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Abstract

Compressed sensing is a recent theory for the sampling and reconstruction of sparse sig-
nals. Sparse signals only occupy a tiny fraction of the entire signal space and thus have a
small amount of information, relative to their dimension. The theory tells us that the infor-
mation can be captured faithfully with few random measurement samples, even far below
the Nyquist rate.

Despite the successful story, we question how the theory would change if we had a
more precise prior than the simple sparsity model. Hence, we consider the settings where
the prior is encoded as a probability density. In a Bayesian perspective, we see the signal re-
covery as an inference, in which we estimate the unmeasured dimensions of the signal given
the incomplete measurements. We claim that good sensors should somehow be designed
to minimize the uncertainty of the inference. In this thesis, we primarily use Shannon's
entropy to measure the uncertainty and in effect pursue the InfoMax principle, rather than
the restricted isometry property, in optimizing the sensors.

By approximate analysis on sparse signals, we found random projections, typical in the
compressed sensing literature, to be InfoMax optimal if the sparse coefficients are inde-
pendent and identically distributed (i.i.d.). If not, however, we could find a different set
of projections which, in signal reconstruction, consistently outperformed random or other
types of measurements. In particular, if the coefficients are groupwise i.i.d., groupwise
random projections with nonuniform sampling rate per group prove asymptotically Info-
Max optimal. Such a groupwise i.i.d. pattern roughly appears in natural images when the
wavelet basis is partitioned into groups according to the scale. Consequently, we applied
the groupwise random projections to the sensing of natural images. We also considered
designing an optimal color filter array for single-chip cameras. In this case, the feasible
set of projections is highly restricted because multiplexing across pixels is not allowed.
Nevertheless, our principle still applies. By minimizing the uncertainty of the unmeasured
colors given the measured ones, we could find new color filter arrays which showed better
demosaicking performance in comparison with Bayer or other existing color filter arrays.

Thesis Supervisor: William T. Freeman
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Consider a classic question on sampling and reconstruction of signals. We are given m

samples y (yi, . . . , ym), each of which is a linear filter output in response to the signal

X = (Xi, .. .,n), so that y = E' Wijzy for i = 1, .. ., m. Suppose that m/n = #3<1.

Can we reconstruct the input signal x from the incomplete output samples y?

One case in which the answer is yes is when the signal x is bandlimited, for example in

1 D Fourier domain, with a smaller bandwidth than 7r8. Precisely speaking, we require that

n, m -+ o, while m/n = 3, for the bandlimitedness. 1 If this is the case, Wij can be

Wij = sine 11

where the sinc function is defined by sinc(x) sin(rx). The reconstruction can simply be

obtained with a similar linear process, x = Ej W y for j = 1,. .. ,n, where

W'j = sinc(i -j). (1.2)

The underlying principle here is the so-called Nyquist sampling theorem [111] (see Sec-

tion 1.5.1 for a simple derivation of Equations 1.1 and 1.2).

What can we say if the signal x is not bandlimited? This does not eliminate the possibil-

ity of exact recovery; bandlimitedness is a sufficient condition, but not a necessary condi-

'According to the celebrated uncertainty principle, a signal cannot be bounded both in time domain and
in Fourier domain (see [111]).
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tion, for exact reconstruction. In fact, the answer may depend on other statistical properties

of the signal x. Two or more signals can occupy the same bandwidth, while having differ-

ent amounts of information content. Recent studies have argued that the fundamental limit

on the sampling rate is determined by the information content (e.g., innovation rate [142],

sparsity [51, 32], information dimension [149]), rather than the bandwidth, of the signal.

In particular, compressed sensing is a recent theory for the sampling and reconstruction of

"sparse" signals at the rate of the sparsity. While the Nyquist sampling theorem defines a

minimum number of the samples required to perfectly reproduce an "arbitrary" bandlim-

ited signal, we can further reduce the number if the input signals are known to be sparse in

a certain basis.

We start this chapter by briefly reviewing the theory of compressed sensing. For self-

containedness, this chapter includes all relevant proofs and derivations of the results, but

they are not our own contributions. We simply summarize the literature. We recommend

readers to see [47] for a detailed and well-organized review.

1.1 Compressed Sensing

The classical theory of compressed sensing deals with sparse signals, whether exactly k-

sparse or k-term approximable. We mean, by k-sparse signals, the signals which have

at most k nonzero elements in a certain orthonormal basis and, by k-term approximable

signals, the signals for which there exists a k-sparse approximation with little error. To

motivate the sparsity model, we may consider natural images (e.g., see Figure 1.1) which

are sparse in a wavelet basis, although not in the standard pixel basis. We can obtain a

good approximation by keeping only k significant wavelet coefficients while truncating the

others. This is related to compressibility of the signals. Let (X, .. .- , Xn) be the wavelet

coefficients, ordered so that xil Ix 21 2 - - - > xal. Figure 1.2 displays such lxil's, of

Lena, versus i/n, which is referred to as order statistics. We observe that lxii's decay quite

rapidly. If |ilI < Ci- for some C > 0 and s > 1, the signal x is said to be compressible

(see [30]). We will denote the fp-error of the best k-term approximation by ak(X),, i.e.,

Jk(X)p ' Sk l Ix - p, where Sk represents the set consisting of all k-sparse vectors

10
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Figure 1.1: Lena images. Left: the original, Right: a sparse approximation. For both,
two types of representations are given. Top: pixel-domain, Bottom: wavelet-domain. On
the bottom, large magnitudes are represented by warm colors, while small magnitudes are
represented by cold colors. The wavelet coefficients of the original Lena show sparsity:
most are near to zero. When only the largest 7% of the wavelet coefficients are kept, the
resulting image (right) is very faithful to the original (left) whether in wavelet-domain or
in pixel-domain.

in R1 . The best k-term approximation is simply obtained by setting xi's to zero for all

i > k. If x is compressible, Uk(x)p is bounded by [49]

n 1/p 0o 1/p

(i=k+1 (i=k+1

< C 0jz-pdz ) 1/p _k1/_-*. (1.3)

The most basic result of compressed sensing is that, with probability 1, any single

m x n "random" matrix W makes all x E Sk exactly recoverable from y = Wx if

11
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Figure 1.2: Order statistics of the wavelet coefficients of Lena.

m > 2k. The proof is based on the fact that every k-sparse signal x will have the unique

projection y = Wx if W is random and has sufficiently many ( 2k) rows (see Propo-

sition 1.11 in Section 1.5.3 for details). The recovery involves nonlinear operations and

generally requires extremely high computational cost. However, if m > O(k log n), the

exact reconstruction is possible with random matrices by a simple convex optimization

(e.g., f-minimization) or by a greedy optimization (e.g., orthogonal matching pursuit).

We postpone the proof2 to Corollary 1.5 and here will give a brief intuition behind the

fr-minimization. Given a measurement y, what we actually want to solve is

= arg min |zilo subject to z E B(y) (1.4)

where lIz|lo denotes the number of nonzero elements in z (commonly called to-pseudonorm

[52]) and where B(y) represents the set of z's which are consistent with the measure-

ment y. At this time, B(y) = {z : Wz = y}. Problem (1.4) is NP-hard. A typical

relaxation to this original problem is to employ f1-norm, which has convexity, in place of

to-pseudonorm. Specifically,

x=argmin |zi|1 subjecttozE(y). (1.5)

2Our proof will assume recovery based on RI -minimization. Refer to [153] for a proof with orthogonal
matching pursuit.
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Problem (1.5) is computationally feasible if B(y) is convex. In our case, it simply becomes

linear programming [31]. To see why fi-minimization promotes sparsity during recovery,

refer to Figure 1.3, where the solution to the fl-minimization problem exactly coincides

with the solution to the f,-minimization problem for any p < 1 and notably is sparse. 3

B3(y) B(y) 3(y) B(y)

p=| p=2 p= p=1

Figure 1.3: The solution X in R 2 to the problem 2 = arg min., ||zll subject to z E B(y),
where p = 1, 2, 00 and 1/2. Note that the interior of ||z||, = c is convex if and only if
p > 1. Also note that fi-minimization finds a sparse solution as with f,-minimization for
anyp < 1.

Then, what makes random matrices so magical? The theory of compressed sensing

explains the magic through the restricted isometry property (RIP). In linear algebra, the

RIP characterizes matrices which are nearly orthonormal, at least when operating on sparse

vectors. It keeps any two sparse vectors almost as distant in the rowspace (or measurement

subspace) as in the original space. Formally, it is defined as below:

Definition 1.1. A matrix A satisfies the restricted isometry property (RIP) of order k if

there exists a 6k E (0, 1) such that

(1 - 6k)I|Xl < ||AxII| < (1 + 6k)|zX11 (1.6)

holds for any k-sparse vector x.

For any two distinct x, x' E Sk, let e = x - x'. Evidently, e E S2k and ||ell2 >

0. If a matrix W satisfies the RIP of order 2k, then ||WX - WX'11 2 = ||We||2
3In 1990's, before the birth of the theory of compressed sensing, the use of 4-minimization already

received attention from the signal processing community (e.g., for sparse representation of signals [37] and
edge-preserving image processing [87]) and also within the statistics literature (as a method for variable
selection in regression, known as Lasso [134]).

13



v1 - 2k||e||2 > 0, which implies that the projections y = Wx and y' = Wx' are

also distinct, so the exact recovery is possible. Here, any positive 6
2k works as long as it

is strictly smaller than one. In the real-world, however, few signals are exactly k-sparse

(recall Figure 1.1). Gracefully, the theory is extended to compressible signals as well but

requires, for robustness, that 6 2k be sufficiently small (typically, 6 2k < v - 1 ~ 0.41). To

lower 6
2k, we need to increase m. It is known that any m x n matrix that satisfies the RIP

of order k with constant k < 0.5 should have m > Ck log(n/k) for some C > 0 (see [47]

or [46]).

Here are a couple of main theorems on the performance bound of the recovery by f1-

minimization when the measurement matrix has the RIP, each for the noiseless and noisy

setting:

Lemma 1.2. Suppose that W satisfies the RIP of 2k with 62k < v/2 - 1 and that we obtain

the measurement y = Wx. Then, the solution ' to Problem (1.5) obeys

|k (X) 1 (1.7)

where

= 21 - (1 - V/Z)62k
1 - (1 + v/2)62k

Proof This can be regarded as a special case (with c = 0) of Lemma 1.3, for which the

proof will be given in Section 1.5.2.1. E

Lemma 1.3. Suppose that W satisfies the RIP of 2k with a 2k < vf/Z - 1 and that we obtain

the "noisy" measurement y = Wx + ri, where ||q||2 < c. Then, the solution X to Problem

(1.5) obeys

||X - 1|2 C k + CIE (1.9)

14



where

o 21 - (1 - v/)2k V1 + 62k (1.10)

1 - (1 + V/5)62k 1 - ( + v/2)62k

Proof See Section 1.5.2.1.

In the above lemmas, the compressibility of signals makes sure that the bound decreases

with k. Perhaps the most surprising result in compressed sensing is that it typically uses

totally random projections, while some deterministic matrices satisfying the RIP are also

known [50, 80, 81, 25, 151, 62]. It is based on the following lemma:

Lemma 1.4. Let A be an m x n matrix whose entries are i.i.d. samples from M(0, ).

For any 6 > 0, if m > O(y log(n/k)), the matrix A satisfies, with probability at least

1 - 2e -m/72 the RIP of order k with 6k < 3.

Proof See Section 1.5.2.2. D

Although Lemma 1.4 concerns only Gaussian random matrices, similar claims can also

be made to Bernoulli, or more generally to any sub-Gaussian random matrices (see [141]).

Recall that any m x n matrix satisfying the RIP of order k with constant 6k < 0.5 should

have m > O(k log(n/k)), which implies that random matrices satisfy the RIP with the

minimal number of rows (i.e., measurements) up to a constant factor, if 6 < 0.5.

Corollary 1.5. Suppose an m x n random matrix W with m > O(y log(n/k)), where

3 = V25- 1. If x c Sk, f1-minimization exactly recovers x from y = Wx with probability

at least 1 - 2e 62m/72. This probability goes to one as n goes to infinity.

Proof This is a consequence of Lemma 1.4 and Lemma 1.2. According to Lemma 1.4, the

matrix W will have the RIP of 2k with 62k < v/- 1 with probability at least 1 -2e m/72

and Lemma 1.2 ensures that -X = x because 9k k(X)1 = 0 for any x E Sk-

While the RIP provides guarantees for exact recovery of k-sparse signals, testing whether

a given matrix satisfies the RIP has a combinatorial complexity, since one must essentially

consider (2) submatrices. In many cases it is preferable to use properties of W that are

15



more easily computable to provide similar recovery guarantees. The coherence of a matrix

is one such property.

Definition 1.6. The coherence of a matrix A, p(A), is the largest absolute inner product

between any two normalized columns aj, aj of A, i.e.,

la |aj aIp (A) max .a(.11
i# Ij ||a ||2 - a || 12(

Suppose that y = Wx for x E Sk. If p(W) < 2k1 , the following fundamental results

are guaranteed to hold [52, 66, 135]:

1. The vector x is the unique solution to Problem (1.4) with B(y) = {z : y = Wz};

2. The vector x is the unique solution to Problem (1.5) with B(y) = {z y = Wz};

3. Orthogonal matching pursuit, a greedy algorithm that finds nonzero elements in X'

one at a time so as to minimize the residual error |Y - W'||2 , finally yields X' = x.

The coherence can also be related to the RIP (e.g, see Lemma 1.7 below, [47]) and some-

times is used to form the RIPless theory [27] or as an optimization criterion [57] for com-

pressed sensing.

Lemma 1.7. If A has unit-norm columns and coherence p = p(A), then A satisfies the

RIP of order k with 6k = (k - 1)p for all k < 1 + 1/p.

Proof See Section 1.5.2.3. 0

Remark: Compressed sensing provides a nice framework for sampling and reconstruction

of sparse signals, at the rate of their information content encoded by the sparsity. The ra-

tionale behind its success is a better modeling of signals. If sparsity better describes the

input signal than bandlimitedness in Fourier domain, random measurements can accom-

plish a sub-Nyquist rate. We doubt, however, that sparsity model is best in describing the

signals we wish to measure (e.g., natural images shown in Figure 1.1). What if we had

more precise information? The probability density function (pdf) will provide the richest

prior information for random signals if somehow known. Although we may not exactly

16



know the true pdf, we may still be able to find the maximum entropy distribution subject to

some testable information, which best summarizes the current state of knowledge [82].

While sharing the same level of sparsity (or order statistics), two or more signals can

have different pdfs (see Section 2.1). Can we optimize linear measurements for the respec-

tive signals? This question has motivated the present study.

1.2 Learning Compressed Sensing

People have begun to consider learning optimal linear projections from a training set typ-

ical of the signals [146, 34, 126]. Let {xt}Yi denote the training set which consists of

N example signals. We assume that N is large enough to capture the signal distribution

sufficiently well. Given a projection yi of x (i.e., yi = Wxi + , where q denotes the

measurement noise), a natural attempt is to maximize the probability of correct recovery of

the original signal xi. This may be formally written as

W = argmax En [ log Pr(xilyi; W) , (1.12)

where E ,[.] denotes the expectation with respect to the measurement noise r. For simplic-

ity, the measurement noise is assumed to have a Gaussian density, i.e., rj ~ [(O, 0"I).

Weiss et al. [146] named the row vectors of W* uncertain components of data and the

procedure of finding W* uncertain component analysis (UCA). 4

Since the sum of the posterior over all datapoints in the training set is normalized to 1,

the value of Pr(xil y; W) depends on how many datapoints are likely to produce y as

their noisy projection. From the generative model, the likelihood is given by

p(yilox) = 1 e-|"i-Wx|| 2/2U2  (1.13)
(27ro.2)m/2

Therefore, an optimal matrix W* must be chosen to maximally separate noisy projections

4 The name has originated from the fact that optimal projections should capture what is still uncertain
about the signals, given the training set. In a later part of this section, we will see that the criterion in (1.12)
is essentially equivalent to maximizing the entropy (or uncertainty) of Wx if - -> 0, which may provide a
clear sense of the name.
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of the datapoints. Further analytic characterization of W* is given in the following lemma

[146]:

Lemma 1.8. Let W* be the UCA matrix. Then, W* satisfies the following fixed-point

equations, relating the data assignment probabilities qij and the projection W.

qij = Pr(xy ly; W) (1.14)

W = top m eigenvectors of E qij (i - xj)(Xi - x)T. (1.15)

Proof See Section 1.5.2.4. D

We may be able to find W* analytically in some special cases such as below (the proofs

are given in Section 1.5.2.5-1.5.2.7):

Example 1.1. As o -+ o, UCA approaches principal component analysis (PCA).

Example 1.2. If the data {zx} lie in an m-dimensional subspace, then the UCA vectors

and the top m PCA vectors span the same subspace.

Example 1.3. If the data {xi} are k-sparse in any basis and if m > 2k, then for o- -+ 0, a

random matrix becomes one of the UCA matrices.

In many other cases, however, it may be difficult to find W* analytically; then we may

use numerical algorithms based on the gradient of the utility function with respect to W:

7W oc W qiyj(xi - j)(zi - X) (1.16)

with qij as given in Equation (1.14).

While the fixed-point equations show that under certain conditions, PCA and UCA

give the same projections, they also highlight the difference. The PCA tries to maximize

the variance of the projections, which can be thought of as maximizing the average dis-

tance between the projections of any two signals. The UCA maximizes a weighted average

distance between the projections of any two signals, weighted by the probability of assign-

ment for each observation. The weighted average gives high weight to pairs of signals

18



whose projections are similar (determined by the noise level a). This makes sense in terms

of robust reconstruction. For a given noise level o, two signals whose projected distance is

10a make little confusion in recovery and are nearly as good as two signals whose projected

distance is 100a.

To illustrate the behavior of the UCA, we refer to Figures 1.5 and 1.6, where experi-

mental results are obtained with two types of signals shown in Figure 1.4:

1-sparse signal samples Natural image patch samples

Figure 1.4: Samples of two types of signals, each in a 4 x 4 patch.

1. 1-sparse signals in R": Each 4 x 4 patch has one nonzero pixel. If the ith element

is nonzero, the value is an integer uniformly distributed in the range [-16, 16] plus

ci, where Ei's are small positive numbers decreasing with the index i simply to break

symmetries.

2. 4 x 4 patches sampled from Berkeley dataset of natural images [101].

We first estimated uncertain components for 1-sparse signals for different noise values

012 and different numbers of projections m. Recall that for noiseless measurements, if m >

2, random projections are optimal for such signals because every datapoint has the unique

projection with probability one (see Proposition 1.11 in Section 1.5.3). As expected by

Example 1.3, when a2 is very small, any random matrix, of which the entries are randomly

drawn, is a fixed-point of the iteration (1.16). But when a 2 is large, UCA learns projections

that are still incoherent to the sparse basis but nonrandom. To visualize the learned UCA

projections, we plot in Figure 1.5 the projections of the sparse signals into two dimensions

using random projections (top left) and the UCA projections (top right). Since all signals

are 1-sparse in the high dimensional space, the signal set defines a discrete set of rays in
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Figure 1.5: UCA results on the 1-sparse signals. Top: projection of the full dataset from
sixteen dimensions onto two dimensions using random and UCA projections. Bottom:
comparison of percentage of correct decodings as a function of the number of projections,
for different noise levels.

high dimensions, all passing through the origin. In both the random projections and the

UCA projections, one can still observe the projected rays, but UCA finds a projection in

which these rays are (approximately) emanating at regular angles. Thus UCA is finding

a projection in which the number of signals with similar projections is smaller than in a

random projection. Figure 1.5 also compares the decoding performance of the different

projections. As expected, UCA performs slightly better than random projections, and both

UCA and random perform much better than PCA.

In the second experiment, we estimated uncertain components for a set of 1,000 4 x

4 image patches randomly sampled from natural images. Again, to visualize the UCA

projection versus a random projection, we show projections of the image signals into two

dimensions using random projections (Figure 1.6, top left) and the UCA projections (top

right). Note that the random projections are dispersed significantly less than the UCA
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Figure 1.6: UCA results on natural image patches. Top: projection of the full dataset from
sixteen dimensions onto two dimensions using random and UCA projections. Bottom:
comparison of percentage of correct decodings as a function of the number of projections,
for different noise levels. The UCA and PCA results are almost identical, in most ranges,
so the red line is occluded by the blue line.

projections. For this dataset, we found that UCA learns projections that are nearly identical

to PCA. Figure 1.6 compares the decoding performance of the different projections. In this

case, UCA performs almost identically to PCA and much better than random projections.

Remark: UCA provides a principled optimization method for compressed sensing. It is

closely related to the InfoMax principle. Briefly speaking, the UCA utility function con-

verges to -h(xly) and becomes maximum when the matrix W maximizes the mutual

information I(x; y) because I(x; y) = h(x) - h(xjy) where h(x) is a constant indepen-

dent of W. We will review the InfoMax principle and related context in the next section.

Minimizing data uncertainty given the projection has also been proposed in sequential de-

sign of compressed sensing [34, 127], in which the projections are chosen one by one so as

to minimize the remaining data uncertainty given the outcome of the previous projections.
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A major drawback of learning approaches is that they are not free from the curse of

dimensionality. The signal dimension n is usually restricted to be small, especially if we

learn a non-adaptive, one-shot measurement matrix W. In case where we design each

row of W sequentially, observing previous outcomes, learning can be computationally

somewhat easier; some moderate dimension also becomes feasible (e.g., see [126]). But

the sequentially designed matrix is adaptive to a specific input signal and thus cannot be

reused for others in the same class. The measurement process may also take a long time,

proportional to m.

1.3 InfoMax Principle in Sensory Systems

In the first NIPS meeting, Linsker [94] suggested the InfoMax principle for the design of

a linear sensory system. According to this principle, the goal of the sensory system is to

maximize the mutual information between the sensors and the world (see also [8, 12, 7]).

For the input x E R" and the output y E R', let us write the linear sensory system as

y = Wx + q, where W is an m x n measurement matrix and j denotes the sensor noise.

The input-output mutual information is defined as

I(x; y) = h(y) - h(ylx) (1.17)

where h(y) is the entropy of the output and where h(yIx) denotes the remaining entropy of

the output given the input signal and thus merely the entropy of the sensor noise. Because

the noise entropy does not depend on the measurement matrix, h(y) may directly be used,

instead of I(x; y), as the InfoMax criterion. Here, we focus on the noiseless case.

The entropy of the linear measurement y = Wx can be made arbitrarily large, simply

by taking W = cW with c -> oc for any fixed W,. To preclude such a trivial manipula-

tion, we usually impose a restriction on the measurement matrix W to satisfy WWT = I,

as in Section 1.2, or to satisfy Tr(WWT) = -y. The latter, called total power budget con-

straint, is a little more common. In the noiseless case, the maximum of h(Wx), subject

to the power budget constraint Tr(WW T ) = 7, can be achieved only by a tight frame
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matrix satisfying WWT = (/m)I (see Lemma 2.2 in Section 2.2). Here, -y/m is an

uninteresting scale factor merely introduced to compensate for the case -y 4 m. Therefore,

the linear InfoMax problem is formally stated as

W = arg max h(Wx). (1.18)
Wmxn:WWT=I

The solution depends on the prior probability of x and the number of projections m. In

particular, in the complete case (m = n), h(Wx) = h(x) for any tight frame matrix, so the

InfoMax problem is meaningless. We are therefore interested in the strictly undercomplete

case (m < n).

The Gaussian case was analyzed by Linsker.

Lemma 1.9. (Linsker [94]) If the signal x is jointly Gaussian, then the solution to the linear

InfoMax problem (Equation 1.18) is given by the m principal components of x.

Proof. See Section 1.5.2.8. D

Since then, there has been tremendous amount of subsequent work in terms of finding

algorithms to estimate the mutual information in a linear system as well as relationships

between InfoMax and other learning criteria (e.g. [61, 90]). In 1995, Bell and Sejnowski

[18] considered to apply a pointwise nonlinearity g after the linear projection so that y =

g(Wx). The range of g is assumed to be [0, 1] so no additional restrictions on W are

needed. Formally, the nonlinear InfoMax problem is

W = arg max h(g(Wx)) (1.19)
wmxn

where g(yi, Y2,... , ym) = (g(yi), g(Y2), - - -, g(ym)) and the range of g is [0, 1].

As in the linear InfoMax case, the solution to the nonlinear InfoMax problem depends

on the distribution of the input x. In the nonlinear case, it also depends on the form of the

nonlinearity g. Bell and Sejnowski showed that given an appropriate g, nonlinear InfoMax

performs independent component analysis (ICA).

23



Lemma 1.10. Suppose that x is distributed according to the ICA generative model: x =

Da where D is an invertible square matrix and ai's are i.i.d. Suppose also that g is equal

to the cumulative density function (cdf) of ai. Then the solution to the nonlinear InfoMax

problem (Equation 1.19) is given by choosing m ICA filters, i.e. m rows of D-1 .

Proof. See Section 1.5.2.9. F1

Bell and Sejnowski's discussion of the relationship between ICA and InfoMax mostly

focused on the complete case n = m, and usually ICA algorithms are not used as dimension

reduction techniques. As Lemma 1.10 claims, however, the equivalence between ICA and

nonlinear InfoMax actually holds for arbitrary m. At the same time, the lemma highlights

the crucial dependence between g and the cdf of the sources.

Bell and Sejnowski [19] also showed that applying the InfoMax principle to whitened

natural image patches gives Gabor-like filters, similar to those found in primary visual

cortex (see Figure 1.7, left). If we apply their nonlinear InfoMax algorithm to exactly k-

sparse signals (e.g., with k = 3), it finds the basis sparisfying the coefficients, as shown in

Figure 1.7 (right).

