
1Scientific Data |          (2023) 10:279  | https://doi.org/10.1038/s41597-023-02153-8

www.nature.com/scientificdata

PTB-XL+, a comprehensive 
electrocardiographic feature 
dataset
Nils Strodthoff1 ✉, temesgen Mehari2,3, Claudia Nagel4, Philip J. aston5,6, ashish Sundar5, 
Claus Graff7, Jørgen K. Kanters  8, Wilhelm Haverkamp9, Olaf Dössel4, axel Loewe4, 
Markus Bär2 & tobias Schaeffter  2,10,11 ✉

Machine learning (ML) methods for the analysis of electrocardiography (ECG) data are gaining 
importance, substantially supported by the release of large public datasets. However, these current 
datasets miss important derived descriptors such as ECG features that have been devised in the past 
hundred years and still form the basis of most automatic ECG analysis algorithms and are critical 
for cardiologists’ decision processes. ECG features are available from sophisticated commercial 
software but are not accessible to the general public. to alleviate this issue, we add ECG features from 
two leading commercial algorithms and an open-source implementation supplemented by a set of 
automatic diagnostic statements from a commercial ECG analysis software in preprocessed format. this 
allows the comparison of ML models trained on clinically versus automatically generated label sets. We 
provide an extensive technical validation of features and diagnostic statements for ML applications. We 
believe this release crucially enhances the usability of the PTB-XL dataset as a reference dataset for ML 
methods in the context of ECG data.

Background & Summary
Cardiovascular diseases continue to be one of the largest burdens for the population worldwide1. Due to its 
simplicity, non-invasive nature, widespread use and diagnostic value, the electrocardiogram (ECG) is one of 
the primary tools for the first assessment. However, it requires the analysis of a huge amount of time-series 
ECG-data. Therefore automatic analysis tools have become standard. The recent developments in machine 
learning/AI have demonstrated its potential in this direction2–5. Large freely available ECG databases6,7 are cru-
cial for the development and benchmarking of AI algorithms for automatic classification. Consequently, they 
have been the basis of recent competitions and challenges8,9. Even though end-to-end trained deep learning 
models are on the rise, handcrafted features continue to play an important role in ECG analysis: They involve 
decades of engineering and encode valuable domain knowledge used for clinical diagnosis. Most of the ECG 
features are inherently interpretable for domain experts and represent a very efficient way to perform patient 
stratification. Furthermore, their availability allows investigating the extent to which deep models align with 
these features (concepts), or to directly compare to algorithms trained on manually extracted features, or poten-
tially devise more robust algorithms relying on both. ECG features also represent a substantial reduction of the 
high-dimensional raw ECG time series and enable therefore comprehensive comparisons between different 
clinical ECG data bases. They may also be used for clinical validation of synthetic data sets stemming from sim-
ulations based on digital twins of individuals10–12 or virtual cohorts of realistic models13,14.

Electrocardiography is a unique domain with a long history of such handcrafted features and commer-
cially available software packages that allow extracting them in a reliable way. However, as a practical obstacle, 
high-quality ECG features from commercial software are not accessible to the broader ECG research commu-
nity. Furthermore, their comparative quality, also in comparison to available open-source toolkits, when applied 
to a comprehensive ECG dataset, is unknown. With this dataset, PTB-XL+, see Fig. 1 for a schematic overview,  
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we aim to mitigate these shortcomings by releasing ECG features from two commercial and one open-source 
feature extractors for the entire PTB-XL6,15,16 dataset. Since its publication, the PTB-XL dataset quickly devel-
oped into one of the largest and most widely used publicly available 12-lead clinical ECG datasets covering a 
broad set of conditions with diverse signal quality and hence representative of real-world ECG data. By releasing 
accompanying ECG features, we hope to further strengthen the role of the PTB-XL dataset as a reference dataset 
for the development and evaluation of automatic ECG analysis algorithms. To increase the interoperability of 
the features from different ECG feature providers, we mapped features to a common naming scheme (includ-
ing mapping to SNOMED CT17/LOINC18 ontologies) that allows using the corresponding feature sets as inter-
changeably as possible. Further metadata such as median beats or fiducial points further enhance the value of 
the dataset. Finally, the PTB-XL + dataset includes automatic diagnostic statements as provided by one of the 
most widely used commercial ECG algorithms, the Marquette 12SL (GE Healthcare, WI) algorithm. To also 
increase the interoperability in this respect, we provide mappings for these statements as well as for the origi-
nal PTB-XL ECG statements to SNOMED CT statements as a common ontology and advocate this as a useful 
procedure to increase the interoperability of datasets that were labeled according to different ontologies. This 
has several important implications: First, mismatches between the 12SL statements and the original labels can 
be used to assess the label quality of the PTB-XL dataset itself. Second, it allows to directly compare the perfor-
mance of models trained on the original PTB-XL labels provided by cardiologists to the predictions of the 12SL. 
The dataset was compiled with direct applicability for machine learning applications in mind and includes an 
extensive technical validation based on publicly available source code19, which can be used as a starting point 
for own analyses.

