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niques commonly rely on a combination of passed and 
failed runs. However, a passed run may activate a fault 
but not reveal a failure. Furthermore, many systems today 
can detect failures automatically and produce a massive 
number of useful bug reports on failed runs. We propose 
FOnly, an effective technique that innovatively relies only 
on failed runs to locate faults statistically.

STATE OF THE PRACTICE
Researchers have developed many novel fault- 

localization techniques during the past two decades. To 
compare these techniques’ applicability, we categorized 
them according to whether they were originally designed 
to use passed runs and/or failed runs to locate faults, and, 
if they were, we identified the respective numbers of such 
runs. We limited the classification to approaches that 
locate faults in the source code. By so doing, we excluded 
techniques such as delta debugging3 and semi-proving4 
that only reveal the suspicious region of a program’s fail-
ure-causing inputs, as well as techniques that suppress or 
detect failures, such as Eraser.5

Table 1 summarizes the categorization. The two left-
most columns indicate the numbers of passed and failed 
runs. The third column lists an early representative pro-
ject for each category. The last column shows a recent 
project for each category presented at a top-notch venue 
by researchers affiliated with Asian institutes.

Coincidental correctness
The use of passed runs, irrespective of the number of 

instances, is generally susceptible to coincidental correct-

P rogram testing and debugging generally consume 
50 percent or more of the costs of typical soft-
ware development projects.1 Software engineers 
spend about 35 percent of their time debugging 

programs, and deploy software knowing that it still con-
tains faults.2

When an execution of a faulty program passes through 
a fault, it may result in an error in the internal program 
states. The program run generally executes other program 
statements as well, which might propagate the error to 
other internal program states. If such program statements 
produce observable effects, the run will cause a visible 
failure.

Once they observe failures, software engineers schedule 
program debugging to locate the faults, fix them, and con-
firm their removal. However, debugging is still laborious, 
and fault localization is commonly considered its most 
difficult component.

Recent research in Asia has significantly advanced 
automatic fault localization. State-of-the-practice tech-

Fault localization commonly relies on both 
passed and failed runs, but passed runs 
are generally susceptible to coincidental 
correctness and modern software auto-
matically produces a huge number of bug 
reports on failed runs. FOnly is an effective 
new technique that relies only on failed 
runs to locate faults statistically.
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ness, in which a run activates a fault but does not result in 
a failure. Approaches such as set differencing, similarity 
correlation, and sequence similarity do not eliminate varia-
tions among sets of program statements that are common 
to passed and failed runs. Consequently, early algorithms 
like chislice,6 nearest neighbor,7 and Tarantula8 cannot 
reliably locate faults if the passed runs suffer from coinci-
dental correctness. Recent Asian research has attempted 
to address this problem.

CP9 is a technique that locates faulty blocks in Unix 
utilities in C by computing the transition frequency 
among basic blocks in a run and backwardly propagat-
ing the fault-failure correlations measured by similarity 
coefficients along the edges of the program’s control-
flow graph so that the code delivering a fault receives a 
higher rank.

Hong Cheng and colleagues10 localized faults in C util-
ity programs by analyzing the most discriminative graph 
patterns in a bug report.

Diptikalyan Saha and coauthors11 identified faulty pro-
gram slices in SAP systems in the ABAP language by taking 
program loops in a failed run that constructs database que-
ries as starting points of individual slices, and splitting the 
single failed run into several such slices, some of which are 
associated with correct database records and deemed as 
“passed.” However, the passed runs thus generated might 
still be coincidentally correct.

Additional discussion about coincidental correctness in 
debugging can be found elsewhere.12

Eliminating passed runs
Another way to address the issue of coincidental cor-

rectness is to completely abandon the use of passed runs. 
Static analyzers like FindBugs13 require neither passed nor 
failed runs. They may, however, produce warnings even 
if the programs are correct, necessitating additional runs 
to confirm such warnings. When only one single failed 
run is available, early techniques like dynamic program  
slicing14 could produce a set of statements per run. Debug-
gers similar to Tarantula, such as Ochiai,15 can also be 
used without any passed runs. The problem is that such 
brute-force applications are mostly ineffective in fault 
localization.

To the best of our knowledge, there has been little re-
search on effectively locating faults with one or multiple 
failed runs and without support from passed runs. In the 
past, using many failed runs without any passed run was 
deemed unrealistic because, when testing a program, a 
large proportion of runs were expected to reveal no failure. 
However, emerging dynamic (concurrency) bug detectors 
can monitor runs on the fly and report failures. Based on 
the bug reports, researchers can use execution synthesis 
to reproduce failed runs.

