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Abstract—A sizeable software defined network with a single
controller responsible for all forwarding elements is potentially
failure-prone and inadequate for dynamic network loads. To
this end, having multiple controllers improves resilience and
distributes network control overhead. However, when there is
a disruption in the control plane, a rapid and performant
controller-switch assignment is critical, which is a challenging
technical question. In this work, we propose a proactive switch
assignment approach in case of controller failures using a genetic
algorithm based heuristic that considers controller load distribu-
tion, reassignment cost and probability of failure. Moreover, we
compare the performance of our scheme with random and greedy
algorithms. Experiment results show that our proposed PREF-
CP framework has better performance in terms of probability
of failure and controller load distribution.

I. INTRODUCTION

Conventional computer networks consist of network ele-
ments such as switches and routers with many complicated
protocols, policies and communication interfaces. Their struc-
ture is restrictive for network operators to change the network
according to the needs of changing traffic demands and service
requirements. This shortcoming is becoming more taxing with
the increasing number of mobile devices and impact of big
data flows [1], [2]. Furthermore, the proliferation of advanced
wireless systems such as 5G networks and massive connectiv-
ity of IoT impose stringent performance requirements on the
wired communication infrastructure such as backhaul and core
networks [3]. The idea of Software Defined Networking (SDN)
was proposed to facilitate network evolution while addressing
these challenges to realize the Future Internet concept [4].
With SDN, control decisions and network intelligence is
moved out of individual network nodes, which transforms
the network to simpler forwarding hardware augmented with
decision making network controllers.

For various software-defined systems, a single controller
might be sufficient since a single controller may meet the ser-
vice level requirements under specific conditions [5]. However,
resilience is an important aspect when designing a network
architecture. As the system is functioning, failures can occur
in both control and forwarding planes. A switch, a controller
or links between them may fail. For instance, when a switch
is disconnected from its controllers, it can not forward new
flows and becomes unresponsive except residual flows in time.

A failure may eventually cause loss of data which reduces the
reliability of the system. Therefore, it is of great importance
to improve resilience of software-defined networks [2]. In a
network with a single controller, when that controller fails, the
network will be left without a control framework, i.e. become
“headless”. To overcome this single point of failure problem,
control plane is distributed over multiple controllers to increase
resilience and simultaneously provide adaptation to dynamic
network loads [6]. The distribution of switches to controllers
affects multiple aspects of a network such as controller-switch
latency, load balancing and network reliability. Therefore,
with use of multiple controllers, the dynamic and responsive
controller-to-switch assignment becomes crucial.

In this work, we focus on this problem and investigate the
efficient controller-to-switch assignment problem in SDN to
overcome effects of failures. We propose Proactive REcovery
Framework for SDN Control Plane (PREF-CP) which is a
proactive switch assignment scheme against controller failures
via genetic algorithm considering controller load distribution,
reassignment cost and probability of failure. The main premise
is to have a pre-calculated mapping for the network calculated
at run-time and applied rapidly when failure incidents happen.

II. RELATED WORK

Controller failure recovery mechanisms in the literature
typically consider control plane reliability of the network,
switch-controller delay, or controller load. When calculating
controller-switch assignment for multiple controller environ-
ment in SDN, multiple parameters such as controller load,
probability of failure between network components or re-
assignment cost are considered [7]. For the controller load
aspect, Müller et al. propose a reassignment algorithm which
chooses a controller with highest controller capacity in [8].
For considering switch-controller delay, Obadia et al. propose
a failure recovery mechanism where the nearest controller
takes over the switches which were under control by a failed
controller [6]. As studied in [8], [9], controller capacity and
controller overload are also critical issues for switch assign-
ment planning.

To assure the reliability of the control plane, the most
important aspect is to keep switches connected to controllers
which are up and running [10]. In that regard, one important
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metric is probability of failure which is defined as likelihood of
communications failure from node a to node b [11]. Another
important requirement is related to recovery speed after fail-
ures: to minimize disruptions in case of controller failure, rapid
reactions are needed with failover mechanism(s) ensuring
connectivity with remaining components [6]. To prevent long
backup calculation and restoration time, [12], [6] and [9]
generate a backup map proactively. There are also works which
calculate reassignment on the fly when a failure occurs [8].
Depending on the backup calculation time, both approaches
have pros and cons. Proactive approaches may be faster to
recover from a failure. However, calculation on the fly may
use live network data while proactive calculations will use the
last state of the system when the decision algorithm was run.