Fgro noMfitrE f. L I
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Figure 1.7: The nonlinear InfoMax filters for two types of signals. Left: whitened natural
image patches. Right: exactly k-sparse signals with k = 3. To learn the filters, we used one
million samples per case. For the nonlinearity g, the cdf of the generalized Gaussian with
the shape parameter r = 0.5 has commonly been used (see Appendix A for the generalized
Gaussian distribution).

Remark: As Table 1.1 summarizes, the InfoMax problem has a couple of well-known

solutions in specific settings; however, the general question of InfoMax optimal projections
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Table 1.1: A couple of well-known solutions to the InfoMax problem

Signal Network Solution

jointly linear PCA [94]
Gaussian y =Wx

non-Gaussian nonlinear ICA [18]
source separation model y = g(Wx)t

tg matches the cdf of each source. See Lemma 1.10 for the details.

remains unsolved.

In this thesis, we are particularly interested in the linear InfoMax problem with non-

Gaussian signals. To highlight the difference from the previous settings, consider a white

signal x, with Cov(x) = I. The covariance of y remains as the identity for any tight frame

matrix W satisfying WWT = I. Given any fixed covariance, Gaussian has the maximum

entropy [43], so all we need to solve the linear InfoMax problem (1.18) is to find a linear

projection that makes the projection as Gaussian as possible. This is in stark contrast to a

large amount of research on projection pursuit methods (e.g. [84, 107]) that seek projections

that are as non-Gaussian as possible. Those non-Gaussianity seeking projections must be

least informative about the white signal. Given the close connection between projection

pursuit methods and ICA [79], this raises an intriguing possibility that ICA may find the

least informative projections, while it was formulated to find the most informative ones in

the setting as in Lemma 1.10. Another interesting observation is that random projections

are likely to achieve the maximal Gaussianity because of the central limit theorem, which

suggests a novel connection between random projections and compressed sensing, without

the use of RIP.

In the undercomplete linear InfoMax setting, the solution will become essentially equiv-

alent to UCA, which desirably finds the projection that minimizes the remaining data un-

certainty given the measurement (see our remark in page 21; see also Section 2.2 for more

rigorous arguments).
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1.4 Organization of the Thesis

The remaining part of this thesis comprises three self-contained chapters, which form a

single line of study, plus a conclusion. We will briefly summarize the main results of the

three chapters.

Chapter 2: We apply the InfoMax principle to sparse signals x = (Xi,. .. , Xn), where

xi's are assumed to be mutually independent. We show that the InfoMax principle pro-

vides a similar result as the theory of compressed sensing - that we should use the random

projections - in case that xi's are symmetric, i.e., following the same distribution. How-

ever, if xi's are not symmetric, we observe that random projections can be substantially far

from being InfoMax optimal. We develop a set of mathematical tools to (approximately)

optimize the InfoMax criterion. The InfoMax-based projections consistently outperform

random projections as well as the PCA projection in signal recovery.

In subsequent chapters, we consider several applications.

Chapter 3: We show that groupwise random projections are asymptotically InfoMax

optimal for groupwise i.i.d. signals. As an application, we model natural images as such

a class of signals and deal with how to implement the groupwise random projections with

reference to well-known image statistics. We consider the measurement noise as well. We

derive the optimal power distribution among sensors, which generalizes Linsker's result

[94] - the optimal power distribution for Gaussian inputs - to natural images which are not

Gaussian.

Chapter 4: We regard the way single-chip digital cameras handle color as a special

case of compressed sensing. For cost reduction, single-chip cameras use a color filter ar-

ray (CFA) over the sensors and measure one wavelength, instead of three, per pixel. We

show how to learn a CFA (and thus a measurement matrix) in a way that it minimizes

the uncertainty of the missing color spectra given the measured ones. Both Shannon's

conditional entropy and minimum mean-squared error (MMSE) are considered for the un-

certainty measure. When the conditional entropy is adopted, this exactly implements the

InfoMax principle under CFA physical constraints. By experiments, we demonstrate that

our learned CFAs can give significant improvements in performance over existing CFAs.
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1.5 Appendix to Chapter 1

1.5.1 Derivation of Equations (1.1) and (1.2)

Given discrete samples {z}, a continuous-time signal z(t) that satisfies z(kT2) = kz, for a

sampling period T2, with the smallest bandwidth is given by z(t) = Ek Zk sinc(t/T2 - k).

Under the bandlimited assumption, if we let s(t) be such an underlying continuous-time

signal, s(t) can be represented as s(t) =E xjsinc(t/Tx--j) or as s(t) = Ej yisinc(t/Ty -

i). Therefore, we have

yj = s(iTy) xj sinc(iTy /T - j) (1.20)

x = s(jT) = y sin(jT/Ty - i). (1.21)

Note that the ratio of the sampling rates is given by m/n = T/Ty = 3. Plugging this into

(1.20) and (1.21) yields Equations (1.1) and (1.2), respectively.

1.5.2 Proofs

1.5.2.1 Proof of Lemma 1.3

Note that |IxI1 ;> | ||11 because x is a minimizer of fi-norm, while x, X' E B(y). There-

fore, we may use Lemma 1.12. Applying Cauchy-Schwarz inequality and the RIP of W in

a sequence, we can bound the quantity I e WT Wel by

leXW T Wel IlWeA1 2 1IWeI 2 < 1 -+ 32kIeCAe 2 I We||2. (1.22)

Because I We|12 is also bounded by

|lWeI| 2 = ||WX - W'||2  ||WX - y||2 + ||y - W x| 2  2e, (1.23)

we obtain Ie TWTWej < 2ev/1 + 62k||eA 112. Then, Lemma 1.12 immediately gives us the

inequality (1.9).
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1.5.2.2 Proof of Lemma 1.4

Let A be the set of column indices arbitrarily chosen so that JAl = k and construct AA

by keeping only the columns indexed by A. Then, AA will be an m x k matrix with i.i.d.

entries sampled from AN(O, -). Random matrix theory [141] tells us that, for any t > 0,

with probability at least 1 - 2e~ 2 /2,

lao (AA) - 1 y/m +t/v Y, Vi, (1.24)

where cx (AA) denotes the singular values of the matrix AA (cf. Mareenko-Pastur density

[139]). Using Lemma 1.13, we see that the above inequality implies that, for e = Vk/rn +

t/V ,

maxIAi(ATAA) - 11 < 3 max(c, e 2 ) (1.25)

where Ai(ATAA) denotes the eigenvalues of A3TAA. We take a union bound over all A's.

Since there are (n) < (22)k ways,5 in total, to choose A, we can say that

maxIAi(ATAA) - 11 3 max(c, C2 ) (1.26)
0iA

with probability at least 1 - ()2e -,2/2 > 1 - 2eklog(en/k)-t 2 /2. Note that the inequality

(1.26) implies the RIP of order k with 6 k = 3 max(c, c2).

Letting t = /2k log(en/k) + 6mf/6, we can conclude with probability at least 1 -

2e-6m/72 that the matrix A satisfies the RIP of order k with 6k = 3 max(c, e2). Finally, if

we take

m ;> (vk + V2k log(en/k)) = 0 (klog(n/k)), (1.27)

5 1n [42], the authors make use of the inequality k! > (k/e)k, derived from Stirling's approximation
k! ~ v2k(k/e)k, to obtain the upperbound (4) = n(n... (,-k+l) < k < (f)k.

28



c becomes smaller than or equal to 6/3 by the following:

= + t/v r = (/k' + V/2k log(en/k))/v r + 6/6 < 6/3. (1.28)

This implies that 6 k < 6, completing the proof.

1.5.2.3 Proof of Lemma 1.7

Let A be the set of column indices arbitrarily chosen so that Al = k and construct a Gram

matrix G = ATAA. From the given conditions, Gii = 1, for all i, and IGij I < P, for all

i # j. Therefore, ri - E I Gij I (k - 1) p. According to the Gershgorin circle theorem

(Lemma 1.14), all the eigenvalues of G should lie within [1 ± (k - 1)p]. To make it useful,

we restrict (k - 1)pi < 1 or k < 1 + 1/p. Then,

IIAAX1 2 = vfXT GX E [ /1 - (k - 1)p||zX112, \1 + (k - 1)ptllX 12]. (1.29)

Because this holds for every A such that JAI = k, the matrix A satisfies the RIP of k with

6 k = (k - 1)p.

1.5.2.4 Proof of Lemma 1.8

The posterior probability Pr(xil y; W) can be explicitly written as

Pr(xily; W) = Pr(xj)p(yjxj; W) (1.30)
p(y; W)

where the numerator is independent of W since, in (1.13), p(yiI x; W) = e- .

Thus, we can alternatively rewrite the criterion as

W = argmax. E -logpP(y;W) . (1.31)
w iI
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The marginal log likelihood can be rewritten using the familiar, "free energy" functional

(e.g. [109]):

-- log p(y; W)= min - qij log p(xj, y; W) + qij log qij, (1.32)
2 q:rj qij=l

so that

W = arg max min F(W, q) (1.33)
w q

with

F(W, q) = q1 y llW(xi - xz)||2 + E qij log qij. (1.34)
ij ij

The fixed-point equations are simply saying that at the optimal W*, minimizing F(W, q)

with respect to q (Equation 1.14) and then maximizing with respect to W (Equation 1.15)

should leave us at the same W.

1.5.2.5 Details on Example 1.1

As a -+ oc, the likelihood (1.13) approaches a constant for all x's, and assuming that xz's

are all equally likely, the posteriors qij will also be uniform. Thus the fixed-point equation

(1. 15) implies that the row vectors of W* are simply the eigenvectors of (xi -zx) (xi -zx)T

and these are the principal components of the data.

1.5.2.6 Details on Example 1.2

Define a new dataset whose elements are the difference vectors dij = (Xi - xz). By

(1.15), the row vectors of W* are the principal components of the dataset {dij } where each

difference vector is weighted by j. Since xi, xz both lie in an m-dimensional subspace,

so does Iqdi, regardless whatever value qjj's are. Hence, the rowspace of W* will be

this m-dimensional subspace. On the other hand, if the data lie in an m-dimensional basis,

the top m principal components will also be an orthonormal basis of this m-dimensional
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subspace.

1.5.2.7 Details on Example 1.3

Every k-sparse vector x has the unique projection y = Wx if W is random and has

sufficiently many (> 2k) rows (see Section 1.1; see also Proposition 1.11 in Section 1.5.3).

This means that the empirical posterior probability Pr(xilyi; W) will approach one as

o, - 0 for all datapoints xi, maximizing the UCA utility function in (1.12).

1.5.2.8 Proof of Lemma 1.9

Since x is jointly Gaussian, y will also be Gaussian. If we denote, by E, the covariance

of x, the entropy of Wx is given by h(Wx) = g log(27re) + 1 log det(WEW T ). Let

us relax the orthonormal constraint of the matrix W. Instead, we assume a little weaker

power budget constraint that Tr(WW T ) = m. To maximize h(Wx) with a Lagrange

multiplier (

ah_
Oh = (W EWT)-lW -(W = 0. (1.35)

OW

Post-multiplying WT to each side of (1.35), we obtain WWT = jI, and ( must be equal

to one by the power budget constraint.

Let WEWT = UAUT by its singular value decomposition (SVD), where UUT -

UTU = I and where A is a diagonal matrix. The equation (1.35) then becomes

UAlUTWE - W =0, (1.36)

and pre-multiplying AUT to each side, we obtain

UTWE - AUTW =0, (1.37)

from which we know that the row vectors of UTW should be the eigenvectors of E, with

the eigenvalues being the diagonal entries of A. Because U is simply a rotation matrix,

W is still a PCA projection (up to the rotation). Among all combinations of m principal
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components, the "major" m principal components should be chosen to globally maximize

h(Wx).

Finally, it is obvious that the PCA projection is the maximizer of h under the original

condition that WWT = I (tight frame) since it is the maximizer of h even for the weaker

power budget constraint.

1.5.2.9 Proof of Lemma 1.10

The joint entropy h(y) expands as h(y) = Z> h(y)-I(yi; . . . ; ym) where I(y1; ... ; ym)

is the multi-information of y. Thus to maximize h(y), we need to maximize the individual

marginal entropies as well as to minimize the multi-information. If we set W to be m

ICA filters, Wx simply becomes a concatenation of m sources. The multi-information is

therefore zero. Since g is the cdf of the sources, g(ai) will be uniformly distributed, so it

will maximize the marginal entropies as well [33].

1.5.3 Miscellaneous Lemmas

This section provides a set of lemmas which have been referred to in the body of this

chapter or in the proofs of previous lemmas. In particular, Proposition 1.11 was referred to

in pages 12, 19, 31. Lemma 1.12 was used in the proof of Lemma 1.3; Lemma 1.13 in the

proof of Lemma 1.4; Lemma 1.14 in the proof of Lemma 1.7; Finally, Lemmas 1.15-1.17

will be used in the proof of Lemma 1.12.

Proposition 1.11. Let W be an m x n random matrix. Define y = Wx. With probability

one, if m > 2k, then any k sparse signal has a unique projection.

Proof. Suppose, by contradiction, that there exists another k sparse vector x' such that

Wx = Wx'. Let J be a set of 2k indices that includes all the indices on which either

x or x' is nonzero. Note that since both x and x' are k sparse, the union set of nonzero

indices cannot be of size greater than 2k. Define Wj to be an m x |JI submatrix of W

obtained by taking all columns in J and all rows. By definition of matrix multiplication,

Wx = Wixo and Wx' = Wzjx (since the zero elements can be ignored in the matrix

multiplication). This means that Wzjx = Wjxj with Xj / Xj, which implies that the J|
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columns of W are linearly dependent. But since these columns of W are |JI random m

dimensional vectors and |JI < m, this happens with probability zero. U

Lemma 1.12. Suppose that W satisfies the RIP of 2k with 62k < V2-1. Given x, ' E Rn,

define e = x - 2. Let A0 denote the index set corresponding to the k entries of x with

largest magnitude and A1 the index set corresponding to the k entries of eAg with largest

magnitude. Set A = A0 U A1 . If |I|1 < |xI|, then

ok(X)1 + leWTWel
||ef|2 0 C + C2 . (1.38)

v k- |leA 12

where

Co = 2 ,(1- )2k C2 2 (1.39)
1 - (1 + 95)62k 1 - (1 + V2)62k

Proof Note that A1 is the index set corresponding to the k largest entries of eAg (in absolute

value). We also define A2 as the index set corresponding to the next k largest entries, and

so on. Then, we observe that for j > 2,

||eA I < 1 |1 (1.40)

because the Aj's sort eAg to have decreasing magnitude.

We first use the triangle inequality to bound Ie |2:

le||2 = ||eA - eA 1l2 leAlI2 + ||eAc||2. (1.41)

Then, |ec 12 is bounded by

SCJ Z~eJI2(a) (b) 1 - _____

j>2 2 j>2 j>2 j1

(1.42)

where the inequality (a) is due to Lemma 1.15 and the inequality (b) due to (1.40). We now
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wish to bound ||eAg I1. Since |x|I > |||1, by applying the triangle inequality, we obtain

1xII > |Ix - e||1 = IIXAo - eAo iI + IXAg - eAngI1

SIXAlli - |leA0Hi + IleAg I1 - lXAn lg.

(1.43)

(1.44)

Rearranging and applying again the triangle inequality,

leAg li I 1xii - iIXAo l + IleAo 1i + IIXAg 11

lix - XAlli + |eAlliI + lixAgi1.

(1.45)

(1.46)

Recalling that Uk(X)1 = ||XA Il1 = IX - XAJ||1,

|leAg Ill < leAo0 1 -- 2uk(x)1. (1.47)

Combining this with (1.42), we obtain

||eAc|2 < IIeAo 1i1 + 2rk(X)1 ||eAo||2 + 2 Jk (X)1
Ie- cflk (1.48)

where the last inequality follows from Lemma 1.15. By observing that |eA0o |2 |eA 11 2,

this combines with (1.41) to yield

||el2 < 2leAfl2 + 2 Uk (X) (1.49)

We now turn to establishing a bound for ||eA||2. By the RIP of W,

(1 - 62k)1eAl2 - 1 W eA 12. (1.50)

since eA E 8 2k. Using the equality that WeA = We - EZj2 WeAj, we can rewrite (1.50)

as

(1.51)(1 - 62k)leA12 < eTWTWeA - e T WTWeA.

j>2
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In order to bound the second term of (1.51), we use lemma 1.17, which implies that

e, WT We l < 62kIjeAj||2||eAj 112 (1.52)

for any i / j. Furthermore, Lemma 1.16 gives ||eAo 2 + leA 1||2 lleA ll2. Thus, we

obtain

eWT WeA = e WT Weo
j>2 j>2

+ Se' W"WeA,

S e T WTWeo + E &j WTWeAl

< 32kleAo 112 IeA, 112 + E 62k11eA1 112 IleA, 112
j>2 j>2

< Vf 2 eA 12 leA, 12.

(1.53)

(1.54)

(1.55)

(1.56)

In (1.42), we have bounded Ej2 eAj 112 by Ej 2 eAj 112 |IeAg 1/Vk, so

eI, WTWeA
j> 2

V262k len
leA. I

Combining (1.57) and (1.51), we obtain

(1-62k)leA112 - eTWTWeA -[EeAWTWeA
j>2

l e WT WeAl + 7e TWTWeA

j>2

< e WTWeA + \'N2252kxeAII2

Dividing both sides of (1.60) by (1 - 62k) eA 11 2, we can bound |eA 12 by

V262k |leAg||1
||eA|2 1-62k) V/k

S Ie TWT WeAl
(1 - 62k) ||eA||2

8/
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Combining this with (1.47) and applying Lemma 1.15, we obtain

IICACII1 le W T We|
IeA||2 < a + #

- ||eAI2

eA l1i + 2 k(X)1 le7TWT We
v/ ±3 IeAIl2

< a e A11 2 + 2 -k(X)15a||xo||+2a
leXWTWel

leA112

Since leA 112 5 IeAI|2,

(1 - a)|eAI|2 < 2 a  (i
v/k

le WTWel+0 leA 112

The assumption that 6 2k <V2 - 1 ensures that a < 1. Dividing by (1 - a) and combining

with (1.49) results in

Ile1I2 < 2(1 + a) OUk(X)1
1-a v/j

+
23 Ie7WTWel

1-a eIeAl2

Plugging in for a = 162k and # = ( _6 2k) yields the desired constants. E

Lemma 1.13 (Lemma 5.36 of [141]). Let oi(-) and Aj(-) denote the singular values and

the eigenvalues of the input argument matrix, respectively. Suppose that, for some C > 0, a

matrix A satisfies

|Aj(AT A) - 11 < max(c, e2 ), Vi. (1.67)

Then,

lo (A) - 11 < c, Vi. (1.68)

Conversely, if A satisfies the inequality (1.68) for some c > 0, then |Ai(ATA) - 1

3 max(c, E2), for all i.
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Proof. Note that o-i(A) = A(AT A). Therefore,

lo-(A) - I e < A(AT A) - 1 < c. (1.69)

The lemma simply follows from the elementary inequality

max(|z - 11, Iz - 112) < 1z2 - 11 < 3max(Iz - 11, Iz - 112), Vz > 0. (1.70)

Lemma 1.14 (Gershgorin circle theorem [65]). Let A be an n x n matrix, with entries Aij.

For i E {1, ... , n}, let ri = AIj|. Let Di (Ai, ri) be the closed disc centered at Aii

with radius r. Then, every eigenvalue of A lies within at least one of the discs Di(Ai, ri).

Proof. Let A be an eigenvalue of A and let v = (vi, .. . , vn) be a corresponding eigen-

vector. Define i* = arg maxi vi 1. Necessarily, |vi.| > 0; otherwise, v = 0. Because v

satisfies Av = Av,

Aijvj = Avi, i = 1, n. (1.71)

We choose i = i* and split the sum to obtain

E Ai.j j = Avi. - Ai. .vi.. (1.72)
j#i*

Dividing both sides by vi* and taking the absolute value, we obtain

|A - Aj-4| I= Zj i* Ai < E | --| I |A = ri.. (1.73)v* 54i *vi*

Therefore, A E Dc*(Ai-i-, ri). E

Lemma 1.15. Suppose x C Sk. Then,

II II ||IX||2 < V' | X||ac. (1.74)
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Proof Take A, with JAl = k, so that it includes the support of x. Define z as the k-

dimensional vector comprising the elements, indexed by A, of x. By the norm inequalities

(e.g., [131]),

||z||1 < ||z||2 -< V kIzl~c. (1.75)

Because, for any p,

llXllP X (Z P
1/p 1/p

iEA

we can replace l|z||p, in (1.75), with |Ix lIp. Then, we obtain the lemma. E

Lemma 1.16. Suppose that u, v are orthogonal vectors. Then,

l1ull2 + |IV||2 < \V2||U + V112. (1.77)

Proof We begin with the inequality (lU 1l2 - |IV|2)2 > 0, which expands as

21u l211V l2 ||lll1 + IV1| = ||luI1 + ||vI1| + 4uTv (1.78)

because uTv = 0. Adding ||UlI + |v|ol| to, and subsequently factorizing, both sides of

(1.78), we obtain

(||u12 + ||v1|2)2 < 21u + v1|1. (1.79)

The inequality (1.77) immediately follows by taking the square root of both sides of (1.79).

Lemma 1.17. If W satisfies the RIP of 2k, then for any two vectors u, v E Sk with disjoint

support,

IuT W TWV 5 62k||u||21v||2. (1.80)
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Proof. If we let ii = u/||uIl 2 and i = v/lHVl| 2 , then ii ± i G S2k and ||t ± i|| =

|IL||+ || || = 2. Using the RIP, we have

2(1 - 62k) < ||IW(i ± 5 2(1 + 62k).

Applying the polarization identity, we have

|iT WT WBl = 1 |Wt + W;6||2 - ||Wu - W; || 62k.

Substituting back i = u/|U|| 2 and i = v/lIll2 in (1.82), we finally obtain (1.80).
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Chapter 2

Informative Sensing

Compressed sensing is a set of mathematical results showing that sparse signals can be re-

constructed from incomplete linear measurement samples, substantially below the Nyquist

rate. Interestingly, random measurements allow good reconstruction almost regardless of

the basis in which the signals are sparse. The universality of random measurements, how-

ever, means that they are not particularly tuned to a specific distribution of signals. Surely,

if we knew something about the statistics of the signals on which we want to do compressed

sensing, we should be able to design a projection that is optimal for the class of signals.

To this end, we revisit the classical InfoMax criterion. We seek an undercomplete lin-

ear projection W that maximizes the mutual information between the input x and output

y = Wx. For very special cases, the solution for the optimal W is known and may co-

incide with principal components (when x is Gaussian) or independent components (when

y goes through a pointwise sigmoidal nonlinearity). But the solution for a general input

distribution and a linear network is still unknown.

In this chapter, we focus on the input signals that have a sparse representation x = Da

in an orthonormal basis D, as typical in the compressed sensing literature. By analysis,

we find that in i.i.d. settings of a, random projections are asymptotically InfoMax optimal,

making an interesting connection to the classical theory of compressed sensing. But, in

non-i.i.d. settings, we find a rather novel set of projections by optimizing the InfoMax

criterion, which turn out to consistently outperform random or PCA projections in signal

reconstruction experiments.
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2.1 Introduction

We consider a classic question: can we determine an n-dimensional vector x given m linear

equations, Wx = y, when m < n? As is well known, this is an ill-posed problem for

which there exist an infinite number of solutions. Obviously, however, if we are given side

information that x lies in a particular low-dimensional linear subspace, say of dimension

k, then m = k is sufficient to exactly reconstruct the original vector. What if x lies in a

fractional but nonlinear manifold? Can we still get away with fewer than n measurement

samples?

The theory of compressed sensing (CS) deals with the above question, particularly for

k-sparse signals, which can be represented with a small number, at most k, of nonzero

elements in some basis [51, 32]. A basic result is that, with probability 1, any m x n "ran-

dom" matrix W suffices to make the mapping from x to Wx invertible on the entire set of

k-sparse signals if m > 2k (see Proposition 1.11 or [116]). Furthermore, the recovery can

be performed by a simple convex optimization [31] or by a greedy optimization procedure

[136], if m increases to the order of k log(n/k).

These results have generated huge excitement in both theoretical and practical commu-

nities. On the theoretical side, the performance of CS with the restricted isometry property

(RIP) [32] has rigorously been analyzed when the signals are not exactly k-sparse but

rather compressible (i.e., can be well approximated with a small number of nonzero ele-

ments) [51, 32, 119, 40, 114] as well as when the measurements are quantized [22, 157]

or contaminated with noise [75, 143, 34, 63]. Several attempts to deploy CS for analog

signals have also been developed [137, 88, 60]. On the practical side, applications of CS

have been explored in building "single-pixel" cameras [54], medical imaging [99, 128] and

geophysical data analysis [92, 110], etc.

In fact, the classical theory of CS says little about what types of linear measurements

enable the best recovery for a particular class of non-ideally sparse signals when m is fixed.

To cope with the worst-case, which scarcely occurs in a certain class, the RIP basically re-

quires that the measurement be mutually incoherent with the basis in which the signals are

assumed to be sparse (see also [27] for the RIPless theory). While recently a set of deter-
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ministic matrices satisfying the RIP with relatively small m are found [81, 25, 151, 62],

random projections have typically been used [51, 32, 11] because they prove mutually

incoherent with almost any basis. However, the universality of random projections does

not mean that they are universally optimal for every class of sparse signals, as we will

demonstrate shortly. Elad [57] has shown that increasing the average incoherence of a

measurement matrix using an iterative algorithm, can give a small increase in the recov-

ery performance (see also [55, 150] for relevant subsequent works). For natural images,

the standard low-pass filtering, e.g., the measurement based on principal component anal-

ysis (PCA), often gives better reconstruction results than random projections in noisy and

noiseless settings [74, 127]. Lustig, Donoho, and Pauly [98] noticed that undersampling

low-pass signals less than high-pass signals can produce a better performance for real im-

ages when using a random Fourier matrix. In a similar context, Romberg [115] first takes a

fixed small number of PCA coefficients, which are at low frequencies, to capture a holistic

outline of the image data before switching to random projections for filling in the details.