Methods
Considered algorithms. Before we describe the steps that were followed to create the PTB-XL + dataset, we 
give a brief overview of the different methodologies followed by the included ECG analysis algorithms.

University of Glasgow ECG analysis program (Uni-G) and Marquette 12SL (12SL). The 
University of Glasgow ECG Analysis Program and Marquette 12SL (GE Healthcare, WI) are two commercial, 
state-of-the-art ECG analysis packages that are distributed in millions of ECG devices world-wide. Both follow a 
similar approach: In a first step, a median/template beat is calculated. In a second step, ECG features are extracted 
from this median beat (in addition to some features such as heart rate that are collected from the full ECG) and in 
a third step diagnostic statements are predicted from these features, see20 for details on the Uni-G approach and21 
for details on the 12SL algorithm. Due to usage restrictions, the PTB-XL + dataset includes automatic diagnostic 
statements only from 12SL but the full feature sets from both algorithms. Both feature extraction algorithms are 
closed source and only accessible on special devices or after purchase. The decision rules followed by the 12SL 
algorithm are available from the Physician’s Manual21.
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Fig. 1 Schematic overview of the components that constitute the PTB-XL + dataset.
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ECGDeli. ECGDeli is an open-source ECG delineation toolkit developed within the Institute of Biomedical 
Engineering at the Karlsruhe Institute of Technology, Germany. The feature extraction follows a different 
approach compared to the two approaches discussed before. It builds on the fiducial points obtained from the 
open-source ECGDeli22,23 software. ECG features are computed separately for each available beat. Even though 
the package is publicly available, its execution relies on MATLAB as proprietary software, which limits the range 
of potential users. In the dataset, we report only the median and the (0.25,0.75)-interquartile range across beats, 
which allows to assess the variability of features across different beats, as well as the total count of beats that 
were considered for each respective feature. In addition to amplitude and interval features, the dataset includes  
a number of morphological features.

Data processing. The records from the PTB-XL6,15,16 dataset were converted to appropriate input formats 
and processed by the Uni-G, the 12SL and the ECGDeli algorithms. For 12SL, all ECGs were imported into a 
custom-built MUSE Cardiology Information System (GE Healthcare, Wauwatosa, WI, USA) and upon import 
they were reanalyzed with the latest version of 12SL (v.243). Automatic diagnostic statements were directly 
exported from the GE software rather than re-implemented based on the reference manual. Uni-G features were 
exported from a custom-built version of the Glasgow software (R30.4.2). ECGDeli features were extracted from 
the publicly available version 1.1 of the software.

