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RESEARCH ARTICLE Open Access

Novel image markers for non-small cell lung
cancer classification and survival prediction
Hongyuan Wang1, Fuyong Xing2,3, Hai Su4, Arnold Stromberg1 and Lin Yang2*

Abstract

Background: Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is one of serious diseases
causing death for both men and women. Computer-aided diagnosis and survival prediction of NSCLC, is of great
importance in providing assistance to diagnosis and personalize therapy planning for lung cancer patients.

Results: In this paper we have proposed an integrated framework for NSCLC computer-aided diagnosis and survival
analysis using novel image markers. The entire biomedical imaging informatics framework consists of cell detection,
segmentation, classification, discovery of image markers, and survival analysis. A robust seed detection-guided cell
segmentation algorithm is proposed to accurately segment each individual cell in digital images. Based on cell
segmentation results, a set of extensive cellular morphological features are extracted using efficient feature
descriptors. Next, eight different classification techniques that can handle high-dimensional data have been evaluated
and then compared for computer-aided diagnosis. The results show that the random forest and adaboost offer the
best classification performance for NSCLC. Finally, a Cox proportional hazards model is fitted by component-wise
likelihood based boosting. Significant image markers have been discovered using the bootstrap analysis and the
survival prediction performance of the model is also evaluated.

Conclusions: The proposed model have been applied to a lung cancer dataset that contains 122 cases with
complete clinical information. The classification performance exhibits high correlations between the discovered
image markers and the subtypes of NSCLC. The survival analysis demonstrates strong prediction power of the
statistical model built from the discovered image markers.

Keywords: Lung cancer, Segmentation, Classification, Image informatics, Survival analysis

Background
Lung cancer is one of the most frequent cancers world-
wide. Similar to breast cancer in female, lung cancer is
the leading cancer in males, with 17% of the total new
cancer cases and 23% of the total cancer deaths. The prog-
nosis of lung cancer is still poor, with five-year survival
rate of approximately 10% in most countries. Lung can-
cer can be classified as small cell lung cancer (SCLC) and
non-small cell lung cancer (NSCLC). NSCLC accounts for
the majority (84%) of lung cancer [1]. Two major types
of NSCLC are adenocarcinoma (including bronchi alve-
olar carcinoma) representing about 40% and squamous
cell carcinoma representing about 25–30% [2]. Accurate

*Correspondence: linyang711@gmail.com
2J. Crayton Pruitt Family Department of Biomedical Engineering, University of
Florida, 1275 Center Drive, 32611 Gainesville, FL, USA
Full list of author information is available at the end of the article

classification and survival analysis can provide assistance
for personalized treatment planning and prognosis.
Histopathology images serve as a golden standard for

lung cancer diagnosis since they can provide a com-
prehensive view of the disease and its effect on human
tissue [3]. Figure 1 shows some representative images
of squamous cell carcinoma and adenocarcinoma. Cur-
rently, pathologists make diagnosis decision based on cel-
lular and inter-cellular level morphology. Most of current
pathology diagnosis is still based on subjective opinions
of pathologists and the varying abilities of doctors could
result in large interpretation errors or bias. The pro-
posed framework, which focuses on automated quantita-
tive analysis of histopathology images, could alleviate the
subjectivity in NSCLC diagnosis and provides supports to
doctors in lung cancer classification and patients’ survival
analysis.

© 2014 Wang et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.
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Figure 1 Example Images of squamous cell carcinoma (Left) and adenocarcinoma (Right). Notice: 1. Elongated or spindle cells are more
abundant in squamous; 2. Squamous has more clear cell boarders; 3. Squamous usually are more pink while Adeno are more purple or blue.

Recently, there are much active research in imaging
informatics [4-12]. Before computer-aided lung cancer
diagnosis and survival analysis, usually accurate image
segmentation [13,14] is a prerequisite. Sometimes the
explicit segmentation may not be required for the appli-
cations when the tumor microenvironment is critical for
tumor classification; however, in our study, we find that
explicit cell localization and cellular features are impor-
tant for NSCLC classification and survival analysis.
Because crowding and overlapping cancer cells often

present significant challenges for most traditional auto-
matic segmentation methods. A vast variety of algorithms
based on watershed and its variants [15-17], graph cut

