2,380 research outputs found

    Reputation and credit based incentive mechanism for data-centric message delivery in delay tolerant networks

    Get PDF
    In a Data-centric Delay Tolerant Networks (DTNs), it is essential for nodes to cooperate in message forwarding in order to enable successful delivery of a message in an opportunistic fashion with nodes having their social interests defined. In the data-centric dissemination protocol proposed here, a source annotates messages (images) with keywords, and then intermediate nodes are presented with an option of adding keyword-based annotations in order to create higher content strength messages on path toward the destination. Hence, contents like images get enriched as there is situation evolution or learned by these intermediate nodes, such as in a battlefield, or in a disaster situation. Nodes might turn selfish and not participate in relaying messages due to relative scarcity of battery and storage capacity in mobile devices. Therefore, in addition to content enrichment, an incentive mechanism is proposed in this thesis which considers factors like message quality, battery usage, level of interests, etc. for the calculation of incentives. Moreover, with the goal of preventing the nodes from turning malicious by adding inappropriate message tags in the quest of acquiring more incentive, a distributed reputation model (DRM) is developed and consolidated with the proposed incentive scheme. DRM takes into account inputs from multiple users like ratings for the relevance of annotations in the message, message quality, etc. The proposed scheme safeguards the network from congestion due to uncooperative or selfish nodes in the system. The performance evaluation shows that our approach delivers more high priority and high quality messages while reducing traffic at a slightly lower message delivery ratio compared to ChitChat --Abstract, page iv

    PROTECT: Proximity-based Trust-advisor using Encounters for Mobile Societies

    Full text link
    Many interactions between network users rely on trust, which is becoming particularly important given the security breaches in the Internet today. These problems are further exacerbated by the dynamics in wireless mobile networks. In this paper we address the issue of trust advisory and establishment in mobile networks, with application to ad hoc networks, including DTNs. We utilize encounters in mobile societies in novel ways, noticing that mobility provides opportunities to build proximity, location and similarity based trust. Four new trust advisor filters are introduced - including encounter frequency, duration, behavior vectors and behavior matrices - and evaluated over an extensive set of real-world traces collected from a major university. Two sets of statistical analyses are performed; the first examines the underlying encounter relationships in mobile societies, and the second evaluates DTN routing in mobile peer-to-peer networks using trust and selfishness models. We find that for the analyzed trace, trust filters are stable in terms of growth with time (3 filters have close to 90% overlap of users over a period of 9 weeks) and the results produced by different filters are noticeably different. In our analysis for trust and selfishness model, our trust filters largely undo the effect of selfishness on the unreachability in a network. Thus improving the connectivity in a network with selfish nodes. We hope that our initial promising results open the door for further research on proximity-based trust

    The Quest for a Killer App for Opportunistic and Delay Tolerant Networks (Invited Paper)

    Get PDF
    Delay Tolerant Networking (DTN) has attracted a lot of attention from the research community in recent years. Much work have been done regarding network architectures and algorithms for routing and forwarding in such networks. At the same time as many show enthusiasm for this exciting new research area there are also many sceptics, who question the usefulness of research in this area. In the past, we have seen other research areas become over-hyped and later die out as there was no killer app for them that made them useful in real scenarios. Real deployments of DTN systems have so far mostly been limited to a few niche scenarios, where they have been done as proof-of-concept ļ¬eld tests in research projects. In this paper, we embark upon a quest to ļ¬nd out what characterizes a potential killer applications for DTNs. Are there applications and situations where DTNs provide services that could not be achieved otherwise, or have potential to do it in a better way than other techniques? Further, we highlight some of the main challenges that needs to be solved to realize these applications and make DTNs a part of the mainstream network landscape

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    Architectures for the Future Networks and the Next Generation Internet: A Survey

    Get PDF
    Networking research funding agencies in the USA, Europe, Japan, and other countries are encouraging research on revolutionary networking architectures that may or may not be bound by the restrictions of the current TCP/IP based Internet. We present a comprehensive survey of such research projects and activities. The topics covered include various testbeds for experimentations for new architectures, new security mechanisms, content delivery mechanisms, management and control frameworks, service architectures, and routing mechanisms. Delay/Disruption tolerant networks, which allow communications even when complete end-to-end path is not available, are also discussed

    A Taxonomy on Misbehaving Nodes in Delay Tolerant Networks

    Get PDF
    Delay Tolerant Networks (DTNs) are type of Intermittently Connected Networks (ICNs) featured by long delay, intermittent connectivity, asymmetric data rates and high error rates. DTNs have been primarily developed for InterPlanetary Networks (IPNs), however, have shown promising potential in challenged networks i.e. DakNet, ZebraNet, KioskNet and WiderNet. Due to unique nature of intermittent connectivity and long delay, DTNs face challenges in routing, key management, privacy, fragmentation and misbehaving nodes. Here, misbehaving nodes i.e. malicious and selfish nodes launch various attacks including flood, packet drop and fake packets attack, inevitably overuse scarce resources (e.g., buffer and bandwidth) in DTNs. The focus of this survey is on a review of misbehaving node attacks, and detection algorithms. We firstly classify various of attacks depending on the type of misbehaving nodes. Then, detection algorithms for these misbehaving nodes are categorized depending on preventive and detective based features. The panoramic view on misbehaving nodes and detection algorithms are further analyzed, evaluated mathematically through a number of performance metrics. Future directions guiding this topic are also presented
    • ā€¦
    corecore