2,313 research outputs found

    Evaluation of the Overheight Detection System Effectiveness at Eklutna Bridge

    Get PDF
    The Eklutna River/Glenn Highway bridge has sustained repeated impacts from overheight trucks. In 2006, ADOT&PF installed an overheight vehicle warning system. The system includes laser detectors, alarms, and message boards. Since installation, personnel have seen no new damage, and no sign that the alarm system has been triggered. Although this is good news, the particulars are a mystery: Is the system working? Is the presence of the equipment enough to deter drivers from gambling with a vehicle that might be over the height limit? Is it worth installing similar systems at other overpasses? This project is examining the bridge for any evidence of damage, and is fitting the system with a datalogger to record and video any events that trigger the warning system. Finally, just to be sure, researchers will test the system with (officially) overheight vehicles. Project results will help ADOT&PF determine if this system is functioning, and if a similar system installed at other bridges would be cost-effective.Fairbanks North Star Boroug

    A Feasibility Study on Embedded Micro-Electromechanical Sensors and Systems (MEMS) for Monitoring Highway Structures

    Get PDF
    Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term, continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized

    Wireless magnetic sensor network for road traffic monitoring and vehicle classification

    Get PDF
    Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification

    Real-Time Vehicle Classification System Using a Single Magnetometer

    Get PDF
    Vehicle count and classification data are very important inputs for intelligent transportation systems (ITS). Magnetic sensor-based technology provides a very promising solution for the measurement of different traffic parameters. In this work, a novel, real-time vehicle detection and classification system is presented using a single magnetometer. The detection, feature extraction, and classification are performed online, so there is no need for external equipment to conduct the necessary computation. Data acquisition was performed in a real environment using a unit installed into the surface of the pavement. A very large number of samples were collected containing measurements of various vehicle classes, which were applied for the training and the validation of the proposed algorithm. To explore the capabilities of magnetometers, nine defined vehicle classes were applied, which is much higher than in relevant methods. The classification is performed using three-layer feedforward artificial neural networks (ANN). Only time-domain analysis was performed on the waveforms using multiple novel feature extraction approaches. The applied time-domain features require low computation and memory resources, which enables easier implementation and real-time operation. Various combinations of used sensor axes were also examined to reduce the size of the classifier and to increase efficiency. The effect of the detection length, which is a widely used feature, but also speed-dependent, on the proposed system was also investigated to explore the suitability of the applied feature set. The results show that the highest achieved classification efficiencies on unknown samples are 74.67% with, and 73.73% without applying the detection length in the feature set

    Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey

    Full text link
    A traffic monitoring system is an integral part of Intelligent Transportation Systems (ITS). It is one of the critical transportation infrastructures that transportation agencies invest a huge amount of money to collect and analyze the traffic data to better utilize the roadway systems, improve the safety of transportation, and establish future transportation plans. With recent advances in MEMS, machine learning, and wireless communication technologies, numerous innovative traffic monitoring systems have been developed. In this article, we present a review of state-of-the-art traffic monitoring systems focusing on the major functionality--vehicle classification. We organize various vehicle classification systems, examine research issues and technical challenges, and discuss hardware/software design, deployment experience, and system performance of vehicle classification systems. Finally, we discuss a number of critical open problems and future research directions in an aim to provide valuable resources to academia, industry, and government agencies for selecting appropriate technologies for their traffic monitoring applications.Comment: Published in IEEE Acces

    The State-of-the-Art Review on Applications of Intrusive Sensing, Image Processing Techniques, and Machine Learning Methods in Pavement Monitoring and Analysis

    Get PDF
    In modern transportation, pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians. Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users. Therefore, monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance, which in turn ensures public transportation safety. Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions. Advanced technologies can be employed for the collection and analysis of such data, including various intrusive sensing techniques, image processing techniques, and machine learning methods. This review summarizes the state-of-the-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches

    A Survey and Comparison of Low-Cost Sensing Technologies for Road Traffic Monitoring

    Get PDF
    Abstract This paper reviews low-cost vehicle and pedestrian detection methods and compares their accuracy. The main goal of this survey is to summarize the progress achieved to date and to help identify the sensing technologies that provide high detection accuracy and meet requirements related to cost and ease of installation. Special attention is paid to wireless battery-powered detectors of small dimensions that can be quickly and effortlessly installed alongside traffic lanes (on the side of a road or on a curb) without any additional supporting structures. The comparison of detection methods presented in this paper is based on results of experiments that were conducted with a variety of sensors in a wide range of configurations. During experiments various sensor sets were analyzed. It was shown that the detection accuracy can be significantly improved by fusing data from appropriately selected set of sensors. The experimental results reveal that accurate vehicle detection can be achieved by using sets of passive sensors. Application of active sensors was necessary to obtain satisfactory results in case of pedestrian detection

    Review on smartphone sensing technology for structural health monitoring

    Get PDF
    Sensing is a critical and inevitable sector of structural health monitoring (SHM). Recently, smartphone sensing technology has become an emerging, affordable, and effective system for SHM and other engineering fields. This is because a modern smartphone is equipped with various built-in sensors and technologies, especially a triaxial accelerometer, gyroscope, global positioning system, high-resolution cameras, and wireless data communications under the internet-of-things paradigm, which are suitable for vibration- and vision-based SHM applications. This article presents a state-of-the-art review on recent research progress of smartphone-based SHM. Although there are some short reviews on this topic, the major contribution of this article is to exclusively present a compre- hensive survey of recent practices of smartphone sensors to health monitoring of civil structures from the per- spectives of measurement techniques, third-party apps developed in Android and iOS, and various application domains. Findings of this article provide thorough understanding of the main ideas and recent SHM studies on smartphone sensing technology

    Structural health monitoring of asphalt pavements using smart sensor networks: A comprehensive review

    Get PDF
    Abstract Early, effective and continuous monitoring allows to reduce costs and to extend life of road infrastructure. For this reason, over the years, more and more efforts have been made to implement more advanced and effective monitoring systems at ever more contained costs, going from impractical manual and destructive methods through automated in vehicle equipment to the most recent wireless sensor network (WSN) embedded into the pavement. The purpose of this paper is to provide a comprehensive, up-to-date critical literature review of wireless sensor networks for pavement health monitoring, considering, also, the experience gained for wired sensor as fundamental point of reference. This work presents both the methodology used to collect and analyse the current bibliography and provides a description and comments fundamental characteristics of wireless sensor networks for pavement monitoring for damage detection purposes, among which energy supply, the detection method, the hardware and network architecture and the performance validation procedures. A brief analysis of other possible complementary applications of smart sensor networks, such as traffic and surface condition monitoring, is provided. Finally, a comment is provided on the gaps and possible directions that future research could follow to allow the extensive use of wireless sensor networks for pavement health condition monitoring
    corecore