
Title Fault localization based only on failed runs

Author(s) Zhang, Z; Chan, WK; Tse, TH

Citation Computer, 2012, v. 45 n. 6, p. 64-71

Issued Date 2012

URL http://hdl.handle.net/10722/146031

Rights Computer (New York). Copyright © IEEE, Computer Society.

 64 COMPUTER Published by the IEEE Computer Society 0018-9162/12/$31.00 © 2012 IEEE

COVER FE ATURE

niques commonly rely on a combination of passed and
failed runs. However, a passed run may activate a fault
but not reveal a failure. Furthermore, many systems today
can detect failures automatically and produce a massive
number of useful bug reports on failed runs. We propose
FOnly, an effective technique that innovatively relies only
on failed runs to locate faults statistically.

STATE OF THE PRACTICE
Researchers have developed many novel fault-

localization techniques during the past two decades. To
compare these techniques’ applicability, we categorized
them according to whether they were originally designed
to use passed runs and/or failed runs to locate faults, and,
if they were, we identified the respective numbers of such
runs. We limited the classification to approaches that
locate faults in the source code. By so doing, we excluded
techniques such as delta debugging3 and semi-proving4
that only reveal the suspicious region of a program’s fail-
ure-causing inputs, as well as techniques that suppress or
detect failures, such as Eraser.5

Table 1 summarizes the categorization. The two left-
most columns indicate the numbers of passed and failed
runs. The third column lists an early representative pro-
ject for each category. The last column shows a recent
project for each category presented at a top-notch venue
by researchers affiliated with Asian institutes.

Coincidental correctness
The use of passed runs, irrespective of the number of

instances, is generally susceptible to coincidental correct-

P rogram testing and debugging generally consume
50 percent or more of the costs of typical soft-
ware development projects.1 Software engineers
spend about 35 percent of their time debugging

programs, and deploy software knowing that it still con-
tains faults.2

When an execution of a faulty program passes through
a fault, it may result in an error in the internal program
states. The program run generally executes other program
statements as well, which might propagate the error to
other internal program states. If such program statements
produce observable effects, the run will cause a visible
failure.

Once they observe failures, software engineers schedule
program debugging to locate the faults, fix them, and con-
firm their removal. However, debugging is still laborious,
and fault localization is commonly considered its most
difficult component.

Recent research in Asia has significantly advanced
automatic fault localization. State-of-the-practice tech-

Fault localization commonly relies on both
passed and failed runs, but passed runs
are generally susceptible to coincidental
correctness and modern software auto-
matically produces a huge number of bug
reports on failed runs. FOnly is an effective
new technique that relies only on failed
runs to locate faults statistically.

Zhenyu Zhang, Institute of Software, Chinese Academy of Sciences

W.K. Chan, City University of Hong Kong

T.H. Tse, The University of Hong Kong

Fault Localization
Based Only on
Failed Runs

 JUNE 2012 65

ness, in which a run activates a fault but does not result in
a failure. Approaches such as set differencing, similarity
correlation, and sequence similarity do not eliminate varia-
tions among sets of program statements that are common
to passed and failed runs. Consequently, early algorithms
like chislice,6 nearest neighbor,7 and Tarantula8 cannot
reliably locate faults if the passed runs suffer from coinci-
dental correctness. Recent Asian research has attempted
to address this problem.

CP9 is a technique that locates faulty blocks in Unix
utilities in C by computing the transition frequency
among basic blocks in a run and backwardly propagat-
ing the fault-failure correlations measured by similarity
coefficients along the edges of the program’s control-
flow graph so that the code delivering a fault receives a
higher rank.

Hong Cheng and colleagues10 localized faults in C util-
ity programs by analyzing the most discriminative graph
patterns in a bug report.

Diptikalyan Saha and coauthors11 identified faulty pro-
gram slices in SAP systems in the ABAP language by taking
program loops in a failed run that constructs database que-
ries as starting points of individual slices, and splitting the
single failed run into several such slices, some of which are
associated with correct database records and deemed as
“passed.” However, the passed runs thus generated might
still be coincidentally correct.

Additional discussion about coincidental correctness in
debugging can be found elsewhere.12

Eliminating passed runs
Another way to address the issue of coincidental cor-

rectness is to completely abandon the use of passed runs.
Static analyzers like FindBugs13 require neither passed nor
failed runs. They may, however, produce warnings even
if the programs are correct, necessitating additional runs
to confirm such warnings. When only one single failed
run is available, early techniques like dynamic program
slicing14 could produce a set of statements per run. Debug-
gers similar to Tarantula, such as Ochiai,15 can also be
used without any passed runs. The problem is that such
brute-force applications are mostly ineffective in fault
localization.