III. PROACTIVE SDN CONTROLLER-SWITCH
ASSIGNMENT (PREF-CP)

Software or hardware malfunction in the machine hosting
the controller can cause failures on control plane. There are
different assignment options that can be used in case of
controller failure at runtime. For instance, the switches of
failed controller(s) can be randomly assigned to other con-
trollers. However, such a strategy does not provide satisfactory
performance [7]. Optimizing controller-to-switch assignment
problem is NP-hard, so it is crucial to find an efficient
assignment algorithm [13]. Thus, in this work, we develop
an assignment scheme using genetic algorithm to increase
the reliability of a running system. The proposed scheme
calculates a backup switch assignment map considering each
controller might fail and taking load-balancing into account to
adapt to new conditions if a failure occurs despite all efforts.
It operates in an online manner and proactively determines
assignment maps for different failure cases. It determines
a backup controller for each forwarding node according to
load of controllers, switch reassignment cost and maximum
probability of failure for the shortest paths from a controller
to its switches. In the case of controller failure, a switch will
be assigned to its proactively calculated backup controller.

A. Assignment Parameters

For an assignment to support connectivity between network
components and improve resilience, it should utilize existing
network connectivity among switches. Moreover, the load
distribution should be considered to minimize load-induced
catastrophic incidents. The cost of assignment is also another
factor since reassignment requires on-the-fly configuration
of controller framework as well as switches. Therefore, to
develop efficient reassignment algorithms with resilience ob-
jectives, probability of connectivity failure, controller load
distribution and reassignment costs are important elements to
be considered.

1) Probability of Connectivity Failure: If the connection
between controller and the forwarding plane is broken because
of network failures, some switches will be left without any
controller and become stale for new flows. Network avail-
ability should be ensured to increase reliability of SDN. To

formalize reliability for control plane availability, it can be
defined as the probability of connectivity failure of a path
from a switch to its controller as in (1):

P̃n = 1−
∏

ei,vj∈Rc→n

(1− Pei)(1− Pvj
) (1)

where Pei and Pvj
are probability of link failure and switch

failures at a given time and Rc→n is the shortest path controller
c to switch n.

2) Controller Load Distribution: Optimal load distribution
directly impacts network performance, thus improving load
balancing is important for network resilience [14]. In case of
a controller failure, when the switches are assigned to other
controllers, an ignorant assignment may lead some controllers
to overload and even cause cascaded failures. Although there
are various metrics for controller load such as CPU load or
message queue lengths, we represent it as the total number of
PACKET_IN messages (pim) to a controller from its switches.
Then the controller load Lc is defined as Lc =

∑
i∈n xc,iRn

where the relevant assignment criterion is the load variance
σ2 calculated as σ2 = 1

c

∑
i∈c(L− Li).

3) Reassignment Cost: When a controller fails, its switches
will be distributed among other controllers. Reassignment cost
R̃ is considered during calculation of reassignment map to
measure the cost of applying that reassignment. It represents
the trade-off between flexibility for assignments and the over-
head of implementing them in a practical software-defined
network. It can be calculated as in (2) as the total number of
switches whose controllers are changed in case of failure when
reassignment is performed. Specifically, xij is the previous
assignment map and zik is the new assignment of switches
after failure. We take XOR of two values, i.e. if a switch is
assigned to a new controller zik = 1, otherwise zik = 0.

R̃ =
∑

i∈S,j∈C,k∈C̃

xij ⊕ zik (2)

The number of reassigned switches will be at least equal
to the number of switches of the failed controller. Besides,
when network size increases, it is likely that reassignment cost
will also increase. Thus, when setting reassignment cost as a
constraint, we limit it to be smaller than the total number of
switches s multiplied with a scale factor γ.

B. PREF-CP Implementation

PREF-CP works proactively to enable the system to con-
tinue working efficiently in case of a controller failure in an
SDN architecture. PREF-CP evaluates the current switch-to-
controller assignment and calculates a backup map assuming
that any controller might fail. For k controllers, k backup maps
are calculated. When a reassignment is performed, PREF-CP
recalculates the switch-to-controller assignment considering
possible future failures and overload issues. It contains two
main modules as depicted in Fig. 1 and explained below:
• Monitoring Module (MM) tracks controllers’ health and

pulls relevant statistics which contain current assignment
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Fig. 1: PREF-CP architecture.
TABLE I: Model Parameters.

