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Abstract 

While traditional recommender systems focus on 
single items, there is an emerging demand for package 
recommenders that can suggest composite items based 
on multiple criteria. For instance, they can recommend 
a combination of dishes based on price, cuisine, and 
dietary restrictions. Several challenges arise when 
dealing with package recommenders, including the 
complexity of the decision-making process and the need 
of handling trade-offs among conflicting objectives. We 
introduce OptiGuide, a domain-independent package 
recommender system that uses efficient multi-objective 
optimization techniques to guide users effectively in 
finding their Pareto-optimal recommendations. The 
user is engaged in the decision-making by capturing 
their user-system interactions and offering 
customization options to help them find their optimal 
recommendation. The system employs preprocessing 
algorithms to balance the need for quick response times 
with the computational complexity of the optimization 
process. A dynamic configuration mechanism is 
adopted using a pluggable analytic model to enable 
system versatility across diverse domains. 

 
Keywords: Package Recommender, Multi-Objective, 
Decision Guidance, Optimization, Pareto-Optimal.   

1. Introduction  

Recommender systems play a vital role in diverse 
domains and applications by offering personalized 
recommendations tailored to individual preferences 
(Fayyaz et al., 2020). While traditional recommenders 
focus on single products or services, there is an 
emerging demand for package recommender systems 
that can suggest composite or bundled products and 
services based on multiple criteria or objectives (Deng 
et al., 2012). For instance, they can recommend a 
composite of travel-related options such as destinations, 
accommodations, and transportation based on traveler 
preferences, budget, and duration of stay.  

 
Several challenges arise when dealing with package 

recommender systems, one of which is the complexity 
of the decision-making process. Due to the existence of 
multiple objectives and a vast range of alternatives, 
mathematical optimization is required to generate 
optimal recommendations. Moreover, package 
recommenders must be able to handle trade-offs among 
multiple conflicting objectives, such as prioritizing 
price over quality or vice versa. User guidance is 
required to obtain more reliable evaluations, especially 
when dealing with conflicting objectives or trade-offs 
(Zheng & Wang, 2022).  

Furthermore, the majority of existing recommender 
systems provide recommendations for items within a 
single specific domain (Dacrema et al., 2022). This 
domain-dependence poses a critical limitation as it 
restricts their adaptability and effectiveness when 
applied to different domains. For instance, a 
recommender system designed for movie suggestions 
might not perform effectively when used for 
recommending travel destinations. 

Therefore, there is a need for a package 
recommender system that is domain-independent, 
employs multi-objective optimization, and provides 
user decision guidance. Extensive research has been 
carried out in recent years to address these challenges.  

Zhang et al. propose a multi-objective optimization 
approach for food recommendation that considers four 
objectives: user preference, user diet pattern, food 
nutritional values and food diversity and applies Pareto-
based algorithms to find the optimal solutions (Zhang et 
al., 2022). MoParkeR is a multi-objective parking 
recommendation system that uses a non-dominated 
sorting technique to find Pareto-optimal parking spots 
based on factors such as fare, walking distance, and 
travel time (Rahaman et al., 2021). While both systems 
apply multi-objective optimization through the 
utilization of Pareto optimality, they are domain-
specific and do not address package recommendations 
or user decision guidance. 
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Wibowo et al. propose a method for recommending 
clothing packages by combining matrix factorization for 
collaborative filtering with fashion criteria such as 
color, formality, and patterns. Focus groups were 
conducted to improve the algorithm's performance 
(Wibowo et al., 2018). Another work presents a graph-
based approach to recommend personalized travel 
packages that contain a sequence of multiple points of 
interest based on user preferences, budget, and spatio-
temporal constraints (Hti & Desarkar, 2018). However, 
they do not provide a user feedback mechanism or 
interactive interface for refining preferences in the 
recommended packages. Despite using package 
recommendations for multiple objectives, neither of the 
two methods is domain-independent or addresses the 
need for user decision guidance. 

MovieBrain is a Google Chrome extension that 
integrates IMDb's movie recommendation system. It 
provides a personalized movie recommendation 
experience by offering interactive settings and filters 
based on factors such as movie genres and rating scores 
(Dooms et al., 2014). Another research proposes a 
recommender system that puts some control in the hands 
of users by allowing them to adjust the weight of non-
personalized factors such as the popularity and recency 
of movies (Harper et al., 2015). Both systems 
incorporate user decision guidance and consider 
multiple criteria; however, they are domain-specific and 
do not provide package recommendations. 

