
OptiGuide: An Efficient Domain-Independent Package Recommender System
Based on Multi-Objective Optimization and User Decision Guidance

Tahani Almanie

Computer Science Department
George Mason University, and

Information Systems Department
King Saud University
Talmanie@gmu.edu

Alexander Brodsky
Computer Science Department

George Mason University
brodsky@gmu.edu

Abstract

While traditional recommender systems focus on
single items, there is an emerging demand for package
recommenders that can suggest composite items based
on multiple criteria. For instance, they can recommend
a combination of dishes based on price, cuisine, and
dietary restrictions. Several challenges arise when
dealing with package recommenders, including the
complexity of the decision-making process and the need
of handling trade-offs among conflicting objectives. We
introduce OptiGuide, a domain-independent package
recommender system that uses efficient multi-objective
optimization techniques to guide users effectively in
finding their Pareto-optimal recommendations. The
user is engaged in the decision-making by capturing
their user-system interactions and offering
customization options to help them find their optimal
recommendation. The system employs preprocessing
algorithms to balance the need for quick response times
with the computational complexity of the optimization
process. A dynamic configuration mechanism is
adopted using a pluggable analytic model to enable
system versatility across diverse domains.

Keywords: Package Recommender, Multi-Objective,
Decision Guidance, Optimization, Pareto-Optimal.

1. Introduction

Recommender systems play a vital role in diverse
domains and applications by offering personalized
recommendations tailored to individual preferences
(Fayyaz et al., 2020). While traditional recommenders
focus on single products or services, there is an
emerging demand for package recommender systems
that can suggest composite or bundled products and
services based on multiple criteria or objectives (Deng
et al., 2012). For instance, they can recommend a
composite of travel-related options such as destinations,
accommodations, and transportation based on traveler
preferences, budget, and duration of stay.

Several challenges arise when dealing with package

recommender systems, one of which is the complexity
of the decision-making process. Due to the existence of
multiple objectives and a vast range of alternatives,
mathematical optimization is required to generate
optimal recommendations. Moreover, package
recommenders must be able to handle trade-offs among
multiple conflicting objectives, such as prioritizing
price over quality or vice versa. User guidance is
required to obtain more reliable evaluations, especially
when dealing with conflicting objectives or trade-offs
(Zheng & Wang, 2022).

Furthermore, the majority of existing recommender
systems provide recommendations for items within a
single specific domain (Dacrema et al., 2022). This
domain-dependence poses a critical limitation as it
restricts their adaptability and effectiveness when
applied to different domains. For instance, a
recommender system designed for movie suggestions
might not perform effectively when used for
recommending travel destinations.

Therefore, there is a need for a package
recommender system that is domain-independent,
employs multi-objective optimization, and provides
user decision guidance. Extensive research has been
carried out in recent years to address these challenges.

Zhang et al. propose a multi-objective optimization
approach for food recommendation that considers four
objectives: user preference, user diet pattern, food
nutritional values and food diversity and applies Pareto-
based algorithms to find the optimal solutions (Zhang et
al., 2022). MoParkeR is a multi-objective parking
recommendation system that uses a non-dominated
sorting technique to find Pareto-optimal parking spots
based on factors such as fare, walking distance, and
travel time (Rahaman et al., 2021). While both systems
apply multi-objective optimization through the
utilization of Pareto optimality, they are domain-
specific and do not address package recommendations
or user decision guidance.

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 1528
URI: https://hdl.handle.net/10125/106570
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

Wibowo et al. propose a method for recommending
clothing packages by combining matrix factorization for
collaborative filtering with fashion criteria such as
color, formality, and patterns. Focus groups were
conducted to improve the algorithm's performance
(Wibowo et al., 2018). Another work presents a graph-
based approach to recommend personalized travel
packages that contain a sequence of multiple points of
interest based on user preferences, budget, and spatio-
temporal constraints (Hti & Desarkar, 2018). However,
they do not provide a user feedback mechanism or
interactive interface for refining preferences in the
recommended packages. Despite using package
recommendations for multiple objectives, neither of the
two methods is domain-independent or addresses the
need for user decision guidance.

