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1 Introduction

1.1 Motivation

The motivation of this dissertation stems from an important observation in the High
Performance Computing (HPC) domain: The limited bandwidth of storage systems
and the large data sizes are strong hindrances for efficient storage and post-processing of
scientific data sets. Storing full-size data sets during large-scale HPC applications leads
to the accumulation of massive amounts of data, as it is the case for e.g. Computational
Fluid Dynamics (CFD) simulations with high spatial and temporal resolution. Here,
In-Situ Compression helps to reduce the Input/Output (I/O) botleneck by employing
fast data reduction during running simulations. Typically, CFD simulations describe
continuous physical processes in time and generate sequences of data sets with temporal
coherence between consecutive time steps. Therefore, Temporal Compression is consid-
ered a promising approach for further decrease of the storage footprint for large CFD

data. Hence, the research in this dissertation focuses on the development of methods
for data reduction in HPC applications, so-called In-Situ Compression and Temporal
In-Situ Compression.

1.1.1 High-Performance Computing

HPC has become an essential tool for research and knowledge discovery through large-
scale computations. Unfortunately, the imbalance in the advancements in Floating Point
Operations Per Second (FLOPS) and in Input/Output operations Per Second (IOPS)
limits the efficient use of large systems [43]. Fig. 1.1 (a)−(b) shows, that FLOPS have in-
creased by two orders of magnitude faster as compared to IOPS in the past 25 years [43].
Particularly, FLOPS increased by a factor of ∼1, 000, 000×, whereas the speed of storage
devices has increased only by a factor of ∼1, 200×. As the trend stays unchanged, data
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Figure 1.1: The evolution of compute hardware and storage devices. The speed of storage
devices evolves much slower than the speed of CPUs.
Image is adapted from [43].

movement between HPC storage and main memory slows down data-intensive HPC for
present and, even more, for future applications [43].

As a workaround, scientists often use sub-sampling and store grids in low-resolution
in order to decrease the memory footprint. However, this approach leads to a lossy
data capture and impedes the data interpretation. In most of the cases, storing results
only in low-resolution defeats the main purpose of high-resolution simulations, i.e. the
analysis of high-resolution three dimensional data. Therefore, in-situ data reduction is
increasingly considered for storage of full-resolution data produced by HPC applications
like CFD simulations [45, 55].

1.1.2 Computational Fluid Dynamics

CFD is an important branch of scientific computing and allows for the modeling and
simulation of complex fluid flow scenarios. In the Collaborative Research Center 920

(CRC920), multi-functional ceramic filters for metal melt filtration are researched aim-
ing towards high-purity metal melt filtration for the production of "zero-defect mate-
rials". There, CFD simulations have become an increasingly important tool for the
analysis of the metal melt filtration processes [21, 85]. Because of the generally harsh
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process conditions and high temperatures, the analysis of the on-going filtration pro-
cesses using real experiments is expensive and difficult. Detailed numerical simulations
at the pore-scale level provide insights into the relationship between the filter structure
and the flow of the liquid metal. Such simulations require high-resolution grids in order
to resolve the flow inside filters with realistic porous structures. Especially when storing
high-resolution uniform grid data, data reduction offers a big potential for decreasing
the storage requirements for CFD simulations [36, 45]. For scientific applications, it is
desirable to control the data quality by providing a point-wise maximum error for the
decompressed data.

Specifically motivated by the research and development in the CRC920, this dis-
sertation investigates new temporal compression schemes, which are applied in-situ in a
CFD simulation, i.e. directly integrated in the main-loop of the lattice-Boltzmann method
(LBM) solver used for metal melt flow simulation. The high data reduction allows for
the storage of full-resolution data in large-scale HPC systems while circumventing the
I/O bottleneck during data transfer for Visualization & Analysis [45].

1.1.3 In-Situ Processing Techniques

Although many problems can be solved directly inside the CFD solver without storing
any data, the storage of full-resolution data allows for a flexible creation of analyses
and visualizations in a post-hoc fashion. However, handling large amounts of data
fragmented across many parallel processes is inefficient with traditional workflows, e.g.
storing one file per process.

On the one hand, the movement of full-size data puts high load on the storage sys-
tem, especially if data movement is tightly integrated into tiered storage systems [43],
e.g. data is collected into temporary scratch storage or node-local/rack-local storage as
burst-buffer before it is moved to workstations. On the other hand, storing full-size
data impedes the loading into visualization workstations, as they in general exhibit less
powerful hardware than the HPC clusters.

Regarding the I/O bottleneck, the HPC community initiates a shift in paradigm for
how to deal with the increasing data size. So-called In-Situ Processing employs early
data preparation and uses "cheap" CPU time for carrying out data transformations
directly after the data has been created [42, 65]. Usually, such In-Situ Techniques are
run as a part of HPC applications and aim at the reduction of storage space and I/O
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Figure 1.2: The scientific method cycle in HPC systems. I/O bottleneck impedes fast
transfer of large-scale scientific data sets between HPC storage and main
memory. Transfer of compressed data reduces the I/O bottleneck and de-
creases the Time-to-Analysis .
Image is adapted from [44].

times [46].

Many different types of in-situ algorithms have been developed for various applications.
The following list shows successful applications of in-situ techniques inside data-intensive
HPC applications:

In-Situ Visualization Carrying out visualization tasks during the simulation.
[3, 7, 8, 23, 73, 87]

In-Situ Feature Extraction Recognition and tracking of patterns in the data.
[20, 49, 83, 92]

In-Situ Indexing Supporting query-driven analytics of scientific data sets
by generating a (compressed) index. [14, 40, 44, 48]

In-Situ Compression Reduction of the memory footprint of full-resolution data
sets. [25, 45, 47, 54, 55, 58, 80]

For the CFD simulations carried out in the CRC920, in-situ processing shall provide
the feasibility of data capture and data movement w.r.t. decreasing the Time-to-Analysis
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and accelerating the scientific workflow, as shown in Fig. 1.2. In our case, the Time-to-
Analysis comprises the time between data production and data analysis, i.e. the time
required for:

(a) Computation, storage and compression during the Simulation phase.

(b) Data transfer and decompression during the Analysis & Visualization phase.

This dissertation aims at the development of new Temporal In-Situ Compression meth-
ods for further reduction of the memory footprint, i.e. exploiting the temporal coherence
inherently present when writing out time series in CFD simulations. In order to improve
the Time-to-Analysis , the algorithms must be fast and avoid message passing in parallel
processing to not infer with the simulation.

1.2 Research Objectives
This work provides contributions in the aspects of Data Management for HPC systems.
Specifically, Lossy In-Situ Data Compression algorithms for Scientific Floating Point
Data (SFPD) inside numerical CFD simulations are developed and evaluated. New
schemes for Temporal Compression are developed and investigated in detail.

The starting point for the research are two existing methods for lossy compres-
sion of SFPD, namely In-situ Sort-And-B-spline Error-bounded Lossy Abatement (IS-

ABELA) [45] and Set Based Decomposition (SBD) [36], which achieve a high data reduc-
tion by allowing insignificant numerical errors. ISABELA was originally developed for
the in-situ context and has an extension for temporal compression, namely Differential
ISABELA (d-ISABELA). Interestingly, both algorithms rely on using General Purpose
Lossless Compressors (GPLCs) as a back end for the compression of internal data. The
availability of real-time GPLCs, like snappy, lz4, zstd and tpfor renders this a pow-
erful idea, as the in-situ compressors directly benefit from the compression performance
and future advancements of those algorithms. Especially the newly developed in-situ
compression algorithm Grid Linearization And Truncation Encoding (GLATE) and the
temporal compression scheme Temporal GLATE (t-GLATE) provide an improved com-
pression speed and compression rate.

The GLATE and t-GLATE algorithms are evaluated inside a highly parallel CFD

simulation, which is run on the Taurus HPC Cluster in Dresden, Germany – one of the
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top 500 supercomputers by June 20171. Based on the evaluation results, the improve-
ment of the Time-to-Analysis in the scientific workflow is discussed.

In particular this dissertation addresses the following research objectives:

1. Development and Implementation of a new lossy in-situ compression algorithm
named GLATE.

2. Evaluation of lossy in-situ compression on three different CFD data sets, including
melt flow simulations from the CRC920, and two other publicly available CFD

data sets.

3. Evaluation of lossy in-situ compression back end using different state-of-the-art
lossless compressors for the compression of internal data of the in-situ compressors.

4. Development and Implementation of several new lossy temporal in-situ compres-
sion algorithms namely Temporal ISABELA (t-ISABELA), Temporal SBD (t-
SBD) and t-GLATE.

5. Evaluation of lossy temporal in-situ compression w.r.t. the compression perfor-
mance depending on the temporal resolution of decompressed data, i.e. keyframe
insertion and write-out step width.

6. Comparison of compression performance between the newly developed algorithms
GLATE, t-ISABELA, t-SBD and t-GLATE, and the existing algorithms IS-

ABELA [45], SBD [36] and d-ISABELA [45], as well as, the existing lossless float
compressor SPDP [9] and the novel lossy float compressor ZFP [63] w.r.t. compres-
sion rate, compression run-time, and error of decompressed data.

7. Evaluation of in-situ applicability of temporal lossy in-situ compressor t-GLATE

in a large-scale CFD simulation [2, 85] by empircal measurement of I/O times for
merging compressed data from parallel processes into large files.

8. Discussion of acceleration of the scientific workflow by means of improving the
Time-to-Analysis through the application of t-GLATE temporal lossy in-situ com-
pression, and quantification of the improvement for typical data transfer of CFD

simulation results within the CRC920.
1https://www.top500.org/list/2017/06/
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1.3 Outline of Thesis

1.3 Outline of Thesis
This section gives a short overview about the structure of this dissertation.

Chapter 2: Lossless Compression of Scientific Floating Point Data – This chapter
summarizes the performance of lossless compression on SFPD. First, properties
of SFPD stored in simulation grids are introduced and different schemes for grid
linearization are presented. Second, an overview about fast standard lossless com-
pressors is given and their performance is tested on three different CFD data
sets, i.e. melt casting simulation, isotropic turbulence simulation, and turbulent
combustion simulation.

