10 research outputs found

    Impact of cross-enterprise data sharing on portable media with decentralised upload of DICOM data into PACS

    Get PDF
    OBJECTIVES: To evaluate portable media utilisation for image data sharing between enterprises. To predict the costs required to keep up with the trend. To identify related problems. METHODS: A software package was developed to include patient image data from CD into our normal workflow. The trend in the workload of CDs that were uploaded into a Picture Archiving and Communication System (PACS) over 89 months was analysed. The average number of images per month (and per investigation) was calculated to provide the estimation of storage and cost required in the whole process. RESULTS: All Digital Imaging and Communications in Medicine (DICOM) files can be read from compact disc (CD) on any workstation in the hospital, processed quickly to the central server and checked after storage using the software tool. A total of 33,982,404 images from 88,952 CDs have been stored into the PACS system. In recent years, the stored images have reached an average of 4.2 terabytes (TB) uncompressed annually. CONCLUSION: Integrated information about patients is clearly needed to provide easy and timely access to these data. The steadily growing storage can be solved by a more automated approach to portable media handling or the installation and acceptance of network-based transfer using cross-enterprise document sharing (XDS). KEY POINTS: • Rapid assimilation of external imaging into a PACS system is essential. • But data distribution using portable media also carries some disadvantages. • A DICOM data uploader incorporates studies from portable media to hospital workflow. • Automated media handling or XDS should solve the steadily growing storage problem. • Software improvements will facilitate the steady increase in the amount of CDs processed

    Boost your career opportunities with the ESSR diploma

    No full text

    An Autoethnographic Account of Innovation at the US Department of Veterans Affairs

    Get PDF
    The history of the U.S. Department of Veterans Affairs (VA) health information technology (HIT) has been characterized by both enormous successes and catastrophic failures. While the VA was once hailed as the way to the future of twenty-first-century health care, many programs have been mismanaged, delayed, or flawed, resulting in the waste of hundreds of millions of taxpayer dollars. Since 2015 the U.S. Government Accountability Office (GAO) has designated HIT at the VA as being susceptible to waste, fraud, and mismanagement. The timely central research question I ask in this study is, can healthcare IT at the VA be healed? To address this question, I investigate a HIT case study at the VA Center of Innovation (VACI), originally designed to be the flagship initiative of the open government transformation at the VA. The Open Source Electronic Health Record Alliance (OSEHRA) was designed to promote the open innovation ecosystem public-private-academic partnership. Based on my fifteen years of experience at the VA, I use an autoethnographic methodology to make a significant value-added contribution to understanding and modeling the VA’s approach to innovation. I use several theoretical information system framework models including People, Process, and Technology (PPT), Technology, Organization and Environment (TOE), and Technology Adaptive Model (TAM) and propose a new adaptive theory to understand the inability of VA HIT to innovate. From the perspective of people and culture, I study retaliation against whistleblowers, organization behavioral integrity, and lack of transparency in communications. I examine the VA processes, including the different software development methodologies used, the development and operations process (DevOps) of an open-source application developed at VACI, the Radiology Protocol Tool Recorder (RAPTOR), a Veterans Health Information Systems and Technology Architecture (VistA) radiology workflow module. I find that the VA has chosen to migrate away from inhouse application software and buy commercial software. The impact of these People, Process, and Technology findings are representative of larger systemic failings and are appropriate examples to illustrate systemic issues associated with IT innovation at the VA. This autoethnographic account builds on first-hand project experience and literature-based insights

    Incorporating out-patient data from CD-R into the local PACS using DICOM worklist features

    No full text
    With the introduction of digital imaging in radiology, CD-Rs are increasingly used to distribute patient materials. This study investigates the application of a new software package and work protocol to integrate out-hospital data into the local PACS (picture archive and communication system) archive, which is hampered by differences in patient numbers. A one-month trial was started to import CD-Rs from two departments (radiotherapy and radiology). Seventy CD-Rs were collected from 20 different hospitals holding data of eight different modality types and published by eight different software packages from different vendors. All CD-Rs were successfully transferred into the PACS. The new software and work protocol provide an easy way of introducing the out-hospital data into the PACS. CD-Rs can be destroyed after transfer to PACS, eliminating physical storage. Furthermore, all data can now be viewed and reported using the default viewers of the hospital and no additional training of staff is required

    The impact of arterial input function determination variations on prostate dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic modeling: a multicenter data analysis challenge, part II

    Get PDF
    This multicenter study evaluated the effect of variations in arterial input function (AIF) determination on pharmacokinetic (PK) analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data using the shutter-speed model (SSM). Data acquired from eleven prostate cancer patients were shared among nine centers. Each center used a site-specific method to measure the individual AIF from each data set and submitted the results to the managing center. These AIFs, their reference tissue-adjusted variants, and a literature population-averaged AIF, were used by the managing center to perform SSM PK analysis to estimate Ktrans (volume transfer rate constant), ve (extravascular, extracellular volume fraction), kep (efflux rate constant), and Ï„i (mean intracellular water lifetime). All other variables, including the definition of the tumor region of interest and precontrast T1 values, were kept the same to evaluate parameter variations caused by variations in only the AIF. Considerable PK parameter variations were observed with within-subject coefficient of variation (wCV) values of 0.58, 0.27, 0.42, and 0.24 for Ktrans, ve, kep, and Ï„i, respectively, using the unadjusted AIFs. Use of the reference tissue-adjusted AIFs reduced variations in Ktrans and ve (wCV = 0.50 and 0.10, respectively), but had smaller effects on kep and Ï„i (wCV = 0.39 and 0.22, respectively). kep is less sensitive to AIF variation than Ktrans, suggesting it may be a more robust imaging biomarker of prostate microvasculature. With low sensitivity to AIF uncertainty, the SSM-unique Ï„i parameter may have advantages over the conventional PK parameters in a longitudinal study

    Friction Force Microscopy of Deep Drawing Made Surfaces

    Get PDF
    Aim of this paper is to contribute to micro-tribology understanding and friction in micro-scale interpretation in case of metal beverage production, particularly the deep drawing process of cans. In order to bridging the gap between engineering and trial-and-error principles, an experimental AFM-based micro-tribological approach is adopted. For that purpose, the can’s surfaces are imaged with atomic force microscopy (AFM) and the frictional force signal is measured with frictional force microscopy (FFM). In both techniques, the sample surface is scanned with a stylus attached to a cantilever. Vertical motion of the cantilever is recorded in AFM and horizontal motion is recorded in FFM. The presented work evaluates friction over a micro-scale on various samples gathered from cylindrical, bottom and round parts of cans, made of same the material but with different deep drawing process parameters. The main idea is to link the experimental observation with the manufacturing process. Results presented here can advance the knowledge in order to comprehend the tribological phenomena at the contact scales, too small for conventional tribology

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems
    corecore