MoFIR is a fairness-aware recommendation system 
that uses multi-objective reinforcement learning to find 
an optimal trade-off between fairness and utility. The 
system seeks a Pareto efficient solution, which can be 
applied to different recommendation domains. MoFIR 
enables decision-makers to specify preferences for 
fairness and utility, guiding them in choosing 
recommendations that align with their business needs 
(Ge et al., 2022). However, the system is not designed 
for package recommendations. 

Kouris et al. present a framework to recommend 
packages that best fit users’ preferences while satisfying 
their constraints. The framework employs both an 
optimal algorithm, combining collaborative filtering 
with a graph model, and a computationally efficient 
greedy algorithm (Kouris et al., 2020). This system can 
be adapted to various domains; however, it does not 
engage users in the decision-making process. 

CAPORS-IUX provided a valuable solution for the 
mentioned challenges by introducing a methodology 
and presenting a system for generating composite 
alternative (package) recommendations based on 
Pareto-optimal trade-offs and extracting the utility of an 
individual user (Jeffries & Brodsky, 2018). The system 
employs multi-objective optimization with arbitrary 
metrics, captures user-system interactions, and conducts 

re-optimizations to iteratively find a feasible 
recommendation closest to the user's utility. However, 
CAPORS-IUX requires multi-objective optimization in 
response to user’s actions, which can be impractical to 
perform in real-time, especially for more complex 
underlying domain models, which are needed for 
recommendations in areas such as supply chain, 
infrastructure investment or  electric grid. The user 
interface also has certain limitations including 
navigation across the complex recommendation and 
comparing different alternatives. Moreover, while 
CAPORS-IUX is capable of generating 
recommendations using arbitrary objectives, it requires 
further improvements to ensure better domain-
independence functionality. 

Addressing these limitations is exactly the focus of 
this paper. We introduce OptiGuide, a domain-
independent package recommender system that extends 
the functionality of CAPORS-IUX. Most importantly, 
OptiGuide allows real-time responses to user’s actions 
– even for very involved underlying models - due to 
preprocessing algorithms. More specifically, the 
contributions of this paper are as follows:  

First and most important, we develop preprocessing 
algorithms that compute a database representing the 
Pareto front of the recommendation space, along with 
estimated user utility functions corresponding to each 
Pareto-optimal alternative in the database. Based on the 
preprocessed database, we develop efficient algorithms 
to provide users with real-time feedback to their actions, 
such as selecting the best option out of two-dimensional 
projections of the Pareto front, suggesting improvement 
for a particular objective, or re-estimation of the user’s 
utility function. We use the Decision Guidance Analytic 
Language (DGAL) and Management System (DGMS) 
for executing optimizations  (Brodsky & Luo, 2015, 
Nachawati et al., 2017), which supports pluggable 
predictive models expressed in Python, yet optimization 
based on the best available mathematical programming 
solvers.  

Second, to enhance the user interface and provide a 
more satisfying user experience, we focus on several 
aspects such as the clarity of presented information, the 
level of customization offered to the user, and the ease 
of navigation across the complex recommendation.  

Third, to make the system more generic and 
applicable across different domains, we implement a 
dynamic configuration mechanism that enables the 
system to adapt to various domains without requiring 
extensive changes to the underlying code. A 
configuration file is provided along with a pluggable 
analytic model where the domain-specific settings can 
be easily adjusted. Moreover, we allow the system to 
accept any number of objectives without limiting the 
number of generated recommendations as well. 
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The rest of paper is organized as follows. Section 2 
describes the system using a supply chain sourcing 
example. Section 3 demonstrates the system 
architecture. Section 4 presents the details of the system 
implementation. Finally,  Section 5 concludes this 
research  and briefly provides directions for future work. 

2. System description  

We explain the functionality of the OptiGuide 
system along with the applied methodology through the 
use of a supply chain sourcing example (Jeffries & 
Brodsky, 2017).  

Consider an example of a small supply chain having 
items such as tables, chairs, and cabinets, along with a 
demand for each item, and a set of suppliers. In this case, 
a recommendation is a set of orders, where an order 
contains a set of item quantities to be purchased from a 
particular supplier. The order must meet the demand 
constraint and is optimized according to one or more 
criteria, such as cost, carbon emissions, and 
manufacturing time. The target is to generate 
recommendations with the highest predicted utility to 
the user, where learning utility is a way of quantifying 
how much a user would prioritize an objective over 
another. 

For generating the optimal recommended order, we 
adopt the methodology used by CAPORS-IUX which is 
captured as a state-activity diagram, shown in Figure 1 
(Jeffries & Brodsky, 2018). 