Chapter 3: Lossy In-Situ Compression for Scientific Floating Point Data – This chapter
describes the reimplementation of existing and the development of new lossy in-situ
compressors for CFD simulations. First, the lossy in-situ compressors ISABELA

and SBD are introduced as a starting point for in-situ compression. Second,
the new in-situ compressor GLATE is developed. Third, the in-situ compressors
are evaluated using three CFD data sets, and different ĺossless compressors are
evaluated as back end for the compression of internal data of ISABELA, SBD

and GLATE.

Chapter 4: Temporal In-Situ Compression for Scientific Floating Point Data – This
chapter describes the development of new temporal compression algorithms for
CFD simulations. First, the internal mechanisms of the temporal in-situ com-
pressor d-ISABELA are presented. Second, new ideas for the in-situ compression
algorithms t-ISABELA, t-SBD and t-GLATE are developed and implemented.
Third, the temporal in-situ compressors are evaluated using high-resolution tem-
poral data. Fourth, the performance of t-GLATE is compared to the novel lossy
floating point compressor ZFP.

Chapter 5: Application of In-Situ Compression in a Computational Fluid Dynamics
Simulation – In this chapter t-GLATE is evaluated in a parallel CFD simulation
on the Taurus HPC Cluster . First, the HPC system and the CFD simulation
used for the evaluation are described briefly, and different I/O procedures for
writing and merging data into large files on the Lustre(R) parallel file system are
presented. Second, simulation run-time and I/O times for storing compressed and
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uncompressed data are evaluated. For comparison purposes, all tests are repeated
using the novel lossy floating point compressor ZFP as well. Fourth, the results of
the evaluation are discussed w.r.t. the improvement of the Time-to-Analysis in the
scientific workflow.

Chapter 6: Conclusion and Future Work – In the final chapter the contributions of this
dissertation are summarized and future research directions are proposed.
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2 Lossless Compression of Scientific

Floating Point Data

This chapter provides background information on SFPD encountered in the CFD do-
main, and it investigates the performance of lossless compression on scientific data sets.
First, general properties of floating point data are summarized and data structures for
the representation of three dimensional simulation grids are explained briefly. Second,
different linearization schemes for uniform simulation grids are introduced and used to
create data streams of SFPD, which are subject to compression. Third, background in-
formation on state-of-the-art lossless compressors are presented, and fourth, the lossless
compression is performed on sample Single Precision 32 bit Floating Point (float) data
coming from CFD simulations.

2.1 Floating Point Data in Simulation Grids

The data type of prime importance to be looked at is the float format, which is written
out in many CFD simulations. In general, computations inside simulations are carried
out using Double Precision 64 bit Floating Point (double) precision numbers. For data
storage aiming towards subsequent analysis and visualization, float data supplies suf-
ficient precision in most cases, as the data can be converted into double when higher
precision is needed for temporary computations. While requiring only half of the disk
space at the cost of reduced precision, the usage of float data is a viable trade-off
between data size and data precision for practical storage, transmission and processing
of large-scale SFPD.
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Exponent Mantissa

1 3224168 25179

Sign Hidden 1 Bit

Figure 2.1: The IEEE754 float format. One float value consists of 32 bit. 1 bit for
the sign, 8 bit for the exponent and 23 bit for the mantissa. Normalization
of float values allows for omitting the Hidden Bit in front of the comma.

The IEEE754 Float Standard

The float format is specified in the IEEE754 standard and conforms to the bit pattern
shown in Fig. 2.1. All 32 bits are subdivided into three different parts, namely, one
bit s ∈ {0 = +, 1 = −} for the sign, eight bits for the exponent E ∈ [0, 255], and 23

bits M = {m1 . . .m23} for the mantissa. The mantissa represents a sum of negative
powers of two. The decimal point is shifted using the exponent, and the result sign is
provided using the sign bit. For E = 1, 2, 3, . . ., 254, the resulting decimal value x of a
Normalized Floating Point Number is given by s, E andM according to the following
equation:

x = (−1)s · 2E−127 ·

(
[1] +

23∑
i=1

mi ·
1

2i

)
(2.1)

The IEEE754 format stores binary numbers in normalized form, which means the bit
m0 in front of the decimal point is choosen to be 1 by adjusting the exponent E, i.e.
m0.m1 m2 m3 . . . m23. Thus, m0 = 1 is always omitted and called the Hidden Bit ,
denoted as [1] in Eq. (2.1).

The exponent E = 0 indicates the Denormalized Floating Point Numbers , i.e. |x| ≤
1.1754942E−38 = 0x007fffff. E = 255 indicates Infinity (M = 0x00000000) or Not
a Number (M 6= 0x00000000). Because of this general structure of normalized floating
point numbers, SFPD is commonly known to be high-entropy data with randomized bit
and byte patterns [45, 84]. Fig. 2.2 shows a monotonic sequence of 100 floating point
numbers, 0.001, 0.002, 0.003, . . ., 0.1, and illustrates the behavior of the exponent and
mantissa.
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Figure 2.2: Visualization of exponent E and mantissa M for 100 consecutive float
numbers. The exponents and mantissa of the numbers xi = 0.001 · i for
i = 1 . . . 100 are plotted as unsigned. As can be seen, if the exponent is
counted up by one in the sequence, the mantissa jumps.

Floating Point Data in CFD Simulation Grids

Although float numbers span a very large value range between the values −3.403E+38

and +3.403E+38, large amounts of values in CFD data usually form clusters, where
values concentrate within a smaller bounded value range [46]. Furthermore, simulations
are carried out in grids, which supply a spatial context for coherence of floating point
values. As shown in Fig. 2.3 (a)−(b), the grids consist of so-called grid cells containing
values for different physical quantities and index numbers, which are computed during
the simulation.

The uniform voxel-based grid, as shown in Fig. 2.3 (a), comes from a simulation of
metal melt flow on pore-scale using a high-resolution parallel simulation for metal melt
in the scope of the CRC920, as explained in Section 1.1.2, p. 2. So-called Voxels are
small cubic three dimensional grid cells, which compose the whole spatial domain of the
simulation. A subset of the voxels describes the filter structure as a staircase approxi-
mation allowing for the representation of complex shapes. In this example, each voxel
contains one velocity vector (u, v, w). The color corresponds to the velocity magnitude
M =

√
u2 + v2 + w2.
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(a) (b)

Figure 2.3: Typical simulation grids. (a) Uniform simulation grid from metal melt sim-
ulation in the CRC920 using the LBM. (b) Unstructured simulation grid
with varying cell size used in combustion simulation.

Spatial Coherence in CFD Simulation Grids

The smooth color transition on the surface of the voxel grid indicates that the discretiza-
tion of the underlying flow problem creates a mathematical relationship for adjacent grid
cells. Values computed in neighboring grid cells are subject to spatial coherence, i.e. val-
ues are usually close to each other, and do not differ by orders of magnitude. Fig. 2.4
shows the distribution of the velocity component u, as well as, the differences between
velocity components of adjacent grid cells ∆u in x-direction, as extracted from the grid
shown in Fig. 2.3 (a). As can be seen, the value range of u (−0.01, . . ., +0.07) is much
wider, than the value range of ∆u (−0.01, . . ., +0.01), i.e. neighboring grid cells exhibit
spatial coherence. In general, this assumption counts for grids containing data describing
continuous physical processes, e.g. computed using CFD codes.
In order to compress float data contained in three dimensional CFD simulation grids,

the grid cells are linearized into a one dimensional sequence before they are fed into a
compressor.
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Figure 2.4: Spatial coherence in simulation grids. (a) Distribution of velocity component
u. (b) Distribution of differences ∆u between velocity component u of ad-
jacent grid cells along the x-direction. Distribution of u is much wider than
distribution of differences ∆u.

2.2 Linearization of Simulation Grids
In uniform grids, the spatial location of each grid cell is implicitely given by three indices
(i, j, k), as well as, the grid origin and the size of one voxel. Typically, uniform grids
in main memory constitute three dimensional arrays and are linearized according to the
Column-Major Order . In general, when dealing with uniform three dimensional data
structures, so-called Space Filling Curves allow for a mapping between three dimensional
grid locations (i, j, k) and a linear sequence of indices 0, 1, 2, . . ..

Space Filling Curves

Two prominent space filling curves, the Z-curve and the Hilbert-curve, traverse the
grid and build spatial clusters instead of stacked planes. Fig. 2.5 (a)−(b) show the
recursive construction of the Z-curve and the Hilbert-curve on a two dimensional grid for
4 iterations, starting with 2×2 cells. Fig. 2.6 (a)−(c) shows the Z-curve and Hilbert-curve
in comparison to the column-major linearization on a three dimensional grid consisting
of 4 × 4 × 4 cells. As can be seen, the Z-curve and the Hilbert-curve traverse the grid
in clusters of nearby grid cells, which form three dimensional blocks. The column-major
ordering traverses the grid in columns and slices. All linearization schemes connect
grid cells within one single polygonal chain, but only the Hilbert-curve constructs a line
passing through direct neighbors of each grid cell. Such a linearization without jumps is
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beneficial for the partial compression of simulation grids, as similar data is close to each
other in the resulting sequence.

(a)

(b)

Figure 2.5: Recursive construction of space filling curves in two dimensions. Four it-
erations of the recursion for (a) the Z-curve, and (b) the Hilbert-curve are
shown starting on a 2× 2 grid and ending on a 16× 16 grid.