[18,19], and active contour models [20-22] have been pro-
posed. However, none of these methods could robustly
handle touching cell segmentation challenges exhibited in
lung cancer images. Lu et al. [23] has proposed a super-
vised learning-based segmentation algorithm to support
new image features extraction and polyp detection on CT
images, and a flexible, hierarchical feature learning frame-
work integrating different levels of discriminative and
descriptive information is presented in [24]. Supervised
learning is a potential approach to tackle these challenges,
but it requires a lot of labeled training data provided
by experienced pathologists. For computer-aided clas-
sification, genetic algorithms (GAs) and support vector
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machines (SVMs) have been combined for multi-class
cancer identification based on microarray dataset [25].
Partial least square regression (PLSR) and support vector
machine with recursive feature elimination (SVM-RFE)
have been applied to lung cancer subtype classification
[26]. In [27], the lung cancer image classification is mod-
eled as a multi-class multi-instance learning problem, and
an adaboost algorithm has been used to perform clas-
sification with a bag of feature model. None of these
studies correlated image features with the patient survival
information.
Survival analysis is related to death in biological organ-

isms and failure inmechanical systems. Several commonly
used survival analysis methods are the Kaplan-Meier
method for estimating the survival function [28], the log-
rank test for comparing the equality of two or more
survival distributions, and the Cox proportional hazards
(PH)model for examining the covariate effects on the haz-
ard function [29]. In survival analysis, one important issue
that needs to be considered is censoring problem (subjects
are censored if they are not followed up or if the study ends
before they die or have an outcome of interest). Cox pro-
portional hazardsmodel [30] is one of themost commonly
used multivariate approaches to analyze the survival time
data in medical research. It is a semi-parametric method
that does not need a specific baseline hazard function and
has the capability to effectively handle censoring problem.
In other words, it is not necessary to specify a survival dis-
tribution to model the effect of the explanatory variables
on the duration variable.
In survival analysis, researchers also considers clinical

factors or other environmental information [29,31-33].
For example, standard Cox proportional hazards sur-
vival model with a spatial random effect extension has
been applied and proved that the long-term exposure
to combustion-related fine particulate air pollution is an
important environmental risk factor for cardiopulmonary
and lung cancer mortality [31]. Gene signature expres-
sions have also been used as covariates to conduct survival
analysis [34-39] to search for pairs of genes (biomarkers)
that are significantly related to patient death.
In this paper, we will present an integrated framework

that investigates the prognostic effects of image markers.
First, a novel seed detection-based repulsive deformable
model is proposed to separate touching cells; secondly, a
set of geometry, pixel intensity, and image texture features
are extracted to describe cellular morphological proper-
ties; thirdly, eight different classification techniques are
comparatively analyzed for computer-aided diagnoses of
NSCLC; finally, survival analysis is conducted based on
a Cox model fitted by component-wise likelihood based
boosting. The entire system is designed to assist doctors
for more objective and accurate diagnoses and prognoses
of NSCLC. Unlike gene sequencing, histopathological

slides are always available for each lung cancer patient
in routing clinical diagnosis, and therefore the adoption
of the developed prediction model does not require any
changes to current clinical practice.
The experiments in the paper are conducted using the

adenocarcinoma and squamous cell carcinoma lung can-
cer images downloaded from the TCGA Data Portal.
TCGA (The Cancer Genome Atlas) is a collection of can-
cer specimens, with additional clinical information about
participants, metadata about the samples, histopathol-
ogy slide images from sample portions and molecular
information derived from the samples. It is supervised
by National Cancer Institute (NCI) and National Human
Genome Research Institute (NHGRI) and freely available
to researchers.

Methods
Cell detection and segmentation
Seed detection is the first critical step for marker-based
segmentation methods. Motivated by [22], we have pro-
posed a multi-scale distance map-based voting algorithm
for cell detection. The newly developed method can effi-
ciently handle relatively large cell size and shape variation.
For each point (x, y), we define a cone-shape voting area
A with vertex at (x, y) and votes towards the negative
gradient direction of the vertex. A 2D Gaussian kernel
K(m, n,μ,�) is introduced to weight the voting points:

V (x, y)=C1
∑
c

∑
(m,n)∈S

1Ac(m,n)(x, y)·gD(x, y, σ)K(m, n,μ,�),

(1)

where C1 is the normalized constant, S represents
the set of all voting points, Ac(m, n) denotes the
cone-shape voting area with vertex (m, n) and scale
c. The voting area at each scale is defined as the
radial range (rmin, rmax) and angular range �, μ =(
x + (rmax−rmin) cos θ