The necessity of a better model, beyond simple sparsity or compressibility, has also been

recognized in terms of signal recovery [78, 10] as well as in terms of measurement matrix

design [146, 34, 127, 64]. More accurate side information (e.g., group sparsity or proba-

bilistic model) may shrink, or better describe, the space on which the signal x can actually

sit. It helps to generally improve the reconstruction error given any fixed measurement and

also to specialize the measurement matrix.

The following is a quick demonstration that random projections are not universally op-

timal for every class of sparse signals. First consider x = (zi, . . . , x) where xi's are i.i.d.

The marginal probability density is given by p(zi) = IJ(X; 0,12) + 9V(Xz; 0, 0.12),

where V(-; Iyi, ,2 ) denotes a Gaussian density with mean y and variance o2 (see, for the

density, Figure 2.1, top left). If n is large, the signal has the order statistics shown in Fig-

ure 2.1 (top right), with little deviation (cf. Sanov's theorem [43]). This signal is seemingly

compressible (refer to Section 1.1 or [26, 35] for the precise definition of compressibility)

and the theory of CS applies well. In Figure 2.1 (bottom left), we show the performance

of random projections when the signal x is reconstructed either by minimizing |xlii (i-

regularization) or by minimizing the mean-squared error (MSE) subject to the measurement

43



p(x,) -LAr(x,; 0, 12) + 0,0.12)10 -2-Ar(xi;

4

3

24L

f K(xi; 0, 1
2

), i < n/10
1i Kf(x,; 0, 0. 1

2
), elswhr

3i elsewherej

I i: /1
I -ehee

3i'

2 20

x.

Probability density

0
x.

Probability density

5 0.2 0.4 0.6 0.8 i
i/n (sorted)

Order statistics

200 400 600 800 1
m

Recovery performance

0

1'00 Ridom (L -regularization)

so
andom (MMSE)

)00 0 200 400 600 800
m

Recovery performance

Figure 2.1: Compressed sensing for two classes of signals which have the same order statis-
tics. One is an i.i.d. Gaussian mixture signal and the other is a non-i.i.d. Gaussian signal.
Top: probability densities of the two signals and the common order statistics. Bottom:
recovery performance of PCA and random projections. For recovery, two alternative meth-
ods (MMSE and fi-regularization) have been employed. When the PCA projections are
used, mean-squared errors from the two recovery methods happen to coincide. Note that
the relative performances of the PCA versus random projections are completely different
in the two cases.

(a specific algorithm to compute the minimum MSE (MMSE) estimate will be given in Sec-

tion 2.6.3). Random projections enable a good reconstruction with fi-regularization if m

is sufficiently large. A slightly better reconstruction comes with MMSE recovery; more

importantly, the MMSE scheme always gives a better reconstruction than (at least as good

as) the canonical linear recovery scheme, even when m is very small. The PCA projection,

coherent to the sparse basis in this case,1 cannot enjoy the benefits of such nonlinear re-

covery schemes at all and shows inferior recovery performance in comparison with random

projections. As a matter of fact, the order statistics shown in Figure 2.1 (top right) are not

unique to the i.i.d. signal but also shared with a Gaussian signal of the following density

'More exactly, this is the projection based on independent component analysis (ICA).

44

10

Iso
C'

'Random (L-regularization)

A (or ICA)
Rand
(MMS

I000

I krl



(see, for the density, Figure 2.1, top middle):

{ .A(0, 12), i < n/10

K(0, 0.12), elsewhere.

The same order statistics mean the same level of sparsity, in the view of the RIP-based

theory; f -regularization with random projections performs exactly as well as in the previ-

ous i.i.d. case. For the Gaussian signal, however, the MMSE estimate, based on the true

prior, can greatly reduce the reconstruction error (see Figure 2.1, bottom right), which cor-

roborates the necessity of a precise model during signal recovery. At the sensor side, still

random projections may not be a bad choice, but they are far from being optimal for this

particular signal. As shown in Figure 2.1 (bottom right), the PCA projection works better

in terms of MSE. If the MMSE estimate is used for signal recovery, the PCA projection

is 3.79 times better (equivalently 5.79dB) than random projections when rm/n = 0.1 and

1.88 times (2.73dB) better when m/n = 0.2.

Besides the above two, infinitely many classes of signals have the same order statistics.

Given only the order statistics, perhaps we must assume the i.i.d. signal model because it is

the maximum entropy distribution subject to the given order statistics,2 which goes along

with the worst-case consideration by the RIP-based theory. However, if more information is

available so that the signal class is better discriminated, what types of linear measurements

are optimal for each class? In general, they are none of random, PCA, or ICA. This question

has motivated this work, the rationale for which is somewhat analogous to that for CS: The

classical theory of CS adopted a sparsity model, rather than bandlimitedness in Fourier

domain, for better description of signals. Likewise, we use a probability density, whether

it is true or maximizing entropy subject to all available information, rather than simple

sparsity.

Meanwhile, the InfoMax principle has long been established for the design of a lin-

ear sensory system in the field of computational neuroscience since proposed by Linsker

[94]. According to this principle, the goal of a sensory system is to maximize the mutual
2In Bayesian probability, the principle of maximum entropy [82] is a postulate which states that, subject to

known constraints (called testable information), the probability distribution which best represents the current
state of knowledge is the one with largest entropy.
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information between the sensors and the world (see also [8, 12, 7]). In particular, Linsker

showed that the PCA projection is the maximally informative linear sensory system for the

Gaussian input. There has been a tremendous amount of subsequent work in terms of find-

ing algorithms to estimate the mutual information in a linear system as well as relationships

between InfoMax and other learning criteria (e.g. [61, 90]). In [18], Bell and Sejnowski

showed that when the InfoMax principle is applied to linear projections followed by a spe-

cific sigmoidal nonlinearity, then maximizing the mutual information can be equivalent

to finding sensors that are as independent as possible. The self-organizing neural network

[17] and relevant component analysis (RCA) [9] are still other well-known examples where

the InfoMax criterion was used (to reconcile the stimuli-sensitive responses of neighboring

cells and to alleviate the undesired data variability in a Mahalanobis distance, respectively).

In this chapter, we show that the InfoMax principle could also have predicted a simi-

lar story as the classical theory of CS. For the inputs which have a sparse representation

x = Da, where D is an orthonormal basis sparsifying its coefficients a = (ai, .. . , an),

we seek an undercomplete linear projection that is most informative about the inputs. In the

settings where ai's are i.i.d. and n is asymptotically large, we find that random projections

are indeed InfoMax optimal. This is somewhat surprising in that they are very different

than the "structured" projections (e.g., [19]) implemented by the same principle (with dif-

ferent settings, of course) in the past. The incoherence of W with respect to D is central in

the optimization of the InfoMax criterion, which finds an interesting connection to the clas-

sical theory of CS. However, if ai's are not i.i.d., we observe that random projections can

be substantially far from being InfoMax optimal. We particularly explore the case where

{ ai/o-} are i.i.d. with nonuniform variances o' (see Section 2.3), by assuming the knowl-

edge, beyond simple sparsity, on where the sparsity comes from, the non-Gaussianity or

asymmetric variances of the signal elements. Such a model is often realistic. For example,

wavelet coefficients of natural images are sparse with the variance falling off as a power law

along the increasing spatial frequency [140] . For very special cases, the InfoMax optimal

projection may coincide with the PCA projection but generally not. We develop a set of

mathematical tools to solve the InfoMax problem and derive a novel measurement scheme

that (approximately) optimizes the InfoMax criterion. In our signal recovery experiments,
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the InfoMax-based projections consistently outperform random projections as well as the

PCA projections.

To summarize, our results suggest the utility of InfoMax for the application of CS.

Given the input distribution, InfoMax provides an optimization criterion, unlike the RIP,

which is a sufficient condition for bounded-error recovery by fi-regularization. InfoMax

does not assume any specific recovery scheme, but the utility can be maximally demon-

strated with the best one we can use. For this reason, we mainly use the MMSE estimate

rather than f-regularization. Our MMSE estimate usually takes a much longer time than

f 1-regularization, but the recovery cost is not a focus of this work. Emerging research

trends in CS include efficient computation of the MMSE or maximum a posteriori (MAP)

estimates (e.g., see [ 113]). In non-i.i.d. sparse cases where the InfoMax optimal projec-

tion deviates from random projections, the InfoMax-based story has its most novelty, in

comparison with the classical theory. However, even in i.i.d. cases, where InfoMax fa-

vors random projections, the claim regarding recovery (or inference) is different from, not

contradictory to, the RIP-based one. For example, the InfoMax optimality does not entail a

success of f 1-regularization or orthogonal matching pursuit. Instead, it guarantees maximal

mutual information between any i.i.d. signals and random measurements, or equivalently

minimal uncertainty of the unobserved part of the signals (we will show this equivalence

in Section 2.2), for any m, as long as n is asymptotically large. While no "good-quality"

reconstruction may be possible if the signal is not compressible or if m < O(k log(n/k)),

we still seek the "best" measurement and inference. For example, recall that in Figure 2.1

(bottom left), random measurements constantly gave a better reconstruction than the PCA

projection or any no-inference (linear) scheme, even when m was extremely small, if we

employed the MMSE estimate.

2.2 Information Maximization

Let x E R" and y E Rtm be the input and the output of a sensory system, related by

y = Wx + 'q, where W denotes an m x n measurement matrix and r, represents the
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sensor noise. The input-output mutual information is defined as

I(x; y) - h(y) - h(y Ix) (2.1)

where h(y) is the entropy of the output and where h(ylx) denotes the remaining entropy

of the output given the input signal and thus merely the entropy of the sensor noise. Be-

cause the noise entropy remains constant to whatever the measurement matrix is, h(y) may

directly be used, instead of I(x; y), as the InfoMax criterion to maximize. Without any

nonlinearity involved, h(y) can be made arbitrarily large, simply by taking W = cW

with c -4 oo for any fixed W,. A practical convention is to restrict the total power of the

sensors (or the squared sum of all entries of W), which plays a role of precluding such a

trivial manipulation.

In this chapter, we focus on noiseless and undercomplete cases without any nonlinearity,

i.e., y = Wx with m < n. Under the power budget constraint Tr(WW T ) = m, we have

two immediate lemmas regarding the multiplicity of solutions and a necessary condition

on optimal matrices:

Lemma 2.1. Under the power budget constraint Tr(WW T ) = m, a matrix W that maxi-

mizes h(Wx) is not unique.

Proof See Section 2.6.1.1. F1

Lemma 2.2. Under the power budget constraint Tr(WW T ) = m, the maximum entropy

can always be obtained only with a tight frame matrix satisfying WWT = I.

Proof See Section 2.6.1.2. E

Based on the above lemmas, the solution of linear InfoMax will only be defined up

to a rotation in the sensor space (i.e., rowspace), but we can safely, without any loss of

generality, restrict our search to the space of m x n tight frames.

2.2.1 Properness for Compressed Sensing

The InfoMax principle has been widely accepted in the field of computational neuroscience

and machine learning (e.g., [18, 17, 9]) since it was introduced by Linsker. However, it is
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not so straightforward whether the principle is appropriate for the application of CS where

the goal primarily pertains to the error of the reconstructed signal. A good reason, although

not entirely satisfactory, is that, in the setting of our interest, InfoMax minimizes the un-

certainty of the signal y' which is in the null space of W [124], given the measurement

y = Wx, where the uncertainty is measured by Shannon's entropy. This can be easily

shown as below:

For any deterministic function f, h(y'I f(y)) > h(y'ly), which is provable with the

data processing inequality [43]. Any post-processing, whether linear or nonlinear, would

not decrease the posterior entropy. The equality holds if f is invertible, and therefore,

h(y'lWox) = h(y'lWx) with W being a normalization of the original sensing matrix

Wo, i.e., W = (WWoj)- 1/2 W. The normalized matrix W always becomes a tight

frame, as linear InfoMax ultimately focuses. We have

h(y' Wox) = h(y'lWx) = h(Wx, y') - h(Wx), (2.2)

where (Wx, yL) is simply a linear transformation (or basis change) of x, with the Jacobian

factor equal to det(WW T )1/2 = 1; therefore, h(Wx, y') = h(x). Because h(x) is a

constant, the posterior entropy h(y' Wx) is minimized by W that maximizes h(Wx).

On the other hand, MMSE is simply another type of the uncertainty measure of the

same signal y1 given the same measurement y = Wx. The measurement matrices that

achieve InfoMax and the smallest MMSE are not theoretically guaranteed to be the same.

However, the projection designed to minimize the uncertainty in one (practically easier)

measure often minimizes the uncertainty in another measure. Our empirical findings show

close similarity in the behavior of the two uncertainty measures relative to measurement

matrices (e.g., see Section 2.2.2 and Section 2.4). In a theoretical aspect, the entropy power

forms a lower bound of the MMSE, i.e., immse(y'ly) ;> exp(n 1 mh(y'Iy)). In

this regard, InfoMax may be interpreted as minimizing a lower bound of the MMSE crite-

rion. Extensive studies to reveal the relationship between information-theoretic measures

(entropy, mutual information, etc.) and the MMSE are still active. Some good examples

are found in a series of the papers by Guo, Shamai, and Verddi (e.g., see [69, 70]).
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In the context of CS, mutual information has been employed [122] to define the Gauss-

ian channel capacity in modeling a noisy measurement process. The capacity, j log(1 +

snr), is then used to form a lower-bound of the measurement rate required to keep the

distortion below a given level. A number of similar studies have followed (e.g., see [144,

5, 1] and references therein). However, the studies are only about identifying the required

measurement rates, not about designing measurement matrices, and they assume a noisy

measurement process mostly on ideally sparse signals.

Minimizing the posterior entropy (a.k.a. Bayesian experimental design) has also been

proposed in regard to CS; some for nonadaptive one-shot settings of measurements [146,

64], others for adaptive sequential settings [83, 34, 127]. They are certainly relevant to,

and indeed have inspired, this work. Perhaps, the most notable feature of our work is that

ours is analytic, whereas the prior works are all algorithmic. As such, this study reveals

that InfoMax has an aspect strongly favorable to random matrices, which makes a novel

connection to the RIP-based theory. The fact that we focus on the noiseless setting while

the others on noisy settings is another difference.

2.2.2 Toy Example

To further motivate the utility of InfoMax in CS, let us consider a very simple but interesting

example shown in Figure 2.2. The signal x lies in R2 , occupying the space with a mixture

density of four Gaussian clusters (see the top left figure). The question is, what is the best

scheme if we are allowed to take only a single linear measurement? This is "literally" a

compressed sensing. Although the existing theories of CS, as well as this study, focus only

on sparse signals in an asymptotically large dimension, there is no conceptual reason we

should restrict the scope of CS to such a specific class of signals.

A key role is played by the nonlinearity of the reconstruction. It is well known that the

PCA projection gives the optimal reconstruction, in terms of MSE, provided that recovery

is linear. But if recovery is allowed to be nonlinear, the optimal projection may signifi-

cantly differ from the PCA projection. As shown in Figure 2.2, the nonlinearity adapts the

reconstruction to the signal density (read our explanations in the figure caption), making
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X| X1 X|

Random PCA InfoMax

Figure 2.2: Compressed sensing example on the input signal which has a mixture density
of four Gaussians (n, m) = (2, 1). Top left: i.i.d. samples (blue dots) from the underlying
probability density. Note non-sparseness, in any basis, of the signal. Top middle: mea-
surement and reconstruction example. Assume that the measurement gave us a value ya
by projecting the input signal x onto the row vector W (solid black line). Any feasible
input compatible with the measurement must lie in the dashed black line, a specific point
(red dot) of which can be selected as the reconstruction. Top right: probability density,
along the dashed black line, of the signal yi- as a mixture of four Gaussians (some clusters
may have little effect on this conditional density). Given the density, we may reasonably
use the mean (red dot) for the reconstruction. As is well-known, this is the MMSE esti-
mate that minimizes the expected e2-error. For a different input signal, the measurement
could give us another value (e.g., like Yb). In the same way as above, we can determine the
reconstruction point for every possible measurement value, which will form a continuous
curve of red dots as illustrated in the figures on the bottom. Bottom: Different kinds of
measurements (corresponding projection vector shown as a solid black line in each case)
and the MMSE reconstruction points (red curve). In this toy example, W can be written
as W = (cos 0, sin 0) for some 0 E [0, 7r). Here, the random measurement is a particular
instantiation with random 0 drawn from a uniform distribution, while the InfoMax measure-
ment has been exhaustively searched for, by numerically evaluating h(Wx) for fine-scale
discretized 9 in [0, r). Generally, a better-fit, of the reconstruction, to the original data-
points means a better measurement scheme. In the figure, we can say that InfoMax > PCA
> Random (particular instantiation) in terms of goodness of the measurement scheme for
this non-sparse signal.
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the best effort to fit the original data. The achievable reconstruction performance is inher-

ently bounded to the measurement scheme used. As seen in the figures on the bottom, a

random projection may be a bad choice for this type of signal; the PCA projection works

somewhat better but is significantly outperformed by the InfoMax projection. The values

of h(Wx) for the three measurement schemes are numerically evaluated and compared in

Table 2.1. Indeed, for this signal, the InfoMax scheme turns out to also minimize the MSE.

Table 2.1: Performance comparison among three measurement schemes in example of
Figure 2.2, in terms of entropy and MMSE. cf. If recovery were restricted to be linear,
the smallest MSE would be achieved by the PCA projection. See the last row.

Random PCA InfoMax

h(Wx) 1.189 1.345 1.449
MMSE 0.931 0.726 0.476

Linear MMSE 1.034 0.798 0.818

The signal we have considered is obviously non-sparse in any basis and thus is beyond

the scope of the RIP-based theory. Nonetheless, it is clear, from the demonstrated results,

that CS still makes sense even for the non-sparse signal. The InfoMax criterion is quite uni-

versal; it is conceptually applicable, setting aside technical difficulties in the optimization,

wherever the information about the signal is given as a proper form of the prior probability

density. Furthermore, the InfoMax projection often minimizes the MMSE criterion, as is

true in this toy example.

2.3 Analysis

We are now ready to state the linear InfoMax problem formally, that is,

W = arg max h(Wx). (2.3)
Wm:ww< =1

The solution obviously depends on the prior density p(x) which, we assume, is known. In

this chapter, we will focus on the inputs that have a sparse representation in some orthonor-
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mal basis D. The sparsification in an orthonormal basis is usually conducted by making

the coordinates maximally independent. We assume that the coordinates are indeed inde-

pendent, which is a common practice to make things easier [114, 14]. For convenience,

hereafter, let us write an arbitrary vector in R" (e.g., the input x, row vectors of W) with

reference to the basis D. Then, x = (x1, ... , x,) is a vector of independent random vari-

ables. Without loss of generality, we assume that x has zero-mean (due to the mean-shift

invariant property of the entropy) and the covariance matrix E = diag(oa, ... , o2) with

a > ... > o, > 0. We will denote a variance-normalized (or "whitened") version of

x by 5 E-iz, i.e., Ti = xi/oi for i = 1,..., n. For the clarity of exposition, we

further assume that Ti's are identically distributed (and thus i.i.d. together with the previ-

ous independence assumption) according to a symmetric density with negentropy J,. The

negentropy, sometimes called syntropy, is mathematically the Kullback-Leibler (KL) di-

vergence between the true density and a Gaussian with the same first- and second-order

statistics.

Specifically, the Gaussian case (i.e., Jx = 0 in our input model) was analyzed by

Linsker.

Observation 2.3 (Linsker [94]). If the input x is jointly Gaussian, then the solution to the

linear InfoMax problem (Equation 2.3) is given by the m principal components of x.

Proof Since x is jointly Gaussian, y = Wx will also be Gaussian so that maximizing

the entropy of y is equivalent to maximizing the determinant of the covariance of y. This

determinant is maximized by the principal components. D

Even if the input is non-Gaussian, the entropy of y generally has a strong dependence on

the log determinant of the covariance Cov(y) = W EWT: by the formula in Lemma 2.12,

h(y) = } log det Cov(y) + h(V) where - is a whitened version of y, i.e., a linear transfor-

mation of y whose covariance matrix is the identity.

2.3.1 I.I.D. case

For the i.i.d. case (i.e., E - ojI, for some o-, in our input model), the log determinant

plays no discriminative role since Cov(y) = o I for any m x n tight frame W. For this
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class of inputs and for a small number of projections, we can prove that random projections

are asymptotically InfoMax optimal.

Observation 2.4. For the input x (X 1 ,... , X), where x 1 ,... ,X are i.i.d., and for

m < O(V/-), let W be the normalization (i.e. W = (HH T)-1/ 2 H) of an m x n random

matrix H with i.i.d. entries sampled from K(O, 1/n). As n - oc, W is the solution to the

linear InfoMax problem (Equation 2.3).

The proof is based on the following two lemmas:

Lemma 2.5. For white input x, if there exists a matrix W such that y = Wx is jointly

Gaussian, then W is the solution to the linear InfoMax problem (Equation 2.3).

Proof This follows from the fact that the maximum entropy density subject to Cov(y)

o2I is a multidimensional Gaussian (e.g., see [43]). E

The preceding lemma tells us that, for white input, all we need to solve the InfoMax

problem is to find a linear projection that makes the projection Gaussian. If we seek a

single projection, we can simply set W oc (1, 1, 1, . . . , 1) so that y is the sum of all xi's

and by the central limit theorem, y becomes Gaussian as n - oc. But when we search for

an m-dimensional projection, it is not sufficient that each marginal is Gaussian, but rather

we need the vector y to be jointly Gaussian.

Lemma 2.6. For the input x = (XI, . . . , X), where xi,... , x are i.i.d., and for m <

O(V/ni), let W be the normalization (i.e. W = (HHT)- 1/ 2 H) of an m x n random

matrix H with i.i.d. entries sampled from M(0, 1/n). As n -+ oc, y = Wx almost surely

approaches a multidimensional Gaussian.

Proof See Section 2.6.1.3.

The previous lemma requires that the number of projections grow slower than the square

root of the input dimension. Only for such a "small" number of projections, can we prove

that the projection y has Gaussianity. Indeed, for a larger number, a Gaussian projection

may not exist unless the input itself is Gaussian (e.g., consider the extremal case m = n,

where the projection is simply a rotation of the input). Thus proving the InfoMax optimality
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using exact Gaussianity requires a small number of projections. If we wish to solve the

InfoMax problem for arbitrary m, we need another proof technique. Here we use a central

limit behavior approximation based on Jones and Sibson's work [84].

Proposition 2.7 (Central limit behavior approximation, based on [84]). Consider the input

x = (xi,... , x), where xi, ... , x, are i.i.d., according to a zero-mean symmetric density

with variance o- and negentropy J,. Given an m x n tight frame W, the negentropy of

the multiplexed output Wx may be approximated by J(Wx) Jx ZJ (wTwj) 4 , where

Wi, .. ,w denote the column vectors of W. In terms of entropy, this corresponds to

h(Wx) a log(2,eo-) -- J E Z w ) wy h(Wx).

Proof See Section 2.6.1.4. E

The negentropy J(Wx) is a non-Gaussianity measure for the multiplexed output Wx

in its central limit behavior. The formula J(Wx) Jx Zj (wfw3 )4 becomes exact for

two extremal settings (i.e., m < O(n) or m = n), while it is an approximation in the

middle range of m. Derived from Gram-Charlier Type A series [13] in the vicinity of

Gaussian, the formula is quite accurate near Jx - 0. Given the approximation, we need to

minimize v(W) = E (wiw3 )4 for the InfoMax optimality.

Lemma 2.8. For an m x n tight frame W, the columns of which are denoted by w 1 , ... ,

=i is lower-bounded by +' (n_). This bound is achieved if and

only if

T m/n, if i =
|wiwy = (2.4)

I = 2(n-) { ,otherwise.

Proof See Section 2.6.1.5.

Lemma 2.8 suggests the InfoMax optimality of an equiangular tight frame, if one exists,

where each column vector lies on a common spherical surface and forms an equal angle

with any other column vectors. An equiangular tight frame is also known to minimize the
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mutual coherence [150, 62], defined by

pt(W) A max

which suggests that the quantity v(W) coming up with the (approximate) InfoMax cri-

terion has a strong inclination towards incoherent measurements. This is an interesting

coincidence (harmony) with the classical context of CS [28, 57]. The existence of such an

equiangular tight frame depends on the dimensions m and n (e.g., see [132]). However, if

m, n - oo, the normalization of an m x n random Gaussian matrix tends to approach an

equiangular tight frame and thus becomes a minimizer of the approximated entropy.

Observation 2.9. For the input x = (x 1 , .. . , X), where x 1 ,... , Xz are i.i.d., let W be a

tight frame obtained by normalizing an m x n random matrix H with i.i.d. entries sampled

from N(0, 1/n). As m, n -+ oc, with m/n - 3 < 1, W is the solution to the lin-

ear InfoMax problem (Equation 2.3) with the entropy approximation h (Proposition 2.7).

Further,

h(Wx) - log(27reu) - mJ,# 3 . (2.5)
2

As a remark, Equation 2.5 holds also for finite m; if m < O(/ii) and thus if 8 = 0,

Equation 2.5 gives h(Wx) = l log(27reor), which is exact by Lemma 2.6.

Proof See Section 2.6.1.6. E

We have seen, for i.i.d. inputs, that the InfoMax optimality requires the projection to be

as Gaussian as possible and that random projections are InfoMax optimal, as n -± oc (see

Observations 2.4, 2.9). This result is analogous to the classical theory of CS where random

matrices are shown to asymptotically satisfy the RIP with high probability [31]. However,

the subsequent story regarding recovery (or inference) is a little different: our result says

nothing about the faithful recovery by f -regularized least squares or orthogonal matching

pursuit, but guarantees a minimal uncertainty for the unobserved part of the signal, for any

m and for any J, (in contrast to the classical CS which is applicable only for sufficiently

large m and sufficiently large Jx; refer to Section 2.4 also).
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As will be shown shortly, InfoMax makes a substantial departure from classical CS for

non-i.i.d. inputs: If the input is not i.i.d., random projections can be far from being optimal.