(a) (b) (c)

Figure 2.6: Linearization schemes on a three dimensional grid. The grid has 4 × 4 × 4
cells and is linearized using (a) the column-major order, (b) the Z-curve, and
(c) the Hilbert-curve.

Partial Compression of Simulation Grids

Especially when sequences of grids are compressed partially, the Hilbert-curve improves
the performance of the compression, as well as, the performance of data access [26], e.g.
retrieval and decompression of planes and subgrids. In order to increase the compression
performance the data should be compressed in large contiguous blocks, which support the
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cache and block-fetching mechanisms in the memory hierarchies and the CPU. Assuming
many data values have to be decompressed at the same time, the way how the sequence
groups data into blocks determines the amount of data required to be loaded during the
decompression of subregions [89]. Since I/O dominates, a properly chosen data layout
benefits the application.

(1) (2) (3)

 

Figure 2.7: Clustering and locality properties of space filling curves. A 3 × 2 block
is intersected with (1) the column-major linearization, (2) the Z-curve and
(3) the Hilbert-curve. In general, the intersection with the column-major
linearization and the Z-curve yield more jumps than the intersection with
the Hilbert-curve.

Depending on the kind of query to be answered during data access, e.g. retrieving
planes or connected regions of grid cells, different kinds of linearization schemes may be
used. Whereas column-major layout yields the best performance for plane retrieval along
the i, j-directions, the Z-curve and the Hilbert-curve are better choices for retrieving
subregions of grid cells [41]. Generally, it is desired that bounding boxes intersecting the
curve split the sequences in a small amount of distinct clusters, which yield indices close
to each other. Fig. 2.7 illustrates the effect of locality and clustering for the column-
major order, the Z-curve and the Hilbert-curve on a 4× 4 grid, where a 3× 2 bounding
box is intersected with the curve. The column-major order and the Z-curve, result in 3

and 2 clusters, whereas the Hilbert-curve yields only one cluster. Generally, it has been
shown, that the Hilbert-curve achieves better locality and clustering than the Z-curve
for retrieving regions of grid cells [69].
As the research for the compression of SFPD is motivated by metal melt casting

simulations using the LBM in the CRC920, the compression techniques are primarily
applied to CFD data contained in uniform simulation grids. However, other linearization
techniques for other grid types, e.g. unstructured grids, can be employed in the same
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manner. Consequently, instead of extending the compressors for taking into account the
particular topology of different grid formats, methods for grid linearization are applied
for rearranging the grid cells into a one dimensional sequence in order to feed them into
a compressor.

2.3 General Purpose Lossless Compression
Data compression is an important topic in information and computer science, as it allows
for minimizing the bits required to encode the information in a block of data while being
able to reconstruct the original [31]. Historically, compression was employed, because
disk space was limited, and data compression virtually increased the disk capacity [77].
In the context of this dissertation, compression is employed for decreasing the load of
the storage system and increasing the data throughput between e.g. numerical simu-
lation and the visualization system, as explained in Section 1.1.3, p. 3. Using lossless
compression, a speed-up is achieved when compression, transfer of compressed data, and
decompression is faster than the transmission of uncompressed data [50].

History of Lossless Compression

Lossless compression has its roots in the study of the Morse code method, which led to the
concept of Information Theory . Data compression was carried out by assigning shorter
codes to certain letters of the English alphabet in order to save space and time [17].
Today, many popular compression techniques exist, e.g. Huffman coding, arithmetic
coding, run-length encoding, etc. [34]. However, some of the most popular GPLCs are
based on ideas published in 1977 and 1978 by Abraham Lempel and Jacob Ziv, who
developed the LZ77/78 algorithm [93]. Both algorithms are dictionary coders, which
replace repeating occurences of data by references to previous occurences in the data
stream. LZ77/78 was superseded by the LZW algorithm [84], which runs faster and
introduced variable-width codes.

State-of-the-Art Lossless Compression

Some of the most important compression libraries are based on the the ideas of the LZW
algorithm: zlib [18], bzip [76], lzma [1], bsc [30], snappy [28], lz4 [15] and zstd [22] –
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2.3 General Purpose Lossless Compression

more implementations of lossless compression algorithms exist, e.g. Zopfli [29], Brotli [27],
ZPAQ [66], LZO [70], but those are not suited for the present compression task and dis-
proportionately trade compression speed for compression rate.

The zlib library uses the DEFLATE algorithm, which is based on LZW and Huffman
Coding [35, 72]. It is used in Portable Network Graphics (PNG) files and the ZIP file
format. bzip combines LZW algorithms with the Burrows-Wheeler transform [68], which
is a reversible transformation for text-like data, acting like a pre-conditioner, and creating
optimized input streams for the zlib DEFLATE. lzma extends the LZW algorithm to
use Range Encoding [72], which generalizes the Huffman coding and employs a complex
model for the prediction of the next data in the stream using Markov Chains [13]. bsc
aims at being a high-performance block-sorting compressor, which uses Burrows-Wheeler
transform while performing radix sort on the Graphic Processing Unit (GPU). Compared
to bzip, bsc yields a better compression rate, and lzma yields faster decompression
speed.

Real-Time Lossless Compression

Especially interesting for in-situ compression are real-time GPLCs, namely snappy,
lz4 and zstd, which have been developed recently. lz4 and zstd constitute efficient
implementations of the DEFLATE algorithms, mainly optimized for high speed and high
throughput. While lz4 focuses on real-time compression for data transfer over 1 Gbit/s

ethernet, zstd allows for a fine-grained tweaking of the compression performance by
trading run-time for compression rate. Both algorithms are developed for real-time
compression scenarios and yield compression rates comparable to zlib. In contrast, the
snappy implementation aims for high speeds using a conservative compression policy
and may result in nearly no compression if the data cannot be encoded fast enough.

Contrary to LZW based approaches for lossless compression, algorithms like tpfor [10]
use the PFor bit packing [59, 60] which encodes streams of unsigned integer numbers.
The PFor bit packing codec works on small blocks of unsigned values, where it de-
termines the minimum value. The minimum value is stored uncompressed, and the
differences between the minimum value and the other values are encoded using the min-
imal number of bits. If the values are in a narrow range, PFor yields efficient encoding
at very good compression rates. Further, sorted lists can be compressed using Differ-
ential Coding [60]. Using differential coding, the compression rate can be improved by
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2 Lossless Compression of Scientific Floating Point Data

processing the differences between consecutive elements of a sorted list using the PFor
bit packing codec.

Compression Performance Test

In order to evaluate the compression performance of zlib, bzip, lzma, lz4, zstd,
bsc, snappy and tpfor for the in-situ compression context, range-bounded random
32 bit Signed Integer (integer) and range-bounded random unsigned numbers are com-
pressed. Specifically, 1283 = 2,097,152 random values in two intervals XS = [−XMAX,
+XMAX] and XU = [0, +XMAX], for XMAX = 22, 23, 24, . . ., 230, are generated and com-
pressed. During each run, the compression rate, and the run-time for compression and
decompression are recorded. All algorithms are applied using their default compression
level, which is 6 for zlib, bzip, lz4 and zstd, and 5 for lzma. Higher compression
levels are not considered for the in-situ compression task, as they increase run-time dis-
proportionally compared to the gain in compression rate. For comparison, zlib, bzip,
lz4, zstd and lzma are also operated with lower compression levels between 1−4. The
bsc, snappy and tpfor compression algorithms, do not provide advanced adjustment
of the compression performance. Therefore, for bsc and snappy the default parameters
are used. For tpfor, the default block size of 128 values is used.

Compression Rate

The term compression rate refers to the percentage of data which is left after the com-
pression has been executed, as shown in the following equation:

Compression Rate =
Size of Compressed Data

Size of Raw Uncompressed Data

For the compression of float data inside CFD simulation grids, the term compression
rate is explained in more detail in the next section.

Fig. 2.8 (a)−(b) show the compression rate for random integer and unsigned numbers
in the intervalls XS and XU . As explained before, tpfor is designed for the compression
of unsigned data only. As negative integer numbers are represented using the two’s
complement , tpfor handles them as high unsigned numbers. Therefore, the compres-
sion performance of tpfor on the interval XS is poor, as can be seen in Fig. 2.8 (a).
However, as shown in Fig. 2.8 (b), for the compression of positive values, tpfor yields
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2.3 General Purpose Lossless Compression

a strong compression similar to the best LZW based GPLCs, namely bzip, lzma and
bsc.
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Figure 2.8: Compression rate of lossless compressors for random signed and unsigned
integer numbers. The compressors zlib, bzip, lzma, lz4, zstd, bsc,
snappy, tpfor are used for compression of (a) random integer numbers
in XS = [−XMAX, +XMAX], and (b) random unsigned numbers in XU = [0,
+XMAX] for XMAX = 22, 23, 24, . . ., 230.

Compression Run-Time

Fig. 2.9 (a)−(b) show the run-time for compression and decompression of unsigned data
plotted against the compression rate as shown in Fig. 2.8 (b). As the compressors yield
similar speed on integer data, only the statistics for unsigned data is shown. As can
be seen, tpfor yields the highest speed for compression and decompression of unsigned
data.
The fastest LZW based algorithms are snappy, zstd and lz4 which yield high-speed

compression and decompression for the expense of a slightly lower compression rate as
compared to bzip, lzma and bsc. It has to be noted the time scale is plotted logarithmic,
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Figure 2.9: Compression speed of lossless compressors for compression and decompres-
sion of random unsigned integer numbers. The compressors zlib, bzip,
lzma, lz4, zstd, bsc, snappy, tpfor are used to compress and decompress
random unsigned numbers in the interval [0, +XMAX] for XMAX = 22, 23, 24,
. . ., 230. The graph shows (a) compression run-time, and (b) decompression
run-time plotted against the compression rate shown in Fig. 2.8 (b).
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2.4 Compression of Scientific Data Sets

and bzip, lzma and bsc take more than 16× longer for compression than the other
algorithms. While lz4 yields the fastest decompression speed, zstd yields very good
compression rates at high decompression speeds and offers the best trade-off between
level of compression and compression run-time.