To the best of our knowledge, there has been little re-
search on effectively locating faults with one or multiple
failed runs and without support from passed runs. In the
past, using many failed runs without any passed run was
deemed unrealistic because, when testing a program, a
large proportion of runs were expected to reveal no failure.
However, emerging dynamic (concurrency) bug detectors
can monitor runs on the fly and report failures. Based on
the bug reports, researchers can use execution synthesis
to reproduce failed runs.

DEBUGGING BASED ON FAILURES ONLY
Modern software often has the built-in facility to

detect failures and report them to the original vendor
through the Web. Software debuggers are thus faced
with a huge number of automatic bug reports. It would be

Table 1. Categories of fault-localization techniques for program debugging.

No. of
passed

runs

No. of
failed
runs Early representative example Recent example project in Asia

0 0 FindBugs (OOPSLA 2004)
Approach: pattern matching with static analysis
Application: locates bug patterns in Java lib/desktop/server
 programs

N/A

0 1 Dynamic program slicing (PLDI 1990)
Approach: slicing
Application: locates faulty slices, without limit in program
 type

Saha et al. (India and USA—FSE 2011)
Approach: key-based slicing and semantic differencing
 among traces
Application: locates faulty slices in SAP systems in the ABAP
 language

0 Many N/A FOnly (China and Hong Kong)
Approach: trend estimation
Application: locates faulty statements in C utility programs

1 1 Chislice (ISSRE 1995)
Approach: set differencing
Application: locates faulty slices in C algorithms

N/A

Many 1 Nearest neighbor (ASE 2003)
Approach: sequence similarity
Application: locates faulty statements in C utility programs

Cheng et al. (Hong Kong, Singapore, China, and US—ISSTA
 2009)
Approach: control-flow subgraphs as bug signatures
Application: locates faulty methods/blocks in C utility
 programs

Many Many Tarantula (ICSE 2002)
Approach: similarity correlation
Application: locates faulty statements in language inter-
 preter programs in C

CP (Hong Kong—FSE 2009)
Approach: propagation of fault-failure correlation
Application: locates faulty blocks in Unix utilities in C

 66 COMPUTER

COVER FE ATURE

time-consuming for debuggers to generate a similar
number of passed runs to compare with the given failed
runs. This creates a strong incentive for fault-localization
techniques that make good use of failure information only.

We propose FOnly based on the following fault hypoth-
esis. Consider a particular run of a faulty program. The
more times that the run goes through a faulty program
entity such as a statement, the more likely it will consis-
tently lead to failure. If such a trend cannot be observed
among the failed runs with respect to another program
entity, the latter entity is less likely to be at fault.

Trend estimation, a popular statistical technique, lies at
the heart of FOnly. A simple but effective means of trend

estimation is to find a regression line
using the least-squares fitting process.
Such a line reveals the tendencies in the
samples.

Based on samples of the numbers of
times that different failed runs go through
the same program entity, FOnly finds a
regression line that minimizes the fitting
error. It then uses the slope of the regres-
sion line and the value of the fitting error
to compute a signal-to-noise ratio,16 which
represents an estimate of that program
entity’s fault relevance. Program enti-
ties with higher signal-to-noise ratios are
deemed to be more fault-relevant.

APPLYING THE FAULT
HYPOTHESIS

Let us use an example to illustrate how
FOnly applies the fault hypothesis to per-
form trend estimation to locate faults.

Figure 1a shows two code fragments
from a faulty program known as replace
from the Software-artifact Infrastructure
Repository (SIR).17 The upper fragment
(lines L115 to L124) shows an if-statement
that evaluates a compound Boolean
expression consisting of a character-
checking function (L115) and a boundary
condition (L117). If the Boolean expression
is evaluated as true, the function addstr
will modify the variable dest (L121);
otherwise, dest will remain unchanged.
The lower fragment (L495 to L502) out-
puts the characters.