MovieBrain is a Google Chrome extension that
integrates IMDb's movie recommendation system. It
provides a personalized movie recommendation
experience by offering interactive settings and filters
based on factors such as movie genres and rating scores
(Dooms et al., 2014). Another research proposes a
recommender system that puts some control in the hands
of users by allowing them to adjust the weight of non-
personalized factors such as the popularity and recency
of movies (Harper et al., 2015). Both systems
incorporate user decision guidance and consider
multiple criteria; however, they are domain-specific and
do not provide package recommendations.

MoFIR is a fairness-aware recommendation system
that uses multi-objective reinforcement learning to find
an optimal trade-off between fairness and utility. The
system seeks a Pareto efficient solution, which can be
applied to different recommendation domains. MoFIR
enables decision-makers to specify preferences for
fairness and utility, guiding them in choosing
recommendations that align with their business needs
(Ge et al., 2022). However, the system is not designed
for package recommendations.

Kouris et al. present a framework to recommend
packages that best fit users’ preferences while satisfying
their constraints. The framework employs both an
optimal algorithm, combining collaborative filtering
with a graph model, and a computationally efficient
greedy algorithm (Kouris et al., 2020). This system can
be adapted to various domains; however, it does not
engage users in the decision-making process.

CAPORS-IUX provided a valuable solution for the
mentioned challenges by introducing a methodology
and presenting a system for generating composite
alternative (package) recommendations based on
Pareto-optimal trade-offs and extracting the utility of an
individual user (Jeffries & Brodsky, 2018). The system
employs multi-objective optimization with arbitrary
metrics, captures user-system interactions, and conducts

re-optimizations to iteratively find a feasible
recommendation closest to the user's utility. However,
CAPORS-IUX requires multi-objective optimization in
response to user’s actions, which can be impractical to
perform in real-time, especially for more complex
underlying domain models, which are needed for
recommendations in areas such as supply chain,
infrastructure investment or electric grid. The user
interface also has certain limitations including
navigation across the complex recommendation and
comparing different alternatives. Moreover, while
CAPORS-IUX is capable of generating
recommendations using arbitrary objectives, it requires
further improvements to ensure better domain-
independence functionality.

Addressing these limitations is exactly the focus of
this paper. We introduce OptiGuide, a domain-
independent package recommender system that extends
the functionality of CAPORS-IUX. Most importantly,
OptiGuide allows real-time responses to user’s actions
– even for very involved underlying models - due to
preprocessing algorithms. More specifically, the
contributions of this paper are as follows:

First and most important, we develop preprocessing
algorithms that compute a database representing the
Pareto front of the recommendation space, along with
estimated user utility functions corresponding to each
Pareto-optimal alternative in the database. Based on the
preprocessed database, we develop efficient algorithms
to provide users with real-time feedback to their actions,
such as selecting the best option out of two-dimensional
projections of the Pareto front, suggesting improvement
for a particular objective, or re-estimation of the user’s
utility function. We use the Decision Guidance Analytic
Language (DGAL) and Management System (DGMS)
for executing optimizations (Brodsky & Luo, 2015,
Nachawati et al., 2017), which supports pluggable
predictive models expressed in Python, yet optimization
based on the best available mathematical programming
solvers.

Second, to enhance the user interface and provide a
more satisfying user experience, we focus on several
aspects such as the clarity of presented information, the
level of customization offered to the user, and the ease
of navigation across the complex recommendation.

Third, to make the system more generic and
applicable across different domains, we implement a
dynamic configuration mechanism that enables the
system to adapt to various domains without requiring
extensive changes to the underlying code. A
configuration file is provided along with a pluggable
analytic model where the domain-specific settings can
be easily adjusted. Moreover, we allow the system to
accept any number of objectives without limiting the
number of generated recommendations as well.

Page 1529

The rest of paper is organized as follows. Section 2
describes the system using a supply chain sourcing
example. Section 3 demonstrates the system
architecture. Section 4 presents the details of the system
implementation. Finally, Section 5 concludes this
research and briefly provides directions for future work.

2. System description

We explain the functionality of the OptiGuide
system along with the applied methodology through the
use of a supply chain sourcing example (Jeffries &
Brodsky, 2017).