The output features were harmonized into a unified naming scheme and converted into compatible units 
(using mV for amplitudes and ms for intervals as base units). However, the output features still maintain their 
original form as produced by each respective algorithm. The ECG features for each of the three feature sets 
were converted into a tabular format with a single row per ECG record and a column for each ECG feature. 
Additional features that were provided by the different algorithms such as fiducial points or median beats were 
converted to appropriate output formats and are also distributed as part of this dataset. Finally, the automatic 
diagnostic statements provided by 12SL were converted to a format that makes them directly applicable for 
training ML algorithms. Additionally, we devised a mapping both from the original PTB-XL statements and 
of the 12SL automatic diagnostic statements to SNOMED CT17 and applied them to the original label sets. The 
details are described in the following section.

Data records
Data released as part of this dataset. This section describes the components of the released data repos-
itory, which is hosted by PhysioNet16,24. For the three feature sets, Uni-G, 12SL and ECGDeli, we provide the 
following collection of features:

•	 The Uni-G feature set includes ECG features and median beats from which most of the features were 
extracted.

•	 The 12SL feature set includes ECG features and median beats from which most of the features were extracted. 
In addition, automatic diagnostic statements provided by the 12SL algorithm are included.

•	 The ECGDeli feature set includes median feature values across beats, corresponding (0.25,0.75)-interquartile 
ranges across beats and counts across beats along with the fiducial points along the rhythm strip from which 
the features were extracted.

Generally, we refer to ECG features as a collection of amplitudes and intervals (global as well as lead-specific), 
onsets of ECG segments (global as well as lead-specific), areas and similar features. The precise composition of 
features only depends on the availability of features in the respective algorithms. The data is organized as follows:

•	 ECG features (Uni-G, 12SL, ECGDeli): For each of the three feature providers, we provide feature tables as 
csv-files with the PTB-XL ECG identifier as key (unig_features.csv, 12sl_features.csv, 
ecgdeli_features.csv).

The columns follow a unified naming scheme (including mapping to SNOMED CT or LOINC where available), 
which allows using the three feature sets interchangeably provided the corresponding features are available in multiple 
datasets. A corresponding summary table (feature_description.csv) lists the available ECG features along 
with a short description and units of measurement. For all three feature sets, the ECG features include durations, 
amplitudes and on/off-sets of segments. Uni-G and 12SL include in addition area features and Uni-G also has vector-
cardiographic measurements (calculated from I, aVF and V2 as quasi-orthogonal leads).

•	 Fiducial points (ECGDeli): We provide fiducial points in PhysioNet’s wfdb annotation format25, both 
lead-specific and consensus annotations across all leads. The annotations are organized in subfolders follow-
ing the structure of the PTB-XL dataset with filenames relating to the PTB-XL ECG identifier.

•	 Median beats (Uni-G, 12SL): We provide median beats in PhysioNet’s wfdb signal format25 that can be processed 
analogously to the samples in the original PTB-XL dataset. As the fiducial points, the median beats are organized 
in subfolders following the structure of the PTB-XL dataset with filenames relating to the PTB-XL ECG identifier.

•	 Automatic diagnostic statements (12SL): We provide the automatic diagnostic statements as a csv-file 
(12sl_statements.csv) indexed by PTB-XL ECG identifier, where we provide both the origi-
nal ECG statements assigned by the 12SL-algorithm and the statements after mapping to SNOMED CT. 
For every statement, we also include all parent nodes and in this way propagate the label upwards in the 
SNOMED CT ontology until we reach the root node of the label tree. For the user’s convenience, we pro-
vide a similar file for the statements assigned in the PTB-XL dataset after application of a similar mapping 
(ptbxl_statements.csv). We also release the tables underlying the mappings to SNOMED CT codes 
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(12slv23ToSNOMED.csv and ptbxlMapToSNOMED.csv). In addition, we provide the code to 
apply a potentially modified mapping at a later point in time (apply_snomed_mapping.py). Finally, we 
provide a human-readable description of the used SNOMED CT concept identifiers in SNOMED_descrip-
tion.csv. In this table, we also mark identifiers as informative if they neither perfectly correlate with 
another label nor are too unspecific such as “Finding of body region”. We propose to use only this reduced set 
for the training and evaluation of ML algorithms, see below. Finally, we stress that we provide for the first time 
a way to convert automatic 12SL’s diagnostic statements into a machine-readable format that can be directly 
used to train machine learning models. A complete description of the available label sets in ptbxl_state-
ments.csv and 12sl_statements.csv is given in Table 1.