Symbol Definition

Pv Probability of switch failure
Pe Probability of link failure
P̃ Probability of failure
R̃ Reassignment cost
α Objective function weight coefficient
γ Reassignment cost scale factor
s Number of switches
σ Standard deviation of controller load (PACKET IN mes-

sages)
Uj Maximum number of requests that controller Cj can

handle
Ri Number of requests of each switch i

xij , controller loads Lij , and probability of connectivity
failure values Pj . MM also detects failures in the control
plane then informs PREF-CP reassignment module.

• Reassignment Module (RM) periodically checks the
collected statistics from the monitoring module and calcu-
lates reassignment map accordingly. In case of controller
failure, reassignment module performs new assignment
based on that pro-actively determined backup map.

IV. PROBLEM FORMULATION

A. System Model

In our system model, the SDN physical network is presented
as a graph which is denoted as G(V,E), where V is the set of
nodes (switches and controllers) and E is the set of links. The
set of controllers is denoted as C ∈ V , The subset of working
controllers is denoted as C̃ ∈ V while the set of switches is
denoted as S ∈ V . The model parameters are listed in Table I.

Objective. The goal of the proposed strategy is to jointly
improve the controller load distribution uniformity and de-
crease probability of failure incorporating a weight coefficient
to calibrate the priority of these elements:

min(α ∗ σ + (1− α) ∗ P̃ ) (3)

Constraints.
A switch will be controlled by exactly one controller:∑

j∈C
xi,j = 1, ∀i ∈ S (4)

Fig. 2: Genetic algorithm.

Controller capacity cannot be exceeded:∑
i∈S,j∈C

xi,jRi ≤ (1− α)Uj (5)

α values fall in range [0,1]:

0 ≤ α ≤ 1 (6)

The reassignment cost R̃ can not exceed the value calculated
by the number of switches s multiplied by γ:

∑
i∈S,j∈C,k∈C̃

xij ⊕ zik ≤ γ × s (7)

V. ASSIGNMENT ALGORITHMS

A. Random Assignment

Although this is a trivial algorithm, it is typically used as
a baseline case for performance evaluation. Moreover, it can
be practical for situations where very low-complexity require-
ments are in force. In random assignment, each candidate
controller has a uniform probability of hosting a switch. In that
case, reassignment algorithm randomly chooses a controller
among all potential ones (i.e., ones that are still running).

B. Genetic Algorithm Based Heuristic

A genetic algorithm is a search heuristic that reflects the
process of natural selection where the fittest individuals are
selected for reproduction in order to produce offspring of the
next generation as shown in Fig. 2 [15].

1) Fitness Function: The performance of a genetic algo-
rithm relies on how well a fitness function is derived. Fitness
function in our approach considers minimization of maximum
probability of failure of the shortest path of a switch to
the controller (P̃ ) and the load distribution variance among
controllers (σ). The fitness value Eval = α ∗ σ+ (1−α) ∗ P̃
is used during crossover for choosing which controller a switch
will be assigned to for chromosome evaluation. That is, when
the crossover operation has to choose a better gene from two
parent genes during the crossover, it calculates fitness values
of these genes in ComputeFitness() of Algorithm 1.



Algorithm 1 Genetic Algorithm
Require: Input: Topology, Load, CrossoverFunction, PopulationSize
Ensure: Generate solution xc initialize Rmax and Sbest

1: Population ← InitializePopulation(PopulationSize)
2: Evaluate population
3: Sbest ← BestSolution(population)
4: while population has not converged do
5: Selection : Parents ← SelectParent(Population, PopulationSize)
6: Children ← 0
7: Crossover()
8: ComputeFitness()
9: if Better fit then

10: PickParent()
11: end if
12: end while

C. Inter-Controller Greedy Algorithm (ICA)
This algorithm generates a list of potential assignments

based on switch loads and failure probabilities of the shortest
path from a switch to possible controller. It essentially sorts
switches in an increasing order of their scores based on their
failure probability and load values. Then, it chooses one switch
at a time for assigning to a controller. The algorithm iterates
until all switches are assigned as shown in Algorithm 2 [16].