2 , y − (rmax−rmin) sin θ
2

)
(θ is the angle of

the gradient direction with respect to x axis) is the mean
of the Gaussian kernel.� = σ 2I2 (I2 is the identity matrix)
is the covariance matrix. 1Ac(m,n)(x, y) is the indica-
tor function: 1 for (x, y) ∈ Ac(m, n) and 0 otherwise.
gD(x, y, σ) represents the Euclidean distance map. After
the confidence map V (x, y) is calculated, we remove those
points with relatively lower voting values, which locate
near the cell boundaries. In order to achieve a robust seed
detection, we apply mean shift [40] to locate the final
positions of cell seeds.
Using the boundaries of detected cell seeds as initial-

izations, a novel repulsive balloon snake (RBS) algorithm
based on a deformable model [41] is used to seek the cell
boundaries. RBS is a parametric model which can natu-
rally preserve cell topologies and prevent contours from
splitting or merging with one another.
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A snake is an active curve as v(s) = (x(s), y(s)), s ∈ [0, 1],
moving through the image domain to minimize its energy
functional, under the influence of internal and external
forces. To enforce snakes to inflate or deflate, a pres-
sure force to propose the balloon snake (BS) model was
introduced [41]. The external force FB

ext is calculated by:

FB
ext = γn(s) − λ

∇Eext(v(s))
||∇Eext(v(s))|| , (2)

where n(s) represents the normal vector (pressure force)
to the curve at the specific point on v(s) and ∇Eext(v(s)) is
defined as image force, where Eext(v(s)) = −||∇I(v(s))||2
(I(v(s)) is the original image). γ and λ are the weight-
ing parameters controlling pressure force and image force,
respectively.
Balloon snake (BS) model can not be directly used for

touching object segmentation. If all balloon snakes move
independently, they will cross with one another. Based on
these observations, we introduce an interactive scheme
to form a RBS model for touching cell segmentation.
The intrinsic idea of RBS is based on the following: the
cell contour should be driven by its own forces as well
as extrinsic forces from other deformable contours; both
amplitudes and directions of these extrinsic forces should
vary with respect to the distance between snakes. When
two snakes are far away, their movements should be dom-
inantly controlled by their own driven forces (internal and
external forces); when they get closer, each snake should
receive repulsive forces from all other adjacent snakes.
As a result, the extrinsic force will prohibit snakes from
crossing or merging.
Given an image I with N cells (denoted by N curves

vi, i = 1, . . . ,N), the new repulsive external force FRB
ext for

vi is defined as:

FRB
ext = γni(s) − λ

∇Eext (vi(s))
||∇Eext (vi(s)) ||

+ ω

N∑
j=1,j �=i

∫ 1

0
f
(
dij(s, t)

)
nj(t)dt,

(3)

where dij(s, t) = ||vi(s) − vj(t)||2 is the Euclidean distance
between vi(s) and vj(t). f (x) > 0, x ∈ (0,+∞), repre-
sents a monotonic decreasing function ( f (x) = x−2 in
our case), and ω weights the repulsive force. For a spe-
cific point vi(s), the closer it moves to other snakes, the
more repulsive forces it will receive. Unlike the original
balloon snake, RBSmoves contours under the influence of
their own driven forces and extrinsic repulsive forces from
other snakes. When these two types of forces achieve a
balance, snakes stop evolving.

Feature extraction
Based on the segmented cell boundaries, three groups of
cellular features are extracted for subsequent classifica-
tion and survival analysis. In total we have extracted 166
image morphometric features, which are represented as
the candidates of image markers. The detailed notations
of feature names and descriptions are listed in the Table 1.
Group 1: Geometry Features. Five geometry features

are calculated for each segmented lung cancer cell, includ-
ing area Acell, contour perimeter Pcell, circularity C =
4πAcell
P2cell

, major-minor axis ratio, and contour solidity that is
defined as the ratio of cell area region over the convex hull
defined by the cell boundary.
Group 2: Pixel Intensity Statistics. This group of fea-

tures are calculated based on the pixels in the segmented
cells, including intensity mean, standard deviation, skew-
ness, kurtosis, entropy, and energy. We use Lab color
space for better color representation.
Group 3: Texture Features: This group of features

contains co-occurrence matrix [42], local binary pattern
(LBP) [43], texture feature coding method (TFCM) [44],