Selection of Fast Lossless Compressors

Because of the simplicity of bit packing, tpfor is always the fastest algorithm and yields
a better trade-off between compression rate and compression speed as compared to the
LZW algorithms. However, as can be seen in Fig. 2.8 (a), tpfor can be applied to
unsigned values only, otherwise the compression rate declines. Concluding, zlib, zstd,
lz4, snappy and tpfor are well-suited for compression of integer streams and are used
as back end for fast lossy in-situ compression and temporal compression of SFPD.

2.4 Compression of Scientific Data Sets
Before lossy in-situ compression is elaborated in the next chapter, different lossless com-
pressors, namely zlib, bzip, lzma and zstd, are tested on SFPD coming from three
different CFD simulations. All data sets are composed of voxels in uniform simulation
grids, which conform to the setup of the simulations for metal melt casting used in
the CRC920. At first, voxels in each simulation grid are linearized before they are fed
into different GPLCs. Additionally to feeding the data into GPLCs, the data is also
compressed with a lossless compressor SPDP [9] specially developed for float data. For
linearization, the row-major and the column-major ordering, as well as, the Z-curve and
the Hilbert-curve are used.

CFD Data Sets

The data sets denoted as alu, iso and jet, correspond to an Aluminum Metal Melt
Simulation in Porous Media [67], an Isotropic Turbulence Simulation [61], and a Tur-
bulent Combustion Simulation [88]. Different indices A, C and R of the data sets denote
the following different versions.

A The entire simulation grid including boundary regions.

C A cropped data set without boundary regions.
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2 Lossless Compression of Scientific Floating Point Data

R A unsteady center region capturing simulation specific phenomena.

The cropped version does not contain boundary regions, which typically do not contain
important phenomena and are needed for the flow to evolve during the simulation. The
turbulent center regions of size 64×64×64 = 262, 144 voxels contain 60 time steps in the
temporal end stage of the simulation, where the flow has fully developed. Compressing
different regions of the data sets illustrates the performance of the compressors during
different states of the simulation.

alu iso jet

Figure 2.10: CFD data sets used for lossless compression tests. aluC, aluR Aluminum
Metal Flow in Porous Media, showing the whole data set and the center
region. isoC, isoR Isotropic Turbulence, showing the cropped data set and
the center region, which have the same size but different amount of time
steps. jetA, jetC, jetR Turbulent Combustion Simulation, showing whole
data set, cropped version and the center region.

The following list describes the data sets, and Fig. 2.10 shows a color plot of the data
sets and their different versions.

alu Aluminum Metal Flow in Porous Media [67] from in-house CFD code [85].

aluC Cropped version. Consists of 164 time steps with 256 × 256 × 256 voxels
containing velocity vector (u, v, w) – 30.75 GB.

aluR Center region. Consists of time steps 100 . . . 160 with 64 × 64 × 64 voxels
containing velocity vector (u, v, w) – 180 MB.

iso Isotropic Turbulence [61] from the Johns Hopkins Turbulence Databases .

isoC Cropped Version. Consists of 1024 time steps with 64×64×64 voxels containing
velocity vector (u, v, w) – 3 GB.

isoR Center region. Consists of time steps 960 . . . 1020 with 64 × 64 × 64 voxels
containing velocity vector (u, v, w) – 180 MB.
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jet Turbulent Combustion Simulation [88] from the S3D Direct Numerical Solver .

jetA Whole data set. Consists of 122 time steps with 448×704×64 voxels containing
the length of the vorticity vector V – 9.2 GB.

jetC Cropped version. Consists of 122 time steps with 448 × 192 × 64 voxels con-
taining the length of the vorticity vector V – 2.5 GB.

jetR Center region. Consists of time steps 60 . . . 120 with 64× 64× 64 voxels con-
taining the length of the vorticity vector V – 60 MB.

The data sets alu, iso and jet are compressed using the GPLCs zlib, bzip, lzma
and zstd on their default levels, i.e. level 6 for zlib, bzip and zstd, and level 5 for
lzma. As the compression tests mimic the compression of scientific data inside numerical
simulations, which typically are run in parallel Message Passing Interface (MPI) envi-
ronments, the data sets are divided into subgrids of size 64× 64× 64 voxels before com-
pression. The subgrids are linearized using the schemes described in Section 2.2, p. 13,
and are compressed independently.

Definition of Compression Rate

The term Compression Rate refers to the amount of data left after compression, relative
to the original data size. The compression rate relative to float data is referred in
the unit [ % 32

b

]. In the original publication of ISABELA and SBD, the compression
rate is referred relative to double data. However, since a simple conversion into the
float data type already yields a data reduction by factor two, the compression rates
are specified relative to float data [ % 32

b

]. The compression rate for float data is given
by the following equation:

Compression Rate =
Size of Compressed Data

Size of Raw Binary float Data
× 100 % 32

b (2.2)

100

3224201612840 28

500 25 75[%  ]

[bit]

3
2
b
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2 Lossless Compression of Scientific Floating Point Data

Compression Performance of GPLC

The compression rates resulting on the data sets alu, iso and jet are shown in Table 2.1.
As can be seen, GPLCs do not reduce SFPD by more than ∼10−25 % while consuming a
reasonable amount of run-time for compression of the noisy float data. Increasing the
level of compression would improve the compression rate slightly. However, it also would
increase the run-time and memory requirements disproportionately. The lzma algorithm
always yields the best compression rates of ∼74−80 % on data sets linearized using the
Hilbert-curve. Using different linearization schemes makes a difference of ∼1−3 %.

Table 2.2 shows the compression run-time in seconds for the compression of the data
sets alu, iso and jet using the same compressors. Although, lzma yields the best
compression rate, it also takes the longest time for compression. zlib and zstd are at
least ∼2× faster than lzma and bzip.

[ % 32
b

] zlib bzip lzma zstd zlib bzip lzma zstd
aluC 83.43 85.03 77.74 83.16 aluR 80.77 82.17 75.26 80.44 i−j−k

83.27 85.01 76.75 83.00 80.59 82.17 74.34 80.31 k−j−i
82.43 85.13 76.71 82.90 79.69 82.20 74.24 80.11 Z−curve
82.17 84.98 76.49 82.74 79.43 82.11 74.02 79.90 Hilbert

isoC 90.17 91.57 82.09 89.85 isoR 89.48 90.72 81.47 89.16 i−j−k
89.98 91.45 81.30 89.69 89.56 90.85 81.13 89.25 k−j−i
88.63 91.42 79.88 89.13 88.58 90.86 79.56 89.02 Z−curve
88.50 91.49 79.47 89.13 88.39 90.82 79.10 89.02 Hilbert

jetC 89.36 91.17 82.07 89.13 jetR 89.21 91.10 82.12 88.98 i−j−k
89.30 91.17 81.09 89.09 89.18 91.11 81.26 88.97 k−j−i
88.54 91.18 80.12 88.85 88.50 91.13 79.97 88.79 Z−curve
88.47 91.02 79.72 88.85 88.43 91.05 79.50 88.79 Hilbert

Table 2.1: Compression rate for CFD data sets using different GPLCs. The compressors
zlib, bzip, lzma and zstd are used for the compression of the data sets alu,
iso and jet. zlib, bzip and zstd operate at default compression level 6,
and lzma operates at default compression level 5.

Compression Performance of Lossless Float Compressor

As shown, GPLCs do not reduce the size of SFPD efficiently and also require reasonable
amount of run-time. In order to achieve a better compression rate while requiring
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[ s ] zlib bzip lzma zstd zlib bzip lzma zstd
aluC 1550.4 4588.2 9038.7 1626.7 aluR 9.7 25.7 48.4 7.5 i−j−k

1445.3 4489.8 8870.1 1552.2 10.1 26.5 47.0 7.3 k−j−i
1643.7 4489.8 8753.9 1290.5 10.6 26.1 47.8 5.2 Z−curve
1600.1 4517.5 8868.1 1361.7 10.6 25.7 46.7 6.5 Hilbert

isoC 182.8 491.7 878.4 60.8 isoR 9.7 28.7 52.0 3.5 i−j−k
180.3 480.9 851.6 54.9 9.5 28.3 50.3 3.8 k−j−i
180.9 478.8 882.4 60.0 9.7 28.1 52.1 4.0 Z−curve
186.4 486.3 875.7 64.0 9.7 28.2 51.4 4.6 Hilbert

jetC 136.0 410.8 762.8 41.4 jetR 3.3 9.8 17.0 1.1 i−j−k
135.8 401.2 778.7 40.0 3.3 9.6 16.9 0.9 k−j−i
136.5 404.2 774.1 39.9 3.3 9.7 17.6 0.8 Z−curve
139.6 400.6 765.2 36.7 3.3 9.8 17.2 1.0 Hilbert

Table 2.2: Run-time for compression of CFD data sets using different GPLCs. The
compressors zlib, bzip, lzma and zstd are used to compress the data sets
alu, iso and jet. zlib, bzip and zstd operate at default compression level
6, and lzma operates at default compression level 5.

less run-time, special lossless compressors, namely FPC and SPDP [9], for double and
float have been designed. As compared to GPLCs, FPC and SPDP are designed for
the compression of float and double data. However, the data reduction is primarily
implemented for high speed and high throughput, and does not contain complicated
features for improving its compression rate [9]. FPC and SPDP use a predictor to estimate
the next floating point value in the sequence and perform an XOR-operation on the next
original and predicted value. Since XOR creates 0 bits in the case the operands match,
bit-wise XOR of two float values create a lot of leading 0 bits if original and prediction
are close to each other. By employing an efficient encoding of the residuals and leading 0

bits, FPC and SPDP achieve data compression. Table 2.3 shows the compression rate and
run-time of SPDP on the data sets alu, iso and jet. As can be seen, the compression
rate is best at ∼85−92 %, and the run-time is comparable to zstd, which is the fastest
GPLC.
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CR [ % 32
b

] Time [ s ] CR [ % 32
b

] Time [ s ]
aluC 93.47 2116.2 aluR 93.00 5.1 i−j−k

92.43 1947.9 91.43 3.7 k−j−i
88.74 2112.3 86.76 3.8 Z−curve
91.92 3014.2 89.72 3.6 Hilbert

isoC 92.28 60.9 isoR 91.66 3.5 i−j−k
91.98 55.9 91.46 3.0 k−j−i
91.96 58.8 91.83 3.4 Z−curve
95.88 59.0 95.69 2.9 Hilbert

jetC 87.17 31.5 jetR 85.78 1.0 i−j−k
86.92 30.4 85.43 0.8 k−j−i
88.15 32.2 87.64 1.0 Z−curve
93.50 31.1 92.96 1.0 Hilbert

Table 2.3: Compression rate and compression run-time for CFD data sets using lossless
floating point compressor SPDP. The data sets alu, iso and jet are com-
pressed using SPDP operating at compression level 9.

