4 research outputs found

    Incorporating Constraints into Matrix Factorization for Clothes Package Recommendation

    Get PDF
    Recommender systems have been widely applied in the literature to suggest individual items to users. In this paper, we consider the harder problem of package recommendation, where items are recommended together as a package. We focus on the clothing domain, where a package recommendation involves a combination of a "top'' (e.g. a shirt) and a "bottom'' (e.g. a pair of trousers). The novelty in this work is that we combined matrix factorisation methods for collaborative filtering with hand-crafted and learnt fashion constraints on combining item features such as colour, formality and patterns. Finally, to better understand where the algorithms are underperforming, we conducted focus groups, which lead to deeper insights into how to use constraints to improve package recommendation in this domain

    Split Over-Training For Unsupervised Purchase Intention Identification

    Get PDF
    Recognizing user-expressed intentions in social media can be useful for many applications such as business intelligence, as intentions are intimately linked to potential actions or behaviors. This paper focuses on a binary classification problem: whether a text expresses purchase intention (PI) or not (non-PI). In contrast to existing research, which relies on labeled intention corpus or linguistic knowledge, we proposed an unsupervised method called split over-training for the PI identification task. Experiments on PI identification from tweets showed that our approach was effective and promising. The best classifying accuracy of 84.6% and PI F-measure of 70.4% was achieved, which are only 7.7% and 4.9% respectively lower than fully supervised models. This means our unsupervised method may provide reasonable preprocessing for intention corpus labeling or intention knowledge acquisition

    Improving cold-start recommendations using item-based stereotypes

    Get PDF
    Recommender systems (RSs) have become key components driving the success of e-commerce and other platforms where revenue and customer satisfaction is dependent on the user’s ability to discover desirable items in large catalogues. As the number of users and items on a platform grows, the computational complexity and the sparsity problem constitute important challenges for any recommendation algorithm. In addition, the most widely studied filtering-based RSs, while effective in providing suggestions for established users and items, are known for their poor performance for the new user and new item (cold-start) problems. Stereotypical modelling of users and items is a promising approach to solving these problems. A stereotype represents an aggregation of the characteristics of the items or users which can be used to create general user or item classes. We propose a set of methodologies for the automatic generation of stereotypes to address the cold-start problem. The novelty of the proposed approach rests on the findings that stereotypes built independently of the user-to-item ratings improve both recommendation metrics and computational performance during cold-start phases. The resulting RS can be used with any machine learning algorithm as a solver, and the improved performance gains due to rate-agnostic stereotypes are orthogonal to the gains obtained using more sophisticated solvers. The paper describes how such item-based stereotypes can be evaluated via a series of statistical tests prior to being used for recommendation. The proposed approach improves recommendation quality under a variety of metrics and significantly reduces the dimension of the recommendation model
    corecore