Table 1 The image features and their descriptions

Name Description

area1-6 Cell area feature

axis1-6 Major-minor axis ratio

cir1-6 Cell circularity feature

peri1-6 Contour perimeter feature

solidity1-6 Contour solidity feature

mean1-6 Cell intensity mean feature

std1-6 Cell intensity stand deviation feature

kurt1-6 Cell intensity Kurtosis

entr1-6 Cell intensity entropy

energy1-6 Cell intensity energy

contrast1-6 Cell intensity contrast

corr1-6 Cell intensity correlation

engy1-6 Cell intensity energy from co-occurrence matrix

homo1-6 Cell intensity homogeneity

skew1-6 Cell intensity skewness

tfcm1-24 Texture feature coding method (TFCM)

csac1-24 Center symmetric auto correlation (CSAC) feature

lbp1-24 Local binary pattern (LBP) feature

t1-4 Texton histogram feature

The 1-6 in each image feature represent the mean, median, variance and three
frequency values of the histogram for each intensity and geometric feature,
respectively. Csac, tfcm, lbp and texton histogram features are high dimensional
feature vectors, therefore we calculate their moment statistics to reduce the
dimensionality. In total we have extracted 166 geometric, pixel intensity, and
image texture feature variables for each patient. All variables are normalized
before further classification and survival analysis.



Wang et al. BMC Bioinformatics 2014, 15:310 Page 5 of 12
http://www.biomedcentral.com/1471-2105/15/310

center symmetric auto-correlation (CSAC) [45], and tex-
ton features [46]. The co-occurrence matrix [42] is an
estimation of the joint probability distribution of intensity
of two neighboring pixels. LBP [43] is a measure of local
textures. Each pixel in the input image patch is assigned
a binary code by comparing the intensity of this pixel
to those of its neighbors. Similar to LBP, in TFCM [44],
each pixel is assigned a texture feature number (TFN).
The TFN of one pixel is generated by comparing this
pixel with its neighbors in four directions: 0°, 45°, 90°,
and 135°. A histogram is calculated based on the TFNs
of one image patch. CSAC is a measure of the local
patterns with symmetrical forms. We calculated a series
of local auto-correlation and covariance introduced in
[45], including symmetric texture covariance (SCOV) and
variance (SVR), and within-pair variance (WVAR) and
between-pari variance (BVAR). 3 × 3 pixel unit of each
channel is considered for CSAC feature. Texton [46] is
a discriminative texture representation. The calculation
of texton feature is based on unsupervised learning. We
randomly picked some cells in each image as training sam-
ples. These cell patches are filtered by texton filter bank.
K-means clustering is then applied and the centers of the
clusters are defined as textons. To generate the texton his-
togram for a new image, the image is first filtered by the
same texton filter bank, then each pixel is assigned to one
texton to build the final texton histogram.

NSCLC classification
After calculating the aforementioned image features, we
first perform the NSCLC subtype classification. In this
stage, several conventional machine learning methods
and recently published state-of-the-art algorithms that
can handle high dimensional data are compared, which
include multiple support vector machine recursive fea-
ture extraction (MSVM-RFE) algorithm [47], L1 penalized
logistic regression [48,49], random forest [50,51], naive
Bayesian [52,53], adaboost [54,55], sparse coding spa-
tial pyramid matching (ScSPM) alogrithm [56], locality-
constrained linear coding (LLC) [57], and nearest class
mean (NCM) classifier [58]. MSVM-RFE is an iterative
feature selectionmethod that uses a backward elimination
procedure. Resampling scheme is introduced to stabilize
the feature rankings. At each iteration, the feature ranking
score is computed based on the weight vectors of mul-
tiple linear SVMs trained on subsamples of the original
training data and the feature with the smallest ranking
score is removed from the model. L1 penalized logis-
tic regression provides an efficient lasso regularization
path for logistic regression, which enables feature shrink-
age and selection for high dimensional data. Random
forest is an ensemble learning method for classification,
which can generate a score by permutation to rank the
importance of variables in classification problem. Naive

Bayesian classifier is a simple probabilistic classifier based
on the Bayes theorem with naive feature conditional inde-
pendence assumptions. The adaboost algorithm employs
the idea of sequentially applying a classification algorithm
to reweighted versions of the training data and then taking
a weighted majority vote of a ensemble of weak clas-
sifiers. Adaboost can provide an importance score for
each weak classifier that corresponds to one selected fea-
ture. ScSPM is an extension of spatial pyramid matching
[59] and the algorithm uses selective sparse coding fol-
lowed bymulti-scale spatial max pooling and SVM. LLC is
another feature representation method that applies local-
ity constraint to project each feature into a sparse code.
NCM is a distance-based classification with projecting the
features into a low-dimensional space for classification.
These three recent algorithms have already made remark-
able successes on a range of nature image classification
benchmarks.

