4,322 research outputs found

    Towards Distributed and Adaptive Detection and Localisation of Network Faults

    Get PDF
    We present a statistical probing-approach to distributed fault-detection in networked systems, based on autonomous configuration of algorithm parameters. Statistical modelling is used for detection and localisation of network faults. A detected fault is isolated to a node or link by collaborative fault-localisation. From local measurements obtained through probing between nodes, probe response delay and packet drop are modelled via parameter estimation for each link. Estimated model parameters are used for autonomous configuration of algorithm parameters, related to probe intervals and detection mechanisms. Expected fault-detection performance is formulated as a cost instead of specific parameter values, significantly reducing configuration efforts in a distributed system. The benefit offered by using our algorithm is fault-detection with increased certainty based on local measurements, compared to other methods not taking observed network conditions into account. We investigate the algorithm performance for varying user parameters and failure conditions. The simulation results indicate that more than 95 % of the generated faults can be detected with few false alarms. At least 80 % of the link faults and 65 % of the node faults are correctly localised. The performance can be improved by parameter adjustments and by using alternative paths for communication of algorithm control messages

    Rigorous statistical detection and characterization of a deviation from the Gutenberg-Richter distribution above magnitude 8 in subduction zones

    Full text link
    We present a quantitative statistical test for the presence of a crossover c0 in the Gutenberg-Richter distribution of earthquake seismic moments, separating the usual power law regime for seismic moments less than c0 from another faster decaying regime beyond c0. Our method is based on the transformation of the ordered sample of seismic moments into a series with uniform distribution under condition of no crossover. The bootstrap method allows us to estimate the statistical significance of the null hypothesis H0 of an absence of crossover (c0=infinity). When H0 is rejected, we estimate the crossover c0 using two different competing models for the second regime beyond c0 and the bootstrap method. For the catalog obtained by aggregating 14 subduction zones of the Circum Pacific Seismic Belt, our estimate of the crossover point is log(c0) =28.14 +- 0.40 (c0 in dyne-cm), corresponding to a crossover magnitude mW=8.1 +- 0.3. For separate subduction zones, the corresponding estimates are much more uncertain, so that the null hypothesis of an identical crossover for all subduction zones cannot be rejected. Such a large value of the crossover magnitude makes it difficult to associate it directly with a seismogenic thickness as proposed by many different authors in the past. Our measure of c0 may substantiate the concept that the localization of strong shear deformation could propagate significantly in the lower crust and upper mantle, thus increasing the effective size beyond which one should expect a change of regime.Comment: pdf document of 40 pages including 5 tables and 19 figure

    Localized quantum walks as secured quantum memory

    Full text link
    We show that a quantum walk process can be used to construct and secure quantum memory. More precisely, we show that a localized quantum walk with temporal disorder can be engineered to store the information of a single, unknown qubit on a compact position space and faithfully recover it on demand. Since the localization occurss with a finite spread in position space, the stored information of the qubit will be naturally secured from the simple eavesdropper. Our protocol can be adopted to any quantum system for which experimental control over quantum walk dynamics can be achieved.Comment: 7 pages, 4 figure

    Fault localization based only on failed runs

    Get PDF
    Fault localization commonly relies on both passed and failed runs, but passed runs are generally susceptible to coincidental correctness and modern software automatically produces a huge number of bug reports on failed runs. FOnly is an effective new technique that relies only on failed runs to locate faults statistically. © 2012 IEEE.published_or_final_versio

    Robust Trapped-Ion Quantum Logic Gates by Continuous Dynamical Decoupling

    Get PDF
    We introduce a novel scheme that combines phonon-mediated quantum logic gates in trapped ions with the benefits of continuous dynamical decoupling. We demonstrate theoretically that a strong driving of the qubit decouples it from external magnetic-field noise, enhancing the fidelity of two-qubit quantum gates. Moreover, the scheme does not require ground-state cooling, and is inherently robust to undesired ac-Stark shifts. The underlying mechanism can be extended to a variety of other systems where a strong driving protects the quantum coherence of the qubits without compromising the two-qubit couplings.Comment: Slightly longer than the published versio

    Mid-ocean ridge exploration with an autonomous underwater vehicle

    Get PDF
    Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 4 (2007): 52-61.Human-occupied submersibles, towed vehicles, and tethered remotely operated vehicles (ROVs) have traditionally been used to study the deep seafloor. In recent years, however, autonomous underwater vehicles (AUVs) have begun to replace these other vehicles for mapping and survey missions. AUVs complement the capabilities of these pre-existing systems, offering superior mapping capabilities, improved logistics, and better utilization of the surface support vessel by allowing other tasks such as submersible operations, ROV work, CTD stations, or multibeam surveys to be performed while the AUV does its work. AUVs are particularly well suited to systematic preplanned surveys using sonars, in situ chemical sensors, and cameras in the rugged deep-sea terrain that has been the focus of numerous scientific expeditions (e.g., those to mid-ocean ridges and ocean margin settings). The Autonomous Benthic Explorer (ABE) is an example of an AUV that has been used for over 20 cruises sponsored by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA) Office of Ocean Exploration (OE), and international and private sources. This paper summarizes NOAA OE-sponsored cruises made to date using ABE
    • …
    corecore