DEBUGGING BASED ON FAILURES ONLY
Modern software often has the built-in facility to 

detect failures and report them to the original vendor 
through the Web. Software debuggers are thus faced 
with a huge number of automatic bug reports. It would be  

Table 1. Categories of fault-localization techniques for program debugging.

No. of 
passed 

runs

No. of 
failed 
runs Early representative example Recent example project in Asia

0 0 FindBugs (OOPSLA 2004)
Approach: pattern matching with static analysis
Application: locates bug patterns in Java lib/desktop/server  
    programs

N/A

0 1 Dynamic program slicing (PLDI 1990)
Approach: slicing
Application: locates faulty slices, without limit in program  
    type

Saha et al. (India and USA—FSE 2011)
Approach: key-based slicing and semantic differencing   
    among traces
Application: locates faulty slices in SAP systems in the ABAP  
    language

0 Many N/A FOnly (China and Hong Kong)
Approach: trend estimation
Application: locates faulty statements in C utility programs

1 1 Chislice (ISSRE 1995)
Approach: set differencing
Application: locates faulty slices in C algorithms

N/A

Many 1 Nearest neighbor (ASE 2003)
Approach: sequence similarity
Application: locates faulty statements in C utility programs

Cheng et al. (Hong Kong, Singapore, China, and US—ISSTA  
    2009)
Approach: control-flow subgraphs as bug signatures
Application: locates faulty methods/blocks in C utility  
    programs

Many Many Tarantula (ICSE 2002)
Approach: similarity correlation
Application: locates faulty statements in language inter- 
    preter programs in C

CP (Hong Kong—FSE 2009)
Approach: propagation of fault-failure correlation
Application: locates faulty blocks in Unix utilities in C
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time-consuming for debuggers to generate a similar 
number of passed runs to compare with the given failed 
runs. This creates a strong incentive for fault-localization 
techniques that make good use of failure information only.

We propose FOnly based on the following fault hypoth-
esis. Consider a particular run of a faulty program. The 
more times that the run goes through a faulty program 
entity such as a statement, the more likely it will consis-
tently lead to failure. If such a trend cannot be observed 
among the failed runs with respect to another program 
entity, the latter entity is less likely to be at fault.

Trend estimation, a popular statistical technique, lies at 
the heart of FOnly. A simple but effective means of trend 

estimation is to find a regression line 
using the least-squares fitting process. 
Such a line reveals the tendencies in the 
samples.

Based on samples of the numbers of 
times that different failed runs go through 
the same program entity, FOnly finds a 
regression line that minimizes the fitting 
error. It then uses the slope of the regres-
sion line and the value of the fitting error 
to compute a signal-to-noise ratio,16 which 
represents an estimate of that program 
entity’s fault relevance. Program enti-
ties with higher signal-to-noise ratios are 
deemed to be more fault-relevant.

APPLYING THE FAULT 
HYPOTHESIS

Let us use an example to illustrate how 
FOnly applies the fault hypothesis to per-
form trend estimation to locate faults. 

Figure 1a shows two code fragments 
from a faulty program known as replace 
from the Software-artifact Infrastructure 
Repository (SIR).17 The upper fragment 
(lines L115 to L124) shows an if-statement 
that evaluates a compound Boolean 
expression consisting of a character-
checking function (L115) and a boundary 
condition (L117). If the Boolean expression 
is evaluated as true, the function addstr 
will modify the variable dest (L121);  
otherwise, dest will remain unchanged. 
The lower fragment (L495 to L502) out-
puts the characters.

In the upper fragment, the if-statement 
(L115) is faulty because an operand of the 
expected version of the Boolean expres-
sion is missing (shown in L116). Note that 
the faulty statement is more likely to be 
evaluated as true than the correct version, 

so an execution has a higher chance of going through L121 
than the correct version. Consequently, the variable dest 
may contain an erroneous value. At the same time, the 
faulty statement (L115) may produce a result different from 
its expected version only when the missing function call to 
isalnum() returns false, which in turn depends partially 
on its input parameter src. Because it is generally difficult 
to predict string content statically, the probability of the 
faulty statement producing an incorrect decision value is 
hard to know.

We executed the faulty program over each of the 
5,542 test cases supplied by SIR.17 For every statement, 
we recorded its execution count c with respect to each 
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Figure 1. Applying the fault hypothesis to perform trend estimation. (a) Two 
code fragments from a faulty program. L121 is closer than L497 and L500 to 
the faulty statement, L115, in terms of the number of lines of code. (b) Plots 
of the failure rate versus the execution count for the four statements. As 
the execution count increases, the failure rates for L115 and L121 increase 
faster than those for L497 and L500.