2.3.2 Non-I.I.D. case

In the previous cases (Gaussian or i.i.d.), either h(y) or j log det Cov(y) was constant, and

the other non-constant term was maximized by PCA or random projections, respectively.

Generally, if the input is neither i.i.d. nor Gaussian, there is a trade-off between the two

terms. We must accomplish a good balance between PCA and random projections.

To remind readers, the input x = (Xi,... , Xz), written in the sparse basis D, has the

covariance matrix E = diag(au,..., ug) with a1 > ... a_ > 0. We denote E-2x by

T; we assume that Ti's are i.i.d., according to a symmetric density with negentropy J,. We

want to find an m x n tight frame that maximizes h(Wx).

Here, we define Q (WEWT)-WJ, which helps us to keep the subsequent

mathematics clean. The matrix Q is an m x n tight frame, i.e., satisfies QQT

Conversely, given Q, we can also determine W by W = (QElQT)- QE-2 utilizing

that WEWT - (QE-QT)-1. Then, we can write h(Wx) in terms of Q, as

h(Wx) = h(W E )

= - log det(WEWT) + h((WEWT)-W1WE-!y)
2

1
= log det(Q E-QT) + h(QY).

2

Further, we can use Proposition 2.7 to approximate h(QY) by h(QY) = ' log(27re) -

Jxv(Q) since both Q and Y satisfy the premise condition. Finally, therefore,

1 1rmN(Wz) =-2 log det q + -log(2re) - J2 (qiq) (2.6)
i 2,3

where qi,... , qn denote the column vectors of Q.

While it is very difficult to directly compute an m x n tight frame Q that maximizes

Equation (2.6), we can find an upper-bound of the approximated entropy, as described in
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the following lemma:

Lemma 2.10. The approximated entropy h in Equation (2.6) is upper-bounded by h* which

is defined as

m 1
h*(of, Jx) - log(27e) + 2 i log a- E, (2.7)

where

logo+(
ci = mnedian ,i 0, 1) , i =1, . n, (2.8)

with a Lagrange multiplier ( chosen to satisfy E E = m. If a matrix Q achieves h* in

Equation (2.6), the squared f 2-norm (or power) of each column vector of Q should be equal

to {Ei}.

Proof See Section 2.6.1.7. E

Lemma 2.10 implies that an m x n tight frame W which makes h(Wx) = h*, if

any, will be InfoMax optimal (under the central limit behavior approximation). Further,

the matrix Q = (WEWT)-1/ 2WEi/ 2 should have the power distribution ||qI| 2 =

(in Equation 2.8) for all its columns, which can be described as a non-usual type of water-

filling scheme (see Figure 2.3 for illustration). The converse is not always true: in some

settings of {oi, Jx}, the upper-bound h* may not be achievable with any m x n tight frame

matrix.

In the following, we enumerate a few special examples for which we have successfully

found a matrix that achieves h*. Subsequently, we will briefly explain how to compute a

near-optimal matrix for more general settings.

Example 2.1. With no decay in o, (i.e., a- = - = o= o), the upper-bound h* is given

by h* = ! log(27re) + ' log o' - mJx(f)3 and, if -- oo with m/n -- 3 < 1, this is

asymptotically achievable by the normalization of an m x n random Gaussian matrix. This

is actually a restatement of Observation 2.9, but here based on the achievability of h*.
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B5

8 J,

Figure 2.3: Illustration of the water-filling implied by Equation (2.8). Imagine n buckets Bi
(bottom area 1/8J, x height 8J,) placed on the ground level log(1/of ) above a reference.
Water is poured then in a way that all the buckets have the same water level, if any, from
the reference. In some buckets, water may overflow, due the limited height of the buckets.
Since ground levels are uneven, the volume V of water in Bi can be different from each
other. We measure the cube root /VVi of the water volume in each bucket and stop pouring
water as soon as the sum reaches the given budget m. After all, ( corresponds to the
water level from the reference, and Ej is equal to the cube root of the final volume of water
contained in Bi.

Proof See Section 2.6.1.8. E

Example 2.2. If the decay rate in a is steep, specifically if

>m/m+1 e4
J, (2.9)

the upper-bound h* is given by h* = log(27re) + 1 2 log o - mJ_ and this is achiev-

able by the PCA projection. Note that this sufficient condition strongly depends on the

negentropy J,. For example, if J. = 0, the condition holds for whatever decay rate, simply

reasserting the InfoMax optimality of the PCA projection for Gaussian. When J, > 0, the

condition (2.9) is satisfied, for example, if a's are distributed as

i. oi = e--Ti with -y > 4J, (exponential decay);

ii. oa = (1)Y with 'y > 4 (power-law decay) if m .

Proof See Section 2.6.1.9. l
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In the previous two examples, the decay rate in au was either very low or sufficiently

high, and random or PCA projections achieved h* (and thus were InfoMax optimal) in each

case. Below we discuss a couple of hybrid cases as well.

Example 2.3. Suppose a groupwise i.i.d. case in which the indices {1, 2,... , n} can be

partitioned into multiple groups so that oa's are identical in the same group. We denote the

identical value of oi's in the jth group by 6' and the cardinality of the jth group by n.

Note that the water-filling scheme in Equation (2.8) assigns an identical value Ej for all i in

the same group. Let ij denote the Ei value assigned to the jth group.

Here is our claim: In the asymptotic case where nj - oc for all j, the following

groupwise measurement scheme asymptotically achieves h*: To measure each group, we

use a tight frame obtained by normalizing an mj x ny random Gaussian matrix, with my=

nj~j.

Proof. See Section 2.6.1.10 l

A roughly groupwise i.i.d. pattern appears, for example, in natural images [36] if the

wavelet coefficients are grouped by the octave frequency band. Therefore, the nonuniform-

density bandwise random measurement, described above, provides an InfoMax optimal

scheme for compressed sensing of natural images. Regarding the nonuniform-density sam-

pling, our result gives more analytical reasoning to previous work [98], as well as a prin-

cipled way (i.e., water-filling) of determining the density. Note that the density should

depend on the total number of projections as well as the input statistics (ar, J').

Example 2.4. For some mo, mi E {0} U Z+, suppose that om-"'"> e4
j- and that

Um+mi+1~~

____ - _ _ - e= ,+"m . In this case, the upper-bound h* is given

by h* = - log(27re) + j Ki log o - mJx + moJ (1 - (I mo )3 and this is achiev-

able by the normalization of (m - mo) PCA plus mo random projections over the next

(MO + min) PCA coefficients, if (mo + mi) is asymptotically large.

Proof See Section 2.6.1.11. F1

While the signal setting in Example 2.4 looks very special, it can be considered as an

approximation of a bit more general signals which are nonwhite as a whole but remarkably
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white within some large-dimensional subspace around the mth coordinate. If we denote, by

Pm, the set of all the signal distributions supposed in Example 2.4, we may be able to find

P' E Pm that is close to the true density p in a proper distance measure d(., -). See Figure 2.4

for example. For the approximated density p', (m - mo) PCA plus mo random projections

over the next (mo + mi) PCA coefficients are asymptotically InfoMax optimal. For the

original density p, this set of projections may be said to be "nearly" InfoMax optimal

if d(p', p) is sufficiently small. The joint use of the PCA and random projections have

2 8

M -r M m+ m1

Figure 2.4: A probability density approximation example. Shown here are the variance
profiles: original ui (dashed) vs. approximation or (solid). For n - no < i < n + in 1 ,

4J.( mo 33
0o m Om+mi+e "mi , while it remains the same as or elsewhere. The negentropy J
remains unchanged.

recently been proposed for CS [115, 121, 129], but mostly based on heuristics. Our result

gives the InfoMax principled reasoning to such ideas. Moreover, it tells a novel finding

which most other methods had previously failed to predict: we need to take the random

part of measurements over rather a restricted PCA subspace, not over the entire Euclidean

space, which is often more important than to include a small number of PCA projections.

Let us more formally present the near-optimality of W' on the true density p, where

W' is an m x n tight frame such that h(W'x') = h*(p') for x' ~ p' E Pm. For the best

approximation p', we may use the I-projection [44], i.e., p' = arg minp/ePm DKL(p" 1p),

with the KL divergence DKL(-I-) for the distance measure d(., .). If DKL(p'Ilp) c, then

h(W'x) - h(W'x')| and |h*(p') - *(p)| can be upper-bounded by 01(c) and 02(e), re-

spectively, where 01(.) and 02(.) are some deterministic functions based on the definition

of h and h*. Both 01(c) and 02 (C) yield zero at E = 0 and monotonically increase with e.
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By triangle inequality,

Ih(W'x) - h*(p)| < |h(W'x) - h(W'x')| + h(W'x') - h*(p)|

= O1(E) + 02(e). (2.10)

If c is sufficiently small, W' makes h(W'x) close to the upper-bound h* with the true

density p and thus is nearly InfoMax optimal.

We pose a question here. What if DKL(p'p) > E? Do there exist any other "near"-

optimal measurement schemes also applicable to the signals that are not c-approximable

to Pm? We will present one in the following. We discard the approximability assumption

but instead suppose a weaker assumption, that h* is nearly achievable. Then, as argued

in Lemma 2.10, the matrix Q = (WEZWT)WEj should have the e2 -norm of each

column qi almost equal to Ei produced by the water-filling scheme (in Equation 2.8). In

its definition, the matrix Q should also be a tight frame; therefore, we enforce the matrix

Q to satisfy both conditions. Let Q, denote the set of all m x n matrices that satisfy the

two conditions. While the matrices in Q, may not be unique modulo a rotation, all of them

have a common property (based on the following lemma): if we define So A {i : }i = 0}

and Si A {i : Ei= 1}, every matrix in Q, makes W = (Q E QT)QE- include |1|S

major PCA projections while being orthogonal to the subspace spanned by the ISol minor

principal components.

Lemma 2.11. Let Q be an m x n tight frame, the column vectors of which are qi,... , qn.

Define So A {i : ||qII = 0} and Si A {i : ||qII = 1}. We consider another m x n tight

frame W A (QE--QT)-QE-- where E is any n x n positive definite diagonal matrix.

If we denote, by ei, the unit vector containing 1 in the ith element and 0 elsewhere, any

vector ei lies in the rowspace of W if i E Si and in the nullspace of W if i E So.

Proof See Section 2.6.1.12. F

The degree of freedom lies only in the remaining subspace, i.e., S(o,1) A {i : 0 < Ei <

1}, but the multiplexing in S(0,1) is also restrictive: even in S(o,1), all the matrices in Q,

follow a common energy distribution (E2 -norm) computed by the water-filling. We suggest
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a randomization for the other free factors. Further optimization - rigorously maximizing

(2.6) for Q C Q, - may make a little improvement while it is very difficult to do analyti-

cally. The randomization has performed best in a special case with Ei's being constant for

all i E S(o,1) (see Example 2.4) and also in the most uncertain circumstance where the full

exploitation of signal statistics is infeasible (e.g., i.i.d. modeling given an order-statistics).

Specifically, we begin with a random Gaussian matrix for W and convert it to Q. We

then project Q onto Q. by iterating the following two steps:

1. Reweight the columns of Q so that IqiI|2 = Ei for all i.

2. Make Q be a valid tight frame by normalization.

After a small number of iterations, the matrix Q becomes a tight frame as well as satisfies

the target column weights. Given Q, the measurement matrix W can be reconstructed by

W = (QE-1QT)- QE--:. We already know that the resulting matrix W will include

|Si I major principal components and will completely exclude the |So I minor principal com-

ponents, so the above algorithm may be run only for the remaining subspace to find an

(m - Sil) x (n - Sol - |Sil) matrix.

This latter type of near-optimal scheme endures the broken e-approximability and thus

is more general than the former type. As an upper-bound, h* may still remain tight even if

not achievable and even if the signal is not well approximable to Pm. This is often the case

in practice, although we have no general proof.

2.4 Numerical Experiments

In Figure 2.1, we considered a couple of signal classes which have the same order statistics.

One was a nonwhite Gaussian signal and the other was a set of i.i.d. samples from a non-

Gaussian density. The relative performances of the PCA and random projections were

completely different for the two. In fact, the results could be predicted by our InfoMax-

based theory: The PCA for Gaussian, and random for i.i.d. are actually InfoMax optimal

measurements (Lemma 2.3, Observations 2.4 and 2.9).
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We want to redraw readers' attention to the fact that fi -regularization with random pro-

jections has only worked when m is sufficiently large. Otherwise, it has performed poorly,

even worse than the canonical linear reconstruction. This is related to the claim, in the

classical theory of CS, that compressible signals can be stably reconstructed from random

measurements using fi -regularization if m > O(k log(n/k)) where k denotes sparsity of

the signal. If m is small, such a stability may not be attainable and goodness of random

projections is no more ensured. In contrast, our results claim the InfoMax optimality of

random projections for any m as long as n is large. To our expectation, we see in Fig-

ure 2.1 (bottom left) that random projections consistently enable a better reconstruction

than the PCA (or ICA) projection, if decoded by the MMSE estimate rather than by fi-

regularization. We explain, in Section 2.6.3, how we implemented the MMSE estimation.

We consider another i.i.d. example in which xi has a Laplacian density p(xi) c e-Ulxd.

As shown in Figure 2.5 (left), the order statistics of the i.i.d. Laplacian decay so slowly that

5 1200

41000 o andom (L -regularization)

3 800

600
2 PC

2 400 Rando PCA
(MMSE) (or ICA)

1: 200.
007;
0 0.2 0.4 0.6 0.8 1 0 200 400 600 800 1000

i/n (sorted) m

Figure 2.5: Experiment with an i.i.d. Laplacian signal, p(xi) c e-N '2id. Left: order statis-
tics. Right: recovery error versus number of measurements for PCA and random pro-
jections. For recovery, two alternative methods (MMSE and fi-regularization) have been
employed. When the PCA projections are used, MSEs from the two recovery methods
happen to coincide.

it is not classified as a compressible signal (e.g., see [35]), and therefore the classical theory

of CS may not apply. Indeed, fi-regularization with random projections fails in most range

of m. On the other hand, the InfoMax optimality does not require such a strict sense of

compressibility and makes us expect that random projections are still the best choice for

the i.i.d. Laplacian signal. Our expectation proves correct in Figure 2.5. If we employ the
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MMSE estimate, random projections are still better than the PCA (or ICA) projection, in

the entire range of m, although the margin is not so large.

Next, we suppose two cases of groupwise i.i.d. signals. Both cases are commonly

composed of four octave bands, with the size nj oc 2-1 and the variance ii oc (1/2)j, for

j = 1, ... , 4 (refer to Example 2.3 for the notational definition), but they are discriminated

by the negentropy J (or by the probability density p(Ti)). Supposing p(Ti) oc e-08Il",

where C, = (F(3/s)/F(1/s))s/2 to satisfy the unit variance (see Appendix A), we consider

s = 0.5 for one case and s = 0.7 for the other case.

As shown in Figure 2.6, for s = 0.5, random projections perform better than the PCA

projection in a wider range of m, while for s = 0.7, the reverse is true. For the group-

wise i.i.d signals, the InfoMax projections are the nonuniform-density groupwise random

projections. The number of projections per group is specifically determined by the water-

filling. The InfoMax projections are adaptive to s because the underlying water-filling

depends on the negentropy J, (see Equation 2.8). In our example, J, is related to s, by

J = I[log(7s 2F(3/s)) - log(2F 3 (1/s)) + 1 - 2/s] (cf. Equation A.2). In the figure, the

InfoMax projection consistently achieves a lower-bound of the PCA and random projec-

tions in terms of MSE. As we mentioned in Section 2.2.1, there is no theoretical guarantee

that InfoMax always leads to the smallest MSE. At the bottom of Figure 2.6, we have plot-

ted h(Wx) (Equation 2.6) for each measurement scheme. The relative performance, pre-

dicted from the entropy,3 among the measurements remarkably coincides with the MMSE

recovery performance.

Finally, we also consider more general non-i.i.d., non-Gaussian signals whose marginal

density is given by p(xi) oc e -2-1i/"I 0 . We suppose that the variances {f4} follow

a power law, i.e., -i oc (1/i) for various values of 7y. Our theoretical results say that

random projections would be asymptotically InfoMax optimal if -Y = 0, while the PCA

projection would be InfoMax optimal if 7y is sufficiently large. In-between, we have argued

that a randomized choice in Q, would be nearly InfoMax optimal, with the weights e =

(Ei,..., En) determined by a water-filling scheme depending on the variance o and the

3The differential entropy only matters in a relative sense between two equal-number projections. There is
no meaningful implication whether it increases or decreases along with the number of projections.
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p(xi) c e-cIdx/ils, o.i cx (1/v'f)' if i E G
- , 100}, G2 = {1o1,.. 300}, G3  = {301,..., 700}, G4  = {701,...,1500}
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Figure 2.6: Experiments with groupwise i.i.d. signals. We suppose four groups G1 =
{1,... ,100}, G2 = {101,... 300}, G3 = {301,...,700}, G 4 = {701,..., 1500} (the
total dimension of the signals is 1,500). The marginal density has the following form:
p(Xi) 0c e-CIxi/ils, where o-i oc (1/v/Z)i if i E Gj. For s, which controls the non-
Gaussianity Jx of the input distribution, we consider two values: s = 0.5 (left) and s = 0.7
(right). Top: MMSE recovery performance of PCA, random, and InfoMax-based projec-
tions. Bottom: plot of h(Wx), based on Equation (2.6), for PCA, random, and InfoMax-
based projections. Here, the InfoMax-based projections are the nonuniform-density group-
wise random projections with the density regulated by the water-filling (see Example 2.3
in the previous section).

negentropy Jx of the signal. We employ the MMSE estimate, for recovery, to see the best

possible reconstruction performance of each measurement scheme.

As shown in Figure 2.7, for y = 0.25 (when non-Gaussianity is a dominant factor of

sparsity), random projections perform better than the PCA projection in a wide range of m,

while with small m, the PCA projection outperforms random projections. In this example,

we have computed the InfoMax-based projections using the randomized selection in Q,
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Figure 2.7: Experiments with non-i.i.d., non-Gaussian signals. The supposed marginal

density is p(xi) oc e- 20Ixi/(7lI-, i = 1, ... , 1000, where -i oc (1/i) for -y = 0.25 (left),
-y = 0.5 (middle), and y = 1 (right). Top: MMSE recovery performance of PCA, random,
and InfoMax-based projections. Bottom: plot of h(Wx), based on Equation (2.6), for the
PCA, random, and InfoMax-based projections. Here, the InfoMax-based projections have
been computed based on the randomized selection in Q, (according to the algorithm given
at the end of Section 2.3.2). In the figures on the bottom, the dotted blue curve denotes h*
in the respective setting (not exactly achievable in these examples).

(see the algorithm given at the end of Section 2.3.2). The gap between h(Wx) and h*

is kept very small in most range of m (in Figure 2.6, bottom left), confirming the near

InfoMax optimality of the computed set of projections. The InfoMax-based projection

achieves a lower-bound of the PCA and random projections in terms of MSE.

With a larger value of -y, variance asymmetry becomes dominant over non-Gaussianity,

and the PCA projection outperforms random projections in a wider range of m, but con-

sistently the InfoMax-based projection achieves a lower-bound of the two projections in

terms of MSE. Particularly when -y = 0.5, h(Wx) may not be considered to be so close

to h*. This suggests a possibility that there may exist a slightly better set of projections, in

terms of InfoMax, than the one we have used here, although none can exactly achieve h*.

It might be possible to find such a set of projections with more elaborate selection of Q in
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QE.
The relative performance (among InfoMax, PCA, and random projections) shown in

Figure 2.7 is typical for any other non-i.i.d., non-Gaussian signals, although the perfor-

mance margin varies case by case.

2.5 Discussion

Suppose we take a small number of linear projections of signals in a dataset, and then use

the projections plus our knowledge of the dataset to reconstruct the signals. What are the

best projections to use? Given a sparsity assumption of the signals, the theory of CS tells

us that random projections can provide a remarkably good reconstruction, even at the sub-

Nyquist rate, as long as the number of projections are sufficiently large in dependence of

the sparsity. The theory gives a novel sufficient condition for the reconstruction of sparse

signals. It is often much tighter than the Nyquist sampling theorem, which is based on

a bandlimitedness assumption, of the signals, in Fourier domain. A key to the success is

evidently the better knowledge (or model) of the dataset.

If our knowledge of the dataset is even more accurate (e.g., we split the source of

the sparsity into two factors, second-order or higher-order statistics of the signals), what

can we say beyond the existing theory? In this chapter, we suppose that the knowledge

of the dataset is given in the form of a probability density; then we apply the InfoMax

principle to find an undercomplete linear measurement that is maximally informative about

the unmeasured dimensions of the signals. We have focused our attention on the signals

that have a sparse representation in an orthonormal basis, as is common in the literature of

CS, and managed to analytically solve the InfoMax problem by exploiting a central limit

behavior approximation of the mixture Wx, on the basis of Jones and Sibson's seminal

work [84].

Our findings are summarized as follow: In the settings where the coefficients of the

sparsifying basis are i.i.d., the InfoMax principle finds that random projections are asymp-

totically optimal. On the other hand, in non-i.i.d. settings, InfoMax produces a novel set

of projections, which consistently outperform PCA or random projections in signal re-
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construction based on the MMSE estimate. In general, the InfoMax optimal projection

approximately consists of a certain number of PCA projections plus the remaining number

of projections restricted to multiplexing over a particular linear subspace, with every pa-

rameter governed by a type of water-filling. During our theoretical development, we also

make connections to the existing CS approaches, some of which have remained heuristic;

we provide them a common theoretical ground, InfoMax, and a common principled way of

optimization, water-filling.

2.6 Appendix to Chapter 2

2.6.1 Proofs

2.6.1.1 Proof of Lemma 2.1

For any orthonormal square matrix R, h(RWx) - h(Wx) + log I det(R)| h(Wx),

where the equalities are due to (a) an entropy formula for the invertible transformation

(Lemma 2.12) and (b) that the determinant of any orthonormal square matrix is equal to

one. If W, achieves the maximum entropy, so does RW, with the same power budget

Tr(RWWfR T ) = Tr(R TRW W) =Tr(W WT).

2.6.1.2 Proof of Lemma 2.2

Suppose any non-tight frame matrix W such that Tr(WWI) = m. Let A(-) denote the

eigenvalues of a matrix. By Jensen's inequality,

log det(WWT) = 1 log Ai(WWT)
m mni~

1 Tr(W WT)
< log' Ai (WWT) = log " = 0,

where the equality holds only if Ai(WoWf)'s are all equal - that is to say, WOWJ' = I,

which is not true in our assumption. Strictly, therefore, log det(WWIT) < 0. If we let

W = (WoI)- 1 /2 W 0 , the matrix W obviously forms a tight frame as well as satisfies
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the power budget constraint. Based on the formula in Lemma 2.12, we can write

1
h(Wxz) = h((WOWX) 1 /2 Wz) = h(Woz) - log det(WWT) > h(Woz),

which shows that W cannot be optimal.

2.6.1.3 Proof of Lemma 2.6

According to random matrix theory [139], all the eigenvalues of HHT become 1 for the

given condition, i.e., m < O(/fri) and n -+ oc, so W = H and y = Hx.

On the other hand, Dasgupta et al. [45] have shown that, for m < O(vji), Hx asymp-

totically converges to a scale-mixture of zero-mean Gaussians with spherical covariances

that have the same profile as the distribution of |llxI/fi. Because ||xI/vi -+ o- as

n -+ oc, the mixture density of y = Hx will collapse to a single Gaussian with zero-mean

and covariance o2I.

2.6.1.4 Proof of Proposition 2.7

Let us prove the observation specifically assuming that ox = 1 (we will generalize this

result later). If we let z A Wx, the random vector z has zero for its mean and the identity

for its covariance due to the tight frame property of W. We can also compute a few of

higher-order moments. Define xx A E [x'] and let 6 denote the Kronecker delta that gives

one if all its subscripts have the same value and zero otherwise. Then, E [XiXjXk] = 0 (by

the assumed symmetry of the density function) and E [XiXjXkXlz] 6 ij 6 kl ± 6 ik6 jI - 6 il 6 jk +

( -- 3) 6 ijak, Vi, j, k, 1. Since zi = EZ Wij xi, we can write

E [zi z zk] =( Wi W Wkki E [zzyzXk|- = 0, (2.11)
i',j',k' ko
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and

E [ZiZjZkZI] = ( WiW'WakkWuE [XilXjlXk'Xl]
i',f,k',1'

= . Wi'W 2 'yWkk'Wll (SiljakII + Sii'k"'6jl + 6iiISi'k1 + ("x - 3)6ait1k'u)
i',f,k',1'

6 ijkl + ikoil - 60163k + ("x - 3) E Wi WjWkiWi', (2.12)

where we also utilized the tight frame property of W (i.e., the orthonormality of the row

vectors of W).