Algorithm 2 ICA.
Require: Input: Topology G, Switch Load S, Number of Controllers N,

Probability of Failures P
for i in Devices Size do score[i] = CalculateDeviceScore (L, P)
end for
Sort switches s in ascending order of their scores considering failure
properties Pf and loads Ln as set S′

while Devices left to add to Assignment Map do
for j in Controllers Size do

Among all devices select the device lowest score from S′

Add switch si to Controller cj ’s backup map
end for

end while
return AssignmentMap

VI. PERFORMANCE EVALUATION

We use ONOS Nightingale 1.13.1 as SDN controller and
Mininet 2.2.1 for creating network topologies to implement
the data plane. All simulations are run on a physical machine
with Ubuntu 14.1 OS, 8GB RAM and Intel Core i7 6700HQ
CPU. In our system, controllers are running inside Docker
containers. We run Mininet on that physical machine and five
ONOS instances in Docker 17.09 containers for simulating the
distributed control plane. The switches run in Open vSwitch
2.0.2 mode to deliver OpenFlow functionality.

For network traffic, we use D-ITG traffic generator 2.8.1
and generate the traffic flows of VoIP, video and two game
traffic types with Counter Strike characteristics related to the
active phase of the game or an idle player [17]. We run
our experiments on tree topologies T1:40 (i.e., tree topology
with 40 switches), T2:85, T3:63, T4:121 and Internet2 OS3E
topology T5 with 34 switches. T2 and T4 are specifically used
for testing run-time performance of algorithms while T1, T3
and T5 are used for other experiments.

We run PREF-CP, ICA and RANDOM algorithms ten
times for different α values in Table II, randomly failing one

TABLE II: Simulation Parameters.

Parameter Symbol Value

Number of switches s {34, 40 , 63, 85, 121}
Weight parameter α {0.0, 0.5, 0.7, 1.0}
Maximum population size θ 50
Number of controllers N 5
Reassignment cost multiplier γ 0.8

controller on each run and then measuring σ and P̃ values. We
perform experiments on T1, T3 and T5 topologies and report
mean values of σ and P̃ for each algorithm over these runs.

A. Simulation Results

1) Load Distribution: Load distribution characteristics can
be affected by several network parameters; specifically reas-
signment algorithm, α value and the number of switches in
the network. To see the effects of these factors, we com-
pared the load distribution variance based on the number
of PACKET_IN messages (pim) that are distributed among
controllers. Increasing α increases the weight of the load
distribution as defined in (3), thus load distribution improves
(σ decreases) as α increases. The test results are shown in
Fig. 3. PREF-CP distributes controller load by 8.38%, 11.5%,
16.6% better from ICA for α values 0, 0.5, and 1, respectively.
Random assignment is plainly for reference and it is not
affected by α since it assigns switches to random controllers
without considering load distribution. For RANDOM algo-
rithm, σ value equals to 9284.9 pim, which is higher than
both PREF-CP with 3933.9 pim and ICA with 4438.9 pim.
Although ICA algorithm outperforms random assignment, it
is not as good as PREF-CP.
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Fig. 3: Load distribution variance σ for different algorithms.

The results of normalized values for load distribution of
PREF-CP on different sized topologies T1:40, T3:63 and
T5:34 are listed in Table III. For α = 0, topology sizes
affect load distribution performance more than for α ≥ 0.5
case. Increasing the number of switches does not negatively
impact the performance of PREF-CP algorithm. For greater α
values, the network size is less important at load distribution
performance of PREF-CP algorithm.

2) Impact of α on PREF-CP performance: As we change
α to prioritize load distribution or probability of failure in our
optimization objective, these components behave as expected.
When α is 0, PREF-CP tries to find an assignment algorithm



TABLE III: PREF-CP Load Distribution for varying s.

Topology α = 0 α = 0.5 α = 1

T5-34 switches 0.373 0.360 0.356
T1-40 switches 0.369 0.363 0.356
T3-63 switches 0.364 0.359 0.350

TABLE IV: PREF-CP Performance - Load Distribution σ
(pim) and Probability of Failure P̃ .

Objective Function α = 0 α = 0.5 α = 1

Load Distribution σ 0.371 0.359 0.356
PoF P̃ 0.389 0.433 0.465

with lower PoF. As stated in constraint (6), α values range in
[0,1]. As seen in Table IV, as α increases, PREF-CP prefers
an assignment map favoring load distribution σ over P̃ .