Descriptive statistics. With the exception of a small number of samples that could not be processed by 
particular algorithms, the feature sets cover the full PTB-XL dataset6,15,16, i.e., up to 21799 records from 18869 
patients.

We summarize the available features in each of the three feature sets in terms of two figures: Fig. 2 shows 
the fraction of samples in the dataset for which a particular feature is present for lead-dependent features. 
Figure 3 shows the analogous plot for global, i.e., lead-independent, features. The features are labeled accord-
ing to their abbreviations. The corresponding descriptions can be found in feature_description.
csv. Here and in the following, we use X as a placeholder for the leads, i.e., X can take values from the set 
{I,II,III,aVR,aVL,aVF,V1,V2,V3,V4,V5,V6}. The figures visually demonstrate that there are 13 features (count-
ing lead-specific features only once) that are present in all three feature sets and 39 features that are present 
in at least two feature sets, which allows for a large number of cross-comparisons for consistency checks, see 
Technical Validation.

In Fig. 4, we visualize the label distribution according to the automatic 12SL diagnostic statements (column 
statements_ext in 12sl_statements.csv). The acronyms used in Fig. 4 are described in 12slv23ToS-
NOMED.csv. The distribution of statements over the full PTB-XL dataset covers 117 statements and therefore 
provides a rich source of information - in particular in comparison to the original labels provided within the 
PTB-XL dataset. In the Technical Validation Section, we provide a first quantitative comparison between both 
label sets based on SNOMED CT terms as common vocabulary.

technical Validation
The technical validation for the PTB-XL + dataset covers three different aspects. First, we assess the consist-
ency of the different ECG features sets by comparing output distributions as well as comparisons on the level 
of individual samples. Second, we use the performance level of Random Forest classifiers trained on different 
feature sets on standard ECG prediction tasks26 as an indirect measure for the discriminative power of the dif-
ferent feature sets. Third, we investigate the correlation between the automatic 12SL ECG statements and the 
ECG statements provided within the PTB-XL dataset by cardiologists. Finally, we assess the performance of 
state-of-the-art deep learning models26 trained on the original PTB-XL labels and evaluated on 12SL-labels and 
vice-versa.

ECG features: Consistency between different feature sets. In Fig. 5, we compare the different fea-
ture sets based on sample-wise Pearson correlation coefficients of those ECG features that are each contained in 
two of the feature sets under consideration, where we restrict ourselves for simplicity to continuous features. At 

column Description

12sl_statements.csv

ecg_id PTB-XL ECG identifier

statements ordered list of original 12SL statements

statements_cat statements but with qualifier statements bound to elementary statements via semicolon; 
can be used to build more finegrained prediction models based on 12SL labels

statements_ext

statements_cat separated into primary statements again keeping only AC (possibly 
acute) and AU (age undetermined) qualifier statements bound to elementary statements, 
removing WITH, AND, OR statements that cannot stand alone; (value, certainty) tuples 
(incorporating information from CRO (cannot rule out)/PO (possible)); default label set 
for prediction models based on 12SL labels

statements_ext_SNOMED
statements_ext after mapping to SNOMED CT identifier as (value, certainty) tuples, 
including information from CRO/PO statements as well as uncertainties in the label 
mapping, with all labels propagated upwards in the SNOMED CT label hierarchy; can be 
used to train/evaluate models on SNOMED CT labels

ptbxl_statements.csv

ecg_id PTB-XL ECG identifier

scp_codes
original ECG statements (up to minor deviations6 consistent with the SCP standard29) as 
(statement, certainty) tuples, where the certainty of all non-diagnostic statements is set to 
100 (as opposed to the 0 in the original dataset)

scp_codes_ext extended set of ECG statements including heart axis and information about acute/old 
infarction stage (where available) extracted from the PTB-XL metadata

scp_codes_ext_SNOMED
scp_codes_ext after mapping to SNOMED CT identifiers as (value, certainty) tuples, with 
all labels propagated upwards in the SNOMED CT label hierarchy; can be used to train/
evaluate models on SNOMED CT labels