For a scalar random variable z which has zero-mean and unit-variance, Jones and Sib-

son [84] approximated its negentropy, based on the Gram-Charlier Type A series expansion

[13] of the density in the vicinity of Gaussian, by

Jz ~ 1 (E [z3 ] - 0)2 + 4 (E [z4] - 3)2 (2.13)

where "0" and"3" correspond to the third- and fourth-order moment of the standard Gaus-

sian density. For rn-dimensional case, this approximation is extended to [84, 107]

J(z) ~ j(E [zizjzk] ) 2 + 1 ( (E [zizjzkzl] - oije kl - 6 ik 6 jI - 3il6jk) 2. (2.14)
i,j,k i,j,k,l

If we plug (2.11) and (2.12) into (2.14),

2

J(z) ~ 4 WnIWiIWk/iWi)

i,j,k,l i,

(X - 3 )2 Wi ~'i j' WiWj 1i 1j= 48 ( ( Wieir Wieg a:e" ( Wei

( )- 3)2
48 (( it3)2) (2.15)

where (483s approximates J, according to (2.13). By substituting J, back for (4-,3)w
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obtain

J(z) J E(wi w) 4 . (2.16)

By definition of negentropy, h(z) = g log(27e) - J(z), where the constant i log(27re)

corresponds to the entropy of m-dimensional standard Gaussian density, and thus we im-

mediately have

h(z) f nlog(2-re) - JZ(wi w) 4 . (2.17)
2

i~j

In general case with o,, # 1, if we let T xa/u, the above result still gives us that

h(WY) E log(27e) - Jx Zi 3 (wTwj) 4. Using the formula in Lemma 2.12, h(Wx) =

h(Woux) = mlogax + h(WY) ' log(27reuj) - Jx Eij wTw) 4 . Now, the con-

stant M log(27reU2) is the Gaussian entropy with which h(Wx) should be compared, be-

cause the covariance of Wx is or2I; therefore, J(Wx) = m log(2reo2) - h(Wx) -

JX Z 3 (wTwj)4, invariant to o-.

2.6.1.5 Proof of Lemma 2.8

We claim that, for a symmetric, idempotent matrix A E R"<", of rank m,

A lm > + ) (2.18)
ij - n3 n3 (n -1

where the equality is achieved if and only if

IAii={ rn/n, ifi j (2.19)

m(n-) otherwise.
V (n-1)I

To prove this, we first use a simple inequality that

x x , I(2.20)
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which is merely a rearrangement of the following: n E" of - (Z" X,) 2 = E (X,

xj )2 > 0, where it is obvious that the equality holds if and only if zi = -= x. Consid-

ering {Aj}, which satisfies E Ai= m (due to Lemma 2.14.iii in Section 2.6.2), we can

lower-bound >1% A2 by

)2A A2~ (~l >n2 (2.21)

where the equality holds if and only if A i = rn/n for all i.

Then, E A can be lower-bounded through the following several steps:

ZAi =Z A+Z Aij (2.22)
i~j i i~kj

2,2

(b) 1 1 )

n A +n(n - 1) (n- Ai(.4

(c) m 4  m 2 (n - r) 2

> - + (2.25)
- n3  n3(n -1)

where the inequality (a) is due to (2.20); the equality (b) due to Lemma 2.14.iv; and the

inequality (c) due to the facts that E A 2> m 2/n, by (2.21), and that f(x) = -x 2 +

n(n1) - x) 2 is strictly increasing for x E [m2 /n, oc) with f(n 2 /n) = -+ (n "

Tracing back the equality conditions of (a) and (c), we can easily find that the overall

equality is achieved if and only if (2.19) is satisfied.

Finally, note that wTwf is the (i, j)th entry of WTW which is a symmetric, idempo-

tent matrix. If we plug w Tw in place of Aij, Lemma 2.8 immediately follows.

2.6.1.6 Proof of Observation 2.9

In Lemma 2.8, a lower-bound of v is given as M# 3 + M 01-
2  m3 3 as n goes to

infinity. Here, we will show that v(W) = m/33, which is sufficient to prove this observa-

tion. A direct proof on the asymptotic equiangular tight frame property of W needs more
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complicated tricks.

Let us evaluate v(W) j(wiw )4 as below:

1) For i = j: Let TI E >W hyhT. Then, HHT = ' + hihi, where Wi' and hi

are mutually independent. By applying the matrix inversion lemma (or Sherman-Morrison

formula [15]), we obtain

(HH T)- 1 = (Aks + hih[)- 1 = X-I
-'hih TqI-I
1I+ 7h, -hhiI +2~ ~

and subsequently

Twi = hT(HHT)-Lhi = hItiI-h
1 + hTI'-1hj

A central result of random matrix theory [139] applies here: The empirical spectral distri-

bution of WI almost surely converges to the so-called Mareenko-Pastur law whose density

is

PMP(Z; (z-a)(b -z)
27r&3

a < z <b

where a A (1 - V'O) 2 and b A (1 + /)2 As a result, we can say that

1 11-- )-Tr (%F1) -+ E [A('i-y)] =r
1
-Tr (i-2) 7 E[A 2 )] =
m i

I b 1-
PM4Z13dZ 11p,(z; 3)dz = 1

a z ; (1 -8)

where A(-) denotes the eigenvalue. According to Lemma 2.15 (in Section 2.6.2),

Var(hI7 -'hi) = 2 Tr(1-2)i i n2

2 # +-- - 03 0
n 12 -#

T i 1E [h1 I'i- h2] = Tr(W E Z[hih[]) = -Tr(I;-1)
n2

~~13
1-B

The above two equations imply that h[IQ- 1 hj -+ and subsequently that Tw, =d susqunl w20
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hT 1 h, 1 = #, for all i. Therefore, EL1 3 (w'wj)4 = n3 4 = m#3

2) For i f j: Let j = Then, HHT = + h h 3hT. Similarly

2) kli'j hkhT . TeHQj+hjh[ hT Si

as in the previous case, we apply the matrix inversion lemma to obtain

(1 + h TQ-'h)(1 + h ~T Qh 3 ) - (h[Ril- hj)2

In the asymptotic condition, Rjj has the same spectral distribution as Wj. Therefore,

hTl-'hi = hTQ-Th. - .We can also loosely bound (hTR-1 hj) 2 by (hin hj)2 <

(h[QOl hi)(hTQ 1 hj) 32 using Cauchy-Schwartz inequality. Therefore,

________i_ ___1- 3-2

h ij Q hj 1-0 q
i 1/(I _ 0)2 _ 02/( i _0)2 = 1+/0 hF213

1hy (1 - #3)hTF thl.

Let us write = U Dij UT in its SVD, where Dij = diag(A1(Q- 1 ), ... , Am(Q-1)).

For any instance of Ujj, which is always orthonormal, two random vectors f U hi and

g A UT hj are still Gaussian and mutually independent. Then,

E [ hTR3
1h| 4] = E [I f TDijgg 4]

m

= E [( Ak(Q 2
1 )fkgk)4]

k=1
m

= 5 Ak( ( 1
1 )Ak 2 (Q )Ak3 (Q 1

)Ak 4 (f~~1

ki,k 2 ,k3 ,k4 =1

x E [fk f 2 fk3 fk 4]E [9k1 9k29k3 9k4 ]

k=1 k=1

3m 2 (E [A2 (2- 1 )1)2 + 6mE [A4(Q- 1 )]
n4

where we have made use that E [ fA fk 2 kA3 fk 4 = E [9k1 9k29k3 9k4] = (6k1 k2 6k3 k4 +6kk 3 6k2 k4 +

okjk46k 2 k3 )/ri 2 for Kronecker delta 3 that produces one if its subscripts have the same value
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and zero otherwise. Since

E [A2 (f2-ij J
E [A4(f- 1 )] = J

I PMP(z; 3) dz

1 PMP(z; 3) dz
Z4

13
(1- 3)3
1+±303 +0~2

(1-03)7

3m2 1 + 6m 1 3 ,3 ,323m 2
1 1-___7

- #)4-
3#2 +

n2(1 _ 3)2
6#8(1+3± +32)

n3(1 - 0)3

Therefore, Ei,|WIe|4 -+ n(n - 1)E [IwTW|4] < 3_2 + 60(13,3,2)

Overall,

v(W) = ( )4 + (W )
i=j

m+ ( _ )2 + 60#(1+3# #2) __ Tm03

2: j

as m, n -> oc. Since this upper-bound is also a lower-bound of v(W) as we explained at

the beginning of the proof, v(W) = m/ 3 in the limit of m, n --+ oc. Inserting this value

into the entropy approximation in Proposition 2.7, we have h(Wx) = ! log(27reor) -

mJo/33 , as claimed.

2.6.1.7 Proof of Lemma 2.10

By Lemma 2.16 (in Section 2.6.2),

- log det( qj qi)

We can also upper-bound - J Ei, (q q) 4 by

-JX E(q T qj) ix Jx(q qiD4 -
i~j

Jx E(q )

0#j
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we obtain

<; - log 11( 2) k

(720
= jqj 2 log o,2. (2.26)

(2.27)

(2.28)< -JxE(q Tqi)4

E [lb ,Twj|I] < (1I



- - x jqjj||. (2.29)

Putting both together, we obtain an interim result that the approximated entropy in Equa-

tion (2.6) is upper-bounded by

E --- log(27e) + 1 qj12 logU2 - Jx Hq 1 8 . (2.30)

To prove Lemma 2.10, we maximize hu in (2.30) with respect to ||qj||2 , which is con-

strained by

0 < ||qj|| 2 1 jqj112 = m

since it is a diagonal entry of the symmetric, idempotent matrix QTQ (see Lemma 2.14.i-

iii in Section 2.6.2). From the first order condition Dhu/8|9|qj||2 = 0 with a Lagrange

multiplier (, we obtain

esAarg maxhEu({~ qg||2}; {o-Z Jr})
IlA 11lP

= median ( Sog 8+ , 0, 1 , Vi=1,...,n

(2.32)

(2.33)

with the maximum value being

E({}; {JU2, jX}) = IT (7n )hu~f E I i -log(2re)
2 Ej log a2 - Jx E 4. (2.34)

Finally, the Lagrange multiplier ( should be determined to satisfy (2.31), i.e., E Ej = m.

2.6.1.8 Details on Example 2.1

In Equation (2.8), Ei = E, because a = - r -. Further, the value of Ei

should be equal to m/n by the condition E Ej - m. Then, Equation (2.7) gives h* =

log(27re) + i log a -rmJx(m)3
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In Equation (2.5), we showed that if n - oo with m/n -+ # < 1, a tight frame obtained

by normalizing an m x n random Gaussian matrix makes h = log(27reuo) - mJX3 3 ,

which is the same as h* in the above.

2.6.1.9 Details on Example 2.2
1) gcIf 1go 2 og 2

1) If < + 0, Em+1 = median( , 0, 1) = 0. Because Ei's monotonically

decrease (by the assumption that a- > - > o-,) and cannot be negative, Em+1 =

E, = 0. Then, to make Ei Ei = m, all the other Ei's should be one (Ei's cannot be greater

than one).

2) If + > 0, by the condition (2.9),

Slog oi +~ ( o~o eJ + (_ loguol 1 + >

8J - 8J 8J -

and therefore, Em = median( E 1o,)+r±, 0, 1) - 1. Since Em - - - 1 1, it follows

that 51=- =E = 1. All the remaining ej's should be zero because EiE = mn and

i 0 foralli.

Ineithercase,wehaveE =- = 1andEm+1 = -=E = 0. Then,

Equation (2.7) gives h* = log(27re) + C El log of - mJr.

The entropy of the PCA projection is computed by

h = h(z) (log(2reo)

i=1 i=1 .. < E < 1 t olw

which is the same as h* in the above.

2.6.1.10 Details on Example 2.3

Given i, the upper-bound e* in Equation (2.7) can be simply rewritten as

E* = log(27re) + n E 1 log a - JxZnJ .

Th etop o heP roetini coptdb
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In the proposed scheme, the jth group is measured by the normalization of an mj x nj

random Gaussian matrix and in the asymptotic condition (n -+ 00), the approximated

entropy becomes equal to T log(27reV) - myJ (a )3 (see Equation 2.5).

Summing over all the (independent) groups, we obtain

j jM ) 3
A = log(27e) + 2 mj log ii - JX mn n

which is equal to h* in the above, if my= ni or m/nj= F. Finally, note that, for any

given j ;> 0, we can take an integer mj which makes T - j I be arbitrarily small since
nJ

n. -+ oc (i.e. infinite resolution).

2.6.1.11 Details on Example 2.4

Let = -logom~ 1 +1 . Then,

=Or~1 i ogU < m - MO
. 3 log ai-10 m 1+Ei= median ( 8 J ,1 = 01, i;> m+ m1+1

mm - , elsewhere,

and> E i = m, which validates our choice of ( = - log olm21 With this set of {e},

Equation (2.7) gives E* = lo - mJ± + mo J 1 - mo2 2 i + \jnJrn M+J}

On the other hand, the entropy of the major (m - mo) principal components is equal to

m-mo m-mo I

hi = h(xi) = log(27reo ) - J) , (2.35)
i-1 i=1

and the entropy of the normalization of mo random projections over the next (mo + mi)

principal components is computed by (refer to Equation 2.5)

= og(27reau) - J3 (2.36)h2 2 M (mo + mi)3

in the asymptotic case. The total entropy is simply the addition of (2.35) and (2.36) and

becomes equal to h*.
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2.6.1.12 Proof of Lemma 2.11

Let P - WTW - E-QTQ-QT)-1QE-i The matrix P is a symmetric, idempo-

tent matrix that operates the projection onto the rowspace of W (e.g., see [131]). We also

write E =diag(o, . .. , 2) without loss of generality.

1) i E SO: This implies that qi = 0 and subsequently that

(2.37)Pei = E-2QT(QE-1QT)-1 Q-ei = 0.

qi=0

The vector ei is an eigenvector of the matrix P with the eigenvalue zero. This means that

the rowspace of W completely excludes the ith coordinate.

2) i E S1 : Note that E[( (i ) qq = I 2

is a tight frame satisfying QQT = E qjqf = I. It follows that

1 = (q T q 2 + 1(qTq)2

j

- + (q Tq) 2

1 because Q

(2.38)
i54i

and that q q = 0 for all j # i. As a consequence, we can write

Q -1 QTq = 1q,
cO-

or

qi = 2 (Q E-QT)

Therefore,

Pe, = E-!QT(QEX1QT)-1 QE 1e

qi

= QT Q Q 1
=q.
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(2.40)

(2.41)

(2.42)



=Q qj (2.43)

= ei (2.44)

= ej. (2.45)

The vector ej is an eigenvector of the matrix P with the eigenvalue one. This means that

the rowspace of W includes the ith coordinate.

2.6.2 Miscellaneous Lemmas

Lemma 2.12. For any invertible matrix A and for any random vector x, the following

decomposition holds:

h(Ax) = h(x) + log I det(A)|. (2.46)

Proof The proof is simple, where I det(A) appears as a Jacobian factor in the probability

density of the linear transformation Ax. See [43] for the complete proof. D

Lemma 2.13. Any symmetric, idempotent matrix is positive semi-definite.

Proof If A is symmetric and idempotent,

A = A2 = AT A,

and, for any vector x,

xT Ax = x7AT Ax = ||Ax||2 > 0,

which proves the positive semi-definiteness of A. l

Lemma 2.14. Let A be a symmetric, idempotent matrix of rank m. Then, its entry Aij

should satisfy the following properties: (i) Aii ;> 0, for all i; (ii) |Aij I < 1, for all i, j;

(iii) EZ Aii = m; and (iv) TA. = m.,jj A' m
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Proof If we let v be an eigenvector of A with the eigenvalue A, by the idempotent property

of A, Av = Av = A 2 V = A2 V, and we see that A should be either 0 or 1. Since A is

symmetric, the singular values should also be either 0 or 1 by the following:

-(A) = A(ATA) 0, if A(A) = 0,

-% IA , if A(A) = 1.
singular value eigenvalue

The rank of a matrix is equal to the number of nonzero singular values and, specifically for

the symmetric, idempotent case, to the number of nonzero eigenvalues as well. Therefore,

our matrix A should have m number of l's and the remaining number of O's as its singular

values and as its eigenvalues.

(i) For all i,

A.- = e[Aei > 0

by the positive semi-definiteness of A (see Lemma 2.13), where ej denotes a unit vector

with one at the ith entry.

(ii) For all i, j,

IAjjI < |Aej|IO < \IAej||2 < armax(A)|ejII 2 = 1.

(iii) The trace is equal to the sum of the eigenvalues, and thus E Aji = Tr(A) = m.

(iv) Denoting the Frobenius norm of a matrix by || - IIF,

S A = IIA|| = Tr(A TA) = Tr (A) =

where the symmetric, idempotent property of A was used in the second-last equality. E

Lemma 2.15. Let x 1 , x , be i.i.d. Gaussian random variables, with zero-mean and vari-

ance a2 . If A is any n x n symmetric matrix, then

Var(xT Ax) = 2u 4Tr(A 2 ).
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Proof. To evaluate Var(.), we compute E [(-) 2 ] and E [-] in the followings:

E [(x'Ax) 2 ] = ( AjjAk 1E [xixjxkxll
i,j,k,l

= ^(Z Ai )2 + 20 4̂  A
i 1, J

= o^ (Tr(A) 2 + 2Tr(A 2))

E [xTAx] = E [Tr(Axx)]

= a2Tr(A).

Finally, Var(xT Ax) = E [(XT Ax) 2] - (E [xT Ax]) 2 = 2U4 Tr(A 2). E

Lemma 2.16. Suppose a set of symmetric, positive semi-definite matrices, A 1 , A 2 ,.. . , An

E R""', which add up to the identity, i.e., E". 1 Ai = I. Then, the following inequality

holds for any ci > 0:

det( ciA) > ] c7('*. (2.47)
i=1 i=1

Proof Assume ci < c2 < - _ - cn without loss of generality and denote the eigenvalues

of A A Ej ci Ai by {Ak}, with each Ak associated with a unit-length eigenvector Vk. Since

A is symmetric, {Vk} forms an orthonormal set. Therefore, V = [v1 V 2 ... Vm] becomes

an orthonormal square matrix, i.e., satisfying VVT VTV = I.

For all k, Ak can be written as

Ak = Vk Avk

= vT(ZcAl jvk

= c cTAivk

= CiPki

where Pki k Ajvk. Note that Pki's have the following properties:
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(i) For all k and for all i, Pki > 0, due to the positive semi-definiteness of A2 ;

(ii) For all k, Ei Pki = 1 because

1 = ||Vk||2

= vT(ZA)v
i

= Pki;

(iii) For all i, Ek Pki = Tr(Aj) because

Tr(A ) = Tr(VT AiV)

k VAjVk
k

kZ Pki .k

Due to the properties (i) and (ii),

ci p/s fc **,

which is a well-known generalization of the arithmetic and geometric mean inequality, so

Ak > fi c k* for all k. Finally, the inequality (2.47) can be shown by

det(A) = fJAk
k

> J7J ]7 Cek
k i

= cEkPki

where the last equality holds because of the property (iii). l
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2.6.3 MMSE Estimation Based on Posterior Sampling

As we mentioned in the introduction, InfoMax does not assume any specific recovery

scheme. In this chapter, we primarily use the MMSE estimate rather than f I-regularization

typically used in the RIP-based theory. We believe that the choice will minimize any ar-

tifacts irrelevant to the measurement scheme itself. The error with the MMSE estimate is

the best achievable reconstruction fidelity, in f 2 -norm, and thus gives a fundamental limit

to each measurement scheme. The computational cost of the MMSE estimate is usually

higher than that of fi-regularization, but it is not a focus of this study. There were, and

still are, a great deal of research efforts in making the MMSE estimation efficient inside

and outside the CS community [104, 72, 14, 113]. If a random matrix is used for W in the

large system limit (m, n - oc with # -+ rn/n), the MMSE may also be computable using

the replica method [71, 114] without explicit construction of the MMSE estimate.

In this chapter, we take rather a direct approach: generating a number of posterior

samples and computing the average. First, we suppose that p(xi) is representable with a

mixture of Gaussians, i.e., p(Xi) = Ej as3 V(x; 0, Oup); if not, we use the expectation

maximization (EM) method [56] to approximate the true density by such a mixture of

Gaussians. Let ci denote the (auxiliary) indicator variable, so ci = j when x comes from

the jth Gaussian distribution. Then, we can use the auxiliary-variable Gibbs sampling [123]

to generate the posterior samples of x given y. The sampling consists of two alternating

steps:

(SI) Sample auxiliary variables ci given xi, for all i:

a 2
Pr(ci = jxi) oc ' exp - i )

ai~j 2a

(S2) Sample x given (c, y): If hidden variables c = (ci,... , c,) are given, the density of

x is simply a zero-mean Gaussian with the covariance Ec diag(U2,e, ... , o

Additionally given y, the density becomes (e.g., see [105])

p(xIc, y) = ( EcW T(WEcWT)-- 1y, c - EcWT(WEcWT-1W c).

85



We can efficiently sample x ~ p(xc, y) by computing

x = i/2 + y1/ 2 WT(W cWT)-1(y - WE/20)

based on < - N(O, I), which does not involve the Cholesky decomposition of the

covariance matrix.

Every run yields a single sample of x. In the steady-state of the alternation between (Si)

and (S2), the samples follow the posterior density p(xly) and all we need to do is to take

the mean of a number of the steady-state samples.
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Chapter 3

Informative Sensing for Natural Images

In this chapter, we investigate the application of informative sensing to natural images.

Specifically, we assume that a bandwise i.i.d. signal model is a good approximation to

natural images. Then, we use a nonuniform-density bandwise random projection, shown in

the previous chapter to be most informative for such a model.

We present, in somewhat intuitive fashion, how to effectively apply bandwise projec-

tions to images, with reference to some well-known statistics of natural images. Experi-

mental results demonstrate that bandwise random projections consistently outperform other

kinds of projections (e.g., PCA, random) in image reconstruction. In the presence of noise,

we also consider optimal power distribution among sensors within a given budget. The

optimization makes the measurement be robust to the noisy setting. In this aspect, we gen-

eralize the result of Linsker, who previously optimized the power distribution for Gaussian

inputs, to natural images which are not Gaussian. The improvement of noise tolerance is

experimentally shown.

3.1 Introduction

Consider a linear projection y E R" of a signal x E- R". They are related by a rectangular

matrix W such that y = Wx. We assume m < n, which implies that the projection

performs a dimension reduction. What choice of W is expected to enable the best recon-

struction of x?
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A nice result is available if we keep recovery to be linear and use the average f 2 -error for

the recovery performance measure. Principal component analysis (PCA) finds an optimal

measurement matrix: the rowspace of W must be the linear hull of the major m principal

components of x (see Proposition 3.5). However, if x is not Gaussian, nonlinear operators,

which exploit the non-Gaussianity, can remarkably improve the reconstruction. With the

relaxation of the linear recovery constraint, the optimal measurement can be substantially

different from the PCA projection. Compressed sensing (CS) is a fabulous demonstration

of such nonlinear recovery from highly incomplete linear samples of sparse signals [51, 32].

The performance of CS with random measurements has rigorously been analyzed when the

signal is exactly or approximately sparse [51, 32, 119, 40].

While natural images are approximately sparse in a wavelet basis (e.g., see Figure 1.1),

recent studies have found some evidence that random measurements are not optimal for

natural images. For example, Seeger and Nickisch [127] and Haupt and Nowak [74] found

that standard low-pass filtering followed by subsampling (similar to the PCA projection)

often gives better reconstruction results than random projections. Lustig, Donoho, and

Pauly [98] noticed that including more low-frequency samples than high-frequency sam-

ples can produce better performance for real images when using a random Fourier matrix.

Romberg [115] uses 1,000 low-frequency discrete cosine transform (DCT) coefficients' to-

gether with the remaining amount of random projections rather than purely uses random

projections for all. Romberg's approach (i.e., joint use of PCA and random projections)

has been followed by a few other studies (e.g., see [121, 129]).

In Chapter 2, we have made crucial progress in optimizing linear measurements in

terms of uncertainty minimization. According to our results, random projections provide

a best measurement scheme if the signal is assumed to be sparse in an orthonormal basis

and if no further statistical information of the signal is available a priori. The statistics of

natural images, however, are well known and certainly show more structure than simple

sparsity. In this chapter, we argue that a bandwise i.i.d. signal model is a more precise

description for the natural image statistics than the simple sparsity model. Hence, we use a

nonuniform-density bandwise random projection, known to be most informative for such a

'The DCT kernels are known to well approximate the principal components of natural images [3].
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bandwise i.i.d. signal (see Example 2.3), in constructing the matrix W.

This chapter is based on the analytical results of Chapter 2 but has a couple of distinct

contributions. First, this chapter deals with an effective implementation of the bandwise

random projections. We will give readers more intuition on how the bandwise random pro-

jections work, with reference to well-known image statistics. We also provide an efficient

method to determine the nonuniform density profile, which is conceptually and algorithmi-

cally simpler than the one originally given in Chapter 2.

Second, we take the measurement noise into account. A vast majority of prior work

considering measurement noises focuses on bounding the recovery performance of random

projections in noisy settings [143, 75, 122, 63, 144, 5, 1, 112], while only a few on the

design of the measurement matrix [146, 34, 127]. Furthermore, the power distribution

among sensors, within a restricted budget, has rarely been considered. In this chapter, we

derive an optimal power distribution for the bandwise random measurements within the

InfoMax framework. This may be considered to generalize the twenty year-old result of

Linsker [94] - the optimal power distribution for Gaussian inputs - to natural images which

are not Gaussian.

3.2 Informative Sensing

In [94], Linsker proposed the so-called InfoMax principle that a linear sensory system

should maximize the mutual information I(x; y) between the input x and the output y.

Let y = Wx + q, where W denotes an m x n sensing matrix and 77 represents the

sensor noise. Recall that I(x; y) = h(y) - h(yjx), where h(y) is the output entropy and

where h(y Ix) denotes the remaining entropy of the output given the input signal and thus

merely the entropy of the sensor noise. The noise entropy is constant with respect to W,

so maximizing I(x; y) is equivalent to maxmizing h(y). We usually need to limit the total

power of the sensors (or the squared sum of all entries of W or the trace of WWT) less
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than a given budget '-. Therefore, the InfoMax problem can be formalized as

W*= arg max h(Wx +q). (3.1)
Wmxn:Tr(WW T

)=y

in noisy settings. The solution depends on both probability densities of the signal x and

the noise q. We assume that the noise, if any, is Gaussian with J AN(O, o I). Such

a Gaussian noise model is often assumed in the compressed sensing literature (e.g., see

[75, 122, 146, 34, 125, 63, 144, 5, 1]), while sometimes more complicated noise models

are also considered (e.g., bounded noise [143], Poisson noise [112]).