 

 
 

Figure 1. State diagram. 
 

In order to initialize the recommender system for 
the given example, three domain-specific components 
need to be provided by the user: an analytic model, a 
variable input, and a set of configuration settings.  

The analytic model formally describes the 
objectives and feasibility constraints as a function of 
parameters and control variables (Jeffries & Brodsky, 
2018). Figure 2 shows the analytic model for the supply 
chain sourcing example. The variable input is used for 
exploring the feasible space of the recommendation 
alternatives, as shown in Figure 3. The configuration 
settings involve the objective (metric) definitions, the 
default objective for the user to consider, whether an 
objective is a minimization or a maximization metric, 
and the lower and upper bounds of each objective. 

This analytic model takes as input the variable input 
file, which contains the demand for items demand and 
the purchase information purchaseInfo variables. For 
each pair of suppliers and items, the purchase 
information involves the price per unit ppu, carbon 
emissions per unit co2pu, manufacturing time per 
unit manufTimePu, available items available, along 
with the control variables quantities qty. The model 
defines how to compute each of the objectives, such 
as cost, carbon emissions co2, and manufacturing 
time manufTime based on the given input data. 
Additionally, it defines the feasibility constraints as 
the nonNegQtysConstraint to confirm non-negative 
quantities, the availabilityConstraint to assure that 
quantities do not exceed suppliers’ availability limits, 
and the demandSatisfiedConstraint to ensure that the 
supply of items meets the demand. The model returns 
the computed objectives and constraints. 

 

 
 

Figure 2. Analytic model. 
 

 
 

Figure 3. Variable input. 
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The user interface contains four main sections: (1) 
Current Trade-off Graph: This graph displays all the 
generated recommendations aligned with a Pareto-
optimal curve, where the x-axis shows the current 
utility, and the y-axis shows the objective to consider. 
(2) Current Trade-off Table: This table shows the 
information of each of the current recommendations 
including its computed objectives, the current utility 
value, and the pertained solution, along with a button for 
choosing the recommendation as “Best”. (3) Best-So-
Far Graph: A histogram graph that shows the 
normalized objectives of each best recommendation 
chosen by the user. 4) Best-So-Far Table: A table that 
lists the related information of all the best 
recommendations so far. 

 
Initially, the current utility is calculated by 

assigning equal weights to each objective. The default 
objective is determined by the configuration setting and 
for this example, the y-axis represents the cost of 
ordering. The system generates an initial set of 
recommendations for the user to consider which fall 
along a Pareto-optimal curve, as shown in Figure 4. 

 
 

 
 

Figure 4. Current trade-off graph and table. 
 
The user is provided with several display options 

for the graph to enhance their experience including the 
ability to zoom in on the graph for a closer exploration, 
pinpoint the precise objective values, and save the graph 
for future reference. In the Current Trade-off Table, the 
user has the option to view the details of a 
recommendation's solutions by clicking on "click for 
details." This action will open a window that displays 
the solution in a hierarchical view, as illustrated in 
Figure 5. In this example, the solution provides specific 
details, including the optimal quantities of items to be 
purchased from each supplier. 
 

 
 
 

Figure 5. Solution details window. 
 

Now, if the user chooses the first recommendation 
(Rec 1) as the best choice, this recommendation is added 
to the Best-So-Far Graph and Table, as shown in Figure 
6. Besides, the system recalculates the current utility 
based on the selected recommendation, and the Current 
Trade-off Graph and Table are updated to reflect the 
new computed utility. 

 

 
 

Figure 6. Best-so-far graph and table. 
 

Next, the user is provided with three options in the 
Best-So-Far Table: “Improve” which generates a new 
set of recommendations by improving one of the 
objectives, “ Remove” the recommendation from the 
list, or “Accept” the recommendation as the final 
optimal recommendation. 

In our example, if the user wants to improve the 
recommendations based on carbon emissions (CO2), the 
“Improve” button is clicked and the Current Trade-off 
Graph and Table are updated with a new set of Pareto 
curve recommendations.  As observed in Figure 7, the 
y-axis of the Current Trade-off Graph becomes the 
chosen objective to improve, and the x-axis is the last 
updated current utility. This process continues until the 
user decides on the optimal recommendation and selects 
the “Accept” button. 
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Figure 7. Updated current trade-off. 