Survival analysis
Before survival analysis, dimension reduction is a widely
used approach to avoid the “curse of dimensionality”.
Common examples of linear dimension reduction meth-
ods, such as principal component analysis (PCA), are
proposed to minimize the variances. Meanwhile, least
absolute shrinkage and selection operator (LASSO) [60]
method is another classic method of feature shrinkage and
selection for regression that can potentially handle high
dimensional data. Least angle regression (LARS) is pro-
posed for variable selection in the linear regression setting
for high dimensional data [61]. The LARS selects predic-
tors by its current correlation or angle with the response,
where the correlation is defined as the co-correlation
between the predictor and the current residuals. More-
over, elastic net is proposed as a new regularization and
variable selectionmethod for feature selection [62]. Boost-
ing is another widely used feature selection approach. It
applies the idea of fitting an ensemble of weak learn-
ers to the data. Furthermore, component-wise boosting
has been proposed to estimate the model with intrinsic
variable selection [63]. The term component-wise means
each base learner only consists of linear function of one
component (variable). For each covariate, a base-learner
is specified and only the best base-learner is updated
in each boosting step. Finally only part of base learn-
ers are chosen to ensemble the strong classifier when the
optimal boosting iteration is reached. The algorithm can
generate a strong classifier and a sparse set of selected
features.
Given the observations(ti, di, xi), i = 1, 2, . . . , n, where ti

is the observed time to the event of interest for individual
i, di equals 1 if an event occurred at that time and 0 if the
observation has been censored, and xi is vector of covari-
ates obtained at time 0. The component-wise likelihood
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Figure 2 Cell detection (left) and segmentation (right) results. Please note that the cells with small areas correspond to non-tumor cells, and
are automatically removed after the boundaries are extracted. Those false detected seeds locating in the lymphocyte regions are also removed
using a simple intensity threshold before cell segmentation is conducted.

based boosting algorithm for high dimensional survival
analysis is based on the Cox proportional hazards model:

λ(t) = λ0(t)eβ
′x, (4)

where λ0(t) is the baseline hazard and x is covariate vector.
For estimation, the baseline hazard λ0(t) is left unspeci-
fied and the estimate of β is obtained by maximizing the
partial log likelihood.

l(β) =
n∑

i=1
di

⎛
⎝β ′xi − log

⎛
⎝ n∑

j=1
I
(
tj ≤ ti

)
exp

(
β ′xi

)
⎞
⎠

⎞
⎠ ,

(5)

For high dimensional data, penalized regression meth-
ods like LASSO [60], ridge regression [64], would add
a penalization term into the partial log likelihood func-
tion and the penalized partial likelihood is maximized by
techniques such as quadratic programming.
In this paper, we apply component-wise likelihood

based boosting [65] to dimensionality reduction, which
adapts from the offset-based boosting approach from [66].
In each iteration the previous boosting steps are incor-
porated as an offset in a penalized partial likelihood esti-
mation. Component-wise indicates that only one single
parameter, i.e., one covariate, is updated in every iteration
by maximization the L2 penalized partial log likelihood
with respect to each candidate covariate.

lpen(β) = l(β) − λβ ′Ipβ , (6)

where Ip is a diagonal matrix to penalize each covariate
separately, with diagonal elements equal to 1 for each can-
didate and 0 for the rest corresponding to penalization and
no-penalization. The candidate covariate that can best
improve the overall fitting will be selected for updating.
As the number of boosting steps increases, more fea-
ture variables will be selected and chosen with respect to
their relevances in predicting survival rates. The result is

expected to be sparse withmany coefficients equal to zero.
The coefficient paths of component-wise boosting are
expected to be more stable than LASSO based approaches
[65]. In addition, it has twomajor advantages over LASSO:
1) it allows for unpenalized mandatory covariates; 2) it
can handle correlated covariates by including pathway
information [67].