In Chapter 2, we found the solutions of Problem (3.1) for some special cases. A case is

when the signal x is bandwise i.i.d. and the measurement is noiseless (i.e. or = 0). Then,

the InfoMax solution can be shown to be bandwise random and the number of projections

per band can be determined by solving a convex program. The solution depends on how

non-Gaussian the signal is and how fast the variance falls.

3.3 Informative Sensing for Natural Images

The nonuniform-density bandwise projections can be intuitively understood, in relation

to the multi-resolution property of natural images. Consider a Laplacian pyramid [24],

illustrated in Figure 3.1, where each level represents a bandpass image consisting of edges

at a certain scale. The multi-scale edges form a set of "independent" components for natural

images [19]. In general, the loss of coarse-scale edges results in larger E2-error than that of

fine-scale edges because of the difference in the power (or variance) carried by the edges.

Therefore, we need to allocate sensors to coarse-scale edges with more priority. On the

other hand, a coarse-scale edge image is still sparse; its information may be faithfully

measured with fewer sensors than its dimension (from the classical results of CS). If we

have already well captured the coarse-scale edges and still have extra sensors, then we

should desirably spend some for the next-scale edges. Each scale edge image is remarkably

white and approximable with an i.i.d. model. Therefore, we use random projections in each

scale, overall forming a set of bandwise random projections with nonuniform density per
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Figure 3.1: Octave Laplacian image pyramid. Shown are the bandpass images of Camera
Man (left) and the wavelet coefficient distributions of the bandpass images (right). Each
bandpass image consists of edges at a certain scale. The distribution of wavelet coefficients
is peaked at zero and heavy-tailed. The shape of the distribution is remarkably similar
for all different scales, while the standard deviation approximately grows to double with
one-level upward in the pyramid.

band.

3.3.1 Mathematical Review

We assume that natural images consists of L independent bands. Let us focus on a particular

band s, where the elements (i.e. edges) in the signal x, are assumed to be i.i.d. We denote

the common variance by a and the common negentropy by J,. The negentropy denotes

the non-Gaussianity of the signal elements, by measuring the Kullback-Leibler divergence

between their density and a Gaussian with the same first- and second-order statistics. We

also denote the dimension of the sth band by no, the allotted number of projections by m,

and the allocated power by -y,, respectively.

The following is a key result (from the previous chapter) of which we will make use:

Let W, denote an m, x n, random matrix, normalized to satisfy WSW" =

Then, the entropy of the bandwise random measurement y. = Wx, is approximately

2More formally, the normalization refers to W, = \/ys/ms (HHT)-- H, where H is a random matrix
of the same size, e.g., with Hij - iid, A(0, 1).
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given, in the asymptotic condition n, -- oo, by

h(Wx,) ~S log(27reo- 2 Y/ms) - mSJ s33 (3.2)
2

where OS A mr/n,. Equation (3.2) is an approximation based on Jones and Sibson's work

[84]. Note that, in (3.2), we have not considered the measurement noise. We will restrict

our attention to noiseless measurements until Section 3.4.

Due to the independence assumption among the bands, the total entropy simply be-

comes h = EL_1 h(ys). Our objective is to maximize h with respect to m8 's and Ys's,

subject to = m and E i Ys = _Y. In fact, if there is no noise, determin-

ing Ys 's does not make a separate issue. Given any m8 's, the first-order condition that

D/Oays [h -((Ess - )] = 0, with a Lagrange multiplier (, requires that ys = ms/(2 ) for

all s. By the constraint -yi Ys =y, the Lagrange multiplier must be equal to m/(2-y),

and therefore -y = -ym/m for all s. We will shortly present an efficient scheme to de-

termine m, (and thus 0.), which is conceptually and algorithmically simpler than the one

previously given in Chapter 2.

3.3.2 Optimal Profile of Measurement Density

Here, we consider how many samples should be taken in each band. If we have found the

optimal numbers m 1 , . .. , mL, it will be impossible to further increase the total entropy by

reassigning a sensor which has been given to one band (the sth band), to another (the tth

band). This local optimum condition is written mathematically as below: for any s / t,

h(y,1, .. y,m ) +I- h(yt,1 , . . . , yt,mt) > h(ys,1, . . . , ys,m,-1) + h(yt,1, . . . , Yt,mti)

or, by rearrangement,

Ahs,mS > Aht,mt+1 (3.3)
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if we define

Ahs'j h(ys,j lys,1,.., ys,j _1) (3.4)

= h(ys,1, . . . , ys,j) - h(ys,1 , . . , y _1) (3.5)

1J
= log(27reo-2/m) - . (j' - (j - 1)4). (3.6)
2 n .

We call Ah8 , the net capacity of the jth sensor, given all previous (j - 1) sensors, in the

sth band. It is a decreasing function of j within any fixed s. From these facts, the following

observation regarding how to determine the optimal number of sensors in each band comes

rather straightforwardly (see Figure 3.2 for illustration):

Observation 3.1. For bandwise i.i.d. signals, the optimal number of measurements per

band can be found by the following two-step algorithm: (i) evaluate Ah,j's for all j

1,... ,n., s = 1,... ,L, (ii) select (s, j)'s associated with m highest values of Ah. The

number of measurements for the tth band is determined by the selected number of (s, j)'s
with s = t.

Proof See Section 3.7.1.1.

In Equation (3.6), Ah's are strongly dependent on the signal statistics {o2, n,

so is the optimal profile of the measurement density.

3.3.3 Implementation and Examples

Suppose that images have dimension JY x F. To implement the bandwise random mea-

surements, we conduct the band decomposition in DCT domain, as illustrated in Figure 3.3.

Each DCT kernel in the sth band B represents a specific linear combination of the wavelets

(e.g., see Figure 3.3, right) that lie in the frequencies between

2s-2fo 2- 1 f3
V/- f x + f2 < "n (3.7)

where fo denotes the sampling frequency in both directions. If we select a band in DCT

domain, the wavelets at the specific scale are still mixed together, but the wavelets at differ-
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(s, j)

Figure 3.2: Net capacity of bandwise random projections. This is an exemplar plot, where
we have drawn the net capacity of only first four sensors in each band (the number of bands
is three). Note that the net capacity is a bandwise decreasing function. We should include
sensors in the decreasing order of Ah8,, i.e., (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (2, 3),
(3, 2), (1, 4), etc., until we use up the given budget. If the total budget m is equal to six, the
optimal numbers will be (mi, M 2 , M 3 ) = (3, 2, 1).

ent scales are sifted out. Then, the bandwise random multiplexing of the DCT coefficients

is simply equivalent to the bandwise random multiplexing of the wavelet coefficients.

For the random multiplexing, we use a subset of noiselets [41], binary-valued pseudo-

random basis, following Romberg and Candes [115, 28]. There exists a fast algorithm for

the noiselet transform, which makes the computer simulation efficient.

Let us consider two images, Camera Man and Einstein, shown in Figure 3.4. The stan-

dard deviation of the wavelet coefficients notably falls to a half, with the increase of s by

one (see Figure 3.1; also refer to [123, 120] for the power spectral statistics). And, in

a single image, the distribution is very much alike for all different bands if the standard

deviation is normalized (see Figure 3.1; also refer to [155] for the scale invariance). How-

ever, the shape of the distribution is different for different images. In Figure 3.4 (middle

row), we have plotted the normalized density of the wavelet coefficients of Camera Man

and Einstein. Note that Camera Man has more non-Gaussianity than Einstein (J, ~ 0.95

for Camera Man and J, ~ 0.45 for Einstein, in terms of negentropy), which is due to the

"simple" (piecewise smooth) content of the Camera Man. On the bottom, we provide the

net capacity of bandwise random projections for the two cases. Given m, we should opti-

94

A



- B L - 2 /. -A

0

BLf/ / 
3

-0.5

BL

Figure 3.3: Illustration of the band decomposition in spatial frequency domain, where ft
and fy denote the horizontal and vertical spatial frequency, respectively (left). If we de-
note, by f0, the discrete sampling frequency in both directions, the sth band consists of
the wavelets which lie in the spatial frequencies between 2- 2 f2/V/ni < f + 2

2--1f0 /V/ni. The band decomposition may be conducted in DCT domain. Each DCT ker-
nel in B, is a specific linear combination of the wavelets in B. On the right, we show,
for example, how a couple of DCT kernels can be represented as linear combinations of
the wavelets of the same band. Here, the wavelets have been found by fastICA [79] on a
number of image samples bandpassed in DCT domain.

mally determine m,'s as described in Observation 3.1. The optimal density profile varies

according to the value of J,. As seen in Figure 3.4 (bottom), with a small value of J,

low-frequency bands are favored far more than with a large value of J,. The smaller value

of J, implies the higher entropy of the normalized image content. Qualitatively speaking,

with reference to the image pyramid we considered at the beginning of this section, gen-

erally we need more sensors at each scale to capture the "complex" content of the image;

few extra sensors will remain, for fine-scales, once after we have used up most sensors at

coarser-scales.

3.4 Noisy Measurements

In practice, measurements tend to be corrupted by noises whether the noise level is high or

low. If noise is involved, the biggest change in InfoMax is that the maximum entropy may

not always be achievable with a tight frame matrix any more (cf. Lemma 2.2). This may

be easy to understand by first reviewing Linsker's results for Gaussian signals.
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Figure 3.4: Two image examples, Camera Man (left) and Einstein (right). Top: image.
Middle: normalized density of wavelet coefficients (vertical axis in log scale). For refer-
ence, a Gaussian density with the same variance is plotted together (dashed green). Note
that Camera Man has more non-Gaussianity than Einstein. Bottom: Net capacity plot of
the bandwise random projection for each case. Note that the profile is strongly dependent
on the degree of non-Gaussianity.

Lemma 3.2 (Linsker [94]). Let y = Wx + , where W is an m x n matrix satisfying

Tr(WW T ) = '. If x ~ N(O, E), where E = diag(of,... , o') with a > - - orn, and

if X ~ N(O, or'I), an InfoMax optimal matrix W, which maximizes h(Wx + ) under

the power budget constraint, consists of m major principal components of x in its rows.
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Furthermore, the power allocated to the ith principal component is determined by

p2 = max(0, 1/ - o /o72), I = (3.8)

where ( is chosen to satisfy Eg p2 = -.

Proof See Section 3.7.1.2 for our own proof, which is more rigorous than provided in

[94]. l

Linsker explained the solution (3.8) with a so-called "water-filling" analogy: If one

plots o /of versus i = 1,... , m, then pi is the depth of water at i when one pours into the

vessel defined by the o /o2 curve at a total quantity of water that corresponds to E> p' = 7

and brings the water level to 1/i. Lemma 3.2 tells that without noise we should use equi-

power sensors in measuring m major principal components for Gaussian signals but that

with noise we should allocate more power to more significant components. The power

redistribution makes intuitive sense in two aspects: (i) we may want to protect more im-

portant signals from noise, (ii) minor principal components are weak signals vulnerable to

noise; there is little hope to denoise them without excessive expense of sensor power, so

we had better give them up.

It is obvious that Linsker's results are not directly applicable to natural images because

of their non-Gaussianity. Next we consider non-Gaussian signals but assume, for the time

being, that xi's are i.i.d. We have the following lemma:

Lemma 3.3. Suppose x = (x 1 ,... , Xn), where xi's are i.i.d., with variance o and negen-

tropy J,. Let y = Wx + 17, where W is an m x n matrix satisfying Tr(WW T ) = Y and

~J(O, oI). In the asymptotic condition (n -4 oc), random matrices, followed by the

normalization so that WWT = (y/m)I, maximize h(Wx + 17) under the power budget

constraint. Furthermore, the power allocated to each random projection should be equal.

Proof See Section 3.7.1.3. E

Then, what can we say about natural images which are modeled as a bandwise i.i.d. sig-

nal? When o. = 0 (no noise), bandwise random projections were InfoMax optimal in the
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asymptotic setting. Such bandwise projections had a physical meaning with regard to the

multi-resolution representation of natural images, as given at the beginning of Section 3.3.

That interpretation is valid even with noise involved, which provides a good reason for us

to believe that bandwise random projections are still asymptotically InfoMax optimal in

noisy measurement settings.

Observation 3.4. We consider the problem of finding an m x n matrix W that, for a

bandwise i.i.d. signal x and for a Gaussian noise) -~A(0, a'I), maximizes h(Wx +q)

while satisfying Tr(WW T ) = Y. If we restrict our attention to all bandwise projections

and if n, - oc for all s, the solution will be bandwise random projections with nonuniform

measurement density per band. Further, the power allocated to each sensor in the same band

must be identical.

Proof Given the bandwise restriction, we should necessarily optimize every band for the

optimal solution. Lemma 3.3 applies to each single band where the signals are i.i.d. There-

fore, this observation immediately follows. E

Surely, the details are subject to change. The measurement density and power distribu-

tion should be determined in dependence of the noise level.

3.4.1 Noise Effect

In this section, we will see how the noise affects the entropy of the measurement that

should be maximized in the InfoMax framework. We consider band by band. Recall that

we denote the number of sensors by m, and the total power by 7, assigned to the sth band,

respectively. Let W, be an m, x n, random matrix, normalized to satisfy W W, = -I.

The elements in the sth band signal x, are i.i.d., with variance a. and negentropy J.

We can rewrite the measurement y, as y, = Wxo +q, = Wso', where x' 8 = XS+'

with 7' ~ N(0' s, . The elements in the pre-corrupted signal x' are also i.i.d. The

variance is easily obtained to be Ms U2 + C . To see how the negentropy of the corrupted

signal behaves according to the noise level, we will consider that each signal element has

a generalized Gaussian density with mean zero, variance o, and shape parameter r (see
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Appendix A). If r < 2, the distribution is heavy-tailed, with the degree determined by r (the

smaller, the heavier). Without noise, the negentropy is known to be J, = log 7r<Y ) +

- . The generalized Gaussian has widely been used for modeling the distribution of the2 r

wavelet coefficients [130, 21, 155].

We have computed the negentropy when a generalized Gaussian density is corrupted

by a Gaussian noise for various SNRs. The corrupted density has been obtained by con-

volving the noise density, i.e., Gaussian, with the original signal density. Subsequently, the

negentropy has been numerically computed. A couple of results, each for r = 0.32 and

r = 0.49, are shown in Figure 3.5, where the negentropy is plotted as a function of SNR,

i.e., J8 (snr). The negentropy monotonically increases with SNR, from zero, i.e., perfect

Gaussianity (at snr = 0) to J, (at snr = oc). The first- and second-order derivatives are

also shown in Figure 3.5. We can see that the negentropy plot is strictly concave because

d2snr is negative for all range of SNRs.

In our case, snr = . Based on the formula in Equation (3.2), we can write the

entropy in the sth band as

M m 4

h + Ss/ms) - J, (snr) 3 (3.9)

S
= og(27e(o7 + yso-2m) 0 - J '(,o-2 /ms rn ) . (3.10)

Summing (3.10) over all the bands, we finally obtain

h =fr log(27re(o A- - Js(Yso-,2/mso ) . (3.11)

3.4.2 Optimization

Our objective is to find {m, _x}>s_ that maximizes h in Equation (3.11) subject to two

constraints, ES ms = m and ZEs 7 = -y. The solution seems to be very difficult to

analytically compute. We rely on iterative optimizations of m, and -y7 /m 8 , given the other.
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Figure 3.5: Variation of the negentropy by noise corruption. The signal is assumed to
follow a generalized Gaussian density p(x) oc e-Ix/cIr (see Appendix A) and the noise is
assumed to be Gaussian. Shown are the functional plot of the negentropy (top), and its
first-order (middle) and second-order (bottom) derivatives, versus SNR. On the bottom, the
dashed green curve is f(snr) = - 1 . Note that the second derivatives, for both values
of r, do not fall below the curve.

3.4.2.1 Optimal measurement density, given power distribution

Given -y,/m,'s, the optimization of the measurement density comes almost for free. If

',/m,'s are fixed, Equation (3.11) is simply in the form we had in the noiseless setting.
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Thus, with the net capacity Ah, computed by

Ahs, = h(ys,1 . . ,yj) - h(ysi, .... , ySj-1) (3.12)

121 2eJus) J8 (ysoS/mS0u)- log(27e(a +7SUS/ms)) - (j 4 - (j -1)4), (3.13)

we can simply use the algorithm described in Observation 3.1 to obtain the optimal ms's.

3.4.2.2 Optimal power distribution, given measurement density

Next, suppose that m,'s are given. To maximize h in Equation (3.11), with respect to 7y/m 8

under the power budget constraint Es 'ys = -y, the first-order condition requires that, for a

Lagrange multiplier (,

1 d33 d
-( n 3 J (snr,) = (3.14)

2(1+ dsnr8

=g(snr,)

if 7 > 0, where snrs UySo2/m 7 and #, a m./n; otherwise, y = 0. The Lagrange

multiplier ( is determined to satisfy the power budget constraint, that is, E,., y= -y. For

Gaussian signals (J, = 0), Equation (3.14) gives

snrs = max 0, - 1) or -s/ms =max 0, - (3.15)

which is simply the same as Equation (3.8). For non-Gaussian signals, the solution of

Equation (3.14) cannot be explicitly written but can still be computed numerically. Note

that the function g(.), defined in Equation (3.14), tends to be a strictly decreasing function

given a measurement density #s. For the generalized Gaussian either with r = 0.32 or with

r = 0.49, we illustrated that

Js(snrs) > > (3.16)dsnry 2(1 + snr,)2 - 203(1-+ snr,)2
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on the bottom of Figure 3.5. Hence,

d g(snr) = 1 - sa J(snr,) < 0. (3.17)
dnr, 2(1+ snrs)2 dsnr 2

It is numerically found that the strict decreasing property of g(.) holds if r > 0.2. This

implies that the solution of (3.14) is unique and that it increases with 1/ . Such a feature

enables us to efficiently find the correct value of (, for example, with binary search. Most

natural images even with very simple texture satisfy the condition that r > 0.2. The average

value computed from a subset of Berkeley image dataset [101] is approximately 0.4 (see

Section 3.5) or equivalently J, ~ 0.65.

3.5 Experimental Results

In this section, we provide a set of results from image recovery experiments. We compare

the performance of bandwise random projections against other kinds of projections in terms

of peak-signal-to-noise ratio (PSNR), defined as

2552
PSN R = 10 log 10 1 - 2 (dB) (3.18)

where £ = (X1, . . . , 2X) denotes the reconstructed image (with vectorization).

Image recovery is based on regularization by total variation (TV),3 as in many other

studies (e.g., [29, 115, 20]). In the noiseless setting, we estimate £* by

* = arg min ||VIj (X)1, subject to y = Wx (3.19)

where I(Xi) denotes the 2D matrix representation of X'. The TV regularization is known

to perform better than the f -norm regularization on the wavelet basis, avoiding high-

frequency artifacts [115, 20]. This is partly because the TV sparsity model can account

for the power-law spectrum.

31n Chapter 2, our recovery was based on the minimum mean-squared error (MMSE) estimate in all
experiments. Here, we are doing TV based recovery as an approximation.
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The first set of experiments was conducted on Camera Man and Einstein in the noise-

less condition. In Figure 3.6, we compared the PSNR performance among four different

40 38
BW Random,,.

361
35 BW Random 34

30 DCT 321

3 k DCT + random
1k DCT + random Random

Random
25 ---- -- ---- 28 - ----

1 0.2 0.3 0.4 0.5 2. 0.2 0.3 0.4 0.5
m/n rn/n

Figure 3.6: Image reconstruction results for Camera Man (left) and Einstein (right). Shown
are the plots of PSNR versus the measurement rate. Compared projection schemes are low-
pass DCT (red), random (light green), 1k DCT + random (dark green), and the nonuniform-
density bandwise random (blue) projections. For recovery, TV regularization has been
commonly used (see Equation 3.19).

projection schemes: low-pass DCT coefficients in zig-zag order (red), which approximates

the PCA projection (see Footnote 1), random projections (light green), Romberg's method

[115] which uses 1,000 DCT coefficients in zig-zag order plus the remaining number of

random projections (dark green), and the nonuniform-density bandwise random projec-

tions (blue).

Perhaps unsurprisingly, the dark green curve (1k DCT + random projections) is above

the light green (pure random projections) in every case. However, if we compare the greens

(random projections or 1k DCT + random projections) against the red (DCT), their relative

performance is completely different, depending on the input image. Recall that Camera

Man and Einstein have very different shapes in the distribution of wavelet coefficients (see

Figure 3.4, middle row). Camera Man has simple (piecewise smooth) texture. The image

content throughout all spatial frequencies is well accommodated by a moderate number of

random projections. Meanwhile, the DCT projection wastefully allocates available sensors

to low-frequency content, which could be captured with even fewer sensors, so all high-

frequency content is irrecoverably thrown away. On the other hand, Einstein has complex
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texture. We should use almost all sensors for low-frequency bands. Otherwise, even low-

resolution image is not faithfully recoverable.

For the two images, the net capacity diagrams are different as shown in Figure 3.4

(bottom row). In this set of experiments, we used different density profiles, each according

to their respective net capacity diagram, in applying the bandwise random projections to the

images. Then, the bandwise random projections (blue) outperform all other projections in

most regions, while showing nearly equal performance as the DCT projection for Einstein.

Figure 3.7 shows the results of the reconstruction of Camera Man from five thousand

measurements (about 7.6% of the original dimension), which clearly portray the behavioral

characteristics of each measurement scheme. The image reconstructed from DCT projec-

tion almost loses the mid/high-frequency content and looks piecewise constant. In contrast,

random projections, and even Romberg's method, produce pasty images. When the total

number of measurements is seriously restricted, a success in recovering the high-frequency

details only comes with a sacrifice of the low/mid-frequency content which is more im-

portant. Last, the bandwise random projection gives up the high-frequency content but

faithfully preserves the low/mid-frequency content instead.

In the first set of experiments, we have applied different density profiles to Camera

Man and Einstein, according to the complexity of the input image. If the complexity of

the input image is not fixed, we may have to use the average complexity estimated from

an aggregated set of the normalized wavelet coefficients. In the next experiments, ten

256 x 256 images, shown in Figure 3.8, are used. They are from Berkeley dataset [101]

and have various complexities in terms of negentropy. Using a common set of bandwise

random projections, tuned to J~ 0.65 (mean value), for the entire set of images, we have

obtained the results as shown in Table 3.1, where we use m = 20, 000 (approximately

30% of the original dimension). As seen in the table, the bandwise random projection

performs best for most images (>1dB better than the other projections on average) while

worse than the DCT projection for the last two images (Im 9 , Imio). As aforementioned,

the DCT projection is nearly optimal for fairly complex images, Im 7-Im 10. If we tuned the

bandwise random projection to J,~ 0.35, it would give similar performance for the last

two images as the DCT projection.

104



Random (23.78dB)

Ik DCT + random (24.41dB) Bandwise random (25.73 dB)

Figure 3.7: Image reconstruction results for Camera Man. In this experiment, the number
of measurements is restricted to 5k, which corresponds to 7.6% of the original dimension.

We have conducted similar sets of experiments also in noisy settings. In this case, we

incorporate denoising into TV-based recovery. In Figure 3.9, we compared the performance

of five projection schemes (with m = 20, 000) on Camera Man and Einstein at various noise

levels. Four of them are exactly what we have used in the first set of experiments: low-

pass DCT (red), random (light green), 1,000 DCT plus 19,000 random (dark green) and

nonuniform-density bandwise random (solid blue) projections. For the density profile of
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(0.65) (0.54) (0.31) (0.36) (0.35)

Figure 3.8: Ten images from Berkeley dataset [101], each cropped to 256 x 256. They are
numbered Imi-Imio from left to right, top to bottom. Each parenthesized number denotes
the value of J, the negentropy of the wavelet coefficients of the above image.

Table 3.1: The PSNR performance of image reconstruction results with m = 20, 000. tFor
all images, the same set of bandwise random projections, tuned to J, ~ 0.65, has been
commonly used.

Method Im1  Im 2  Im3  Im 4  Im5  Im6  Im7  Im8  Im9  Imi0
DCT 32.74 26.81 36.94 32.45 35.69 29.77 29.61 33.23 29.87 29.86

Random 32.69 26.09 39.34 32.58 36.89 29.10 28.34 31.70 27.61 27.73
1 k DCT + random 32.91 26.32 39.54 32.86 37.08 29.32 28.53 31.93 27.84 27.95

BW randomt 34.41 27.77 40.16 34.29 38.20 30.99 29.86 33.62 29.53 29.43

the bandwise random projections, we have used J, r 0.95 for Camera Man and J, ~ 0.45

for Einstein, respectively. For a short while, let us consider the four only (solid curves),

to see how each scheme, without noise adaptation, degrades with the level of noise. For

Camera Man, even with small noise (e.g., u,, > 5), the DCT projection (red) shows a better

performance than random projections (light green) as well as Romberg's method (dark

green), while it has performed worse in the noiseless setting (i.e., a-, = 0). If o7 ;> 15,

the DCT projection also outperforms the bandwise random projection (solid blue). Such a

good performance of the DCT projection is found also in Einstein (see Figure 3.9, right),

where the DCT projection works best throughout almost all noise levels.