Consider an example of a small supply chain having
items such as tables, chairs, and cabinets, along with a
demand for each item, and a set of suppliers. In this case,
a recommendation is a set of orders, where an order
contains a set of item quantities to be purchased from a
particular supplier. The order must meet the demand
constraint and is optimized according to one or more
criteria, such as cost, carbon emissions, and
manufacturing time. The target is to generate
recommendations with the highest predicted utility to
the user, where learning utility is a way of quantifying
how much a user would prioritize an objective over
another.

For generating the optimal recommended order, we
adopt the methodology used by CAPORS-IUX which is
captured as a state-activity diagram, shown in Figure 1
(Jeffries & Brodsky, 2018).

Figure 1. State diagram.

In order to initialize the recommender system for
the given example, three domain-specific components
need to be provided by the user: an analytic model, a
variable input, and a set of configuration settings.

The analytic model formally describes the
objectives and feasibility constraints as a function of
parameters and control variables (Jeffries & Brodsky,
2018). Figure 2 shows the analytic model for the supply
chain sourcing example. The variable input is used for
exploring the feasible space of the recommendation
alternatives, as shown in Figure 3. The configuration
settings involve the objective (metric) definitions, the
default objective for the user to consider, whether an
objective is a minimization or a maximization metric,
and the lower and upper bounds of each objective.

This analytic model takes as input the variable input
file, which contains the demand for items demand and
the purchase information purchaseInfo variables. For
each pair of suppliers and items, the purchase
information involves the price per unit ppu, carbon
emissions per unit co2pu, manufacturing time per
unit manufTimePu, available items available, along
with the control variables quantities qty. The model
defines how to compute each of the objectives, such
as cost, carbon emissions co2, and manufacturing
time manufTime based on the given input data.
Additionally, it defines the feasibility constraints as
the nonNegQtysConstraint to confirm non-negative
quantities, the availabilityConstraint to assure that
quantities do not exceed suppliers’ availability limits,
and the demandSatisfiedConstraint to ensure that the
supply of items meets the demand. The model returns
the computed objectives and constraints.

Figure 2. Analytic model.

Figure 3. Variable input.

Page 1530

The user interface contains four main sections: (1)
Current Trade-off Graph: This graph displays all the
generated recommendations aligned with a Pareto-
optimal curve, where the x-axis shows the current
utility, and the y-axis shows the objective to consider.
(2) Current Trade-off Table: This table shows the
information of each of the current recommendations
including its computed objectives, the current utility
value, and the pertained solution, along with a button for
choosing the recommendation as “Best”. (3) Best-So-
Far Graph: A histogram graph that shows the
normalized objectives of each best recommendation
chosen by the user. 4) Best-So-Far Table: A table that
lists the related information of all the best
recommendations so far.

Initially, the current utility is calculated by

assigning equal weights to each objective. The default
objective is determined by the configuration setting and
for this example, the y-axis represents the cost of
ordering. The system generates an initial set of
recommendations for the user to consider which fall
along a Pareto-optimal curve, as shown in Figure 4.

Figure 4. Current trade-off graph and table.

The user is provided with several display options

for the graph to enhance their experience including the
ability to zoom in on the graph for a closer exploration,
pinpoint the precise objective values, and save the graph
for future reference. In the Current Trade-off Table, the
user has the option to view the details of a
recommendation's solutions by clicking on "click for
details." This action will open a window that displays
the solution in a hierarchical view, as illustrated in
Figure 5. In this example, the solution provides specific
details, including the optimal quantities of items to be
purchased from each supplier.

Figure 5. Solution details window.

Now, if the user chooses the first recommendation
(Rec 1) as the best choice, this recommendation is added
to the Best-So-Far Graph and Table, as shown in Figure
6. Besides, the system recalculates the current utility
based on the selected recommendation, and the Current
Trade-off Graph and Table are updated to reflect the
new computed utility.

Figure 6. Best-so-far graph and table.

Next, the user is provided with three options in the
Best-So-Far Table: “Improve” which generates a new
set of recommendations by improving one of the
objectives, “ Remove” the recommendation from the
list, or “Accept” the recommendation as the final
optimal recommendation.

In our example, if the user wants to improve the
recommendations based on carbon emissions (CO2), the
“Improve” button is clicked and the Current Trade-off
Graph and Table are updated with a new set of Pareto
curve recommendations. As observed in Figure 7, the
y-axis of the Current Trade-off Graph becomes the
chosen objective to improve, and the x-axis is the last
updated current utility. This process continues until the
user decides on the optimal recommendation and selects
the “Accept” button.