Table 1. Description of the provided label sets.
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this point, it is worth stressing again that this is to the best of our knowledge the first publicly available set which 
allows for a quantitative comparison between ECG features, in particular including those from two leading com-
mercial providers. To simplify the presentation, we compute lead-specific correlation coefficients but only report 
average correlation coefficients across all 12 leads for lead-specific ECG features.

The left panel in Fig. 5 compares the two commercial algorithms 12SL and Uni-G and shows very good 
agreement among all common global features. Also most of the lead-specific standard amplitude and inter-
val features show a good agreement with correlation coefficients above 0.9. The least agreement show features 
related to R’ and S’ (i.e., a second positive/negative wave after the R/S-wave), which are potentially more difficult 
to detect, and certainly are features for which some deviations might potentially also be due to different defini-
tions. The center and the right panel of Fig. 5 show the comparison to the ECGDeli features. Again, one observes 
good agreement for the global features and many interval features, reasonable agreement for T and R amplitudes 
and least agreement for S, P and Q amplitudes.

Fig. 2 Lead- and segment-specific features as provided in the different feature sets. Color-coding corresponds 
to the fraction of samples for which values are present whereas black corresponds to values present for 
all samples. We report average statistics across leads X. The used acronyms are described in feature_
description.csv.

Fig. 3 Global (sample-wise) ECG features as provided within the different feature sets. Color-coding as in Fig. 2.
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ECG features: Assessing the discriminative power of different feature sets. Following the eval-
uation protocol established in26, we train Random Forest classifiers on the different feature sets to assess their 
discriminative power, when used as input features for comprehensive ECG classification tasks. As the three fea-
ture sets are composed differently, we also consider training on feature subsets that two feature extraction algo-
rithms have in common, which in principle allows for a direct comparison of the discriminative power of features 
extracted by different algorithms. We assess the performance on the set of seven multi-label prediction tasks put 
forward in26 and report the macro-average (across labels) of the respective areas under the receiver operating 

Fig. 4 PTB-XL label distribution according to 12SL’s automatic diagnostic statements (showing the 40 most 
frequent statements out of overall 117 statements present in the whole dataset).

Fig. 5 Feature comparison based on (Pearson) correlation coefficients (left: 12SL vs. Uni-G, center: Uni-G vs. 
ECGDeli, right: 12SL vs. ECGDeli).
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curves, henceforth referred to as macro AUC, on the PTB-XL test set. For reference, we also report the published 
performance scores of the xresnet1d101, a convolutional neural network operating on the raw waveform data26.

First of all, the results compiled in Table 2 reveal that all three feature sets are highly predictive, reaching 
mean macro AUC values of 0.889, 0.871 and 0.879 for Uni-G, 12SL and ECGDeli, respectively. On their entire 
respective feature sets (denoted as “full”), the Uni-G features are most discriminative. Interestingly, while the 
feature-based approaches fail to reach the CNN performance on comprehensive classification tasks (such as 
“all”), ECGDeli outperforms the CNN baseline in the rhythm category. This is in slight tension to the results 
from27, where the authors found that feature-based and raw-signal-based approaches lead to comparable per-
formance across several diagnostic categories. We also provide results for models trained on the set of features 
shared by two feature sets (line 5–10 Table 2), which allows for a more direct comparison between the two fea-
ture sets. The results reveal that Glasgow and 12SL features have comparable quality but both are superior to the 
ECGDeli features (leaving aside the rhythm category).