Complexity of CFD Data Sets

The bad performance of GPLCs on SFPD indicates the inherent complexity and ran-
domness of SFPD, which is high-entropy data without many repeating bit and byte
patterns [84]. Thus, SFPD in common is hardly compressible using GPLCs based on
the LZ77/78 algorithms [44], e.g. implemented in the well known zlib, bzip, lzma and
zstd libraries which have been tested. Table 2.4 shows the entropy and the amount of
unique values for the data sets alu, iso and jet.

Variable Data Set Entropy [ bit ] Unique Values [ % ]
(u, v, w) aluC 17.9 79.3

aluR 17.9 85.9
(u, v, w) isoC 21.5 99.4

isoR 15.8 99.4
V jetA 24.6 86.5

jetC 22.8 86.9
jetR 17.9 99.5

Table 2.4: Entropy and unique values of CFD data sets. Amount of unique values in
the data sets alu, iso, jet and their different versions A, C, R.
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The uniqueness of the data is given by the fraction of the number of unique values in
the data set divided by the overall number of values. The entropy is a measure for the
amount of self-information carried by messages sent out by an information source X, i.e.
the number of bits required to label all possible messages x that are sent out by X [12].
Mathematically, entropy is measured in bit and defined by the following equation:

H(X) = −
∑
x∈X

P (x) · log2 (P (x)) (2.3)

All data sets exhibit a high entropy of at least ∼15.8 bit. However, due to memory and
run-time limitations, as well as, the fragmentation of the grid data in subgrids before
compression, GPLCs only operate on a smaller local context of the data leading to less
efficient coding. As can be seen, the data sets also exhibit a high amount of unique values
corresponding to individual bit patterns. The uniqueness reflects the noise introduced by
the normalized mantissa of float values as explained in Section 2.1, p. 9 and increases
in the turbulent center regions. As shown in Fig. 2.11, the alu data set describes a
porous filter structure containing regions blanked to zero, i.e. the melt flow data set alu
has slightly lower entropy and less unique values.

Figure 2.11: Complex porous filter structure used in LBM based CFD simulations in the
CRC920. The filter is obtained from a CT scan and used for the production
of the alu data set describing a aluminum metal melt filtration scenario.
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2.5 Summary
As elaborated in this chapter, GPLC and lossless floating point compressors hardly yield
data reduction on SFPD. GPLCs are not suited for the compression of SFPD, as float-
ing point data exhibits a lot of randomness in its bit and byte patterns. Special-purpose
floating point compressors solve the speed problem of GPLC on SFPD. However, they
are only slightly better than GPLCs w.r.t. the resulting compression rate.
If data compression is fast enough and reduces space requirements, it allows for the

acceleration of data transfer [82]. In HPC systems, computational power is available
on a larger scale as compared to network bandwidth and storage space. In this regard,
early data compression is a powerful approach for scaling up e.g. CFD simulations and
visualization applications while keeping the I/O bottleneck in mind.
For this reason it is argued, that Lossy In-Situ Compression of SFPD constitutes

a promising approach for reducing space requirements, as well as, the transfer time of
data by offering better data reduction as compared to lossless compression. Lossy In-Situ
Compression for SFPD is described in the next chapter.

28



3 Lossy In-Situ Compression for

Scientific Floating Point Data

In this chapter, existing algorithms for in-situ compression are reviewed and new algo-
rithms are developed. First, lossy compression for SFPD is motivated, and the require-
ments on the quality of the decompressed data are defined through an error correction
policy for a point-wise maximum decompression error. Second, two algorithms, namely
ISABELA [45] and SBD [36], are presented that serve as an entry point for practical
in-situ compression of SFPD. Furthermore, based on the ideas of ISABELA and SBD,
the GLATE algorithm is newly developed in this chapter. Third, the compression rate
and the compression speed of ISABELA, SBD and GLATE are evaluated on three
CFD data sets. In this context, different real-time GPLCs are evaluated as back end
for the compression of internal data of ISABELA, SBD and GLATE.

3.1 Motivation for Lossy Compression

The availability of powerful HPC systems allows scientists to run CFD simulations with
increased spatial and temporal resolution. However, such high-resolution simulations
can generate virtually any amount of data, and scientists are forced to manage large
amounts of data for single simulation runs. As a result, many data-intensive applications
of the future are expected to be limited by available memory and bandwidth instead of
processor performance [50], and the storage of uncompressed full-resolution data will be
practically impossible in the future [4]. Here, data compression constitutes a way to trade
off required bandwidth and computation time. However, as shown in Section 2.4 lossless
compression yields poor performance on SFPD, reducing data by ∼10−20 % only. The
lossless float compressor SPDP achieves only slightly better compression but improved
speed.
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Although many problems can be addressed by analysis and visualization directly in
the HPC simulation [23], which would decrease the amount of stored data to a higher
extent than data compression, the data analysis in a post-hoc fashion allows for a more
flexible generation of visualizations from simulation data stored in the file system and
is inevitable for many visualization and analysis tasks [46]. Such workflows may greatly
benefit from lossy in-situ data compression, which limits the amount of simulation data
written out to the file system while keeping the decompression error low. With regard
to these circumstances, error-bounded lossy in-situ compression for SFPD is argued to
constitute a practical solution for storing large amounts of data at low error-rates.

3.2 Error Correction Policy

Lossy compression is argued to improve the data capture in large scale CFD simulations
because it allows for storage of full-resolution data at low error rates, which is sufficient
for e.g. visual analysis and exploration of scientific data sets. For scientific CFD simu-
lations the quality of decompressed data is controlled by a user-defined maximum error
eMAX in percent.

Point-Wise Maximum Relative Error

Lossy compression is realized by a scalar quantization method which restricts the max-
imum relative error EREL(x, x̂) = |x−x̂|/|x| between original x and decompressed data
value x̂. The decompressed value is allowed to differ from its original value based on
a user-defined maximum relative error eMAX [ % ]. The maximum difference between
decompressed and original equals to ±|x| · eMAX and is given by the following relation:

EREL(x, x̂) =
x− x̂
x

< eMAX

|x− x̂| < |x| · eMAX

(3.1)

In order to prevent overhead for error correction of near-to-zero numbers, an epsilon
value e1 for the restriction of the denominator |x| has to be supplied according to the
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following equation:

EREL(x, x̂) =



|x− x̂|
|x|

if e1 ≤ |x| (i)

|x− x̂|
e1

if e0 ≤ |x| < e1 (ii)

0 if |x| < e0 (iii)

(3.2)

The parameters eMAX and e1 describe the mapping, as shown in Fig. 3.1. The five
different sections (1)−(5), which are shown in the figure, correspond to the three different
cases of Eq. (3.2), i.e. section (1) and (5) correspond to case (i), section (2) and (4)
correspond to case (ii), and section (3) corresponds to case (iii). As can be seen, the
parameter e1 describes the value for which the error correction mechanism switches over
to the relaxed definition, i.e. using an absolute error bound. Consequently, all values
in x̂ ∈ [−e0,+e0] with e0 = eMAX · e1 are mapped to zero, as shown by the following
relation:

EREL(0, x̂) < eMAX

|0− x̂|
e1

< eMAX

|x̂| < eMAX · e1
x̂ ∈ [−e0,+e0]

(3.3)

Error Quantization

Fig. 3.2 shows three different possible sets of quantized values in the interval [0, 1E−3]

conforming to Eq. (3.2) (i)−(iii). The three following different configurations are shown:

(a) eMAX = 1.5 %, e1 = 1E−6.

(b) eMAX = 3.0 %, e1 = 1E−5.

(c) eMAX = 4.5 %, e1 = 1E−4.

As can be seen, for configuration (a), the quantization grid is finer and e0 = eMAX · e1 is
smallest, which results in a better reconstruction of small data values, as compared to
configuration (b) and (c).
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Figure 3.2: Quantization grid resulting from error mapping defined by eMAX and e1.
The quantization grid is constructed using Eq. (3.2) for (a) eMAX = 1.5 %,
e1 = 1E−6, (b) eMAX = 3.0 %, e1 = 1E−5, and (c) eMAX = 4.5 %, e1 = 1E−4.

32



3.3 Lossy Float Compression using Scalar Quantization

3.3 Lossy Float Compression using Scalar

Quantization

In the next sections, two different approaches for In-Situ Compression are presented,
namely In-situ Sort-And-B-spline Error-bounded Lossy Abatement (ISABELA) [45] and
Set Based Decomposition (SBD) [36]. The algorithms transform float data into an
internal representation, which is compressed using fast GPLCs. Based on the ideas
of ISABELA and SBD, the Grid Linearization And Truncation Encoding (GLATE)
algorithm is proposed for the first time. GLATE constitutes a new method for scalar
quantization and compression of float data.