In the upper fragment, the if-statement
(L115) is faulty because an operand of the
expected version of the Boolean expres-
sion is missing (shown in L116). Note that
the faulty statement is more likely to be
evaluated as true than the correct version,

so an execution has a higher chance of going through L121
than the correct version. Consequently, the variable dest
may contain an erroneous value. At the same time, the
faulty statement (L115) may produce a result different from
its expected version only when the missing function call to
isalnum() returns false, which in turn depends partially
on its input parameter src. Because it is generally difficult
to predict string content statically, the probability of the
faulty statement producing an incorrect decision value is
hard to know.

We executed the faulty program over each of the
5,542 test cases supplied by SIR.17 For every statement,
we recorded its execution count c with respect to each

0.02

0.04

0.06

0 3 6 9 12 15

Fa
ilu

re
 ra

te

Execution count

0.02

0.04

0.06

0 3 6 9 12 15

Fa
ilu

re
 ra

te

Execution count

0.02

0.04

0.06

0 3 6 9 12 15

Fa
ilu

re
 ra

te

Execution count(b)

(a)

0.02

0.04

0.06

0 3 6 9 12 15

Fa
ilu

re
 ra

te

Execution count

Faulty statement L115 Statement L121

Statement L497 Statement L500

Figure 1. Applying the fault hypothesis to perform trend estimation. (a) Two
code fragments from a faulty program. L121 is closer than L497 and L500 to
the faulty statement, L115, in terms of the number of lines of code. (b) Plots
of the failure rate versus the execution count for the four statements. As
the execution count increases, the failure rates for L115 and L121 increase
faster than those for L497 and L500.

L115 if ((isalnum(src[*i - 1]))
L116 /* missing code “&& (isalnum(src[*i + 1]))” */
L117 && (src[*i - 1] <= src[*i + 1]))
L118 {
L119 for (k = src[*i-1]+1; k<=src[*i+1]; k++)
L120 {
L121 junk = addstr(k, dest, j, maxset);
L122 }
L123 *i = *i + 1;
L124 }

L495 if ((m >= 0) && (lastm != m)) {
L496 putsub(lin, i, m, sub);
L497 lastm = m;
L498 }
L499 if ((m == -1) || (m == i)) {
L500 fputc(lin[i],stdout);
L501 i = i + 1;
L502 }

 JUNE 2012 67

program run. For every value c0 of an ex-
ecution count, we tallied the number of
program runs N(c) having a count c = c0
and calculated the failure rate, which is
the fraction of failed runs among the N(c)
runs.

A comparison of L115 with L121, L497,
and L500 indicates that L121 is closest to
the faulty statement in terms of the number
of lines of code (LOC). L121 is indeed suspi-
cious because it may modify the variable
dest wrongly. At the same time, we in-
spected the source code to ensure that the
fault is not related to the logic in L497 or
L500.

We plotted the failure rate against the
execution count for each of these four
statements and fitted the points using a re-
gression line with the least-squares error
among the data points. Figure 1b shows the
results. Note that as the execution count in-
creases, the failure rates for L115 and L121
increase faster than those for L497 and
L500. Fault-irrelevant statements (such as
L497 and L500) thus appear to have gen-
tler slopes. For L500, the statement least
related to the fault, the change in failure
rate with respect to execution count is least
observable.

However, this simple regression line
estimation has not considered line-fitting
errors. It also requires information on both
passed and failed runs. FOnly addresses
both of these issues, as detailed in the next
section.

HOW FONLY WORKS
Consider a program modeled by a list of program entities

such as statements. Given a collection of execution results
of the program, known as the set of program runs, FOnly
conducts fault localization by comparing the suspicious-
ness of each program entity, measured by its failure trend
in the set of program runs. Figure 2 illustrates the process,
which consists of four phases: partitioning, calibration, line
fitting, and elimination.

Partitioning phase
Given any program entity, such as a statement, FOnly

divides the set of program runs into disjoint partitions.
Every partition contains all the runs such that each run
goes through the entity exactly the same number of times
(say, c times). FOnly further computes the proportion of
failed runs in each partition, referred to as the failure rate
F(c).

Calibration phase
For a given program entity s, F(0) denotes the failure rate

of the partition in which none of the program runs ever go
through s. If all the runs in the partition have never gone
through s, the latter should not be related to any failure.
Hence, if F(0) for s happens to not be 0, it should be reset
to 0. Likewise, all other partitions for the same s might
have overestimated failure rates. As such, FOnly computes
a calibrated failure rate G(c) = F(c) – F(0), which aims to
capture a more accurate estimate of the probability that
going through the program entity exactly c times leads to
a failure.