The remaining scheme is the noise-adapted version of the nonuniform-density bandwise
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Figure 3.9: Image reconstruction results for Camera Man (left) and Einstein (right) in noisy
settings. Shown are the plots of PSNR versus the noise variance. Compared projection
schemes are low-pass DCT (red), random (light green), 1k DCT + random (dark green), and
nonuniform-density bandwise random (solid blue), plus noise-adapted bandwise random
(dashed blue) projections. For recovery, TV regularization has been commonly used. The
number of measurements are set to m = 20, 000.

random projection (dashed blue). We use the iterative optimization method, described in

Section 3.4.2, for the noise adaptation (we assume that a7 is known a priori). The total

power is kept to be equal (i.e., -y = m) for all five projection schemes. The noise adaptation

has a bit boosted the performance of the bandwise random projections. It prevents the

reconstruction performance from degrading fast, particularly when the noise level is high.

Finally, we have run the same experiments with the images from the Berkeley dataset

under two SNR regimes (one with a, = 5 and the other with o = 30). In this case, we

have used m = 20, 000 and a fixed value J, ~ 0.65, so a common set of bandwise random

projections for all images. The results are summarized in Table 3.2. Even in high SNR

regime, the DCT projection outperform pure random or 1k DCT plus random projections

(compare with Table 3.1). This demonstrates that the DCT projection is resilient to the

measurement noise while random projections are vulnerable. In high SNR regime, the

bandwise random projection still remains the best, on the average performance, among the

four without noise adaptation. In low SNR regime or if images are complex, the DCT

projection tends to outperform all other three.

If the noise level is known at the step of designing the measurement matrix, we may

use the noise adaptation techniques (i.e., power redistribution, as well as density profile
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Table 3.2: The PSNR performance of image reconstruction results in noisy settings, with
m = 20, 000. tFor all images, the same set of bandwise random projections, tuned to
J~ 0.65, has been commonly used. IBW random (NA) refers to the noise-adapted version
of the bandwise random projections.

High SNR regime (u, = 5)

Method Imi Im 2  Im 3  Im 4  Im5  Im6  Im 7  Im8  Im 9  Im10

DCT 31.83 26.46 35.06 31.56 34.17 29.26 29.12 32.26 29.34 29.33
Random 30.47 25.39 34.33 30.36 32.80 27.92 27.47 30.19 26.94 26.99

Ilk DCT + random 30.69 25.63 34.62 30.68 33.07 28.16 27.72 30.46 27.17 27.22
BW randomt 32.35 27.13 35.95 32.34 34.68 29.89 29.07 32.20 28.86 28.77

BW random (NA)l 32.40 27.06 35.93 32.32 34.63 29.88 29.09 32.22 29.03 28.85

Low SNR regime (o-, = 30)

Method Imi Im 2  Im 3  Im 4  Im 5  Im6  Im7  Im8  Tmg Im10

DCT 27.32 23.25 30.20 26.86 29.43 25.34 25.47 27.37 25.03 25.15
Random 24.37 20.88 26.68 23.93 26.60 23.04 23.21 25.04 22.76 22.65

lk DCT + random 25.04 21.26 27.52 24.55 27.39 23.48 23.67 25.71 23.21 23.10
BW randomt 26.71 22.57 29.78 26.30 28.98 24.82 24.90 26.94 24.54 24.53

BW random (NA)l 27.56 22.36 30.48 26.95 29.76 25.37 24.98 27.87 25.35 24.97

optimization). The impact of the noise adaptation is not huge but still meaningful in low

SNR regime. On average, the noise-adapted bandwise random projections have performed

best.

3.6 Discussion

Despite the popularity in the CS framework, random measurements are not universally

optimal for every class of sparse signals. Given the input distribution, we can optimize

linear measurements so as to minimize the uncertainty of the signal given the measure-

ment. With Shannon's entropy as the uncertainty criterion, this is equivalent to the InfoMax

framework. In particular, if the signals are groupwise i.i.d., nonuniform-density groupwise

random measurements are known to be asymptotically optimal in such a framework.

In this chapter, we have applied bandwise random measurements to natural images by

properly modeling natural images with reference to their well-known statistics. This mea-

surement scheme is more or less similar to the variable-density random Fourier sampling
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suggested by Lustig, Donoho, and Pauly [98], who, however, did not find a principled

method to determine the density profile. In the InfoMax framework, we introduced the

so-called net capacity of each measurement and subsequently, based on it, presented an

efficient algorithm to optimize the density profile along octave frequency bands. We also

showed how the density profile should depend on the second- and higher-order moments

of the wavelet coefficients. In the presence of noise, we considered the optimal distribu-

tion of power among sensors, which generalizes Linsker's results on Gaussian signals [94],

to natural images which are not Gaussian. As experimentally demonstrated, the power

distribution makes the measurement robust to noise.

For natural images, sparsity can be attributed to a couple of sources, i.e., variance asym-

metry (power-law in spectrum) and non-Gaussianity. Subject to such "source-split" spar-

sity, a bandwise i.i.d. model is the distribution with the largest entropy, which should be

chosen, according to the principle of maximum entropy [82], if no further information is

used. The bandwise i.i.d. assumption better describes natural images than the simple spar-

sity assumption. However, it is not yet the best model for natural images. The wavelet

coefficients are known to be actually dependent, for example, in the local neighborhood or

along the tree hierarchy [130]. In recent literature of CS, the dependencies are utilized at

the recovery side [10, 4]. In the future, they should desirably be exploited for the design of

the measurement matrix as well, although finding the InfoMax measurement matrix for a

complicated prior may be difficult.

3.7 Appendix to Chapter 3

3.7.1 Proofs

3.7.1.1 Proof of Observation 3.1

For simplicity's sake, we will assume that Ah8j's are all distinct, although the observation

does not require such an assumption. Suppose that m 1 , .. . , mL are the optimal number

of sensors per band, satisfying EL ns - m. Let us denote, by Cm, the set of (s,j)'s

selected by the algorithm. We will specifically prove that, for any s and j, (s, j) E Cm if
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and only if j < in. Then, the claimed observation will immediately follow.

1) If j < n.,

AhS'j > Ahs,, > Aht,mt+1 > - > ht,nt, for all t (3.20)

~#=nft -Tnt

because of the inequality (3.3) as well as of the bandwise decreasing property of Ah. There-

fore, at least Z- 1 (nt - mt) = (n - n) number of Ah's are smaller than Ahj, which

implies that (s, j) E Cm-

2) If j > m. + 1,

Aht,1 > - > Aht,mr > Ahs,m,+ 1 > h,,, for all t, (3.21)

#=mt

which is also due to the inequality (3.3) as well as the bandwise decreasing property of Ah.

Therefore, at least 1 mit = m number of Ah's are greater than h8 ,, which means that

(s,j) V Cm.

3.7.1.2 Proof of Lemma 3.2

If both signal and noise are Gaussian, the measurement y = Wx +rq will also be Gaussian

for any W, so the entropy of y is simply equal to h(y) = i log(27re)+ log det(W E W T+

0 2I). The first-order condition, to maximize h(y) with respect to W under the power bud-

get constraint Tr(WW T ) = Y, is

(WEWT + o I)-IWE = (1W, (3.22)

where (1 is a Lagrange multiplier. Let WEWT = UAUT by its singular value decom-

position, where U is an orthonormal, square matrix and where A is a diagonal matrix.

Equation (3.22) becomes

U(A + oIr)-1UTWE = ( 1W. (3.23)
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Multiplying (A + o I)UT in front of both sides in Equation (3.23), we obtain

UTWE = ( 1 (A + UI)UTW, (3.24)

from which we see that the row vectors of UTW should be m eigenvectors, or principal

components, of E. If we say that the ith row vector is the jith principal component (scaled

by pi) of E, the associated eigenvalue will be o-?. Then, we may write

A UTWEWPU diag(p 1,... ). (3.25)

The power budget constraint is translated, in terms of pi, into

m

Y = Tr(WW T ) = Tr(UTWWTU) = p (3.26)
=diag(p ,...,p2)

Equation (3.25) is the condition for a local optimum. We may need to combinatorially find

the global optimum. Note that det(WEW T-F-a I) = det(UW EWTUT +o2 I) because

of the orthonormality of U. Then, we can write h(y), based on Equation (3.25), as

h(y) = 2 log(27re) + log(p - + o2). (3.27)

For any fixed pi's (we assume that p2 > - > p2 without loss of generality), the entropy

h in Equation (3.27) is maximized when a,..., o- are m largest eigenvalues of E in

that order, so we can fix o-.... , o-? to such eigenvalues. Finally, the first-order condition,

to maximize h in Equation (3.27) with respect to pi under the power budget constraint

Ei p2 =y (Equation 3.26), gives

2
p o-

2 u- = 2 2Pi (3.28)p2o-? + Gr

U2
where (2 is a Lagrange multiplier. Therefore, pi = 0 orpl = U - which is simply

rewritten as p2 = max(0, 1/( - o2/o-?). The Lagrange multiplier = 2 2 should be

determined to satisfy Ei p2 = y.
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3.7.1.3 Proof of Lemma 3.3

The entropy h(Wxz+,q) can be expressed as the difference, by the negentropy J(Wx +,q),

from the Gaussian entropy, i.e., h(Wx + ') = 2 log(27e)+ 1 log det(o-WW T + 72 _

J(Wx + q). By Jensen's inequality, the log determinant term is upper-bounded by

-log det-(o-WWT + a 2) < log Tr(o-WWT + o )= log + ,
m (m

(3.29)

where the equality holds if and only if all the eigenvalues of (o WWT + o 2I) are equal
to121 + g2 , thatW is, ~l (1x1 U2)I WI.

tor ,that is,oWW + I = + or WWT = I On the other

hand, the negentropy J(Wx + 71) is minimized when Wx + q is closest to a Gaussian

distribution. By taking a normalized random matrix for W, more precisely by taking

W = (HHT) H with Hi3 ~ .N(O, 1), we can make Wx as Gaussian as possi-

ble (according to Chapter 2). The maximal Gaussianity is also preserved for Wx + r,

with q being a spherical Gaussian. Note that such a normalized random matrix W does
I

not only minimize the negentropy but also maximizes the log determinant term since it

satisfies WWT = I. This completes the proof of the asymptotic InfoMax optimalitym

of (normalized) random projections. Finally, note that WWT = 'I implies that eachm

measurement (each row vector of W) equally has - as its norm (or power).m

3.7.2 Miscellaneous Lemmas

Proposition 3.5. Suppose that we want to reconstruct an n-dimensional signal x given the

measurement y = Wx for some m x n matrix W, with m < n. In terms of average

f 2-error, an optimal matrix consists of the major m principal components of x in its rows

if recovery is restricted to be linear.

Proof Let E denote the covariance of x. The f2 -error of the linear MMSE estimate of x

based on y = Wx is given by Tr(E - E WT(WEWT)-1WE) [105]. Let E = UAUT

by its singular value decomposition, where UUT = UTU = I and A = diag(of,... , on)

112



with ol ;> 0 . Then,

= arg min Tr(E - EWT(WEWT-lW E) (3.30)
w

= arg max Tr(E W T (WEW T )- 1 WE) (3.31)
w

arg max Tr(UAUTWT (WUAUTWT) l WUAUT) (3.32)
w

= (arg max Tr(AVT(VAVT) -iVA) UT (3.33)

where we let V WU. Given V* that maximizes Tr(AV T (VAVT)-i VA), the ma-

trix W* can be computed simply by V*UT due to the orthonormality of U. Let M

A2VT(VAVT)-VA2. The matrix M is a symmetric, idempotent matrix of rank m,

and thus its diagonal entries should satisfy the following conditions (see Lemma 2.14):

0 <M < 1 and E M = m. Note that

Tr(AV T ( VAVT) VA) = Tr(AIMAN) (3.34)

= Tr(AM) (3.35)

- ZoMni, (3.36)

which is obviously maximized when all the weights are concentrated on m largest o's

(i.e., Mij = 1 for i < m and zero otherwise), for example by taking

m n-m

V*=[ I 0 ]. (3.37)

Finally, by (3.33), W* is composed of the first m rows of UT or the major m eigenvectors

of E.
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Chapter 4

Learning Color Filter Arrays

Most digital cameras sense one color component per pixel, in a mosaic pattern as a whole,

and then use "demosaicking" to reproduce a full color image. The color component sensed

at each pixel is determined by the color filter array (CFA). The vast majority of cameras

use the Bayer pattern CFA, but there exist a variety of other patterns as well, each proposed

to replace the Bayer pattern.

In this chapter, we regard the way such digital cameras handle color as a special case

of compressed sensing. Like in the previous chapters, we use the InfoMax principle as

the design criterion. We seek to minimize the expected uncertainty that we would face in

demosaicking. We first model the probability density of natural scenes in color, to math-

ematically define the uncertainty. Then, we use an efficient greedy algorithm to optimize

the CFA in terms of the expected uncertainty. Our approach is validated by experimental

results, in which our learned CFAs show significant improvements in performance over

existing CFAs.

4.1 Introduction

Three independent light spectra produce color perceivable by human eyes. There exist

three-chip cameras, or even single-chip cameras with layered detectors, which simulta-

neously measure three spectra at every pixel, but they require expensive physical devices

such as precision beam splitters and multiple sensor arrays. Many digital cameras, instead,
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overlay a color filter array (CFA) over the sensors and let each sensor detect only a single

spectrum. Then, sensor outputs look like a mosaic (e.g. Figure 4.1, right), which stores,

Figure 4.1: Color image sensing in a single-chip camera. Left: original scene. Middle:
CFA installed in the camera. Right: actual measurement.

at each pixel, the intensity of a specific spectrum of the overlaid color filter. The sensor

outputs should go through so-called demosaicking to recover full color. The demosaicking

process usually performs interpolation between sensor outputs from the same type of color

filters (see [68, 152]).

The most common CFA is the Bayer pattern [16] which arranges red, green, and blue

filters in a chessboard layout (B in Figure 4.2), with green twice more than red or blue.

The vast majority of cameras adopt the Bayer pattern, and a tremendous amount of work

has been devoted to demosaicking the Bayer pattern (refer to [68, 89] and the papers cited

therein). In relatively few studies, the optimality of the Bayer pattern has been doubted and

alternative CFAs that enable better reconstruction have been sought.

UF U7U
B KM LP HWA HWB HWC HWD LV

Figure 4.2: Examples of existing CFA patterns. B: Bayer, KM: 8 x 8 Knop & Morf [85],
LP: 4 x 4 Lukac & Plataniotis [96], HWA-HWD: four patterns by Hirakawa & Wolfe [77],
LV: Lu & Vetterli [95].

In 1985, Knop and Morf considered pseudo-random patterns [85], particularly restrict-

ing their attention to shift patterns where the filter arrangement is identical, up to shift,

for every row. They showed some examples of shift patterns (e.g., KM in Figure 4.2)

but did not give a criterion nor efficient way to optimize among infinitely many choices
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of such patterns. In [96], Lukac and Plataniotis conducted extensive experimental com-

parisons among ten CFAs, all consisting of red, green, and blue filters. They found that

several (ad-hoc) variations of the Bayer are comparable to or even slightly better than the

original pattern (see LP in Figure 4.2 for the best variation pattern). In [77], Hirakawa

and Wolfe developed a more formal framework, based on spectral analysis, to evaluate

and design CFAs. The key behind their method is to minimize aliasing in luminance and

chrominance channels at the same time. They found several good CFAs (HWA-HWD in

Figure 4.2), which, even when demosaicked linearly, often outperform the Bayer pattern

that is demosaicked with a more elaborate scheme [67]. The minimization of aliasing is

surely a reasonable thing, but perhaps not the best thing, to do. Surprisingly, the recent

theory of compressed sensing [51, 32, 57] claims that sparse signals can be better recon-

structed from subtly aliased measurements than from maximally anti-aliased ones. Color

images are sparse (e.g., see [100]), so the claim may hold for color image sensing. More

recently, Lu and Vetterli [95] minimized the expected reconstruction error of the optimal

linear estimate, algorithmically, with respect to the CFA and found the pattern LV shown

in Figure 4.2. This approach is also reasonable but still remains suboptimal in that it only

depends on up to the second-order statistics of color images. The linear type of recovery

is not sufficiently good in general. Most state-of-the-art demosaicking techniques involve

nonlinear operators [97, 76, 39, 103, 91]. More explicitly, Mairal, Elad, and Sapiro [100]

have experimentally shown that the high-order sparsity structure of natural images can play

an important role in demosaicking. Such a nonlinear feature should desirably be taken into

account also in designing CFAs.

In this chapter, we would like to learn a CFA in a way that it exploits the high-order

statistics of natural images. We use a mixture of Gaussians (MoG) to tractably model the

prior density of color image patches. Then, we attempt to minimize the uncertainty of

the missing color components given the measured color components. This is a Bayesian

experimental design approach (e.g., see [124]) for the CFA, which no one has attempted

before, as far as we know. We consider a couple of criteria, Shannon's entropy and mini-

mum mean-squared error (MMSE), for the uncertainty measure. A CFA that minimizes the

MMSE criterion is obviously optimal in the sense of mean-squared error (MSE) or peak-
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signal-to-noise-ratio (PSNR).1 Note that we do not limit ourselves to linear recovery, so we

can obtain better performance than with Lu and Vetterli's optimized pattern. To efficiently

search for the optimal CFAs, we present a greedy algorithm. We also show how to uni-

versally demosaic from arbitrary CFAs based on the MoG prior of color images. Finally,

we validate, by experiments, the improved performance of the newly found CFAs over any

existing CFAs that we have briefly reviewed in this section.

4.2 Color Image Sensing: Mathematical Review

Let x be the rasterized vector of an m-pixel color image. If we write the color sensing

process in the form of y = Wx, the matrix W is a rectangular matrix that has three times

as many columns as rows. Mathematically, it can be represented as

W = (eeT (gcJ), (4.1)

where ci is a three-dimensional vector denoting the color filter at the ith pixel; ej denotes

an m-dimensional unit vector with 1 at the ith entry; and 0 denotes Kronecker (or tensor)

product. The structure of W in Equation (4.1) reflects the fact that the measurements are

pixelwise, not allowed to multiplex color spectra from different locations. We also have

ci >- 0, for all i, because negative weights are not feasible in color filters.

4.3 Image Prior

As manifest in Section 4.2, recovering x from y is an ill-posed problem in itself, which

has infinitely many solutions. If we know the prior density p(x), we can use it in addition

to the measurement to uniquely determine the most appropriate solution for a given loss

function.

Image priors have actively been investigated in the recent past (e.g., see [154, 53, 2, 59,

102, 118]) and have proved effective in image restoration tasks such as denoising [117, 58,

'The PSNR is a strictly decreasing function of the MSE. Refer to Equation (4.9) for the mathematical
definition of PSNR.
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73, 147], deblurring [86, 38], and also color demosaicking [100]. In particular, Zoran and

Weiss [156] have shown that a mixture of Gaussians (MoG) provides a good prior, while

being very tractable, for a rather small size of image patches. The goodness of the MoG

model has been only validated with gray-scale images but may be generalizable to color

images as well. In this chapter, we represent the prior density of color images in a 5 x 5

local neighborhood by an MoG with N clusters, i.e.,

N

p(X) = aiN(z; pli, Ei) (4.2)

with a, ;> 0 and 1 ai = 1. We set N = 75. From [156], we expect each Gaussian

cluster to be ellipsoidal, in the signal space, with a certain orientation. In this sense, we

accommodate as many orientations as the dimensions. We find the remaining set of pa-

rameters {ai, piE, Ei}N1 by applying the expectation maximization (EM) method [56] on

a million samples from Berkeley training dataset [101]. The Berkeley training dataset is a

subset of the Corel PhotoCD library, and photographs were taken using analog, film-based

cameras and hence do not contain any demosaicking artifacts.

To see how well the learned MoG preserves the high-order statistics of natural scenes,

we conducted independent component analysis (ICA) [79] on a million samples, now ran-

domly generated from the learned MoG prior. As shown in Figure 4.3 (top left), the synthe-

sis basis functions are edge filters, very similar to those obtained directly from real image

samples (in Figure 4.3, top middle; cf. [19]), and the coefficient distributions are kurtotic.

Meanwhile, if we used a single Gaussian model, only based on up to the second-order

statistics, the ICA basis would be simply a set of Fourier filters (Figure 4.3, top right), and

the sparsity structure of a natural scene along the edges would be lost.

4.4 CFA Design

Given the MoG prior, how should we design a CFA so that it enables the best reconstruc-

tion? We measure error in (R,G,B) space given a linear measurement which is assumed

to be a linear combination of R, G, and B filters. There are some filters that are not linear
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combinations of R, G, and B filters, which we cannot evaluate because we do not have

their statistics. But if we restrict ourselves to filters that are linear combinations of R, G, B

filters, then we have all the statistics we need. We consider several ways in this section.

Randomization. The color sensing is notionally a compressed sensing: We only ac-

quire incomplete color samples of a natural scene which clearly possesses a sparsity struc-

ture (Figure 4.3). We know that the theory of compressed sensing is not directly applicable,

due to the restriction on the measurement matrices (Equation 4.1). Nevertheless, we are still

tempted to try a random pattern and eager to see whether the randomness also works in the

CFA-type setting. This is somewhat similar to Knop and Morf's pseudo-random CFAs, but

we do not restrict our attention only to the shift patterns. The colors in a CFA are likely to

be all distinct.

Bayesian experimental design. At the decoder's side, we are expected to use the mea-

surement as well as the image prior to perform inference on the missing color components.

On each 5 x 5 local neighborhood, we are specifically given twenty-five measurements

y = (Yi, ... , Y25), one per pixel. In the vectorized notation, Y13 particularly denotes the

measurement at the center pixel. If we define a13 and v13 as the pair of the complemen-

tary elements, in defining color, at the center pixel, we can form the posterior density

P(U1 3 , V13 yi, .. . , Y25) for Bayesian inference. A reasonable objective at the encoder's side

is then to design a CFA so as to minimize the expected uncertainty of u13 , v13 given the

measurement Yi, .. . , Y25. The uncertainty minimization framework is commonly called

Bayesian experimental design (refer to [124]; see also [146, 34, 127] in the context of

compressed sensing). We consider a couple of criteria for the uncertainty measure: the

conditional entropy [93] and the conditional variance. When the conditional entropy is the

underlying uncertainty measure, Bayesian experimental design implements the InfoMax

principle (see Section 2.2.1).

4.4.1 Learning Bayes Optimal CFA

Like many others, we search for a 4 x 4 CFA which, we believe, is small enough to be

tractable yet large enough to yield interesting sampling patterns. The CFA is replicated
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along both horizontal and vertical directions until they match the full image size. Then,

a specific CFA generates sixteen (cyclic) patterns in the 5 x 5 local neighborhood (see

Figure 4.4). Each pattern, denoted by k = 1, . . . , 16, is equally likely. Let fk(Ei, . . . ,11)

4I E4 Z9 4 El E5 E9 cj3

E3 7 I C3 C7 C1 I q

4 8 42 4 C8 q2 SO

EIE Eq C5  C S C9 q34
E2  E6  O 54 C2  E6 I4 4
E3 E7  I SO E3  E7 SO SO

E4 E8 SO S q C4 C8 C2 C16

Figure 4.4: Replication of a 4 x 4 CFA in both directions. The CFA generates sixteen
patterns in the 5 x 5 local neighborhood. Shown are a couple of the patterns (inside 5 x 5
square boxes).

denote the uncertainty of the missing color components at the center pixel given twenty

five local measurements when'61, .. . , Zj's are arranged according to the kth pattern. Then,

the objective is to minimize f(Z1,... ,616) = E 16 1 fk(i1,i.... ,E16) with respect to the

CFA, {j})1.

For efficiency, we discretize the search space by choosing Zj's from a finite set C that

consists of thirteen color filters shown in Figure 4.5. The problem becomes then a combi-

Figure 4.5: Restricted set of color filters: red, green, blue, white (or gray), yellow, magenta,
cyan, red+magenta, red+yellow, green+yellow, blue+magenta, blue+cyan, green+cyan.
They have been frequently used in the CFA design (see Figure 4.2 for example).

natorial optimization among as many as about 1316 CFAs. To further alleviate the search

complexity, we consider a greedy algorithm, as illustrated in Figure 4.6. Suppose, for the

time being, that we have a way to evaluate fk's (and thus f as well) given a CFA {2j})=1

We initially choose an arbitrary pattern (e.g., all white) and evaluate f for that pattern CFA.

At each step, we consider only a "local" move (i.e. update of a single color filter) from the

CFA currently at our hands. For all possible local moves,2 we evaluate f's and find the CFA

2The number is computed by 13 -16 - 1 = 207.
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f=6.93

One move

f=5.72 =5.72 f=6.00

f=6.00 f=3.49 f=2.90 f=3.71

Figure 4.6: Illustration of our greedy search algorithm, where we want to minimize the
value of f with respect to the CFA. Starting with an initial CFA, we update at most one
filter at a time so as to reduce f as much as possible. The boldfaced number denotes the
minimum value of f at each level of search and thus the CFA above it is selected at that
time. The greedy search algorithm is guaranteed to converge to a locally optimal solution.

that produces the minimum value, say f*. If f* is smaller than the current f, it suggests

that the new CFA is better, in terms of uncertainty, than the current one, so we select it and

continue to search for the next local move. Otherwise, the current CFA is locally optimal

and becomes the final output of the algorithm.

If we denote the depth of search (or the depth of hierarchy in Figure 4.6) by d, the

overall search complexity will be proportional to 13 - 16 -d, much smaller than 1316. The

depth d can be affected by the initialization but is typically 1-2 times as many as the number

of pixels in the CFA.

Now let us discuss how to evaluate f given a CFA. Recall that, given a CFA, the color

filter ci at the ith pixel actually depends on the neighborhood pattern (Figure 4.4), and

thus we will precisely denote it by Ci,k wherever clarity is needed. Given a particular

neighborhood pattern k, we will compute fk as below. The overall uncertainty measure f
is simply the average of fk's.