Page 1531

Figure 7. Updated current trade-off.

To further demonstrate the domain-independence
of OptiGuide, consider using the system in the electric
grid domain. The goal is to recommend the optimal
allocation of power sources and transmission lines
according to multiple objectives, such as minimizing
the power generation cost, maximizing grid reliability,
and reducing carbon emissions. Besides, the
optimization process should satisfy specific constraints,
including electricity demand, budget, and transmission
capacity constraints. To initialize the recommender
system for the given example, three domain-specific
components should be provided: a variable input, an
analytic model, and the configuration settings.

The variable input specifies the control variables
and defines parameters, such as the available power
sources, cost and carbon emissions per unit, reliability
data for each source, transmission line capacities, and
expected electricity demand. The analytic model
defines how to compute each of the objectives and
constraints based on the given input data. The
configuration settings identify objective specifications
such as the objective type and lower and upper bounds.

3. System architecture

The OptiGuide system is composed of two core
internal components: The Recommendation Engine,
which implements the preprocessing phase, and the
Recommendation User Interface, which implements the
runtime phase.

The Recommendation Engine must be initialized
with a domain-specific data structure that contains: an
analytic model, a variable input, and a set of
configuration settings. The Recommendation Engine is
further integrated with Unity DGMS to generate the
domain specific recommendations and compute their
objectives based on the domain-specific initial structure.

During the preprocessing phase, the weight
combinations are generated, utility computations and
optimizations are performed, and an initial database
structure is constructed containing all possible feasible
recommendations for the given problem.

Next, the initial database entries are unified, and the
Pareto preprocessing database is generated containing
the recommendations for optimal trade-offs between
competing objectives. These activities serve as the
building blocks for establishing the system's base,
ensuring a successful execution of the runtime phase.

The runtime phase involves the implementation of
the system's functionality, including preparing Pareto-
optimal alternatives for the Pareto front, generating the
user interface, and handling user interface interaction.
This phase is critical in ensuring the system's effective
operation and the satisfaction of user needs.

In summary, the two primary phases provide a
structured approach to the successful development and
operation of the system, from its foundation to its
execution. The presented flowchart in Figure 8 illustrates
the architecture of the OptiGuide system.

Figure 8. System architecture.

Page 1532

4. System implementation

OptiGuide is implemented using the Python
programming language. In the development of the
recommendation engine system, Unity DGMS is
employed as a platform for solving optimization
problems and generating the optimal recommendations
using the Decision Guidance Analytics Language
(DGAL). Several Python libraries including NumPy,
Pandas, and Scikit-learn are used for data processing
and analysis. For the recommendation user interface,
“Python bindings for the Qt cross-platform application
toolkit” (PyQt5) is used for building the graphical user
interface (Limited, 2023). Matplotlib, a Python library
for creating interactive visualizations, is used to enhance
the visual presentation of data. The two following
sections briefly explain the implementation aspects
pertaining to each component shown in Figure 8 of the
OptiGuide system.

4.1. Preprocessing Phase

The goal of this phase is to generate a preprocessing
structure for Pareto recommendations to be used in the
runtime phase. As shown in Figure 8, this phase consists
of four steps: Weights Generation, Utility Computation,
Utility Optimizations, and Initial DB Unification.

1. Weights Generation. This component generates a
list of weight combinations represented as weight
vectors, where each weight is associated with an
objective. The function takes as input a dictionary of the
defined objectives and the number of weight entries. It
first computes a “delta” value, which determines the
spacing between the weight values, and it finds a list of
“alphas” values that are spaced evenly within the
specified range of delta. Next, the sine values of alphas
are computed to get the initial weights. Using sine
values is a technique to create a diverse set of weight
combinations, which leads to various trade-offs among
objectives. The function then checks the validity of each
weight combination by ensuring that the square root of
the summation of the squares of the weights is equal to
one. The result is a list of weight combinations that will
be used in the utility optimization to generate the Pareto-
optimal solutions. Consider the case of three objectives:
accuracy, cost, and time. The function computes weight
combinations using sine values within a specified range.
For instance, the weight vector {"accuracy": 0.52,
"cost": 0.25, "time": 0.82} might be generated. To
ensure validity, the function confirms that the square
root of the sum of squares of weights equals 1. These
weight vectors contribute to generating Pareto-optimal
solutions during optimization.

