higher accuracy but also dealing with a dataset where 

the underlying relationship within the dataset is not understandable to human beings. 
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 OWFDT can overcome the drawbacks of fuzzy decision tree by taking the 

importance of every leaf node (rule) into account and assigning a weight factor 

to every rule. OWFDT is also able to reduce the average epochs of training 

process of weighted fuzzy decision tree by introducing the momentum term. In 

this way OWFDT has achieved higher classification or prediction accuracy over 

traditional fuzzy decision tree using a small number of average epochs. 

 OWFDT can also extract rules which are friendlier to human beings than datasets 

themselves. It overcomes the nature of ‘black box’ of neural networks which 

don’t provide any underlying knowledge and relationship between the physical 

meaning of the dataset and the actual output. The rules extracted using OWFDT 

can not only help us to understand the internal behavior of neural networks but 

also makes the classification results more understandable and transferable. 

However, OWFDT also faces disadvantages based on the application throughout the 

thesis. An obvious disadvantage is that OWFDT is quite sensitive to noise which will 

pose obstacles for fuzzyfication of raw data. Furthermore, OWFDT may not be 

applicable to large categorical datasets since categorical data is difficult to be 

transferred to numerical data in a systematical way. 
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Table 7-1: A summary of case study data and results 

 

Dataset OWFDT results Benchmarking literature 

Nature Dimension 

(class x attribute x sample) 

Classification 

results 

Rule 

extraction 

Methods Results 

I. Iris 3x4x150 96.00% 7 Fuzzy Decision Tree 90.67% 

II. Wisconsin Breast Cancer 2x30x569 96.49% 11 Fuzzy Decision Tree 92.98% 

III. Brain Computer Interface 2x12x378 92.00% 3 Fuzzy Decision Tree 89.00% 

IV. Composite Material (3-5)x4x(534-7052) See table 2 in 

chapter 3 

7-59 Fuzzy Decision Tree See table 2 in 

 chapter 3 

V. Eye Bacteria classification 6x32x180 85.56% 41 Integer  based GA using 

PNN (Boilot, 2003) 

82.00% 

VI. Wave Overtopping 2x15x7107 79.28% 43 ANFIS, EFuNN, Fuzzy 

ARTMAP, DT, GNMM 

See table 4 in  

chapter 6 
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7.3 Further work 

In OWFDT, Fuzzy C-Means was introduced to fuzzify all the features of raw data using 

the cluster centers and maximum and minimum values of each feature. One possible 

improvement is that we could introduce more partition methods corresponding to each 

feature so that each feature can have a personalized partition method (S. Mitra, Konwar, 

& Pal, 2002). Although this may increase the computational complexity, a higher 

accuracy may overtake this disadvantage when the accuracy of classification outweighs 

its computational cost. 

As a data driven method, OWFDT also relies on the quality of the data. Successful 

implementation of OWFDT suggests that the data should not only be cleaned off errors 

and redundancy, but also be organized in a fashion that makes sense in the context of 

the application(Yang, 2009). Uncertainty, vagueness, and incompleteness of raw data 

may lead to problems for knowledge acquisition (Sushmita Mitra & Acharya, 2003). Thus, 

future works may also include applications of OWFDT to some incomplete and highly 

noisy data.  

Although OWFDT has been able to solve many data mining applications as discussed in 

this chapter, a systematic way to integrate it into the process of KDD has to be devised 

so that OWFDT can be able to condense and transform the original data and present the 

knowledge in a more friendly way to final users. 
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