3.3.1 In-situ Sort-And-B-spline Error-bounded Lossy

Abatement

In-situ Sort-And-B-spline Error-bounded Lossy Abatement (ISABELA) [45] is a lossy
in-situ compression algorithm for SFPD which supports a user-defined bound on the
maximum error. ISABELA is fast and does not require communication in parallel
applications. As ISABELA uses sorting as a preconditioner, it achieves high data
reduction for turbulent CFD simulations at excellent error rates [45].

ISABELA Compression Procedure

The ISABELA algorithm is based on four steps illustrated in Fig. 3.3 (1)−(4). First, a
linear stream of floating point data is produced, and second, the data is sorted. Third,
a B-spline fit is obtained for the sorted data, and forth, an error correction mechanism
is applied in order to ensure the bound on the maximum error. ISABELA replaces
the noisy float values by a sort order, B-spline control points and quantized errors. In
step (2), the sort order has to be stored, because the sorting needs to be reversed during
decompression.

The internal mechanisms of ISABELA are visualized using a stream of N = 512

normal distributed random values N (0, 1). The parameter N specifies the length of
the input stream of floating point values to be processed with ISABELA. After sorting
the data sample, the sorted sequence has a smooth monotonic shape, as illustrated in
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(1) (2) (3) (4)

linearized data
sorted data

sorted data
B-spline

sorted data
B-spline

Figure 3.3: ISABELA compression procedure. (1) Linearize data, (2) sort data, (3) B-
spline regression, and (4) error quantization.

Fig. 3.4 (a).
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Figure 3.4: ISABELA B-spline fit of sorted data. (a) B-spline approximation X̂ of
N = 512 sorted data values, and (b) magnified differences between B-spline
approximation X̂ and original data X.

The B-spline fit is computed using nB = 16 B-spline control points, corresponding to
only ∼1.5 % 32

b (16/512×100 % 32
b) of the input stream size. Fig. 3.4 (b) shows the magnified

differences between the B-spline and the sorted data. As the sorted data has a smooth
shape, the B-spline fit can be carried out using a low number of B-spline control points
nB � N [45].
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ISABELA Error Correction Mechanism

For each approximate value in the B-spline X̂[i] (i = 0 . . . N − 1), the error residual
X[i] − X̂[i] between original data and approximation is represented by a integer value
qi. The value quantizes the error residual using the step width ∆ > 0 and is calculated
according to the following equation:

qi =

⌊
(X[i]− X̂[i])

∆
+ 0.5

⌋
(3.4)

In order to ensure a point-wise maximum decompression error of eMAX percent, the de-
compressed value X̃[i] is allowed to fluctuate around the original value X̃[i] = X[i] ±
eMAX · |X[i]|. Given the quantization step width ∆, the decompressed value is recon-
structed using the B-spline approximation X̂[i] and the quantized error qi according to
the following equation:

X̃[i] = X̂[i] + qi ·∆ (3.5)

The smallest valid quantization step width depends on the original data value, i.e. ∆ =

2·eMAX ·|X[i]|. Since the original data value is not known during decompression, the step
width has to be predicted. In order to implement the policy described in Section 3.2,
four indices 0 ≤ i−e1 ≤ i−e0 ≤ i+e0 ≤ i+e1 ≤ N − 1 are stored together with the sort order.
The indices are used to partition the sorted input stream X into five sets X(1)−(5), which
correspond to the five sections (1)−(5) labeled on the x-axis shown in Fig. 3.1.

i ∈ X(1) = [0 . . . i−e1 − 1] → X[i] < −e1
i ∈ X(2) = [i−e1 . . . i

−
e0 − 1] → −e1 ≤ X[i] < −e0

i ∈ X(3) = [i−e0 . . . i
+
e0 − 1] → −e0 ≤ X[i] < +e0

i ∈ X(4) = [i+e0 . . . i
+
e1 − 1] → +e0 ≤ X[i] < +e1

i ∈ X(5) = [i+e1 . . . N − 1] → +e1 ≤ X[i]

(3.6)

The indices {i−e1, i−e0, i+e0, i+e1} are determined by scanning the sorted input stream X while
checking the relations given above. Depending on the indices referring to positions in the
sorted data, the corresponding case (i)−(ii) in Eq. (3.2) is used for error compensation.
All values at positions i ∈ X(3) are blanked to zero. For values at positions i ∈ X(2)∪X(4)

the constant step width ∆ = e0 = eMAX · e1 is used for the relaxed error definition for
small numbers. The step width for values at positions i ∈ X(1) ∪X(5) is predicted to be
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close to the optimal step width ∆ = 2 · eMAX · |X[i]|.

For brevity, the prediction is illustrated for positive numbers at positions i ∈ X(5) =

[i+e1 . . . N − 1] only. For negative numbers at positions i ∈ X(1) the same procedure is
carried out. The choice of a valid step width ∆ ≤ 2·eMAX ·|X[i]| is accomplished through
a value δ[i] ≤ X[i], which is smaller or equal to the i-th sorted original value and used
to predict the step width ∆ = 2 · eMAX · δ[i].

The first value δ[i = i+e1] = δ̄ is initialized as the smallest positive value larger or equal
to e1, i.e. δ̄ = X[i+e1]. δ̄ is stored together with the B-spline control points and used to
start the estimation of the quantization step width during the error correction procedure.
The next value δ[i+ 1] is predicted using the last decompressed value X̃[i] according to
δ[i+ 1] = X̃[i] · p∆. The correction factor p∆ is chosen, to that X̃[i] · p∆ ≤ X[i+ 1] holds
for all i ∈ X(5) and ∆ = 2 · eMAX · δ[i + 1] is a valid step width for the quantization of
the error of the next value.

In the worst case, two subsequent values in the sorted stream X[i] = X[i+1] are equal,
and the factor p∆ is used to scale the decompressed value so that X̃[i] · p∆ ≤ X[i + 1].
The scaling factor is chosen as p∆ = 1/(1+eMAX), which is calculated according to the
following relation:

p∆ ·��
�>

=(1+eMAX)·X[i] in worst case

X̃[i] ≤ X[i+ 1]

p∆ · (1 + eMAX) ·X[i] ≤ X[i+ 1]

p∆ ≤ 1

(1 + eMAX)
·
�
�
�
�
�>

=1 in worst case

X[i+ 1]

X[i]

p∆ ≤ 1

(1 + eMAX)

(3.7)

The accuracy of the B-spline without error correction is given in Fig. 3.5 (a). There, the
distribution of the relative error between sorted data X and B-spline approximation X̂ is
shown. The error is given by EREL(x, x̂) as described in Section 3.2, p. 30. Although only
nB = 16 B-spline control points have been used, the error of more than half of all data
values is ∼5 % or better. The largest error occurs at the intersection with zero, where
the error correction demands small quantization steps in order to achieve the desired
precision. Fig. 3.5 (b) shows the distribution of the relative error for decompressed data
using eMAX = 1 % and e1 = 1E−6.
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Figure 3.5: ISABELA B-spline accuracy and distribution of decompression error.
(a) Error between sorted data values X and B-spline approximation X̂, and
(b) error between sorted data values and decompressed values.

ISABELA Compression Rate

Sorting the data values creates smooth sequences for the B-spline fit. However, the
sort order S has to be stored in order to rearrange the values during decompression.
Compared to the B-spline control points, the sort order takes up more space, e.g. for
N = 512, the sort order takes up ∼28.1 % 32

b corresponding to 9 bit per value, and the
B-spline control points take up ∼3.1 % 32

b for nB = 16 control points. As the size for
the sort order and the B-spline control points are independent of the data values to
be compressed, ISABELA has fixed start-up costs defined by N and nB. The overall
ISABELA compression rate for float data including start-up costs is given by the
following equation:

CRISA(N, nB) =

(
dld(N)e

32
+
nB

N
+

ERRISA

4 ·N

)
× 100 % 32

b (3.8)

ERRISA denotes the number of bytes required to compress the quantized errors using
a GPLC. This size is unknown and determined during run-time of the algorithm. For
float data, the B-spline control points take up (nB · 32 bit)/(N · 32 bit) = nB/N ×
100 % 32

b. The integer values of the sort order occupies (N · dld(N)e)/(N · 32 bit) =
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dld(N)e/(32 bit)× 100 % 32
b.

ISABELA Implementation

The ISABELA compression procedure ISA_compress (. . .) is given in Alg. 3.1 and cor-
responds to the algorithmic steps after data linearization, as depicted in Fig. 3.3 (2)−(4).
The stream of sorted data X is obtained using a sorting algorithm called SpreadSort,
which is a distribution-based sorter like bucket-sort using quicksort for sorting bins [74].
SpreadSort turned out to outperform Std: : Sort and other famous sort implementations
on scientific data [57], and is contained in the Boost C++ library. The sorting step
yields the sorted data X, as well as, the sort order S.
The indices {i−e1, i−e0, i+e0, i+e1} are required for error quantization and are found using

the binary search implementation Std: : UpperBound(lo, hi, ptr, val) available in the
C++ standard library. After the indices are obtained, the minimum value δ̄ in the
input stream greater than e1 is determined. δ̄ is required to start the estimation of the
quantization step width during error quantization.
Using the sorted data, a B-spline of degree three is fitted and reconstructed using

the procedure calls BSplineFit3(size, data, num_coeff) and BSplineSample3(size, coeff,
num_coeff). The proedure call ISA_quant_error (. . .) performs the quantzation of errors
between sorted dataX and the reconstructed B-spline approximation X̂ using the indices
{i−e1, i−e0, i+e0, i+e1} for determination of the corresponding case in Eq. (3.2) (i)−(iii), p. 31.