L115  if ((isalnum(src[*i - 1]))
L116       /* missing code “&& (isalnum(src[*i + 1]))” */
L117       && (src[*i - 1] <= src[*i + 1]))
L118  {
L119       for (k = src[*i-1]+1; k<=src[*i+1]; k++)
L120       {
L121           junk = addstr(k, dest, j, maxset);
L122       }
L123       *i = *i + 1;
L124  }

L495   if ((m >= 0) && (lastm != m)) {
L496       putsub(lin, i, m, sub);
L497       lastm = m;
L498   }
L499   if ((m == -1) || (m == i)) {
L500       fputc(lin[i],stdout);
L501       i = i + 1;
L502   }
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program run. For every value c0 of an ex-
ecution count, we tallied the number of 
program runs N(c) having a count c = c0 
and calculated the failure rate, which is 
the fraction of failed runs among the N(c) 
runs.

A comparison of L115 with L121, L497, 
and L500 indicates that L121 is closest to 
the faulty statement in terms of the number 
of lines of code (LOC). L121 is indeed suspi-
cious because it may modify the variable 
dest wrongly. At the same time, we in-
spected the source code to ensure that the 
fault is not related to the logic in L497 or 
L500.

We plotted the failure rate against the 
execution count for each of these four 
statements and fitted the points using a re-
gression line with the least-squares error 
among the data points. Figure 1b shows the 
results. Note that as the execution count in-
creases, the failure rates for L115 and L121 
increase faster than those for L497 and 
L500. Fault-irrelevant statements (such as 
L497 and L500) thus appear to have gen-
tler slopes. For L500, the statement least 
related to the fault, the change in failure 
rate with respect to execution count is least 
observable.

However, this simple regression line 
estimation has not considered line-fitting 
errors. It also requires information on both 
passed and failed runs. FOnly addresses 
both of these issues, as detailed in the next 
section.

HOW FONLY WORKS
Consider a program modeled by a list of program entities 

such as statements. Given a collection of execution results 
of the program, known as the set of program runs, FOnly 
conducts fault localization by comparing the suspicious-
ness of each program entity, measured by its failure trend 
in the set of program runs. Figure 2 illustrates the process, 
which consists of four phases: partitioning, calibration, line 
fitting, and elimination.

Partitioning phase
Given any program entity, such as a statement, FOnly 

divides the set of program runs into disjoint partitions. 
Every partition contains all the runs such that each run 
goes through the entity exactly the same number of times 
(say, c times). FOnly further computes the proportion of 
failed runs in each partition, referred to as the failure rate 
F(c).

Calibration phase
For a given program entity s, F(0) denotes the failure rate 

of the partition in which none of the program runs ever go 
through s. If all the runs in the partition have never gone 
through s, the latter should not be related to any failure. 
Hence, if F(0) for s happens to not be 0, it should be reset 
to 0. Likewise, all other partitions for the same s might 
have overestimated failure rates. As such, FOnly computes 
a calibrated failure rate G(c) = F(c) – F(0), which aims to 
capture a more accurate estimate of the probability that 
going through the program entity exactly c times leads to 
a failure.

Line-fitting phase
Based on the calibrated failure rates, FOnly estimates 

the failure trend for each program entity in the fitting 
phase. For any given entity, by pairing up every c with 
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Figure 2. FOnly uses a four-phase process to localize faults.
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the corresponding G(c) when the latter is defined, FOnly 
creates a point ⟨c,G(c)⟩ in a 2D space. For a fault-relevant 
program entity, G(c) should be a discrete monotonically  
increasing function of c. FOnly estimates the fault rele-
vance of any program entity using line fitting in 2D space.

There are two ways to estimate the probability that 
going through s exactly c times does not result in a failure. 
The first is to directly use G(c) and estimate the probabil-
ity as 1 – G(c). The second way is to use the probability 
that executing the program entity up to c times does not 
lead to any failure. This probability can be estimated to be  
(1 – p)c, where p denotes the probability that going through 
s only once leads to a failure. Equating the two probabilities 
results in the formula G(c) = 1 – (1 – p)c.