Results
Cell detection and segmentation
The cell detection and segmentation results are displayed
in Figure 2. It can be observed that even for heavily
touched regions, cells are still accurately detected and
segmented automatically. It is worth mentioning that the
proposed cell detection algorithm can handle relatively
large size variations, and the repulsive snake models can
prevent contours from overlapping with one another.
We have compared the proposed voting method (SPV)

presented in [22] and the phase-coded hough transform
(HT) based on quantitative measurement. In our evalu-
ation a positive detection is counted if a detected seed
locates within a 8-pixel circle around a ground truth seed;
otherwise, a miss is counted. To measure the accuracy of
the cell detection algorithms, we compute the mean, vari-
ance, maximum and minimum of the distance between
the detected seeds and their corresponding ground truth
seeds. In addition, we also show miss rate (MR) and false
positive rate (FP) in Table 2. The ground truth seeds are
manually generated for comparison. As one can see, the
improved voting approach produces the best performance
in comparison with other two methods.

Table 2 The pixel-wise seed detection accuracy compared
with ground truth

Mean Variance Max Min MR FP

HT 3.9 4.13 8.0 0.19 0.46 0

SPV 3.0 3.13 7.9 0.29 0.21 0.002

Proposed 2.6 2.8 7.9 0.12 0.12 0.002

The best performance measured in each metric is marked in boldface.
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Table 3 The performance of segmentationmeasured by
precision and recall

Precision Precision 80% Recall Recall 80%
mean variance mean variance

0.87 0.01 0.95 0.95 0.01 0.96

To evaluate the performance of the segmentation algo-
rithm, we define precision P = seg

⋂
gt

sr and recall R =
seg

⋂
gt

gt , where seg represents the segmentation result and
gt represents the manually-generated ground truth. We
show the mean, variance and 80% in Table 3. The segmen-
tation algorithm can effectively handle touching cells and
provide accurate segmentation results with high precision
and recall rates.

NSCLC classification
Precison, recall, and accuracy have been used as predic-
tion performance metrics for NSCLC classification. The
training (62) and testing (60) datasets have been randomly
selected and repeated five times to test the accuracies of
classification using the TCGA dataset consisting of 122
NSCLC patients. Table 4 shows the average recall, preci-
sion, and accuracy using eight classifiers. The experiments
indicate that the random forest and adaboost provide the
best results.
To assess the relative importance of the 166 imagemark-

ers, we have applied adaboost to the entire dataset and
generated the frequency score for the variable selected in
each boosting iteration. The results are shown in Figure 3.
Higher importance score indicates a more representative
feature variable for NSCLC classification.
The top 10 features selected by adaboost are 4 lbp

features, 3 solidity features, and area3, kurt3 and peri3 fea-
tures. Among the top 30 features, lbp, area, solidity, axis,
tfcm, energy, correlation and contrast are most commonly
selected image features. Peri, kurt, std and circularity all
have one feature been selected. The ranking suggests that
the image texture features and geometric features are rep-
resentative markers to distinguish between two subtypes
of NSCLC: Adenocarcinoma (AC) and Squamous cell car-
cinoma (SCC). The results also indicate that 1) there
are more elongated cells for SCC than AC; 2) AC usu-
ally has a relatively larger intensity variation inside cells

than SCC; 3) SCC cells are often over-stained and exhibit
more clear boundaries; 4) AC cells usually exhibit more
inhomogeneous texture than SCC.

Survival analysis
The TCGA NSCLC dataset contains complete patients’
histopathological image information. It has been ran-
domly divided into training (n = 65) and testing set
(n = 57). The training set is used to build a Cox
regression model with component-wise likelihood based
boosting for feature selection. Among 166 image features,
we first conduct univariate Cox regression and abandon
those with Wald test p value less than a threshold (0.25).
The rest image features are chosen as candidate mark-
ers to conduct component-wise likelihood based boosting
for Cox Proportional Hazards Model. After the univari-
ate Cox regression step, 59 image features have been
selected as candidates. The penalty parameter λ, which
determines the size of the boosting steps, is determined
based on cross validation. Six-fold cross validation on
the training set has been performed to choose the num-
ber of boosting steps M (Figure 4). The final represen-
tative image markers selected are energy5, lbp5, lbp24,
homo3, homo5, tfcm4 and skew6 with corresponding
coefficients −0.0268, 0.1670, 0.0343, 0.0685, −0.1382,
0.1130 and −0.2150. Please note that all these feature
covariates selected belong to pixel intensity features and
texture features. This demonstrates that cell staining and
inhomogeneity inside the nuclei, which may indicate the
protein structures of the cancer cells, hold strong potential
to predict NSCLC patients’ survival.
After the prediction model training procedure, we have