Automatic diagnostic statements: Agreement between 12SL and original PTB-XL 
labels. Descriptive analysis. We study the overlap between cardiologists’ annotations provided as part of the 
PTB-XL dataset and the automatic 12SL diagnostic statements. We use the provided mapping to SNOMED CT 
terms (12slv23ToSNOMED.csv and ptbxlMapToSNOMED.csv as described in Data Records) to obtain 
compatible label sets. We consider the set of SNOMED CT terms that are present in both label sets while only 

Model/Features all diag sub-diag. super-diag. form rhythm

CNN/raw data26 0.925 0.937 0.929 0.928 0.896 0.957

RF/Uni-G(full) 0.875 0.907 0.886 0.921 0.803 0.945

RF/12SL(full) 0.856 0.906 0.878 0.924 0.794 0.870

RF/ECGDeli(full) 0.864 0.891 0.883 0.899 0.776 0.964

RF/Uni-G(Uni-G ∩ 12SL) 0.855 0.890 0.889 0.923 0.773 0.881

RF/12SL(Uni-G ∩ 12SL) 0.866 0.892 0.881 0.922 0.796 0.860

RF/Uni-G(Uni-G ∩ ECGDeli) 0.863 0.902 0.888 0.916 0.769 0.892

RF/ECGDeli(Uni-G ∩ ECGDeli) 0.855 0.898 0.863 0.902 0.753 0.906

RF/12SL(12SL ∩ ECGDeli) 0.857 0.894 0.877 0.919 0.781 0.872

RF/ECGDeli(12SL ∩ ECGDeli) 0.855 0.884 0.889 0.903 0.764 0.902

Table 2. Classification performance on PTB-XL benchmarking tasks26 (macro AUC on the PTB-XL test set) 
achieved using different feature sets using different PTB-XL label (sub)sets as targets (all: all 71 statements, 
diag: 44 diagnostic statements, sub-diag: 23 aggregated, sub-diagnostic statements, super-diag: 5 aggregated, 
super-diagnostic statements, form: 19 form-related statements, rhythm: 12 rhythm-related statements). Best-
performing feature-based approaches in each category are marked in bold face. Overall best-performing 
approaches are underlined.

Fig. 6 Visual comparison of the label distribution for 12SL vs. original PTB-XL after mapping to SNOMED CT. 
On the x-axis we show the SNOMED CT labels ordered by ascending counts in the PTB-XL label set.
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keeping informative terms, see the description in the Section Data Records. This leaves us with 94 SNOMED CT 
terms that can be directly compared across both label sets.

First, we visually compare the label distributions in Fig. 6, where we show the label occurrence for the com-
mon SNOMED identifiers in the 12SL vs. the original PTB-XL label set after mapping to SNOMED CT (ordered 
by occurrence in PTB-XL), which shows a rough overlap in terms of label distributions.

To investigate this in more detail on the per-sample level, we compute the Matthews Correlation Coefficient 
(MCC)28 between the binarized scores obtained from selecting the non-zero values of the continuous scores. The 
result of this analysis is listed in Tables 3, 4. The median of the correlation across all terms is 0.45. In particular, 
we find good agreement for atrial fibrillation, complete bundle branch blocks, sinus tachycardia (all with MCC 
above 0.8), which aligns with cardiologists’ knowledge as these conditions are rather clearly identifiable from 
a 12-lead ECG. On the other hand, there is also a range of statements, including myocardial infarctions with 
specific localization, with essentially no agreement. In any case, these findings provide valuable hints for future 
investigations of the label quality of the PTB-XL annotations and the 12SL statements.