At the end, of the ISABELA algorithm, the sort order S is encoded into dldNe bit

numbers. The indices {i−e1, i−e0, i+e0, i+e1}, as well as, the nB B-spline control points are
copied in a stream. The quantized errors Q = (q0 . . . qN−1) are stored compressed using
a GPLC.
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def ISA_ compress(N , nB, in_data , eMAX, out_stream):
2 // N − size of input data

// nB − number of B-spline control points
4 [X, S] = Boost: : SpreadSort(in_data)

// X − sorted data
6 // S − sort order

i−e1 = Std: : UpperBound( 0, N − 1, X, −e1)
8 i−e0 = Std: : UpperBound(i−e1, N − 1, X, −e0)

i+e0 = Std: : UpperBound(i−e0, N − 1, X, +e0)
10 i+e1 = Std: : UpperBound(i+e0, N − 1, X, +e1)

δ̄ = min(abs(X[i−e1]), X[i+e1])
12 coeff = BSplineFit3(N , X, nB) // calc B-spline control points

X̂ = BSplineSample3(N , coeff , nB) // reconstruct B-spline
14 Q = ISA_quant_ error(N , X, X̂, [i−e1, i−e0, i+e0, i+e1, δ̄], eMAX)

out_stream.nbit_encode(dldNe, [S[0], . . ., S[N − 1]])
16 out_stream.write ([i−e1, i−e0, i+e0, i+e1, δ̄])

out_stream.write ([coeff [0], . . ., coeff[nB − 1]])
18 out_stream.gplc_compress ([Q[0], . . ., Q[N − 1]])

Algorithm 3.1: Pseudo code of ISABELA compression procedure ISA_compress (N ,
nB, in_data, eMAX, out_stream). out_stream.nbit_encode(nBIT, data)
copies a vector of nBIT-bit numbers into the stream, out_stream
.write(data) copies uncompressed data into the stream, and out_stream
.gplc_compress(data) copies compressed data into the stream using a
GPLC.
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3.3.2 Set Based Decomposition with Sequential

Encoding

Set Based Decomposition (SBD) with Sequential Encoding [36] is a lossy compression al-
gorithm for SFPD based on scalar quantization. SBD was designed for the compression
of floating point data associated with unstructured grids.

SBD Compression Procedure for Unstructured Grids

The underlying topology of the simulation grid is taken into account by employing a
mathematical graph G = (V,E), which contains vertices vi ∈ V and edges in E. The
vertices vi represent the grid cells of the numerical simulation grid and are associated
with data values xi, e.g. flow vectors for CFD simulations. The edges describe the
neighboring relation between grid cells.

The SBD algorithm decomposes the vertex set V into so called ε-sets Wj, containing
indices i of the vertices vi. Each index i is contained in only one set. The union of all
ε-sets contains the indices of all vertices. The index i of vertex vi is contained in the ε-set
Wj, if and only if xi is contained in an interval around the center point ŵj associated
with the ε-set Wj.

ŵj − εW < xi ≤ ŵj + εW → i ∈ Wj (3.9)

The value εW describes the maximum allowed error around the center point. At the end
of the decomposition process, a total amount of nL different center points ŵj together
with their corresponding ε-sets Wj are present for j = 1, 2, 3, . . ., nL. The compression
effect is produced by replacing the data value xi with the index of their corresponding
ε-set Wj according to the following relation:

i ∈ Wj → xi := j (3.10)

Therefore, the set of center points ŵj constitutes a so-called Look-Up Table (LUT)
L[i] = ŵj, which is used for replacement of the data by the so-called LUT index j. At
the end of the procedure, each grid cell i contains an integer index j. Because SFPD is
clustered and typically covers a relatively small value range of the floating point domain,
the procedure results in a total amount nL of different center points ŵj smaller than the
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input stream size N . As the stream of LUT indices contains many repetitions, it can
be compressed efficiently using GPLCs.

SBD Compression Procedure for Uniform Grids

In order to compress CFD data contained in uniform grids, the SBD compression pro-
cedure is simplified. For the present compression task, the error of each decompressed
data value is restricted by eMAX, which conforms to the error policy described in Sec-
tion 3.2, p. 30.

The SBD algorithm on uniform grids is based on four steps, as illustrated in Fig. 3.6
(1)−(4). First, a linear stream of floating point data is produced. Second, the data
is sorted. Third, a step function is determined on the sorted data using SBD version
1 [36]. The step function ensures the error bound eMAX according to Eq. (3.2). Fourth,
all distinct values of the step function are stored in a so-called LUT L[j], and data
values xi are replaced by their so-called LUT index j. The resulting stream of LUT

indices can be compressed efficiently using a GPLC.

(1) (2) (3) (4)

linearized data
sorted data

sorted data
step function

table indices

Figure 3.6: SBD compression procedure. (1) Linearize data, (2) sort data, (3) determine
LUT values, and (4) map data values to LUT indices.

Fig. 3.7 (a) shows the same input stream consisting of N = 512 normal distributed
data values as used for visualizing the internal mechanisms of ISABELA. The figure
also shows the sorted data and the step function containing the LUT values L[j]. The
step function is determined using eMAX = 1.00 % and e1 = 1E−6. Fig. 3.7 (b) illustrates
the magnified differences between the step function and the sorted data. As can be seen,
several values are mapped to one and the same LUT value L[j].

Fig. 3.8 (a) shows the LUT for the example data. The number of LUT values nL = 196

is much smaller than the number of values in the input stream N = 512. Fig. 3.8 (b)
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Figure 3.7: Calculation of LUT values inside SBD compression procedure. (a) Each
sorted value is mapped to its LUT value. (b) Magnified differences between
LUT values and original data.

shows the resulting stream of LUT indices, which reflects the trend of the original data
values plotted in Fig. 3.7 (a).

SBD Compression Rate

The resulting compression rate of SBD is given by the ratio between the size of the LUT

relative to the size of the input stream, as stated by the following equation:

CRSBD(N, nL) =
nL

N
+

IDXSBD

4 ·N
× 100 % 32

b (3.11)

IDXSBD denotes the number of bytes required to store the compressed LUT indices.
The compression effect in SBD is created as the number nL of data values in the LUT

is much lower compared to the input stream size N . Further, due to repeating LUT

indices j, the stream of LUT indices exhibits increased redundancy allowing for very
good compression rates using GPLCs.
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Figure 3.8: Quantization of LUT indices inside SBD compression procedure. (a) LUT
containing nL = 196 LUT values. The original data sample contained N =
512 normal distributed random values. (b) LUT indices in the order of
original data values. LUT indices reflect the trend of the data.

SBD Implementation

The SBD compression procedure SBD_compress (. . .), given in Alg. 3.2, corresponds
to the algorithmic steps after data linearization depicted in Fig. 3.6 (2)−(4). As for
ISABELA, the stream of sorted data X and the sort order perm is obtained using the
SpreadSort algorithm. The LUT is constructed by scanning the sorted sequence X
and collecting indices of data values until the bounds of the bin exceed the limits of
the maximum error eMAX. The function SBD_bin_error(binmin, binmax) indicates if
the next value in the input stream exceeds the error bound, and a new bin has to be
created. The function SBD_bin_value(binmin, binmax) returns the center point wj for
the current bin and reflects the decompressed value. The LUT size nL and the LUT

itself are stored uncompressed. The LUT indices are compressed using a GPLC.
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def SBD_ compress(N , in_data , eMAX, out_stream):
2 // N − size of input data

nL = 0 // LUT size
4 lutv = [] // LUT values

luti = [] // LUT indices
6 [X, perm] = Boost: : SpreadSort(in_data)

// X − sorted data
8 // perm − sort order

binmin = X[0] // minimum bin value
10 for i in range(1, N ):

if SBD_bin_ error(binmin , X[i]) > eMAX:
12 // new value in old bin exceeds maximum error

lutv.append(SBD_bin_value(binmin , X[i − 1]))
14 binmin = X[i]

nL += 1
16 luti[perm[i]] = nL // set LUT index

if luti[perm[N − 1]] = nL:
18 // if last value has a separate bin

lutv.append(X[N − 1])
20 out_stream.write ([nL, lutv[0], . . ., lutv[nL − 1]])

out_stream.gplc_compress ([luti[0], . . ., luti[N − 1]])

Algorithm 3.2: Pseudo code of SBD compression procedure SBD_compress (N , in_data,
eMAX, out_stream). out_stream.write(data) copies uncompressed data into
the stream, and out_stream.gplc_compress(data) copies compressed data
into the stream using a GPLC.
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3.3.3 Grid Linearization And Truncation Encoding

Grid Linearization And Truncation Encoding (GLATE) is a lossy compression algo-
rithm for 32 bit float data. GLATE uses scalar quantization and uses GPLC for the
compression of streams of quantized floating point data. Such streams are created using
linearization schemes on simulation grids as explained in Section 2.2, p. 13. GLATE uses
an optimized quantization scheme, which differentiates between the exponents and the
mantissa of float values. Whereas the streams for exponents are smooth, the streams
containing mantissas are subject to the noise in the float data.

Unlike ISABELA and SBD, GLATE operates on the IEEE754 bit-representation
for float values. Instead of using the full set of 23 bit for float mantissas, GLATE

performs quantization and maps the noisy float mantissa to a set of predetermined
values, much smaller than 223. Effectively, this corresponds to the truncation of mantissa
bits to a number lower than 23 bit.

Truncation of Lower Mantissa Bits

As can be seen in Eq. (2.1), p. 10, the mantissa in the IEEE754 format describes a sum
of negative powers of two multiplied by a power of two. Therefore, the maximum error
eMAX for the decompressed data can be controlled by the number nT of highest mantissa
bits restored. This corresponds to truncation of the 23 bit mantissa to its nT highest
bits, i.e. nT < 23. Table 3.1 shows the relationship between the number of bits and the
resulting relative error.

nT [ bit ] 7 8 9 10 . . . 14 15 16
1/2m × 100 [ % ] 0.781 0.390 0.195 0.097 . . . 0.006 0.003 0.001

Table 3.1: Relative error resulting from throwing away lower mantissa bits. Number of
reconstructed highest mantissa bits nT is directly related to the relative error
of the float value.