employed the time dependent ROC curves for uncensored
data and AUC as criteria to select the best thresholds
for risk scores and assess how well the model predicts
patients’ survival outcome. At time t, larger AUC indicates
better predictability of time to event measured by sensi-
tivity and specificity. After classifying patients into low-
and high-risk groups, we can estimate and compare their
Kaplan-Meier survival curves. The performance of such
a binary classifier is generally evaluated in terms of the
overall predictive accuracy.
With the approach mentioned above, the seven-feature

prediction model and a binary classifier have been applied
to distinguish between the low- and high-risk groups for

Table 4 The average recall, precision and accuracy of NSCLC classification

MR PL NB RF AB LLC SC NCM

Recall (%) 89.7 75.9 71.0 93.1 92.4 75.3 66.1 74.1

Precision (%) 80.5 55.9 67.3 90.6 90.9 80.4 83.2 75.4

Accuracy (%) 84.3 53.6 66.4 92.0 91.7 76.7 69.7 72.3

MR: MSVM-RFE, PL: L1 penalized logistic regression, NB: naive Bayesian, RF: random forest, AB: adaboost, LLC: locality-constrained linear coding, SC: sparse coding
spatial pyramid matching, NCM: nearest class mean classifier.
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Figure 3 The feature importance of the 166 imagemorphometric features. Only the top 30 image features are shown here. The x-axis
represents the frequency score and y-axis denotes the name of each feature variable.

both training set (n = 65) and testing set (n = 57).
Kaplan-Meier survival curves have been estimated and
plotted in Figure 5. The log rank test shows significant
difference between two groups. The p value on testing
set is slightly larger than the training set. The good per-
formance demonstrates the accurate survival prediction
power using this set of discovered image markers.
Using a multivariate Cox proportional hazards model,

we have assessed the image markers related risk score in
the context of other measured prognostic factors, includ-
ing age, gender, cancer type, smoking history, and tumor
stage. The results are presented in Table 5 and Table 6. The
p value of Wald test of each covariate coefficient suggests
that NSCLC subtype and tumor stage are significantly

related to survival rate in the multivariate Cox regression
without the image marker related risk score. However,
when the image marker related risk score is introduced,
it becomes the most significant variable in the model.
To further quantify how much improvement is gained
in survival analysis after the risk score is added, Akaike
Information Criterion (AIC) and Bayesian Information
Criterion (BIC) of these two models are computed. The
experiments show that AIC = 110.20, BIC = 115.54 for
the first model compared to AIC = 99.81, BIC = 106.04
for the model including the risk score. The clear difference
demonstrates strong evidence in favor of the prognostic
model with image marker related risk score. Hazard ratio
is also measured and reported in Table 5 and Table 6. A
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Figure 5 Kaplan-Meier survival curves of two groups classified by predicted risk scores for training (Left) and testing dataset (Right). The
p value of log rank test for training is 0.0001, and for testing is 0.0033. The x axis is the time in days and the y axis denotes the probability of overall
survival.

hazard ratio greater than one, or equivalently, a value of
coefficient greater than zero, indicates that as the value
of this covariate increases, the event hazard increases and
thus the length of survival decreases. Given the proposed
comprehensive prediction model, for each NSCLC cancer
patient with H&E stained diagnostic pathology image and
clinical information, we can offer a personalized survival
function and automatically group the individual into low-
or high-risk group with an estimated risk score.
To measure the robustness of the feature selection, we

have conducted the bootstrap analysis. We have resam-
pled the whole dataset 5000 times with replacement, per-
formed the boosting feature selection procedure on each
sample and counted the frequency of selecting one spe-
cific feature variable. The top 10 most frequently selected
image markers are: peri6, homo3, homo4, homo5, skew6,
lbp5, lbp16, csac6, csac15 and tfcm18. Among the top 10
image features that are most highly associated with sur-
vival, 4 are pixel intensity features, 5 are image texture
features and only 1 belongs to geometric feature. More-
over, 4 out of the 7 significant features previously selected
in the training set are from the top 11 features in bootstrap
analysis on the whole set, which shows good consistence
of the proposed algorithm.
Univariate survival analysis has been conducted to val-

idate the feature variable selection procedure by showing

Table 5 (TCGA NSCLC testing data n = 57) Multivariate
Cox proportional hazards analysis of all clinical covariates
without the image feature related risk score

