4,122 research outputs found

    Graph based fusion of high-dimensional gene- and microRNA expression data

    Get PDF
    One of the main goals in cancer studies including high-throughput microRNA (miRNA) and mRNA data is to find and assess prognostic signatures capable of predicting clinical outcome. Both mRNA and miRNA expression changes in cancer diseases are described to reflect clinical characteristics like staging and prognosis. Furthermore, miRNA abundance can directly affect target transcripts and translation in tumor cells. Prediction models are trained to identify either mRNA or miRNA signatures for patient stratification. With the increasing number of microarray studies collecting mRNA and miRNA from the same patient cohort there is a need for statistical methods to integrate or fuse both kinds of data into one prediction model in order to find a combined signature that improves the prediction. Here, we propose a new method to fuse miRNA and mRNA data into one prediction model. Since miRNAs are known regulators of mRNAs, correlations between miRNA and mRNA expression data as well as target prediction information were used to build a bipartite graph representing the relations between miRNAs and mRNAs. Feature selection is a critical part when fitting prediction models to high- dimensional data. Most methods treat features, in this case genes or miRNAs, as independent, an assumption that does not hold true when dealing with combined gene and miRNA expression data. To improve prediction accuracy, a description of the correlation structure in the data is needed. In this work the bipartite graph was used to guide the feature selection and therewith improve prediction results and find a stable prognostic signature of miRNAs and genes. The method is evaluated on a prostate cancer data set comprising 98 patient samples with miRNA and mRNA expression data. The biochemical relapse, an important event in prostate cancer treatment, was used as clinical endpoint. Biochemical relapse coins the renewed rise of the blood level of a prostate marker (PSA) after surgical removal of the prostate. The relapse is a hint for metastases and usually the point in clinical practise to decide for further treatment. A boosting approach was used to predict the biochemical relapse. It could be shown that the bipartite graph in combination with miRNA and mRNA expression data could improve prediction performance. Furthermore the ap- proach improved the stability of the feature selection and therewith yielded more consistent marker sets. Of course, the marker sets produced by this new method contain mRNAs as well as miRNAs. The new approach was compared to two state-of-the-art methods suited for high-dimensional data and showed better prediction performance in both cases

    Combining techniques for screening and evaluating interaction terms on high-dimensional time-to-event data

    Get PDF
    BACKGROUND: Molecular data, e.g. arising from microarray technology, is often used for predicting survival probabilities of patients. For multivariate risk prediction models on such high-dimensional data, there are established techniques that combine parameter estimation and variable selection. One big challenge is to incorporate interactions into such prediction models. In this feasibility study, we present building blocks for evaluating and incorporating interactions terms in high-dimensional time-to-event settings, especially for settings in which it is computationally too expensive to check all possible interactions. RESULTS: We use a boosting technique for estimation of effects and the following building blocks for pre-selecting interactions: (1) resampling, (2) random forests and (3) orthogonalization as a data pre-processing step. In a simulation study, the strategy that uses all building blocks is able to detect true main effects and interactions with high sensitivity in different kinds of scenarios. The main challenge are interactions composed of variables that do not represent main effects, but our findings are also promising in this regard. Results on real world data illustrate that effect sizes of interactions frequently may not be large enough to improve prediction performance, even though the interactions are potentially of biological relevance. CONCLUSION: Screening interactions through random forests is feasible and useful, when one is interested in finding relevant two-way interactions. The other building blocks also contribute considerably to an enhanced pre-selection of interactions. We determined the limits of interaction detection in terms of necessary effect sizes. Our study emphasizes the importance of making full use of existing methods in addition to establishing new ones

    Over-optimism in bioinformatics: an illustration

    Get PDF
    In statistical bioinformatics research, different optimization mechanisms potentially lead to "over-optimism" in published papers. The present empirical study illustrates these mechanisms through a concrete example from an active research field. The investigated sources of over-optimism include the optimization of the data sets, of the settings, of the competing methods and, most importantly, of the method’s characteristics. We consider a "promising" new classification algorithm that turns out to yield disappointing results in terms of error rate, namely linear discriminant analysis incorporating prior knowledge on gene functional groups through an appropriate shrinkage of the within-group covariance matrix. We quantitatively demonstrate that this disappointing method can artificially seem superior to existing approaches if we "fish for significance”. We conclude that, if the improvement of a quantitative criterion such as the error rate is the main contribution of a paper, the superiority of new algorithms should be validated using "fresh" validation data sets

    Novel image markers for non-small cell lung cancer classification and survival prediction

    Get PDF
    BACKGROUND: Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is one of serious diseases causing death for both men and women. Computer-aided diagnosis and survival prediction of NSCLC, is of great importance in providing assistance to diagnosis and personalize therapy planning for lung cancer patients. RESULTS: In this paper we have proposed an integrated framework for NSCLC computer-aided diagnosis and survival analysis using novel image markers. The entire biomedical imaging informatics framework consists of cell detection, segmentation, classification, discovery of image markers, and survival analysis. A robust seed detection-guided cell segmentation algorithm is proposed to accurately segment each individual cell in digital images. Based on cell segmentation results, a set of extensive cellular morphological features are extracted using efficient feature descriptors. Next, eight different classification techniques that can handle high-dimensional data have been evaluated and then compared for computer-aided diagnosis. The results show that the random forest and adaboost offer the best classification performance for NSCLC. Finally, a Cox proportional hazards model is fitted by component-wise likelihood based boosting. Significant image markers have been discovered using the bootstrap analysis and the survival prediction performance of the model is also evaluated. CONCLUSIONS: The proposed model have been applied to a lung cancer dataset that contains 122 cases with complete clinical information. The classification performance exhibits high correlations between the discovered image markers and the subtypes of NSCLC. The survival analysis demonstrates strong prediction power of the statistical model built from the discovered image markers
    corecore