We consider principal component analysis (PCA) in decomposable Gaussian
graphical models. We exploit the prior information in these models in order to
distribute its computation. For this purpose, we reformulate the problem in the
sparse inverse covariance (concentration) domain and solve the global
eigenvalue problem using a sequence of local eigenvalue problems in each of the
cliques of the decomposable graph. We demonstrate the application of our
methodology in the context of decentralized anomaly detection in the Abilene
backbone network. Based on the topology of the network, we propose an
approximate statistical graphical model and distribute the computation of PCA