 

To further demonstrate the domain-independence 
of OptiGuide, consider using the system in the electric 
grid domain. The goal is to recommend the optimal 
allocation of power sources and transmission lines 
according to multiple objectives, such as minimizing 
the power generation cost, maximizing grid reliability, 
and reducing carbon emissions. Besides, the 
optimization process should satisfy specific constraints, 
including electricity demand, budget, and transmission 
capacity constraints. To initialize the recommender 
system for the given example, three domain-specific 
components should be provided: a variable input, an 
analytic model, and the configuration settings.  

The variable input specifies the control variables 
and defines parameters, such as the available power 
sources, cost and carbon emissions per unit, reliability 
data for each source, transmission line capacities, and 
expected electricity demand. The analytic model 
defines how to compute each of the objectives and 
constraints based on the given input data. The 
configuration settings identify objective specifications 
such as the objective type and lower and upper bounds. 

 

3. System architecture 

The OptiGuide system is composed of two core 
internal components: The Recommendation Engine, 
which implements the preprocessing phase, and the 
Recommendation User Interface, which implements the 
runtime phase. 

The Recommendation Engine must be initialized 
with a domain-specific data structure that contains: an 
analytic model, a variable input, and a set of 
configuration settings. The Recommendation Engine is 
further integrated with Unity DGMS to generate the 
domain specific recommendations and compute their 
objectives based on the domain-specific initial structure. 

During the preprocessing phase, the weight 
combinations are generated, utility computations and 
optimizations are performed, and an initial database 
structure is constructed containing all possible feasible 
recommendations for the given problem. 

Next, the initial database entries are unified, and the 
Pareto preprocessing database is generated containing 
the recommendations for optimal trade-offs between 
competing objectives. These activities serve as the 
building blocks for establishing the system's base, 
ensuring a successful execution of the runtime phase. 

The runtime phase involves the implementation of 
the system's functionality, including preparing Pareto-
optimal alternatives for the Pareto front, generating the 
user interface, and handling user interface interaction. 
This phase is critical in ensuring the system's effective 
operation and the satisfaction of user needs. 

In summary, the two primary phases provide a 
structured approach to the successful development and 
operation of the system, from its foundation to its 
execution. The presented flowchart in Figure 8 illustrates 
the architecture of the OptiGuide system. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 
 

 
 

 
Figure 8. System architecture. 

Page 1532



4. System implementation  

OptiGuide is implemented using the Python 
programming language. In the development of the 
recommendation engine system, Unity DGMS is 
employed as a platform for solving optimization 
problems and generating the optimal recommendations 
using the Decision Guidance Analytics Language 
(DGAL). Several Python libraries including NumPy, 
Pandas, and Scikit-learn are used for data processing 
and analysis. For the recommendation user interface, 
“Python bindings for the Qt cross-platform application 
toolkit” (PyQt5) is used for building the graphical user 
interface (Limited, 2023). Matplotlib, a Python library 
for creating interactive visualizations, is used to enhance 
the visual presentation of data. The two following 
sections briefly explain the implementation aspects 
pertaining to each component shown in Figure 8 of the 
OptiGuide system. 

4.1. Preprocessing Phase 

The goal of this phase is to generate a preprocessing 
structure for Pareto recommendations to be used in the 
runtime phase. As shown in Figure 8, this phase consists 
of four steps: Weights Generation, Utility Computation, 
Utility Optimizations, and Initial DB Unification. 

  
1. Weights Generation. This component generates a 
list of weight combinations represented as weight 
vectors, where each weight is associated with an 
objective. The function takes as input a dictionary of the 
defined objectives and the number of weight entries. It 
first computes a “delta” value, which determines the 
spacing between the weight values, and it finds a list of 
“alphas” values that are spaced evenly within the 
specified range of delta. Next, the sine values of alphas 
are computed to get the initial weights. Using sine 
values is a technique to create a diverse set of weight 
combinations, which leads to various trade-offs among 
objectives. The function then checks the validity of each 
weight combination by ensuring that the square root of 
the summation of the squares of the weights is equal to 
one. The result is a list of weight combinations that will 
be used in the utility optimization to generate the Pareto-
optimal solutions. Consider the case of three objectives: 
accuracy, cost, and time. The function computes weight 
combinations using sine values within a specified range. 
For instance, the weight vector {"accuracy": 0.52, 
"cost": 0.25, "time": 0.82} might be generated. To 
ensure validity, the function confirms that the square 
root of the sum of squares of weights equals 1. These 
weight vectors contribute to generating Pareto-optimal 
solutions during optimization. 

 
2. Utility Computation. The idea behind using the 
utility function is to provide a way to evaluate and 
compare different objectives in a unified manner, 
considering the different weights assigned to the 
objectives. The utility function normalizes the 
objectives and then computes the weighted sum of the 
normalized objectives using the generated weight 
vectors. The result is returned as the utility value of the 
objectives. 
 