2. Utility Computation. The idea behind using the
utility function is to provide a way to evaluate and
compare different objectives in a unified manner,
considering the different weights assigned to the
objectives. The utility function normalizes the
objectives and then computes the weighted sum of the
normalized objectives using the generated weight
vectors. The result is returned as the utility value of the
objectives.

• Objective Normalization. This function is
used to normalize the objectives within a scale
of zero to one, where zero represents the worst
value and one is the best. The normalization
process considers whether the objective is a
minimizing or a maximizing metric.

• Min-Max Optimization. This function
employs Unity DGMS in order to optimize
each objective and find its minimum and
maximum values. The difference in constraints
for minimization and maximization metrics
lies in the bounds applied to the objective value
during optimization. These minimum and
maximum values are used for the process of
normalizing the objectives.

3. Utility Optimizations. This component constructs an
“initial DB” list that contains all possible feasible
recommendations. The function iterates over the
generated list of weight combinations and calculates the
utility for each weight combination. Then, it optimizes
the computed utility using “dgal.max” function in Unity
DGMS along with the given analytic model, variable
input, and specified constraints. Once the optimal input
and output are found, the objectives and normalized
objectives are computed, and the recommendation
structure is formed and appended to the “initial DB” list.

4. Initial DB Unification. When generating a list of
recommendations, it is common to have some of them
with similar or identical objective values but different
weights. This can lead to redundancy, making it difficult
for a user or decision-maker to choose among them. To
address this issue, we implement this function in order
to combine similar objective dictionaries in groups
using Euclidean distance and a specified maximum
distance value. Next, the representative weight
dictionary is identified for each group using K-Medoids
clustering. The resulting "Pareto DB" is a JSON file that
contains only representative entries, which cover all
Pareto-optimal recommendations that are non-
dominated solutions. This reduces the number of
recommendations without losing important information.

Page 1533

4.2. Runtime Phase

The runtime phase of the system aims to facilitate
user interaction and learning of an individual’s utility to
eventually find their optimal recommendation. This
phase comprises three steps, namely Pareto Front
Preparation, UI Generation, and Handling UI
Interaction, as depicted in Figure 8.

1. Pareto Front Preparation. The purpose of this
function is to prepare the Pareto front using the “Pareto
DB” entries based on the selected x_axis and y_axis
objectives and the current weights. The function starts
with computing the current utility for each entry in
“Pareto DB” based on the given current weights. Then,
it creates a data frame of the graph points with the x_axis
and y_axis as columns. While the solutions in the
"Pareto DB" file are Pareto-optimal in the original
space, projecting them onto two objectives or utility
versus an objective can result in the loss of Pareto
optimality. This occurs because the projection removes
information about the remaining objectives, causing the
optimality with respect to the projected objectives to no
longer hold. To address this issue, the function applies a
mask for the created data frame to filter out the set of
non-dominated solutions for the projected space from
the set of feasible solutions.

2. UI Generation. This component provides the user
with a visual representation of Pareto-optimal solutions.
The system's graphical user interface (GUI) is defined
by a Python class, which has an initializer method that
takes Pareto front data as input. The class plots the initial
graph of the Pareto front and populates the table with the
corresponding data.

3. Handling UI Interaction. This component handles
all interactions within the user interface. For instance,
when the user clicks on the “Best” button in the table,
the "button_clicked()" method handles the click event.
It retrieves the weights of the corresponding Pareto-
optimal point, prompts user confirmation, calls
"paretoOptimal()" and "update_state()" methods to
update the GUI with the new data, and finally adds the
selected point to the Best-So-Far structure.

5. Conclusions

In this paper, we introduced OptiGuide, a domain-
independent package recommender system that uses
efficient multi-objective optimization techniques to
guide users effectively in finding their Pareto-optimal
recommendations. The system improves upon earlier
research by incorporating preprocessing algorithms to
reduce the processing time required for the optimization

computations which can enhance the efficiency of the
system. The user is effectively engaged in the decision-
making process and is provided with ease of UI
navigation along with several customization options.
Moreover, by implementing a dynamic configuration
mechanism, the system becomes more generic and
applicable across different domains.