Line-fitting phase
Based on the calibrated failure rates, FOnly estimates

the failure trend for each program entity in the fitting
phase. For any given entity, by pairing up every c with

…

20 10 c 0 2 10 c

x

x x

Set of
program runs

Partitioning phase
Program entity

Pass-and-fail scenario Fail-only scenario

None Twice 10×

Line-�tting phaseLine-�tting phase

The proportion F(c) of failed runs
in each partition is determined.

The proportion F(c) is the size of the
partition to the mean size of all partitions.

Calibration phase

l1
~

F(c)
G(c) Trend estimation.

Pair up c and F(c) in a 2D plane,
and calibrate F(c) to G(c).

Elimination phase

The mean size N of
all partitions

~

signal1
noise1

R1
l1
~

σ1

1

1
signal1
noise1

R1
~ l1

~

σ1

N

N

(…)

(…)

20 10 c

Other program entities

Figure 2. FOnly uses a four-phase process to localize faults.

 68 COMPUTER

COVER FE ATURE

the corresponding G(c) when the latter is defined, FOnly
creates a point ⟨c,G(c)⟩ in a 2D space. For a fault-relevant
program entity, G(c) should be a discrete monotonically
increasing function of c. FOnly estimates the fault rele-
vance of any program entity using line fitting in 2D space.

There are two ways to estimate the probability that
going through s exactly c times does not result in a failure.
The first is to directly use G(c) and estimate the probabil-
ity as 1 – G(c). The second way is to use the probability
that executing the program entity up to c times does not
lead to any failure. This probability can be estimated to be
(1 – p)c, where p denotes the probability that going through
s only once leads to a failure. Equating the two probabilities
results in the formula G(c) = 1 – (1 – p)c.

A function f(x) can be expanded into an infinite Taylor
series f(x) = f(0) + f(1)(0)x/1! + …, where f(i)(0) denotes the
i-th derivative of f(x) at the point x = 0. Hence, the cali-
brated failure rate can be approximated by G(c) = G(0)
+ G(1)(0)c/1! = – log(1 – p) × c, which simplifies to G(c) =
l × c. Thus, the calibrated failure rate is modeled by a
straight line passing through ⟨0,G(0)⟩ with a slope l.

FOnly applies least-squares analysis to minimize the
error in line fitting. For a given program entity, the slope
l is given by

l = ∑
c∈D

[c × G
i
(c)]/∑

c∈D
c2

and the standard deviation σ is given by

σ = ()() × ()[]()∈ ∈ ∈∑ ∑ ∑ – /G c c G c c
c D c D c D

2 2
2

where D is the set of the possible number of times that any
program run might go through the given program entity.
However, the number of times that a program run goes
through a program entity may vary among entities. Hence,
l for each specific program entity should be normalized
to l ̃ = l × cmax before comparison, where cmax is the larg-
est possible number of times that any program run can go
through that particular entity.

To estimate the fault relevance of each program entity
in the presence of both passed and failed runs, FOnly
computes the ranking score R, which is equivalent to the
signal-to-noise ratio and defined as the mean over the stan-
dard deviation: R = l ̃/σ. The higher the value of R, the more
fault-relevant the program entity.

The ranking score’s range is [–∞,+∞]. If a program entity
s has no sample point, none of the failed runs has gone
through s before resulting in a failure, and hence FOnly
assigns a value of –∞ to R, meaning that s is least
suspicious. If a program entity has only one sample point,
the slope l is undefined, and FOnly assigns a value of
0 to R. If the standard deviation is 0, FOnly cannot directly
compute the ranking score. In this case, if the number
of failed runs for s is 0, FOnly assigns a value of –∞ to R;
otherwise, it calculates the limit of R, resulting in a value
of +∞.

Elimination phase
Unlike related approaches, FOnly adds a phase to elimi-

nate dependency on the number of passed runs incurred
in computing a program entity’s fault relevance. For this
phase, it uses a formula that relies only on failed runs.

Table 2. Faulty programs used in FOnly evaluation.

