7 research outputs found

    Uncertainty-Aware Principal Component Analysis

    Full text link
    We present a technique to perform dimensionality reduction on data that is subject to uncertainty. Our method is a generalization of traditional principal component analysis (PCA) to multivariate probability distributions. In comparison to non-linear methods, linear dimensionality reduction techniques have the advantage that the characteristics of such probability distributions remain intact after projection. We derive a representation of the PCA sample covariance matrix that respects potential uncertainty in each of the inputs, building the mathematical foundation of our new method: uncertainty-aware PCA. In addition to the accuracy and performance gained by our approach over sampling-based strategies, our formulation allows us to perform sensitivity analysis with regard to the uncertainty in the data. For this, we propose factor traces as a novel visualization that enables to better understand the influence of uncertainty on the chosen principal components. We provide multiple examples of our technique using real-world datasets. As a special case, we show how to propagate multivariate normal distributions through PCA in closed form. Furthermore, we discuss extensions and limitations of our approach

    Void-and-Cluster Sampling of Large Scattered Data and Trajectories

    Full text link
    We propose a data reduction technique for scattered data based on statistical sampling. Our void-and-cluster sampling technique finds a representative subset that is optimally distributed in the spatial domain with respect to the blue noise property. In addition, it can adapt to a given density function, which we use to sample regions of high complexity in the multivariate value domain more densely. Moreover, our sampling technique implicitly defines an ordering on the samples that enables progressive data loading and a continuous level-of-detail representation. We extend our technique to sample time-dependent trajectories, for example pathlines in a time interval, using an efficient and iterative approach. Furthermore, we introduce a local and continuous error measure to quantify how well a set of samples represents the original dataset. We apply this error measure during sampling to guide the number of samples that are taken. Finally, we use this error measure and other quantities to evaluate the quality, performance, and scalability of our algorithm.Comment: To appear in IEEE Transactions on Visualization and Computer Graphics as a special issue from the proceedings of VIS 201

    Multivariate Pointwise Information-Driven Data Sampling and Visualization

    Full text link
    With increasing computing capabilities of modern supercomputers, the size of the data generated from the scientific simulations is growing rapidly. As a result, application scientists need effective data summarization techniques that can reduce large-scale multivariate spatiotemporal data sets while preserving the important data properties so that the reduced data can answer domain-specific queries involving multiple variables with sufficient accuracy. While analyzing complex scientific events, domain experts often analyze and visualize two or more variables together to obtain a better understanding of the characteristics of the data features. Therefore, data summarization techniques are required to analyze multi-variable relationships in detail and then perform data reduction such that the important features involving multiple variables are preserved in the reduced data. To achieve this, in this work, we propose a data sub-sampling algorithm for performing statistical data summarization that leverages pointwise information theoretic measures to quantify the statistical association of data points considering multiple variables and generates a sub-sampled data that preserves the statistical association among multi-variables. Using such reduced sampled data, we show that multivariate feature query and analysis can be done effectively. The efficacy of the proposed multivariate association driven sampling algorithm is presented by applying it on several scientific data sets.Comment: 25 page

    In Situ Distribution Guided Analysis and Visualization of Transonic Jet Engine Simulations

    No full text

    Temporal Lossy In-Situ Compression for Computational Fluid Dynamics Simulations

    Get PDF
    Während CFD Simulationen für Metallschmelze im Rahmen des SFB920 fallen auf dem Taurus HPC Cluster in Dresden sehr große Datenmengen an, deren Handhabung den wissenschaftlichen Arbeitsablauf stark verlangsamen. Zum einen ist der Transfer in Visualisierungssysteme nur unter hohem Zeitaufwand möglich. Zum anderen ist interaktive Analyse von zeitlich abhängigen Prozessen auf Grund des Speicherflaschenhalses nahezu unmöglich. Aus diesen Gründen beschäftigt sich die vorliegende Dissertation mit der Entwicklung sog. Temporaler In-Situ Kompression für wissenschaftliche Daten direkt innerhalb von CFD Simulationen. Dabei werden mittels neuer Quantisierungsverfahren die Daten auf ~10% komprimiert, wobei dekomprimierte Daten einen Fehler von maximal 1% aufweisen. Im Gegensatz zu nicht-temporaler Kompression, wird bei temporaler Kompression der Unterschied zwischen Zeitschritten komprimiert, um den Kompressionsgrad zu erhöhen. Da die Datenmenge um ein Vielfaches kleiner ist, werden Kosten für die Speicherung und die Übertragung gesenkt. Da Kompression, Transfer und Dekompression bis zu 4 mal schneller ablaufen als der Transfer von unkomprimierten Daten, wird der wissenschaftliche Arbeitsablauf beschleunigt

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewährte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der Kraftstoffzerstäubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich über die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher Datensätze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulären Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein reguläres eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. Darüber hinaus führt diese Konversion meist zu einem Verlust der Präzision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Visualising Geographically-Embedded Origin-Destination Flows: in 2D and immersive environments

    Full text link
    This thesis develops and evaluates effective techniques for visualisation of flows (e.g. of people, trade, knowledge) between places on geographic maps. This geographically-embedded flow data contains information about geographic locations, and flows from origin locations to destination locations. We explored the design space of OD flow visualisation in both 2D and immersive environments. We do so by creating novel OD flow visualisations in both environments, and then conducting controlled user studies to evaluate different designs.Comment: PhD Thesis, Monash University, Australia, December 2018. Update: corrected typos in arXiv comment
    corecore