Overall, the proposed system offers a promising
approach to generating package recommendations and
has the potential to improve decision-making processes
in a variety of domains. In future work, we will enhance
the user interface options to increase the usability and
accessibility of the system. Further experimental studies
will be provided as well using real-world applications
from different domains.

6. References

Brodsky, A., & Luo, J. (2015). Decision guidance analytics
language (Dgal)—Toward reusable knowledge base
centric modeling: Proceedings of the 17th International
Conference on Enterprise Information Systems, 67–78.

Dacrema, M. F., Cantador, I., Fernández-Tobías, I.,
Berkovsky, S., & Cremonesi, P. (2022). Design and
evaluation of cross-domain recommender systems. In F.
Ricci, L. Rokach, & B. Shapira (Eds.), Recommender
Systems Handbook (pp. 485–516). Springer US.

Deng, T., Fan, W., & Geerts, F. (2012). On the complexity of
package recommendation problems. Proceedings of the
31st ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, 261–272.

Dooms, S., De Pessemier, T., & Martens, L. (2014).
Improving IMDb movie recommendations with
interactive settings and filters. Poster Proceedings of the
8th ACM Conference on Recommender Systems, 1247.

Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., &
Kashef, R. (2020). Recommendation systems:
Algorithms, challenges, metrics, and business
opportunities. Applied Sciences, 10(21), 7748.

Ge, Y., Zhao, X., Yu, L., Paul, S., Hu, D., Hsieh, C.-C., &
Zhang, Y. (2022). Toward pareto efficient fairness-utility
trade-off in recommendation through reinforcement
learning. Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, 316–324.

Harper, F. M., Xu, F., Kaur, H., Condiff, K., Chang, S., &
Terveen, L. (2015). Putting users in control of their
recommendations. Proceedings of the 9th ACM
Conference on Recommender Systems, 3–10.

Hti, R., & Desarkar, M. S. (2018). Personalized tourist
package recommendation using graph based
approach. Adjunct Publication of the 26th Conference on
User Modeling, Adaptation and Personalization, 257–
262.

Jeffries, W., & Brodsky, A. (2017). Composite alternative
pareto optimal recommender system
(Capors): Proceedings of the 19th International
Conference on Enterprise Information Systems, 496–503.

Jeffries, W., & Brodsky, A. (2018). Composite alternative
pareto optimal recommendation system with individual

Page 1534

utility extraction (CAPORS-IUX): Proceedings of the
20th International Conference on Enterprise Information
Systems, 328–335.

Kouris, P., Varlamis, I., Alexandridis, G., & Stafylopatis, A.
(2020). A versatile package recommendation framework
aiming at preference score maximization. Evolving
Systems, 11(3), 423–441.

Limited, R. C. (2023, February 6). PyQt5: Python bindings for
the Qt cross platform application toolkit.
https://www.riverbankcomputing.com/software/pyqt/

Nachawati, M. O., Brodsky, A., & Luo, J. (2017). Unity
decision guidance management system: Analytics engine
and reusable model repository: Proceedings of the 19th
International Conference on Enterprise Information
Systems, 312–323.

Rahaman, M. S., Shao, W., Salim, F. D., Turky, A., Song, A.,
Chan, J., Jiang, J., & Bradbrook, D. (2021). Moparker:

Multi-objective parking recommendation. 33rd
International Conference on Scientific and Statistical
Database Management, 237–242.

Wibowo, A. T., Siddharthan, A., Masthoff, J., & Lin, C.
(2018). Incorporating constraints into matrix
factorization for clothes package
recommendation. Proceedings of the 26th Conference on
User Modeling, Adaptation and Personalization, 111–
119.

Zhang, J., Li, M., Liu, W., Lauria, S., & Liu, X. (2022). Many-
objective optimization meets recommendation systems:
A food recommendation scenario. Neurocomputing, 503,
109–117.

Zheng, Y., & Wang, D. (2022). A survey of recommender
systems with multi-objective optimization.
Neurocomputing, 474, 141–153.

Page 1535