A function f(x) can be expanded into an infinite Taylor 
series f(x) = f(0) + f(1)(0)x/1! + …, where f(i)(0) denotes the 
i-th derivative of f(x) at the point x = 0. Hence, the cali-
brated failure rate can be approximated by G(c) = G(0) 
+ G(1)(0)c/1! = – log(1 – p) × c, which simplifies to G(c) =  
l × c. Thus, the calibrated failure rate is modeled by a 
straight line passing through ⟨0,G(0)⟩ with a slope l.

FOnly applies least-squares analysis to minimize the 
error in line fitting. For a given program entity, the slope 
l is given by

l = ∑
c∈D

[c × G
i
(c)]/∑

c∈D
c2

and the standard deviation σ is given by

σ = ( )( ) × ( )[ ]( )∈ ∈ ∈∑ ∑ ∑  – /G c c G c c
c D c D c D

2 2
2

where D is the set of the possible number of times that any 
program run might go through the given program entity. 
However, the number of times that a program run goes 
through a program entity may vary among entities. Hence, 
l for each specific program entity should be normalized  
to l ̃ = l × cmax before comparison, where cmax is the larg-
est possible number of times that any program run can go 
through that particular entity.

To estimate the fault relevance of each program entity 
in the presence of both passed and failed runs, FOnly 
computes the ranking score R, which is equivalent to the 
signal-to-noise ratio and defined as the mean over the stan-
dard deviation: R = l ̃/σ. The higher the value of R, the more 
fault-relevant the program entity.

The ranking score’s range is [–∞,+∞]. If a program entity 
s has no sample point, none of the failed runs has gone 
through s before resulting in a failure, and hence FOnly  
assigns a value of –∞ to R, meaning that s is least  
suspicious. If a program entity has only one sample point, 
the slope l is undefined, and FOnly assigns a value of  
0 to R. If the standard deviation is 0, FOnly cannot directly 
compute the ranking score. In this case, if the number 
of failed runs for s is 0, FOnly assigns a value of –∞ to R; 
otherwise, it calculates the limit of R, resulting in a value 
of +∞.

Elimination phase
Unlike related approaches, FOnly adds a phase to elimi-

nate dependency on the number of passed runs incurred 
in computing a program entity’s fault relevance. For this 
phase, it uses a formula that relies only on failed runs.

Table 2. Faulty programs used in FOnly evaluation.

Program (source) Real-life version no. No. of faults Executable LOC
No. of single-fault/
multifault versions No. of test cases

print_tokens (Siemens) Not available in SIR 7 341-342 5/0 4,130

print_tokens2 (Siemens) Not available in SIR 10 350-354 10/0 4,115

replace (Siemens) Not available in SIR 32 508-515 30/0 5,542

schedule (Siemens) Not available in SIR 9 291-294 6/0 2,650

schedule2 (Siemens) Not available in SIR 10 261-263 8/0 2,710

tcas (Siemens) Not available in SIR 41 133-137 40/0 1,608

tot_info (Siemens) Not available in SIR 23 272-274 23/0 1,052

flex (Unix) 2.4.7-2.5.4 81 8,571-10,124 18/4 567

grep (Unix) 2.2-2.4.2 57 8,053-9,089 17/6 809

gzip (Unix) 1.1.2-1.3 59 4,035-5,159 13/4 217

sed (Unix) 1.18-3.02 25 4,756-9,289 16/6 370
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For any program entity s, let N(c) denote the number of 
program runs such that each run goes through s exactly c 
times. FOnly computes the mean number of runs Ñ irre-
spective of the value of c. It replaces every instance of N(c) 
by Ñ in the computation of R to obtain R, which is dependent 
on failed executions only and free from passed runs:

R
c Y c Y c c

Y c Y

c Dc D=
× ( ) ( )( )  ×

( )
∈∈ ∑∑

 
–      / 

–

max0 2

00 02 2
2( )( ) × ( ) ( )( ) ( )∈ ∈ ∈∑ ∑ ∑c D c D c D

c Y c Y c– – /
˜ ,

where Y(c) is the number of failed runs such that each run 
goes through the program entity exactly c times.

Of course, the elimination phase is optional if the set of 
passed runs can be reliable.

EXPERIMENTAL EVALUATION
To validate FOnly’s effectiveness, we conducted an em-

pirical study using faulty programs from SIR.17 Table 2 
summarizes the programs’ statistics. Each of the program 
versions is seeded with one to three faults to simulate both 
single- and multifault scenarios, resulting in a total of 186 
single-fault versions and 20 multifault versions.

