7,152 research outputs found

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions

    Diagnostic opportunities of transabdominal fetal electrocardiography

    Get PDF

    Diagnostic opportunities of transabdominal fetal electrocardiography

    Get PDF

    Statistical Models of Reconstructed Phase Spaces for Signal Classification

    Get PDF
    This paper introduces a novel approach to the analysis and classification of time series signals using statistical models of reconstructed phase spaces. With sufficient dimension, such reconstructed phase spaces are, with probability one, guaranteed to be topologically equivalent to the state dynamics of the generating system, and, therefore, may contain information that is absent in analysis and classification methods rooted in linear assumptions. Parametric and nonparametric distributions are introduced as statistical representations over the multidimensional reconstructed phase space, with classification accomplished through methods such as Bayes maximum likelihood and artificial neural networks (ANNs). The technique is demonstrated on heart arrhythmia classification and speech recognition. This new approach is shown to be a viable and effective alternative to traditional signal classification approaches, particularly for signals with strong nonlinear characteristics

    PTB-XL+, a comprehensive electrocardiographic feature dataset

    Get PDF
    Machine learning (ML) methods for the analysis of electrocardiography (ECG) data are gaining importance, substantially supported by the release of large public datasets. However, these current datasets miss important derived descriptors such as ECG features that have been devised in the past hundred years and still form the basis of most automatic ECG analysis algorithms and are critical for cardiologists’ decision processes. ECG features are available from sophisticated commercial software but are not accessible to the general public. To alleviate this issue, we add ECG features from two leading commercial algorithms and an open-source implementation supplemented by a set of automatic diagnostic statements from a commercial ECG analysis software in preprocessed format. This allows the comparison of ML models trained on clinically versus automatically generated label sets. We provide an extensive technical validation of features and diagnostic statements for ML applications. We believe this release crucially enhances the usability of the PTB-XL dataset as a reference dataset for ML methods in the context of ECG data

    Data prediction for cases of incorrect data in multi-node electrocardiogram monitoring

    Get PDF
    The development of a mesh topology in multi-node electrocardiogram (ECG) monitoring based on the ZigBee protocol still has limitations. When more than one active ECG node sends a data stream, there will be incorrect data or damage due to a failure of synchronization. The incorrect data will affect signal interpretation. Therefore, a mechanism is needed to correct or predict the damaged data. In this study, the method of expectation-maximization (EM) and regression imputation (RI) was proposed to overcome these problems. Real data from previous studies are the main modalities used in this study. The ECG signal data that has been predicted is then compared with the actual ECG data stored in the main controller memory. Root mean square error (RMSE) is calculated to measure system performance. The simulation was performed on 13 ECG waves, each of them has 1000 samples. The simulation results show that the EM method has a lower predictive error value than the RI method. The average RMSE for the EM and RI methods is 4.77 and 6.63, respectively. The proposed method is expected to be used in the case of multi-node ECG monitoring, especially in the ZigBee application to minimize errors

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 145

    Get PDF
    This bibliography lists 301 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1975
    • …
    corecore