Program (source) Real-life version no. No. of faults Executable LOC
No. of single-fault/
multifault versions No. of test cases

print_tokens (Siemens) Not available in SIR 7 341-342 5/0 4,130

print_tokens2 (Siemens) Not available in SIR 10 350-354 10/0 4,115

replace (Siemens) Not available in SIR 32 508-515 30/0 5,542

schedule (Siemens) Not available in SIR 9 291-294 6/0 2,650

schedule2 (Siemens) Not available in SIR 10 261-263 8/0 2,710

tcas (Siemens) Not available in SIR 41 133-137 40/0 1,608

tot_info (Siemens) Not available in SIR 23 272-274 23/0 1,052

flex (Unix) 2.4.7-2.5.4 81 8,571-10,124 18/4 567

grep (Unix) 2.2-2.4.2 57 8,053-9,089 17/6 809

gzip (Unix) 1.1.2-1.3 59 4,035-5,159 13/4 217

sed (Unix) 1.18-3.02 25 4,756-9,289 16/6 370

 JUNE 2012 69

For any program entity s, let N(c) denote the number of
program runs such that each run goes through s exactly c
times. FOnly computes the mean number of runs Ñ irre-
spective of the value of c. It replaces every instance of N(c)
by Ñ in the computation of R to obtain R, which is dependent
on failed executions only and free from passed runs:

R
c Y c Y c c

Y c Y

c Dc D=
× () ()() ×

()
∈∈ ∑∑

– /

–

max0 2

00 02 2
2()() × () ()() ()∈ ∈ ∈∑ ∑ ∑c D c D c D

c Y c Y c– – /
˜ ,

where Y(c) is the number of failed runs such that each run
goes through the program entity exactly c times.

Of course, the elimination phase is optional if the set of
passed runs can be reliable.

EXPERIMENTAL EVALUATION
To validate FOnly’s effectiveness, we conducted an em-

pirical study using faulty programs from SIR.17 Table 2
summarizes the programs’ statistics. Each of the program
versions is seeded with one to three faults to simulate both
single- and multifault scenarios, resulting in a total of 186
single-fault versions and 20 multifault versions.

We compared FOnly’s performance with that of four
representative statement-level fault-localization tech-
niques: Tarantula,8 Ochiai,15 Jaccard,15 and statistical bug
isolation (SBI).18 Because these techniques were originally
designed to work under the assumption that both passed
and failed results were available, for every technique
we first executed each program version using the whole
test pool and then repeated the process using only failed
runs. Following previous research,8,9 we measured fault-
localization effectiveness in terms of the percentage of
statements a technique examined (among all the state-
ments ranked) until it found a faulty statement.

Figure 3 shows the overall results for the pass-and-fail
and fail-only scenarios. In each plot, the x-axis represents
the percentage of code examined, while the y-axis repre-
sents the percentage of faults located within the examined
code.

As Figure 3a shows, when the examined code ranges
from 10 to 100 percent, FOnly’s curve is above, or at least
overlaps with, the curves of the peer techniques. For exam-
ple, when examining up to 20 percent of the code, FOnly
can locate faults in 86 percent of the faulty versions, while
Tarantula, Ochiai, Jaccard, and SBI can only locate faults
in 79, 77, 77, and 77 percent of the faulty versions, respec-
tively. However, when examining the first 5 percent of the
code, FOnly is not as effective as the other techniques and
has room for improvement.

When no passed runs are available, the ranking formu-
las for Tarantula, Ochiai, and Jaccard produce the same
list of statements. Figure 3b therefore shows one curve
instead of three for these techniques. SBI is not included
in the fail-only scenario because its formula gives all ex-

ecuted statements the same rank and does not have any
fault-localization capability.

As the graph shows, FOnly’s curve is always above, or
at least overlaps with, the curves for the other techniques.
For example, when examining up to 10 percent of the code,
FOnly can locate faults in 57 percent of the faulty ver-
sions while the peer techniques can locate faults in only
37 percent of the faulty versions. In the first half of the
code-examining range, FOnly always locates more faults
than the other techniques; after examining 50 percent of
the code, it locates all the faults. Notably, FOnly’s effective-
ness is comparable to that in the pass-and-fail scenario,
whereas that of the other techniques is significantly lower.

Overall, the results in Figure 3 indicate that FOnly has
promising fault-localization capability when statements
are used as the diagnostic unit. When passed executions
are unavailable or not reliable, its performance does not
degrade as dramatically as the peer techniques. Although
FOnly is relatively less effective when examining the

(a)

 (b)

20

40

60

80

100

0 20 40 60 80 100

Pe
rce

nt
 of

 fa
ult

s l
oc

at
ed

Percent of code examined

20

40

60

80

100

0 20 40 60 80 100

Pe
rce

nt
 of

 fa
ult

s l
oc

at
ed

Percent of code examined

FOnly
Tarantula
Ochiai
Jaccard
SBI

FOnly

Tarantula/Ochiai/Jaccard

Figure 3. Fault-localization technique effectiveness:
(a) pass-and-fail scenario and (b) fail-only scenario. When
passed executions are unavailable or not reliable, FOnly’s
performance does not degrade as dramatically as peer
techniques.