3) PoF (P̃ ) Characteristics: We compare the probability of
connectivity failure (P̃ ) for different algorithms to investigate
their performance. There are basically two aspects in a network
that affect PoF. First one is α; lower α values result in better
PoF. As seen in Fig. 4, PREF-CP outperforms ICA and random
assignment algorithms. ICA algorithm performs slightly better
than random counterpart which has PoF 0.577. However, the
random algorithm is for reference since it assigns switches
randomly regardless of load or PoF.

The second one is, as seen in Fig. 5, the number of hops
in the test topology: when that value increases, probability of
failure is also increasing. This outcome is expected because
PoF directly depends on the number of switches and links
between from node a to b. If we compare two tree topologies
T1 and T3, T1 has depth of 4 and T3 has depth 6, and average
PoF values are 0.373 and 0.509, respectively, when their PoF
values are averaged over different α values in the figure. As α
increases, the weight of PoF decreases which results in higher
P̃ values: average PoF values of topologies T1, T3, and T5
are 0.389, 0.433, and 0.465 with increasing α values.
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Fig. 4: P̃ values calculated by different algorithms.
4) Computational Time: For the complexity aspect, com-

putational time of the proposed PREF-CP algorithm was
compared with ICA for different network sizes, i.e. number
of switches s, to see the effect. As seen in Table V, when
s increases in the network, calculation time for reassignment
map also increases. For PREF-CP, it is substantially higher
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Fig. 5: P̃ values for different topologies.
TABLE V: Run-times for Different Assignment Algorithms
(in msec).

Assignment
Algorithms

Number of switches
40 85 121

GA 2480 7540 12100

ICA 12 27 80

compared to ICA algorithm as expected. This result renders
the complexity-assignment quality trade-off since PREF-CP
is most time-consuming albeit being better in optimization.
However, please note that we have not applied any hard-
ware/software optimizations to accelerate GA computations.

B. Cascaded Failure Characteristics

When two controllers fail in tandem, the residual load is
distributed among the remaining V − 2 (three in our case)
controllers. The presented results shown in Fig 6 are the
average of load distributions with respect to topologies. Tree
topologies (T1, T3) are affected by multiple controller failures
more than Internet2 OS3E topology (T5). Fig. 7 shows load
distribution for all algorithms in case of one controller failure
and two controller failures. PREF-CP algorithm outperforms
both random and ICA algorithms.

To see more detailed how control load is distributed on
each individual controller, we examine load distribution of
PACKET_IN messages on controllers in Internet2 OS3E
topology with 34 switches for α = 0.5. In this case, C3* and
then C1* fails one after another and we examine PREF-CP
performance in handling two controller failures. For before-
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Fig. 6: Load distribution under controller failures for different
topologies.
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Fig. 8: Controller load vs time - PREF-CP (α = 0.7, γ = 0.8).

failure situation, the load distribution σ is 4260.1 pim. When
the first failure occurs (after-one-failure regime), the load
variance decreases to 3773.9 pim while it again increases after
the second failure to a higher value of 5182.2 pim (after-two-
failures regime). Therefore, PREF-CP is quite successful to
maintain the load distribution uniformity level although the
load per controller increases due to fewer operating controllers.

C. Controller Load Behavior Over Time

To see the effect of controller failures and consecutive
reassignment, we observe the loads of individual controllers
over the experiment period. This graph is an output of PREF-
CP run with parameters α = 0.7 and γ = 0.8 on topology
T5-34 switches. Fig. 8 shows messaging load changes of
controllers in time. C2 fails at time t = 40 sec, and then
its switches are distributed to other controllers. Control traffic
loads of remaining controllers surge after the reassignment as
expected. At t = 125 sec, second failure occurs where the
controller with the highest load (C5) is taken offline. Again
the loads for remaining controllers increase overall.

VII. CONCLUSION

In this paper, we consider control plane failures and how
to recover from them with an efficient proactive approach.
To address this challenge, we propose a proactive switch
assignment scheme PREF-CP in case of controller failures us-
ing genetic algorithm considering controller load distribution,
reassignment cost and probability of failure. Our test results
show that when controllers’ load distribution and probability of
connectivity failure are considered, PREF-CP performs better

than alternative ICA algorithm. For future work, experiments
can be run on different topology types and larger network
sizes. For a more comprehensive comparison, latency and
throughput results can also be considered.
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