We compared FOnly’s performance with that of four 
representative statement-level fault-localization tech-
niques: Tarantula,8 Ochiai,15 Jaccard,15 and statistical bug 
isolation (SBI).18 Because these techniques were originally 
designed to work under the assumption that both passed 
and failed results were available, for every technique 
we first executed each program version using the whole 
test pool and then repeated the process using only failed 
runs. Following previous research,8,9 we measured fault- 
localization effectiveness in terms of the percentage of 
statements a technique examined (among all the state-
ments ranked) until it found a faulty statement.

Figure 3 shows the overall results for the pass-and-fail 
and fail-only scenarios. In each plot, the x-axis represents 
the percentage of code examined, while the y-axis repre-
sents the percentage of faults located within the examined 
code.

As Figure 3a shows, when the examined code ranges 
from 10 to 100 percent, FOnly’s curve is above, or at least 
overlaps with, the curves of the peer techniques. For exam-
ple, when examining up to 20 percent of the code, FOnly 
can locate faults in 86 percent of the faulty versions, while 
Tarantula, Ochiai, Jaccard, and SBI can only locate faults 
in 79, 77, 77, and 77 percent of the faulty versions, respec-
tively. However, when examining the first 5 percent of the 
code, FOnly is not as effective as the other techniques and 
has room for improvement.

When no passed runs are available, the ranking formu-
las for Tarantula, Ochiai, and Jaccard produce the same 
list of statements. Figure 3b therefore shows one curve 
instead of three for these techniques. SBI is not included 
in the fail-only scenario because its formula gives all ex-

ecuted statements the same rank and does not have any 
fault-localization capability.

As the graph shows, FOnly’s curve is always above, or 
at least overlaps with, the curves for the other techniques. 
For example, when examining up to 10 percent of the code, 
FOnly can locate faults in 57 percent of the faulty ver-
sions while the peer techniques can locate faults in only 
37 percent of the faulty versions. In the first half of the 
code-examining range, FOnly always locates more faults 
than the other techniques; after examining 50 percent of 
the code, it locates all the faults. Notably, FOnly’s effective-
ness is comparable to that in the pass-and-fail scenario, 
whereas that of the other techniques is significantly lower.

Overall, the results in Figure 3 indicate that FOnly has 
promising fault-localization capability when statements 
are used as the diagnostic unit. When passed executions 
are unavailable or not reliable, its performance does not 
degrade as dramatically as the peer techniques. Although 
FOnly is relatively less effective when examining the 
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first 5 percent of the code in the traditional pass-and-fail  
scenario, this deficiency is due to the very few failed runs 
in corner cases, where FOnly has insufficient sample 
points to make reliable trend estimations.

A straightforward way to enhance efficiency is to apply 
FOnly at the block level. Because statements in the same 
block are mostly assigned identical ranking scores, preci-
sion will not be lost. Higher efficiency could be gained by 
a coarser-grained usage of FOnly at, say, the function level, 
but this will result in less precise fault localization.

To assess the impact of program size and the number of 
faults on FOnly’s effectiveness, we categorized the subject 
programs according to their size and whether a faulty ver-
sion contained single or multiple faults. As Figure 4 shows, 
in both the pass-and-fail scenario and the fail-only sce-
narios, FOnly performed better on the medium-scale Unix 
programs with thousands of LOC than on the small-scale 
Siemens programs with hundreds of LOC. In comparing 

the results of single-fault Unix programs with multifault 
Unix programs, we found that FOnly can locate faults in 
multifault programs almost as effectively as in single-fault 
programs.

I n recent years, researchers in Asia have contributed 
significantly to advances in fault localization for 
program debugging. In addition to tackling existing 

challenges, they continue to introduce techniques for new 
classes of real-life problems.

FOnly is a proposed solution to the increasingly 
common situation developers face when a huge number 
of bug reports are sent automatically through the Web. It 
uses trend estimation as a novel method to localize faults 
and demonstrates the feasibility of using only the results of 
failed runs, rather than comparing passed and failed runs. 
Empirical results demonstrate FOnly’s promise.

For corner cases where there are very few failed runs, 
however, peer techniques that use passed and failed runs 
are more effective when it is possible to review only a small 
percentage of the source code. In future work, we plan 
to apply combinatorial testing to improve FOnly in such 
situations. 
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Figure 4. Impact of program size and number of faults on 
fault-localization effectiveness in (a) pass-and-fail scenario 
and (b) fail-only scenario. FOnly performed better on 
medium-scale Unix programs with thousands of LOC than 
on small-scale Siemens programs with hundreds of LOC. It 
located faults in multifault programs almost as effectively 
as it did in single-fault programs.
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