44 research outputs found

    Decomposable Principal Component Analysis

    Full text link
    We consider principal component analysis (PCA) in decomposable Gaussian graphical models. We exploit the prior information in these models in order to distribute its computation. For this purpose, we reformulate the problem in the sparse inverse covariance (concentration) domain and solve the global eigenvalue problem using a sequence of local eigenvalue problems in each of the cliques of the decomposable graph. We demonstrate the application of our methodology in the context of decentralized anomaly detection in the Abilene backbone network. Based on the topology of the network, we propose an approximate statistical graphical model and distribute the computation of PCA

    Effective And Efficient Approach for Detecting Outliers

    Get PDF
    Now a days in machine learning research anomaly detection is the main topic. Anomaly detection is the process of identifying unusual behavior. It is widely used in data mining, for example, medical informatics, computer vision, computer security, sensor networks. Statistical approach aims to find the outliers which deviate from such distributions. Most distribution models are assumed univariate, and thus the lack of robustness for multidimensional data. We proposed an online and conditional anomaly detection method based on oversample PCA osPCA with LOO strategy will amplify the effect of outliers. We can successfully use the variation of the dominant principal direction to identify the presence of rare but abnormal data, for conditional anomaly detection expectation-maximization algorithms for learning the model is used. Our approach is reducing computational costs and memory requirements

    A GAN Approach for Anomaly Detection in Spacecraft Telemetries

    Get PDF
    In spacecraft health management a large number of time series is acquired and used for on-board units surveillance and for historical data analysis. The early detection of abnormal behaviors in telemetry data can prevent failures in the spacecraft equipment. In this paper we present an advanced monitoring system that was carried out in partnership with Thales Alenia Space Italia S.p.A, a leading industry in the field of spacecraft manufacturing. In particular, we developed an anomaly detection algorithm based on Generative Adversarial Networks, that thanks to their ability to model arbitrary distributions in high dimensional spaces, allow to capture complex anomalies avoiding the burden of hand crafted feature extraction. We applied this method to detect anomalies in telemetry data collected from a simulator of a Low Earth Orbit satellite. One of the strengths of the proposed approach is that it does not require any previous knowledge on the signal. This is particular useful in the context of anomaly detection where we do not have a model of the anomaly. Hence the only assumption we made is that an anomaly is a pattern that lives in a lower probability region of the data space

    An initial approach to distributed adaptive fault-handling in networked systems

    Get PDF
    We present a distributed adaptive fault-handling algorithm applied in networked systems. The probabilistic approach that we use makes the proposed method capable of adaptively detect and localize network faults by the use of simple end-to-end test transactions. Our method operates in a fully distributed manner, such that each network element detects faults using locally extracted information as input. This allows for a fast autonomous adaption to local network conditions in real-time, with significantly reduced need for manual configuration of algorithm parameters. Initial results from a small synthetically generated network indicate that satisfactory algorithm performance can be achieved, with respect to the number of detected and localized faults, detection time and false alarm rate

    Opracowywanie metody wykrywania zachowania komputerowego w zakresie automatyki probabilistycznej

    Get PDF
    This work proposes anomalous computer system behavior detection method based on probabilistic automaton. Main components of the method are automaton structure generation model and its modification procedure. The distinctive feature of the method is the adaptation of the automaton structure generation procedure for detecting attack scenarios of the same type, by restructuring the automaton upon a match and by recalculating the probability of state changes. Proposed method allows to speed up the detection of anomalous computer behavior, as well as to detect anomalies in computer systems, scenario profiles of which only partially match the instances used to generate automaton structure. The obtained results allow us to conclude that the developed meth-od can be used in heuristic analyzers of anomaly detection systems

    Structural Analysis of Network Traffic Matrix via Relaxed Principal Component Pursuit

    Full text link
    The network traffic matrix is widely used in network operation and management. It is therefore of crucial importance to analyze the components and the structure of the network traffic matrix, for which several mathematical approaches such as Principal Component Analysis (PCA) were proposed. In this paper, we first argue that PCA performs poorly for analyzing traffic matrix that is polluted by large volume anomalies, and then propose a new decomposition model for the network traffic matrix. According to this model, we carry out the structural analysis by decomposing the network traffic matrix into three sub-matrices, namely, the deterministic traffic, the anomaly traffic and the noise traffic matrix, which is similar to the Robust Principal Component Analysis (RPCA) problem previously studied in [13]. Based on the Relaxed Principal Component Pursuit (Relaxed PCP) method and the Accelerated Proximal Gradient (APG) algorithm, we present an iterative approach for decomposing a traffic matrix, and demonstrate its efficiency and flexibility by experimental results. Finally, we further discuss several features of the deterministic and noise traffic. Our study develops a novel method for the problem of structural analysis of the traffic matrix, which is robust against pollution of large volume anomalies.Comment: Accepted to Elsevier Computer Network

    Effective anomaly detection in sensor networks data streams

    Get PDF
    This paper addresses a major challenge in data mining applications where the full information about the underlying processes, such as sensor networks or large online database, cannot be practically obtained due to physical limitations such as low bandwidth or memory, storage, or computing power. Motivated by the recent theory on direct information sampling called compressed sensing (CS), we propose a framework for detecting anomalies from these largescale data mining applications where the full information is not practically possible to obtain. Exploiting the fact that the intrinsic dimension of the data in these applications are typically small relative to the raw dimension and the fact that compressed sensing is capable of capturing most information with few measurements, our work show that spectral methods that used for volume anomaly detection can be directly applied to the CS data with guarantee on performance. Our theoretical contributions are supported by extensive experimental results on large datasets which show satisfactory performance.<br /
    corecore