Variable p-value Hazard Ratio SE (coef)

Age 0.0900 0.94 0.035

NSCLC subtype 0.0091 0.13 0.780

Smoking history 0.3914 0.80 0.479

Gender 0.7928 0.45 0.733

Tumor stage II 0.6800 1.46 0.924

Tumor stage III & IV 0.0076 0.05 1.138

that the selected features are closely related to lung can-
cer patients’ survival time. We choose the median of each
image marker as the threshold to group the patients and
plot the Kaplan-Meier curves for those two groups. Log
rank test is conducted to test the difference of the two
curves. It is shown that 4 out of the top 8 image markers
selected from the bootstrap analysis can achieve signifi-
cant log rank test outcome at α = 0.10 level while the
others is still acceptable even though they do not reach
statistical significance for this naive approach (Figure 6).
In addition, no single image marker can achieve the same
prediction power as the combined risk score using the set
of discovered image markers.

Discussion and conclusions
In this paper, we have investigated novel image mark-
ers for both computer aided diagnosis and prognosis of
non-small cell lung cancer. We propose an integrated
framework that consists of cell detection, segmentation,
feature extraction, classification, discovery of imagemark-
ers, and survival analysis for NSCLC. A multi-scale dis-
tance map-based voting algorithm is first introduced to

Table 6 (TCGANSCLC testing data n = 57) Multivariate cox
proportional analysis of all clinical covariates and image
feature related risk score

Variable p-value Hazard Ratio SE (coef)

Risk score 0.0049 4.99 0.571

Age 0.1600 0.94 0.037

NSCLC subtype 0.0076 0.11 0.832

Smoking history 0.6530 0.72 0.741

Gender 0.4000 0.53 0.739

Tumor stage II 0.6000 1.64 0.930

Tumor stage III & IV 0.0090 0.04 1.160

Smoking history is a continuous variable representing years of smoking history.
Gender is a binary variable (0 for male and 1 for female). Cancer type is also a
binary variable (0 for squamous cell carcinoma and 1 for adenocarcinoma).
Tumor stage is a three level categorical variable (stage I is treated as the
reference group).
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Figure 6 Kaplan-Meier survival curves of the developed prognostic model for TCGA NSCLC dataset. High value (great than or equal to
median) groups are plotted as red lines, and low value (less than median) groups are plotted as blue lines. The x axis represents the time in days and
y axis denotes the probability of overall survival. (R1C1) Survival curves of two groups with distinct values of feature peri6 with a log rank p value =
0.004. (R1C2) Survival curves of two groups with distinct values of feature homo3 with a log rank p value = 0.061. (R2C1) Survival curves of two
groups with distinct values of feature homo4 with a log rank p value = 0.019. (R2C2) Survival curves of two groups with distinct values of feature
homo5 with a log rank p value = 0.033. (R3C1) Survival curves of two groups with distinct values of feature skew6 with a log rank p value = 0.528.
(R3C2) Survival curves of two groups with distinct values of feature lbp6 with a log rank p value = 0.164. (R4C1) Survival curves of two groups with
distinct values of feature lbp16 with a log rank p value = 0.418. (R4C2) Survival curves of two groups with distinct values of feature csac6 with a log
rank p value = 0.305.

localize individual cells, and a repulsive deformable model
is proposed to segment the cells using the previous detec-
tion results as initializations. A complete set of cellular
features are extracted, and several advanced classification

techniques are compared using the image markers calcu-
lated in previous steps. Finally, a Cox model fitted with
component-wise likelihood based boosting is applied and
several survival analysis approaches have been conducted
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to evaluate the discovered image features. Through exten-
sive experiments, we have found a set of diagnostic
image markers that are highly correlated to NSCLC sub-
type classification. In addition, we have also discovered
a set of prognostic image markers (majorly representing
image staining characteristics and inhomogeneity inside
the nuclei of cancer cells) to predict NSCLC patients’
survival. We statistically prove that the developed com-
prehensive image marker related risk score is a strong
predictor for patients’ survival than traditional clinical
factors. Together with clinical information, it provides
significant clinical values for patients’ prognosis.
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