Conditional entropy. If we use Shannon's entropy h for the uncertainty measure, fk is
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defined as fk = h(u1 3 , v13|Y1, . .. , Y25) where Yi,. . , Y25 and U1 3 , v13 are all based on the

specific neighborhood pattern k. We expand the conditional entropy h(ui3 , V 1 3 Yi, . .. , Y25)

as h(u13 , vi3yi, ., Y25) h(yi, . , Y25, Ui3, v13) - h(yi, . , y25) (e.g., see [43]). Then,

we can write

fk =h(W'x) - h(WkX) (4.3)

with

el 0ck Wk

Wk= , W'k= e13 c3, (4.4)

e25 c2s,k_ e13 @ 13,k_

where c' 3 k and c'' 3 k denote orthonormal vectors both in the nullspace of CT3,k (comple-

mentary color components).

If x has an MoG prior (Equation 4.2), a random vector generated by z = 4x also

has an MoG prior with p(z) = E> a.N(z; 4pi, #4EiT). We define w as the hidden in-

dicator variable on the Gaussian cluster from which the vector x (and z) actually comes.

Then, h(z) = h(zlw) + H(w) - H(wlz), where H(.) denotes the entropy for discrete

random variables. 3 The conditional entropy h(zlw) is easy to compute, while the en-

tropy h(z) is not. Explicitly, h(zlw) = 1 log(27re) + 1 E ai log det (EitT), where

r is the number of rows in 4. Therefore, fk in Equation (4.3) becomes fk = log(27re) +

1 E a (log det(W' Ei W'T) - log det(WkEiWT)) - H(lW'x) + H(wlWkx). The

quantity H(olW'x) - H(wlWkx) represents the change in the uncertainty of the clus-

ter indicator o when two color components 13 , v13 are added to the existing set of the

observations Yi, .. . , Y25. Here, we will assume that it is negligible4 and will simply use

3This is because the mutual information I(z; o) between z and o can be expanded in two ways: I(z; w)=
h(z) - h(zlw) = H(w) - H(oLz).

4We argue that we can tell the Gaussian cluster given the measurement (Yi, Y25) with somewhat
high certainty. This implies that H(wlWkX) - 0. Because 0 < H(lW'x) < H(WoWkX), we have
o_ -H(w|WkX) < H(wjW'x)-H(w|Wkx) < 0 and H(w|Wx) -H(wlWkx) - 0. Ourargumentis
somewhat analogous to the state-of-the-art demosaicking techniques which first determine the edge direction
"with certainty" based only on the local measurement and then use edge-preserving interpolation (see also
Section 4.5).
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fk log(27re) + 1 E ai (log det(W' EiW'T) - log det(Wk EiWj)).

Conditional variance (or MMSE). Another reasonable uncertainty measure is the con-

ditional variance, i.e., fk = E [1U13 - U13 (y)2 + Iv13 - U13 (y)12], where U13(Y) E E [U13

1... Y, 25] and U13 (y) A E [v13 | y1, . . ., Y25], This is also known as the minimum mean-

squared error (MMSE) criterion. Given a particular instance y = (Yi, ... , Y25), we can

compute U1 3 and U1 3 , in closed form, by

U13(y) (ef 3 0 c1,k) d, (p + EAWT( iW - 1 (y - WktP)) (4.5)

V13(y) = ( 3 , c1s ,k (/pi - Ai (WkEiW ) - Wk1p)) (4.6)

where a' is the posterior cluster probability, i.e.,

aiNV( y; W k pi, WkeEiW k
aik =: c ;Wk 2, WT)' (4.7)

a cN(y; Wk1pi, Wk W)

Then, we are able to evaluate fk based on Monte Carlo method. We draw a number of

samples from the learned MoG prior; apply the CFA to each sample; compute the MMSE

estimates (Equations 4.5, 4.6); and then take the sample average of Iui 3 -f13| 2 +v13 -f13| 2.

Instead of drawing samples from the MoG prior, we may use real image patches as

well. More simply, we can apply the augmented CFA to the entire images, rather than 5 x 5

image patches, in a training dataset and then use the MMSE estimates (Equations 4.5, 4.6)

to recover the full images. The MSE between the original images and their reconstruction

is simply f which we seek to compute. In this chapter, we take the last trick using ten

images from Berkeley training dataset (Figure 4.7). Ten images are not many (good in

terms of learning speed) but 200,000 pixels in them are sufficiently many to learn sixteen

color filters on.

4.4.2 Results

1) Randomization: We chose a 4 x 4 random CFA in a way that each element in cE is i.i.d.

uniformly distributed in [0,1]. A particular instance is shown in Figure 4.8R.
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Figure 4.7: Ten images from Berkeley training dataset [101].

2) Bayesian experimental design: Starting with a 4 x 4 random CFA, we ran our greedy

search algorithm (Figure 4.6), which gave us two patterns (each according to conditional

entropy and conditional variance) shown in Figure 4.8PA and 4.8PB-

R PA PB

Figure 4.8: A random CFA R and two learned CFAs PA and PB (all 4 x 4). The pattern PA
minimizes the conditional entropy of the missing color components given the measurement
and the pattern PB minimizes the conditional variance. Compare with other patterns in
Figure 4.2.

As a sanity check, we evaluated the conditional entropy and conditional variance (i.e.

our criteria for the CFA design) for various CFAs. The results are shown in Tables 4.1 and

4.2.

4.5 Color Demosaicking

Perhaps a naive way of demosaicking is to linearly interpolate sensor outputs from the same

type of color filters. For the Bayer pattern CFA, we can define convolution kernels as

1 2 1 0 1 0111
FRed= FBlue 2 4 2 FGreen 1 4 1 (4-8)

4 4
-1 2 1 0 1 0]
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Table 4.1: Conditional entropy (estimate) for various CFAs. The compared CFAs are Bayer

(B), Knop & Morf (KM), Lukac & Plataniotis (LP), Hirakawa & Wolfe (HWA-HWD), Lu

& Vetterli (LV), random (R), and the proposed patterns (PA, PB)-

B KM LP HWA IWB HWC HWD LV R PA PB

4.453 5.371 4.525 4.539 4.880 4.873 5.426 6.470 5.330 4.236 4.327

Table 4.2: Conditional variance for various CFAs on training images. The compared CFAs

are Bayer (B), Knop & Morf (KM), Lukac & Plataniotis (LP), Hirakawa & Wolfe (HWA-

HWD), Lu & Vetterli (LV), random (R), and the proposed patterns (PA, PB)-

B KM LP HWA HWB HWC HWD LV R PA PB

40.48 78.38 39.46 36.58 39.65 47.56 57.44 40.76 71.15 32.38 31.06

which apply to red, green, and blue channels, separately, with missing pixels filled by zeros

[6]. In Figure 4.9, we provide an example of the bilinear reconstruction from Bayer mosaic.

The reconstruction suffers from two major artifacts: bluffing and color fringing.

Original Bilinear Linear MMSE DLMMSE [152]
(22.45dB) (31.41 dB) (39.45 dB)

Figure 4.9: Original Fence image and three reconstructions from its Bayer mosaic. The

recovery scheme used for each reconstruction, as well as the PSNR performance, are in-

dicated. See Equation (4.9) for the mathematical definition of PSNR. The linear MMSE

reconstruction has been obtained with Knop and Morf's regression method, but any other

implementations would produce similar results.

A number of modern demosaicking techniques (e.g., [97, 76, 152, 39, 103, 91]) employ

nonlinear operators particularly such as edge classification, whether implicit or explicit,

to preserve edges during the interpolation. They greatly reduce the blurring and color

fringing artifacts. For example, see Figure 4.9 (rightmost), where we have used the direc-

tional linear MMSE (DLMMSE), proposed by Zhang and Wu [152], which is one of such

edge-preserving interpolations. Retrospecting from the viewpoint of the image prior, these
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techniques exploit the high-order statistics of natural scenes; however, the prior is tightly

coupled with the Bayer pattern, which makes them inapplicable to other CFAs.

To reconstruct from non-Bayer CFAs, Knop and Morf [85] used linear regression.

Given a pseudo-random pattern, they learned regression matrices which produce the color

of the center pixel from the measurements on the local neighborhood. Because a CFA

generates as many local neighborhood patterns as its size (refer to Figure 4.4), the num-

ber of such regression matrices should also be equal to the CFA size. The regression

was conducted so as to minimize the MSE. In this sense, their reconstruction is a par-

ticular way of implementing the linear MMSE (LMMSE) estimate. Essentially the same

idea has been formulated in various aspects and implemented in various ways (e.g., see

[23, 133, 48, 138]). The recovery schemes used by Lukac & Plataniotis [96], by Hirakawa

& Wolfe [77], and by Lu & Vetterli [95] are also similar to (or a special case of) these

approaches. The performance of LMMSE typically lies in between those of the bilinear in-

terpolation and DLMMSE, as an example is shown in Figure 4.9. In its favor, LMMSE

applies to any CFA, however its performance is not the best. Nayar and Narasimhan

[108, 106] proposed an extension to the LMMSE, by allowing polynomial-order kernels

in the regression, in a more generic framework of "assorted pixels," where more informa-

tion (e.g., brightness, polarization) are involved besides color. But the improvement seems

to grow very slowly with the polynomial order and with the size of training set. Although

omitted in Figure 4.9, the reconstruction with the second-order polynomial kernels remains

very similar to the LMMSE result.

Note that we were able to compute the MMSE estimate, in closed form, of the missing

color components given the learned MoG prior. Provided that the learned prior is close to

the true density, this should be optimal in terms of MSE. Therefore, we use the MoG-based

MMSE to universally demosaic from an arbitrary CFA.

Our estimate may be conceptually connected to LMMSE and DLMMSE. First, if we

used a single Gaussian model for the prior, our estimate would eventually be the same as

the LMMSE. Certainly, the MoG prior is closer to the true density than the single Gaussian

model (see Figure 4.3), and thus the MoG-based MMSE will be guaranteed to be better

than the LMMSE. Second, if we used a hard decision in evaluating the posterior cluster
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probability (Equation 4.7), e.g., by setting the maximum to one and the others to zero, our

estimate would be similar to the DLMMSE. The hard decision on the Gaussian cluster is

analogous to the determination of the edge direction in DLMMSE. The remaining process

of the DLMMSE is essentially to apply the LMMSE with specific second-order statistics

to preserve the directional edge during the interpolation.

We will present shortly, in Section 4.6, how the results of the MoG MMSE method

compare with those of the LMMSE and DLMMSE.

4.6 Experimental Results

First, we evaluated the performance of recovery schemes in terms of peak-signal-to-noise-

ratio (PSNR), defined as

3.- 2552
PSNR = 10 log10 1I2-52 (4.9)

where X denotes the reconstructed image. We compared the LMMSE, DLMMSE [152],

and nonlinear MMSE based on the learned MoG prior (Equations 4.5, 4.6) using twenty

images shown in Figure 4.10. The test images were originally scanned from film-based

photos, containing ground-truth R, G, B values at each position. In this set of experiments,

we commonly used the Bayer CFA because the DLMMSE, like most other conventional

demosaicking schemes, works only for the Bayer pattern.

The results are provided in Figure 4.11. For all twenty images, both nonlinear schemes

perform far better than the linear MMSE, and for most images (except for the eighth and

tenth) and on average, the MoG-based MMSE works slightly better than the DLMMSE.

More desirably, the MoG-based MMSE is applicable to any type of CFA. Therefore, we

commonly use the MoG-based MMSE in the next set of experiments where we evaluate

various CFAs.

The evaluation of CFAs was also conducted on the twenty images in Figure 4.10. We

included eight existing CFAs, shown in Figure 4.2, and a 4 x 4 random CFA (R) plus the

learned CFAs (PA, PB) in Figure 4.8. We uniformly quantized each CFA output in eight
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Figure 4.10: Test images. First half are from Kodak PhotoCD image set, while the others
are from Berkeley test dataset. They will be numbered 1-20, from left to right, top to
bottom.

40 0
- 35z

-30-

0 5 10 15 20 Avg
Image

Figure 4.11: Comparison, in terms of PSNR, of three demosaicking schemes on Bayer pat-
tern. The compared schemes are LMMSE, DLMMSE [152], and the MoG-based MMSE.
The MoG-based MMSE works best for a majority of images.

bits for fair comparisons.

Detailed comparisons on the performance of CFAs (per test image) are provided in

Table 4.3. As aforementioned, the MoG-based MMSE has been used for recovery. The

learned CFAs (PA, PB) quite consistently outperform Bayer (B) and give the best perfor-

mance among all CFAs on average and also in terms of the number of top PSNR values,
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although a CFA designed by Hirakawa & Wolfe (HWA) is somewhat comparable. The

pattern PB, designed to minimize the conditional variance, shows slightly better PSNR per-

formance than the pattern PA-5 The performance of the random CFA (R) may not look

great, but we still consider it to be meaningful. At least, it provides a certain level of faith-

ful recovery for natural color images which are sparse. We would like to remind readers

that the random CFA does not make the measurement matrix W fully random (due to the

pixelwise constraint; see Section 4.2) and thus that this result is not firmly based on the

theory of compressed sensing.

Table 4.3: PSNR performance of various CFAs on test images. The compared CFAs are
Bayer (B), Knop & Morf (KM), Lukac & Plataniotis (LP), Hirakawa & Wolfe (HWA-
HWD), Lu & Vetterli (LV), random (R), and the proposed patterns (PA, PB)-

CFA B KM LP HWA HWB HWC HWD LV R PA PB
1 36.41 34.05 35.09 36.41 35.77 35.98 34.01 35.38 34.51 36.90 36.81

2 38.41 35.61 38.92 39.43 38.87 37.94 37.52 39.20 36.25 39.69 39.91
3 40.25 35.50 39.41 39.52 40.07 38.03 38.48 39.13 36.48 39.99 40.41
4 35.14 33.03 35.82 34.50 34.45 34.07 33.70 34.93 32.99 36.03 36.11
5 32.81 30.15 32.59 33.14 33.03 32.09 31.52 32.59 30.22 33.13 33.83
6 40.30 34.46 39.18 38.97 39.08 37.71 37.53 38.82 35.41 39.93 39.71
7 35.93 33.62 36.30 36.07 35.44 35.15 34.66 36.28 33.93 36.49 36.87
8 32.83 30.88 33.00 33.71 33.69 32.34 31.85 32.78 30.68 33.58 34.08
9 36.99 34.07 37.56 38.34 37.29 36.55 35.80 37.18 34.50 38.34 38.78
10 39.84 37.50 41.16 42.07 41.21 41.14 38.92 41.47 38.82 42.62 42.43
11 41.27 38.10 41.11 41.11 39.80 39.81 37.88 40.58 38.18 42.02 42.01
12 38.60 33.07 37.72 38.00 37.85 37.09 35.56 37.71 34.68 38.26 38.44
13 35.02 32.12 34.70 34.75 34.28 33.39 32.80 34.80 31.89 36.32 35.59
14 34.32 31.97 36.03 37.15 36.48 35.63 34.17 35.92 33.25 37.37 37.93
15 37.69 35.13 37.74 38.47 38.02 37.39 36.64 38.15 35.68 38.94 39.07
16 39.07 37.23 39.78 40.65 40.12 38.94 38.60 39.96 36.63 40.85 41.27
17 41.91 37.03 42.31 42.19 42.38 41.33 39.53 41.55 38.52 43.22 42.75
18 38.68 36.09 38.83 39.21 38.59 37.97 36.26 38.65 36.08 39.98 39.74
19 38.66 35.77 38.56 38.38 37.85 37.47 36.83 38.65 36.10 39.75 39.34
20 38.18 34.73 38.57 38.77 38.75 37.28 36.66 37.47 35.79 39.43 39.54

Avg. 36.83] 33.96 36.94 37.27 36.92 36.13 35.31 (36.80 34.38 37.80 37.98

We also compared the CFAs using the structural similarity (SSIM) index [145] as a

5The conditional variance is directly related to the PSNR. If the MMSE estimate is used, the denominator
in Equation (4.9) corresponds to the conditional variance.
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quality metric. The average performance is shown in Table 4.4. The relative order remains

nearly the same as in the PSNR performance.

Table 4.4: Average SSIM performance of various CFAs on test images. The compared
CFAs are Bayer (B), Knop & Morf (KM), Lukac & Plataniotis (LP), Hirakawa & Wolfe
(HWA-HWD), Lu & Vetterli (LV), random (R), and the proposed patterns (PA, PB)-

B KM LP HWA HWB HWC HWD LV R PA PB
.9853 .9777 .9850 .9866 .9862 .9848 .9823 .9859 .9796 .9868 .9872

Finally, we present several reconstruction results demosaicked from each CFA in Fig-

ures 4.13-4.16, for the subjective evaluation. Per image, only an important portion has

been shown together with the error residual. Our learned CFAs provide better visual qual-

ity in comparison with others. For the Bayer pattern, we find that the MoG-based MMSE

performs relatively well, but the errors could be further reduced with some other alterna-

tive CFAs. For example, a small level of color fringing artifacts in Figure 4.16B could

successfully be suppressed in Figure 4.1 6 PA and 4.16PB-

4.7 Discussion

Many cameras use the Bayer pattern CFA and there has been much work on how to re-

construct from the Bayer mosaic. However, is Bayer the right thing to do? In this chapter,

we learned the color image prior for a natural scene and attempted to optimize the CFA

given the prior. We argued that the conditional entropy and conditional variance are good

criteria for the CFA design. Then, we proposed a greedy algorithm to find a CFA that

minimizes each criterion. We also provided a good universal demosaicking scheme based

on the learned prior. Finally, we validated by experiments that our learned CFAs enable

better reconstruction than Bayer and other existing CFAs (see the summarized results in

Figure 4.12).

Historically, there has been prior work on optimizing the CFA in terms of linear MMSE.

The approach is reasonable but not free from the criticism that it only optimizes a restrictive

(possibly not the right) criterion. The present work goes beyond that. It sought a truly
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Figure 4.12: Summary of the average PSNR performance of various CFAs on test images.

optimal CFA, with some restrictions on search space and algorithm, because of technical

feasibility, but not on the criterion itself.

In [148], Willet et al. invented a single-chip hyperspectral camera, where more than

three spectra per pixel are estimated from the sensor outputs. They used a hand-designed

Bayer-like pattern to build a spectral filter array. This is not within the scope of this study,

but our results suggest that a better spectral filter array may be learnable using the statistics

of target data and our proposed algorithm may be useful for such a generalized application

as well.
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E
Original B (33.80 dB) KM (31.64 dB)

IPA\

LP (31.39 dB)

HWA (32.72 dB) HWB (32.07 dB) HWC (32.80 dB) HWD (31.12 dB)

LV (31.47 dB) R (32.53 dB) PA (32.90 dB) PB (33.18 dB)

Figure 4.13: Reconstruction and error residual of a selected part from Image 1, for various
CFAs. The compared CFAs are Bayer (B), Knop & Morf (KM), Lukac & Plataniotis
(LP), Hirakawa & Wolfe (HWA-HWD), Lu & Vetterli (LV), random (R), and the proposed
patterns (PA, PB). For recovery, the MoG-based MMSE has been commonly used. Error
residual has been measured by reconstruction minus original, with zero displayed in mid-
gray. The PSNR score, assessed only on the selected part, is given in parenthesis.
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KM (32.28 dB) LP (35.69 dB)

HWA (33.86 dB) HWB (33.83 dB) HWc (33.21 dB) HWD (32.62 dB)

LV (34.33 dB) R (32.21 dB) PA (35.74 dB) PB (35.28 dB)

Figure 4.14: Reconstruction and error residual of a selected part from Image 4, for various
CFAs. The compared CFAs are Bayer (B), Knop & Morf (KM), Lukac & Plataniotis
(LP), Hirakawa & Wolfe (HWA-HWD), Lu & Vetterli (LV), random (R), and the proposed
patterns (PA, PB). For recovery, the MoG-based MMSE has been commonly used. Error
residual has been measured by reconstruction minus original, with zero displayed in mid-
gray. The PSNR score, assessed only on the selected part, is given in parenthesis.

135

Original B (34.83 dB)



U
Original B (28.86 dB) KM (27.13 dB) LP (28.91 dB)

HWA (29.90 dB) HWB (29.87 dB)

U
HWC (28.77 dB) HWD (28.16 dB)

LV (28.87 dB) R (26.61 dB) PA (29.69 dB) PB (30.41 dB)

Figure 4.15: Reconstruction and error residual of a selected part from Image 5, for various
CFAs. The compared CFAs are Bayer (B), Knop & Morf (KM), Lukac & Plataniotis
(LP), Hirakawa & Wolfe (HWA-HWD), Lu & Vetterli (LV), random (R), and the proposed
patterns (PA, PB). For recovery, the MoG-based MMSE has been commonly used. Error
residual has been measured by reconstruction minus original, with zero displayed in mid-
gray. The PSNR score, assessed only on the selected part, is given in parenthesis.
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Original B (35.65 dB)

HWA (41.23 dB) HWB (39.83 dB) HWc (40.76 dB) HWD (38.24 dB)

LV (39.99 dB) R (38.09 dB) PA (42.32 dB) PB (41.90 dB)

Figure 4.16: Reconstruction and error residual of a selected part from Image 10, for various
CFAs. The compared CFAs are Bayer (B), Knop & Morf (KM), Lukac & Plataniotis
(LP), Hirakawa & Wolfe (HWA-HWD), Lu & Vetterli (LV), random (R), and the proposed
patterns (PA, PB). For recovery, the MoG-based MMSE has been commonly used. Error
residual has been measured by reconstruction minus original, with zero displayed in mid-
gray. The PSNR score, assessed only on the selected part, is given in parenthesis.
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Chapter 5

Conclusions

The rationale for the classical theory of compressed sensing is that it is based on a good

model (i.e. sparsity) of the input signals. When the sparsity prior better describes the input

signals than limited bandwidth in Fourier domain, the signals can be recovered from sub-

Nyquist rate random projections. The same rationale applies to informative sensing. What

are the best projections if we have further accurate information (i.e., probability density)

which can distinguish input signals from the others of the same sparsity level? The goal of

this thesis was to answer this question, by providing a set of principles, analytical results,

and computational algorithms.

As the central principle, we proposed that the uncertainty of the hidden signal should be

minimized given the undercomplete projection. This is the view of Bayesian experimental

design and also of the InfoMax principle if Shannon's entropy is used to measure the un-

certainty. This formalism is generally applicable to any signals, not only to sparse ones, if

the prior density is well-defined.

In the analytical part, we focused on signals which have a sparse representation in an

orthonormal basis and managed to solve the InfoMax up to an approximation. The sparsity

model in an orthonormal basis is common in the compressed sensing literature. Thus,

we were really to see what we could tell, beyond the classical theory, about the optimal

measurement matrix. Our findings are summarized as follows:

1. If the coefficients of the sparsifying basis are i.i.d., random projections are asymptot-
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ically InfoMax optimal.

2. If the coefficients of the sparsifying basis are not i.i.d., InfoMax may produce instead

a novel set of projections. In general, the set can be approximately represented as

a combination of a certain number of PCA projections plus the remaining number

of projections restricted to multiplexing over a particular linear subspace. The op-

timal parameters (the number of PCA projections, the linear subspace over which

multiplexing is taken, etc.) are determined by a sort of water-filling.

Particularly if the coefficients are groupwise i.i.d., groupwise random projections with

nonuniform sampling rate per group are asymptotically InfoMax optimal. Such a group-

wise i.i.d. pattern roughly appears in natural images if the wavelet basis is partitioned into

groups according the scale. Consequently, we applied the groupwise random projections

to the sensing of natural images. In the presence of noise, we presented an algorithm to

optimally distribute power among the sensors within a given budget, which generalized

Linsker's result (on Gaussian signals) to non-Gaussian natural images.

In the last part of the thesis, we designed color filter arrays (CFAs) for the use in single-

chip digital cameras. The CFA-type sensing is notionally a special case of compressed

sensing, but the classical theory of compressed sensing is hard to apply because the feasible

measurement matrices are constrained by physical nature. Informative sensing was still

applicable. We showed how to learn a CFA that minimizes the uncertainty of the missing

color components, given the measured ones.

Throughout all the parts, we provided experimental results that the "informative" pro-

jections consistently outperform others in signal reconstruction. We also found a few theo-

retical connections to the existing approaches in the literature of compressed sensing, some

of which had remained heuristic.

In summary, we gave some analytical results and algorithms on specific signal models

and on specific applications, but a number of other issues still remain unexplored. For

example, the groupwise i.i.d. prior may not be the best model for natural images, while

being better than the simple sparsity or limited bandwidth prior. Perhaps the dependencies

among wavelet coefficients in the local neighborhood or along the tree hierarchy may be
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further exploited.

Needless to say, recovery is very important in the whole system. Informative sensing

itself did not assume any specific recovery scheme, but the maximal effects were attainable

with a good recovery scheme based on accurate priors. The efficient computation of the

MMSE estimate, one of the emerging research trends in compressed sensing, is where we

also need future research for informative sensing.
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Appendix A

Generalized Gaussian Distribution

The generalized Gaussian density is a family of probability density functions (pdfs) param-

eterized by

(A.1)p(x) = Iex/crz

if the random variable x is normalized to have zero-mean and unit-variance. In (A. 1), C

and Z are functions of r, each given by C = (/r) and Z = 2(1/r rspectively.
V(/r rN F(3/r) repcily

The generalized Gaussian includes several well-known pdfs in its family: Gaussian with

r=0.51

lo" -r=2

i 10-

10-
-5 0 50 0. 1 1. 2 25 3

x r

Figure A.1: Generalized Gaussian distribution. Left: probability density function (in log
scale), Right: entropy as a function of the shape parameter r.

r = 2, Laplacian with r = 1, uniform with r -> oc, degenerated delta function with r a 0.
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Generally, as r decreases, the distribution becomes more heavy-tailed (see Figure A. 1, left).

The entropy is known to be

1 1(r 2 (g Nh(x) = E [- logp(x)] = log r , (A.2)
r 2 (4F3()

which rapidly increases with r if r < 2; peaks at r = 2; and then slowly decreases (see

Figure A. 1, right).
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