˜

COVER FE ATURE

 70 COMPUTER

first 5 percent of the code in the traditional pass-and-fail
scenario, this deficiency is due to the very few failed runs
in corner cases, where FOnly has insufficient sample
points to make reliable trend estimations.

A straightforward way to enhance efficiency is to apply
FOnly at the block level. Because statements in the same
block are mostly assigned identical ranking scores, preci-
sion will not be lost. Higher efficiency could be gained by
a coarser-grained usage of FOnly at, say, the function level,
but this will result in less precise fault localization.

To assess the impact of program size and the number of
faults on FOnly’s effectiveness, we categorized the subject
programs according to their size and whether a faulty ver-
sion contained single or multiple faults. As Figure 4 shows,
in both the pass-and-fail scenario and the fail-only sce-
narios, FOnly performed better on the medium-scale Unix
programs with thousands of LOC than on the small-scale
Siemens programs with hundreds of LOC. In comparing

the results of single-fault Unix programs with multifault
Unix programs, we found that FOnly can locate faults in
multifault programs almost as effectively as in single-fault
programs.

I n recent years, researchers in Asia have contributed
significantly to advances in fault localization for
program debugging. In addition to tackling existing

challenges, they continue to introduce techniques for new
classes of real-life problems.

FOnly is a proposed solution to the increasingly
common situation developers face when a huge number
of bug reports are sent automatically through the Web. It
uses trend estimation as a novel method to localize faults
and demonstrates the feasibility of using only the results of
failed runs, rather than comparing passed and failed runs.
Empirical results demonstrate FOnly’s promise.

For corner cases where there are very few failed runs,
however, peer techniques that use passed and failed runs
are more effective when it is possible to review only a small
percentage of the source code. In future work, we plan
to apply combinatorial testing to improve FOnly in such
situations.

Acknowledgments
This research is supported in part by grants from the Natural
Science Foundation of China (project no. 61003027) and the
General Research Fund of the Research Grants Council of
Hong Kong (project nos. 111410 and 717811).

References
 1. G.J. Myers, C. Sandler, and T. Badgett,The Art of Software

Testing, 3rd ed., John Wiley & Sons, 2011.
 2. RTI, The Economic Impacts of Inadequate Infrastructure for

Software Testing, 2002; www.nist.gov/director/planning/
upload/report02-3.pdf.

 3. H. Cleve and A. Zeller, “Locating Causes of Program Fail-
ures,” Proc. 27th Int’l Conf. Software Eng. (ICSE 05), ACM,
2005, pp. 342-351.

 4. T.Y. Chen, T.H. Tse, and Z.Q. Zhou, “Semi-Proving:
An Integrated Method for Program Proving, Test-
ing, and Debugging,” IEEE Trans. Software Eng., Jan.
2011, pp. 109-125.

 5. S. Savage et al., “Eraser: A Dynamic Data Race Detector for
Multithreaded Programs,” ACM Trans. Computer Systems,
Nov. 1997, pp. 391-411.

 6. H. Agrawal et al., “Fault Localization Using Execution Slices
and Dataflow Tests,” Proc. 6th Int’l Symp. Software Reli-
ability Eng. (ISSRE 95), IEEE CS, 1995, pp. 143-151.

 7. M. Renieris and S.P. Reiss, “Fault Localization with Nearest
Neighbor Queries,” Proc. 18th IEEE Int’l Conf. Automated
Software Eng. (ASE 03), IEEE CS, pp. 30-39.

 8. J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” Proc. 24th Int’l
Conf. Software Eng. (ICSE 02), ACM, 2002, pp. 467-477.

