24 research outputs found

    Color Image Reconstruction via Sparse Signal Representation

    Get PDF
    In una macchina fotografica digitale, ogni unità fotosensibile misura solo una delle tre componenti di colore che la rappresentazione di un'immagine digitale a colori richiede. L'operazione di ricostruzione delle componenti mancanti è nota come demosaicing. In questa tesi si e' studiato e implementato un algoritmo di demosaicing recentemente proposto in letteratura, e basato sulla rappresentazione sparsa, attraverso un dizionario, delle immagini naturali acquisite dalla macchina fotografic

    Field-portable pixel super-resolution colour microscope.

    Get PDF
    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17Ă—6Ă—5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF

    Exploring information retrieval using image sparse representations:from circuit designs and acquisition processes to specific reconstruction algorithms

    Get PDF
    New advances in the field of image sensors (especially in CMOS technology) tend to question the conventional methods used to acquire the image. Compressive Sensing (CS) plays a major role in this, especially to unclog the Analog to Digital Converters which are generally representing the bottleneck of this type of sensors. In addition, CS eliminates traditional compression processing stages that are performed by embedded digital signal processors dedicated to this purpose. The interest is twofold because it allows both to consistently reduce the amount of data to be converted but also to suppress digital processing performed out of the sensor chip. For the moment, regarding the use of CS in image sensors, the main route of exploration as well as the intended applications aims at reducing power consumption related to these components (i.e. ADC & DSP represent 99% of the total power consumption). More broadly, the paradigm of CS allows to question or at least to extend the Nyquist-Shannon sampling theory. This thesis shows developments in the field of image sensors demonstrating that is possible to consider alternative applications linked to CS. Indeed, advances are presented in the fields of hyperspectral imaging, super-resolution, high dynamic range, high speed and non-uniform sampling. In particular, three research axes have been deepened, aiming to design proper architectures and acquisition processes with their associated reconstruction techniques taking advantage of image sparse representations. How the on-chip implementation of Compressed Sensing can relax sensor constraints, improving the acquisition characteristics (speed, dynamic range, power consumption) ? How CS can be combined with simple analysis to provide useful image features for high level applications (adding semantic information) and improve the reconstructed image quality at a certain compression ratio ? Finally, how CS can improve physical limitations (i.e. spectral sensitivity and pixel pitch) of imaging systems without a major impact neither on the sensing strategy nor on the optical elements involved ? A CMOS image sensor has been developed and manufactured during this Ph.D. to validate concepts such as the High Dynamic Range - CS. A new design approach was employed resulting in innovative solutions for pixels addressing and conversion to perform specific acquisition in a compressed mode. On the other hand, the principle of adaptive CS combined with the non-uniform sampling has been developed. Possible implementations of this type of acquisition are proposed. Finally, preliminary works are exhibited on the use of Liquid Crystal Devices to allow hyperspectral imaging combined with spatial super-resolution. The conclusion of this study can be summarized as follows: CS must now be considered as a toolbox for defining more easily compromises between the different characteristics of the sensors: integration time, converters speed, dynamic range, resolution and digital processing resources. However, if CS relaxes some material constraints at the sensor level, it is possible that the collected data are difficult to interpret and process at the decoder side, involving massive computational resources compared to so-called conventional techniques. The application field is wide, implying that for a targeted application, an accurate characterization of the constraints concerning both the sensor (encoder), but also the decoder need to be defined

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Informative sensing : theory and applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 145-156).Compressed sensing is a recent theory for the sampling and reconstruction of sparse signals. Sparse signals only occupy a tiny fraction of the entire signal space and thus have a small amount of information, relative to their dimension. The theory tells us that the information can be captured faithfully with few random measurement samples, even far below the Nyquist rate. Despite the successful story, we question how the theory would change if we had a more precise prior than the simple sparsity model. Hence, we consider the settings where the prior is encoded as a probability density. In a Bayesian perspective, we see the signal recovery as an inference, in which we estimate the unmeasured dimensions of the signal given the incomplete measurements. We claim that good sensors should somehow be designed to minimize the uncertainty of the inference. In this thesis, we primarily use Shannon's entropy to measure the uncertainty and in effect pursue the InfoMax principle, rather than the restricted isometry property, in optimizing the sensors. By approximate analysis on sparse signals, we found random projections, typical in the compressed sensing literature, to be InfoMax optimal if the sparse coefficients are independent and identically distributed (i.i.d.). If not, however, we could find a different set of projections which, in signal reconstruction, consistently outperformed random or other types of measurements. In particular, if the coefficients are groupwise i.i.d., groupwise random projections with nonuniform sampling rate per group prove asymptotically Info- Max optimal. Such a groupwise i.i.d. pattern roughly appears in natural images when the wavelet basis is partitioned into groups according to the scale. Consequently, we applied the groupwise random projections to the sensing of natural images. We also considered designing an optimal color filter array for single-chip cameras. In this case, the feasible set of projections is highly restricted because multiplexing across pixels is not allowed. Nevertheless, our principle still applies. By minimizing the uncertainty of the unmeasured colors given the measured ones, we could find new color filter arrays which showed better demosaicking performance in comparison with Bayer or other existing color filter arrays.by Hyun Sung Chang.Ph.D

    Increasing temporal, structural, and spectral resolution in images using exemplar-based priors

    Get PDF
    In the past decade, camera manufacturers have offered smaller form factors, smaller pixel sizes (leading to higher resolution images), and faster processing chips to increase the performance of consumer cameras. However, these conventional approaches have failed to capitalize on the spatio-temporal redundancy inherent in images, nor have they adequately provided a solution for finding 33D point correspondences for cameras sampling different bands of the visible spectrum. In this thesis, we pose the following question---given the repetitious nature of image patches, and appropriate camera architectures, can statistical models be used to increase temporal, structural, or spectral resolution? While many techniques have been suggested to tackle individual aspects of this question, the proposed solutions either require prohibitively expensive hardware modifications and/or require overly simplistic assumptions about the geometry of the scene. We propose a two-stage solution to facilitate image reconstruction; 1) design a linear camera system that optically encodes scene information and 2) recover full scene information using prior models learned from statistics of natural images. By leveraging the tendency of small regions to repeat throughout an image or video, we are able to learn prior models from patches pulled from exemplar images. The quality of this approach will be demonstrated for two application domains, using low-speed video cameras for high-speed video acquisition and multi-spectral fusion using an array of cameras. We also investigate a conventional approach for finding 3D correspondence that enables a generalized assorted array of cameras to operate in multiple modalities, including multi-spectral, high dynamic range, and polarization imaging of dynamic scenes
    corecore