SNOMED CT Concept identifier MCC Count PTB-XL Count 12SL description

313217 0.89 1514 1396 Atrial fibrillation

4267892 0.88 536 566 Complete left bundle branch block

4007310 0.88 826 957 Sinus tachycardia

4304202 0.83 294 336 Rhythm from artificial pacing

4088337 0.82 541 721 Complete right bundle branch block

4145998 0.79 1143 1420 ECG: premature ventricular contractions

4089462 0.78 1197 1469 Ventricular premature complex

4145513 0.75 18978 19634 ECG: sinus rhythm

314059 0.74 1658 1229 Right bundle branch block

4091901 0.69 1513 2151 Aberrant premature complexes

4065279 0.67 9514 8587 ECG normal

313791 0.64 3659 2258 Bundle branch block

320536 0.64 12864 11904 Electrocardiogram abnormal

4185932 0.63 6973 5462 Ischemic heart disease

4027255 0.63 8002 6483 Structural disorder of heart

4329847 0.63 5469 4174 Myocardial infarction

4064609 0.61 5469 4338 EKG: myocardial infarction

4166844 0.61 4393 2568 Intraventricular conduction defect

4247796 0.61 3238 2304 Inferior myocardial infarction on 
electrocardiogram

4166245 0.59 5699 3511 Disorder of cardiac ventricle

4064614 0.58 2332 1099 EKG: left bundle branch block

4064457 0.58 4412 2395 EKG: heart block

320425 0.57 4822 3687 Heart block

314665 0.56 73 151 Atrial flutter

316998 0.56 2404 1193 Left bundle branch block

4068155 0.55 2207 5031 Atrial arrhythmia

44784217 0.54 8011 10228 Cardiac arrhythmia

314379 0.52 793 1240 First degree atrioventricular block

4248028 0.52 2766 5914 Supraventricular arrhythmia

4111570 0.51 807 1280 Partial atrioventricular block

316135 0.49 823 1438 Atrioventricular block

4088338 0.49 1118 508 Incomplete right bundle branch block

3655971 0.49 3379 6660 Atrial cardiopathy

4217221 0.48 772 1473 Nodal rhythm disorder

43020843 0.47 915 1693 Disorder of right atrium

4008580 0.47 82 85 Ventricular bigeminy

4295336 0.46 1623 507 Left anterior fascicular block

4064610 0.45 2357 566 Anteroseptal infarction on electrocardiogram

43021828 0.44 99 132 Right atrial enlargement

4184746 0.44 2132 1256 Left ventricular hypertrophy

442982 0.44 2251 1378 Left ventricular abnormality

Table 3. Correlation between automatic 12SL and cardiologists’ labels on PTB-XL (listing only samples where 
both counts exceed 50).
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Model training. To assess the quality of the 12SL labels, we conducted a series of model training experiments, 
the results of which are shown in Table 5. First, we used the original 12SL labels and trained an xresnet1d50 clas-
sification model, which is a modern convolutional neural network, which was found to perform well on PTB-XL 
across various prediction tasks26. We used the first eight stratified folds (training set) from PTB-XL for training, 
the ninth fold (validation set) for model selection via early stopping and report the macro AUC on the tenth fold 
(test set). Further, we discarded labels, that do not occur at least once in all of the before-mentioned splits, leav-
ing us with 109 labels. The xresnet1d50 reaches a macro AUC of 0.956 demonstrating that the full input signals 
are very discriminative for the prediction of the 12SL labels.