 9. Z. Zhang et al., “Capturing Propagation of Infected Pro-
gram States,” Proc. 7th Joint Meeting European Software

(a)

 (b)

20

40

60

80

100

0 20 40 60 80 100

Pe
rce

nt
 of

 fa
ult

s l
oc

at
ed

Percent of code examined

20

40

60

80

100

0 20 40 60 80 100

Pe
rce

nt
 of

 fa
ult

s l
oc

at
ed

Percent of code examined

FOnly (Siemens single-fault)

FOnly (Unix single-fault)

FOnly (Unix multifault)

FOnly (Siemens single-fault)

FOnly (Unix single-fault)

FOnly (Unix multifault)

Figure 4. Impact of program size and number of faults on
fault-localization effectiveness in (a) pass-and-fail scenario
and (b) fail-only scenario. FOnly performed better on
medium-scale Unix programs with thousands of LOC than
on small-scale Siemens programs with hundreds of LOC. It
located faults in multifault programs almost as effectively
as it did in single-fault programs.

 JUNE 2012 71

Eng. Conf. and ACM SIGSOFT Int’l Symp. Foundations of
Software Eng. (ESEC/FSE 09), ACM, 2009, pp. 43-52.

 10. H. Cheng et al., “Identifying Bug Signatures Using Discrimi-
native Graph Mining,” Proc. 18th ACM SIGSOFT Int’l Symp.
Software Testing and Analysis (ISSTA 09), ACM, 2009, pp.
141-152.

 11. D. Saha et al., “Fault Localization for Data-Centric Pro-
grams,” Proc. 19th ACM SIGSOFT Symp. and 13th European
Conf. Foundations of Software Eng. (ESEC/FSE 11), ACM,
2011, pp. 157-167.

 12. W.K. Chan and Y. Cai, “In Quest of the Science in Statisti-
cal Fault Localization,” Software: Practice and Experience,
2011; doi:10.1002/spe.1147.

 13. D. Hovemeyer and W. Pugh, “Finding Bugs Is Easy,” ACM
SIGPLAN Notices, Dec. 2004, pp. 92-106.

 14. H. Agrawal and J.R. Horgan, “Dynamic Program Slicing,”
Proc. ACM SIGPLAN 1990 Conf. Programming Language
Design and Implementation (PLDI 90), ACM, 1990, pp.
246-256.

 15. R. Abreu et al., “A Practical Evaluation of Spectrum-Based
Fault Localization,” J. Systems and Software, Nov. 2009, pp.
1780-1792.

 16. E. Säckinger, Broadband Circuits for Optical Fiber Com-
munication, John Wiley & Sons, 2005.

 17. H . Do, S. Elbaum, and G. Rothermel, “Supporting Con-
trolled Experimentation with Testing Techniques: An
Infrastructure and Its Potential Impact,” Empirical Soft-
ware Eng., Oct. 2005, pp. 405-435.

 18. Y . Yu, J.A. Jones, and M.J. Harrold, “An Empirical Study of
the Effects of Test-Suite Reduction on Fault Localization,”
Proc. 30th Int’l Conf. Software Eng. (ICSE 08), ACM, 2008,
pp. 201-210.

 Zhenyu Zhang is an associate research professor at the
State Key Laboratory of Computer Science, Institute of
Software, Chinese Academy of Sciences, Beijing, China. His
research interests include software testing and debugging,
with a focus on fault localization. Zhang received a PhD in
computer science from The University of Hong Kong. He is
a member of ACM, IEEE, and the China Computer Federa-
tion. Contact him at zhangzy@ios.ac.cn.

W.K. Chan is an assistant professor in the Department
of Computer Science, City University of Hong Kong. His
research interests include software testing and analysis
of concurrent systems and software. Chan received a PhD
in computer science from The University of Hong Kong.
Contact him at wkchan@cityu.edu.hk.

T.H. Tse is a professor in computer science and director of
The Software Engineering Group at The University of Hong
Kong. His research interests include program testing, de-
bugging, and analysis. Tse received a PhD from the London
School of Economics. He is a fellow of the British Computer
Society, the Institute for the Management of Information
Systems, the Institute of Mathematics and its Applications,
and the Hong Kong Institution of Engineers. Contact him
at thtse@cs.hku.hk.

Register today!

http://www.cvpr2012.org/

16-21 June 2012
Rhode Island Convention Center, Providence, Rhode Island, USA

CVPR is the premiere annual Computer Vision event comprising the main CVPR conference
and 36 co-located workshops and short courses. With its high quality and low cost, it
provides an exceptional value for students, academics and industry.

IEEE CVPR 2012
25th IEEE Computer Society Conference on Computer Vision and Pattern Recognition

 Selected CS articles and columns are available
 for free at http://ComputingNow.computer.org.