• Objective Normalization. This function is 
used to normalize the objectives within a scale 
of zero to one, where zero represents the worst 
value and one is the best. The normalization 
process considers whether the objective is a 
minimizing or a maximizing metric. 
 

• Min-Max Optimization. This function 
employs Unity DGMS in order to optimize 
each objective and find its minimum and 
maximum values. The difference in constraints 
for minimization and maximization metrics 
lies in the bounds applied to the objective value 
during optimization. These minimum and 
maximum values are used for the process of 
normalizing the objectives. 

 
3. Utility Optimizations. This component constructs an 
“initial DB” list that contains all possible feasible 
recommendations. The function iterates over the 
generated list of weight combinations and calculates the 
utility for each weight combination. Then, it optimizes 
the computed utility using “dgal.max” function in Unity 
DGMS along with the given analytic model, variable 
input, and specified constraints. Once the optimal input 
and output are found, the objectives and normalized 
objectives are computed, and the recommendation 
structure is formed and appended to the “initial DB” list. 
 
4. Initial DB Unification. When generating a list of 
recommendations, it is common to have some of them 
with similar or identical objective values but different 
weights. This can lead to redundancy, making it difficult 
for a user or decision-maker to choose among them. To 
address this issue, we implement this function in order 
to combine similar objective dictionaries in groups 
using Euclidean distance and a specified maximum 
distance value. Next, the representative weight 
dictionary is identified for each group using K-Medoids 
clustering. The resulting "Pareto DB" is a JSON file that 
contains only representative entries, which cover all 
Pareto-optimal recommendations that are non-
dominated solutions. This reduces the number of 
recommendations without losing important information. 
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4.2. Runtime Phase 

The runtime phase of the system aims to facilitate 
user interaction and learning of an individual’s utility to 
eventually find their optimal recommendation. This 
phase comprises three steps, namely Pareto Front 
Preparation, UI Generation, and Handling UI 
Interaction, as depicted in Figure 8. 

 
1. Pareto Front Preparation. The purpose of this 
function is to prepare the Pareto front using the “Pareto 
DB” entries based on the selected x_axis and y_axis 
objectives and the current weights. The function starts 
with computing the current utility for each entry in 
“Pareto DB” based on the given current weights. Then, 
it creates a data frame of the graph points with the x_axis 
and y_axis as columns. While the solutions in the 
"Pareto DB" file are Pareto-optimal in the original 
space, projecting them onto two objectives or utility 
versus an objective can result in the loss of Pareto 
optimality. This occurs because the projection removes 
information about the remaining objectives, causing the 
optimality with respect to the projected objectives to no 
longer hold. To address this issue, the function applies a 
mask for the created data frame to filter out the set of 
non-dominated solutions for the projected space from 
the set of feasible solutions. 
 
2. UI Generation. This component provides the user 
with a visual representation of Pareto-optimal solutions. 
The system's graphical user interface (GUI) is defined 
by a Python class, which has an initializer method that 
takes Pareto front data as input. The class plots the initial 
graph of the Pareto front and populates the table with the 
corresponding data. 
 
3. Handling UI Interaction. This component handles 
all interactions within the user interface. For instance, 
when the user clicks on the “Best” button in the table, 
the "button_clicked()" method handles the click event. 
It retrieves the weights of the corresponding Pareto- 
optimal point, prompts user confirmation, calls 
"paretoOptimal()" and "update_state()" methods to 
update the GUI with the new data, and finally adds the 
selected point to the Best-So-Far structure. 

5. Conclusions  

In this paper, we introduced OptiGuide, a domain-
independent package recommender system that uses 
efficient multi-objective optimization techniques to 
guide users effectively in finding their Pareto-optimal 
recommendations. The system improves upon earlier 
research by incorporating preprocessing algorithms to 
reduce the processing time required for the optimization 

computations which can enhance the efficiency of the 
system. The user is effectively engaged in the decision-
making process and is provided with ease of UI 
navigation along with several customization options. 
Moreover, by implementing a dynamic configuration 
mechanism, the system becomes more generic and 
applicable across different domains.  

Overall, the proposed system offers a promising 
approach to generating package recommendations and 
has the potential to improve decision-making processes 
in a variety of domains. In future work, we will enhance 
the user interface options to increase the usability and 
accessibility of the system. Further experimental studies 
will be provided as well using real-world applications 
from different domains. 
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