SNOMED CT Concept identifier MCC Count PBT-XL Count 12SL description

37017193 0.43 1194 602 EKG: Incomplete right bundle branch block

4034164 0.43 1797 533 Monofascicular block

4145489 0.42 2254 1299 Ventricular hypertrophy

4169095 0.38 637 3492 Bradycardia

4171683 0.38 637 3476 Sinus bradycardia

4115173 0.36 398 780 Atrial premature complex

4064346 0.36 2467 1772 EKG myocardial ischemia

4186397 0.36 2467 1772 Myocardial ischemia

4184348 0.32 288 146 Anterolateral infarction by electrocardiogram

4139185 0.3 208 474 EKG: anterior ischemia

312327 0.29 150 178 Acute myocardial infarction

4137208 0.29 397 541 EKG: inferior ischemia

4184762 0.28 1815 3478 EKG ST segment changes

4171193 0.28 82 224 Idioventricular rhythm

4132088 0.27 174 178 Acute heart disease

4185572 0.22 102 305 Ventricular arrhythmia

4327859 0.2 767 2062 Nonspecific ST-T abnormality on electrocardiogram

438170 0.2 55 89 Acute myocardial infarction of inferior wall

43022066 0.2 426 485 Left atrial enlargement

4064350 0.19 679 190 Lateral infarction on electrocardiogram

4008859 0.18 117 636 Prolonged QT interval

4065390 0.16 2070 2747 EKG: T wave abnormal

44784220 0.14 787 311 Non-specific intraventricular conduction delay

4231591 0.12 126 60 Right ventricular hypertrophy

4263712 0.12 323 288 Subendocardial ischemia

4088499 0.12 182 356 Low QRS voltages

4137879 0.1 140 1293 EKG: lateral ischemia

314666 0.08 84 3999 Old myocardial infarction

4121467 0.05 54 2256 Old inferior myocardial infarction

4064461 0.05 871 1243 ECG: ST interval abnormal

4088336 0.04 77 94 Incomplete left bundle branch block

4119949 0.04 55 618 Old anterior myocardial infarction

4109365 0.0 398 67 Premature atrial contraction

4065287 0.0 157 214 EKG: supraventricular arrhythmia

4180609 −0.02 353 618 Anterior myocardial infarction on electrocardiogram

Table 4. Correlation between automatic 12SL and cardiologists’ labels on PTB-XL (continued).

Label-set Train labels Test labels macro AUC

12SL original 12SL 12 SL 0.956

SNOMED CT 12SL 12 SL 0.939

SNOMED CT PTB-XL PTB-XL 0.912

SNOMED CT 12SL PTB-XL 0.867

SNOMED CT PTB-XL 12SL 0.867

Table 5. Model performance for different label sets and train/test scenarios. Here, PTB-XL refers to the original 
labels provided in PTB-XL (after mapping to SNOMED CT).

https://doi.org/10.1038/s41597-023-02153-8


1 0Scientific Data |          (2023) 10:279  | https://doi.org/10.1038/s41597-023-02153-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

To investigate the comparability of the 12SL labels with the original PTB-XL labels, we use the provided 
mapping to SNOMED CT labels (up-propagated in the label hierarchy) that was described above. After remov-
ing uninformative SNOMED CT labels close to the SNOMED CT root node (and SNOMED CT labels that 
show perfect correlation to other labels on both datasets) and discarding all those SNOMED CT labels that did 
not appear in each split, we reduced the label set to 168 SNOMED CT codes. Following the same procedure as 
described above, we report again the macro AUC on the test set in Table 5. In addition, we also report the results 
of cross-evaluation of models trained on the 12SL SNOMED CT labels and evaluated on the PTB-XL SNOMED 
CT labels and vice versa. Models trained and evaluated on labels stemming from the same original source show 
a high predictive performance (0.939 vs. 0.912 for 12SL vs. original PTB-XL labels). The cross-evaluation results 
are in both cases considerably weaker but very similar (0.867 in both cases). The precise understanding of this 
discrepancy is an interesting direction for future research.

Usage Notes
We structure the usage instructions according to the different components provided in the dataset:

•	 ECG-features are provided as csv-files, which can be read by any standard software.
•	 Median beats and fiducial points are provided in PhysioNet’s wfdb format25, which can be conveniently 

processed using toolkits in C, MATLAB and Python.
•	 Automatic diagnostic statements are again provided as csv-files for easy accessibility.

For the user’s convenience, we release the classifier training code19 for the experiments presented in the 
Technical Validation Section. This should provide a good starting point for own explorations of the dataset. 
We believe that the availability of the additional features provided will significantly enhance the usability of the 
PTB-XL dataset due to the ability to train ML models on features and combinations of raw data and features, to 
look into the quality of features from different feature sets and into the strengths and weaknesses of diagnostic 
statements provided by state-of-the-art ECG analysis software.

Code availability
The ECG features directly correspond to the outputs of the respective algorithms up to minor harmonization. We 
provide code to apply the predefined SNOMED CT mappings to the labels in the dataset (apply_snomed_
mapping.py released as part of the data repository24). Links to code samples facilitating the usage of the dataset 
are described under Usage Notes and are released in a dedicated code repository19.
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