18,022 research outputs found

    On load balancing via switch migration in software-defined networking

    Get PDF
    Switch-controller assignment is an essential task in multi-controller software-defined networking. Static assignments are not practical because network dynamics are complex and difficult to predetermine. Since network load varies both in space and time, the mapping of switches to controllers should be adaptive to sudden changes in the network. To that end, switch migration plays an important role in maintaining dynamic switch-controller mapping. Migrating switches from overloaded to underloaded controllers brings flexibility and adaptability to the network but, at the same time, deciding which switches should be migrated to which controllers, while maintaining a balanced load in the network, is a challenging task. This work presents a heuristic approach with solution shaking to solve the switch migration problem. Shift and swap moves are incorporated within a search scheme. Every move is evaluated by how much benefititwillgivetoboththeimmigrationandoutmigrationcontrollers.Theexperimentalresultsshowthat theproposedapproachisabletooutweighthestate-of-artapproaches,andimprovetheloadbalancingresults up to≈ 14% in some scenarios when compared to the most recent approach. In addition, the results show that the proposed work is more robust to controller failure than the state-of-art methods.Portuguese Science and Technology Foundation (FCT) - UID/MULTI/00631/2019;info:eu-repo/semantics/publishedVersio

    Proactive controller assignment schemes in SDN for fast recovery

    Get PDF
    ​© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A sizeable software defined network with a single controller responsible for all forwarding elements is potentially failure-prone and inadequate for dynamic network loads. To this end, having multiple controllers improves resilience and distributes network control overhead. However, when there is a disruption in the control plane, a rapid and performant controller-switch assignment is critical, which is a challenging technical question. In this work, we propose a proactive switch assignment approach in case of controller failures using a genetic algorithm based heuristic that considers controller load distribution, reassignment cost and probability of failure. Moreover, we compare the performance of our scheme with random and greedy algorithms. Experiment results show that our proposed PREFCP framework has better performance in terms of probability of failure and controller load distributio

    The generation of dual wavelength pulse fiber laser using fiber bragg grating

    Get PDF
    A stable simple generation of dual wavelength pulse fiber laser on experimental method is proposed and demonstrated by using Figure eight circuit diagram. The generation of dual wavelength pulse fiber laser was proposed using fiber Bragg gratings (FBGs) with two different central wavelengths which are 1550 nm and 1560 nm. At 600 mA (27.78 dBm) of laser diode, the stability of dual wavelength pulse fiber laser appears on 1550 nm and 1560 nm with the respective peak powers of -54.03 dBm and -58.00 dBm. The wavelength spacing of the spectrum is about 10 nm while the signal noise to ratio (SNR) for both peaks are about 8.23 dBm and 9.67 dBm. In addition, the repetition rate is 2.878 MHz with corresponding pulse spacing of about 0.5 μs, is recorded

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications
    corecore