As can be seen, the reconstruction of the highest 7 bit during decompression ensures
an error bound of less than 1.00 %. The reconstruction of the highest 8 bit ensures an
error bound of less than 0.50 %. However, truncating the mantissa by throwing away the
lowest bits results in a non-uniform maximum relative error, as shown in Fig. 3.9 (a).
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The error varies, because the resulting mantissas for quantization are distributed in a
uniform manner. Therefore, the relative error decreases as values increase.
However, an uniform error maximum for decompressed data is desired. Fig. 3.9 (b)

shows the desired error distribution with a uniform maximum for the relative error.
In the following, the GLATE compression procedure is extended to produce the error
distribution as shown in Fig. 3.9 (b).
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Figure 3.9: Maximum relative error of GLATE quantized float values. (a) Non-uniform
maximum error resulting from throwing away lower bits of the mantissa.
(b) Uniform maximum relative error of decompressed data to be implemented
in GLATE.

GLATE Compression Procedure

As stated above, truncation of the lower mantissa bits does not lead to the desired result.
Instead, the GLATE algorithm is based on three steps illustrated in Fig. 3.10 (1)−(3).
First, a locality-preserving linearization scheme is applied. Second, each value is de-
composed into 1 bit sign, 8 bit exponent and 23 bit mantissa. The mantissa values are
encoded using indices referring to a LUT containing nM quantized mantissa values ac-
cording to the precision demanded by the maximum allowed error eMAX. The sign bit
is XOR-ed with the sign of the previous value and merged with the mantissa as higher
bits. Third, the exponents and the mantissas are separated into two streams of integer
values, which are compressed independently using a GPLC and the tpfor bit packing
codec.

As the data differences between adjacent grid cells are unlikely to differ by orders of
magnitude unless simulation-specific physical phenomena are present [37], the exponents
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Figure 3.10: GLATE compression procedure. (1) Linearize data, (2) decompose float
data into exponents and signs & mantissas, (3) compress exponents and
signs & mantissas.

are extracted from float values and compressed separately. Similarities between the
signs of consecutive values are encoded using the XOR-operation. Whereas the exponents
are compressed using a GPLC, the noise of the truncated mantissas is bounded by a
maximum unsigned value and compressed using tpfor bit packing, as motivated in
Section 2.3, p. 16.

GLATE Mantissa Look-Up Table

As can be seen in Fig. 3.9 (a), throwing away lower mantissa bits results in a non-
uniform error distribution. In order to construct a set of mantissa values which results
in a uniform maximum relative error throughout the quantization of all values |x| ≥ e0,
the set of mantissas used for quantization is determined according to the error policy
proposed in Section 3.2, p. 30. Therefore, all numbers |x| < e0 are blanked to zero during
decompression. Further, for |x| ≥ e0, a step function Si beginning at e0 is constructed
using the following equation:

Ti = e0 ·
(

1 + eMAX

1− eMAX

)i

Si = Tbi+0.5c

(3.12)

Fig. 3.11 shows Si with e0 = 1.0 and eMAX = 10.00 % for i = 0, 1, 2, 3, 4. The high error
bound of eMAX = 10.00 % is only chosen for illustrative purposes in this explanation and
is not to be used for actual compression of float data. Since the step function increases
the step width, an error distribution similar to Fig. 3.9 (b) is created. The quantization
of value x requires the determination of the index i for x = Ti, which involves the
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calculation of the inverse function, e.g. Ti = 2.0 → i = 3.45. The equation for the step
function index i is derived from Eq. (3.12) and shown in the following equation:

i =
log

x

e0
− log

1 + eMAX

1− eMAX

log
1 + eMAX

1− eMAX

(3.13)
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Figure 3.11: GLATE adjustment of error bound for exponent-aligned quantization. The
adjustment of the error bound eMAX = 10.00 % for alignment of step
function with floating point exponents of e0, ê0. A slightly lower error
bound êMAX = 8.64 % is computed by rounding up the intersection point
j = di = 3.45e = 4 with ê0 = 2.0, as illustrated using arrows.

GLATE Step Function Adjustment

In order to be able to decompose exponents and mantissas during quantization, a new
step function T̂j is introduced and adjusted in a manner to pass T̂0 = e0 at j = 0 and
T̂j = ê0 at one later step j > 0. Interestingly, by choosing e0 = 1.0 with exponent EZ =

127 and mantissa 0 = 0x000000, and choosing ê0 = 2 · e0 with exponent EZ + 1 = 128

and mantissa 0 = 0x000000, the resulting step function Ŝi is aligned with the floating
point exponents EZ = 127 and EZ + 1 = 128, as also shown in Fig. 3.11.
In particular, the alignment of the step function Ti is accomplished by slightly de-

creasing the maximum allowed error eMAX, as depicted in Fig. 3.11 using arrows. First,
the non-integer position i where Ti intersects ê0 = 2.0 is determined using Eq. (3.13),
and rounded up to the next integer value, i.e. for eMAX = 10.00 % and e0 = 1.0, the
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adjustment of Ti = ê0 = 2.0 yields i = 3.45→ j = die = 4 . Second, the decreased error
bound êMAX is calculated by solving Tj for eMAX, as shown in the following equation
derived from Eq. (3.12):

êMAX =

(
ê0
e0

)1/j

− 1(
ê0
e0

)1/j

+ 1

= 8.64 % (3.14)

Third, the decreased error bound êMAX is used for the construction of the adjusted step
function Ŝi, as shown in the following equation:

T̂i = e0 ·
(

1 + êMAX

1− êMAX

)i

Ŝi = T̂bi+0.5c

(3.15)

As can be seen in Fig. 3.12, Ŝi is adjusted to the minimum and maximum floating
point values 1.0 = e0 ≤ x < ê0 = 2.0 within the scope of the floating point exponent
EZ = 127. The values of Ŝi for i = 0, 1, 2, 3 constitute the so-called Mantissa Look-Up
Table (mLUT), which contains 23 bit unsigned numbers, i.e. for êMAX = 8.64 % the
mLUT consists of nM = 4 values Ŝ0 =0x000000, Ŝ1 =0x1837f0, Ŝ2 =0x3504f3 and
Ŝ3 =0x5744fd. The mLUT is used for the quantization of the floating point mantissa
for values |x| > e0 with any exponent E ≥ EZ . Denormalized float values in the range
0 < |x| ≤ 1.1754942E−38 are not supported by the current implementation of GLATE,
as they are typically much smaller than e0.

GLATE Global Step Function

By repeating the values of the mLUT for all exponents EZ , EZ +1, EZ +2, . . ., as shown
in Fig. 3.13 for eMAX = 10.00 %, a global step function is constructed. Furthermore, for
any given float value x with any exponent E = 1, . . . , 254, the mLUT index only
depends on the 23 bit mantissa of x. As a consequence, the exponents and mantissas
can be encoded separately using GPLC and tpfor bit packing.
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ê 0

U
N
S
I
G
N
E
D

 M
an

ti
ss

a 
(E

Z
 =

 1
27

)

MLUT Index k
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Ŝ i

Figure 3.12: GLATE mantissa look-up table. Mantissa values resulting from adjusted
error bound êMAX = 8.64 % consisting of nM = 4 mantissas for quantization:
Ŝ0 =0x000000, Ŝ1 =0x1837f0, Ŝ2 =0x3504f3, Ŝ3 =0x5744fd. The value
Ŝ0 =0x000000 is repeated, because it corresponds to the first mantissa for
the next exponent EZ + 1 = 128.
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Figure 3.13: GLATE global step function. The global step function used in GLATE
is constructed by repeating the quantized mantissas obtained from the
mLUT for each exponent EZ , EZ + 1, EZ + 2, . . ., e.g. Ŝ0 =0x000000,
Ŝ1 =0x1837f0, Ŝ2 =0x3504f3, Ŝ3 =0x5744fd for eMAX = 10.00 %. By
using the sign bit, positive and negative values on the number line are
addressed.
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GLATE Mantissa Quantization

As shown in Fig. 3.13 for eMAX = 10.00 %, all values enclosed in e0 ≤ x < ê0 exhibit
the same exponent EZ = 127. Therefore, each value e0 ≤ x < ê0 is quantized into an
exponent E and an mLUT index k ∈ {0, 1, 2, 3} for the corresponding mantissa Ŝk.

In order to find the mLUT index k for the quantization of one floating point value
x, the sequence M̄ = (M̂0.0, M̂0.5, M̂1.5, M̂2.5, M̂3.5, M̂4.0) is introduced. Using M̄ ,
the mLUT index k can be determined for any float value |x| ≥ e0 using binary search.
Specifically, two consecutive values in M̄ describe the range of 23 bit unsignedmantissas,
which are mapped to one mLUT value Ŝk, e.g. all mantissas M in M̂0.5 ≤ M < M̂1.5

are mapped to Ŝ1 for mLUT index k = 1. Therefore, the mantissa values contained in
M̄ correspond to the transitions of one step of Ŝk to the next step Ŝk+1, as shown in
Fig. 3.14 using arrows.
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Figure 3.14: GLATE exponent-aligned quantization of mantissa values. mLUT indices
are determined by binary search in M̄ . For adjusted error bound êMAX =
8.64 % the sequence M̄ consists of nM + 1 = 4 mantissas: M̂0.0 =0x000000,
M̂0.5 =0x0b95c2, M̂1.5 =0x25fed7, M̂2.5 =0x45672a, M̂3.5 =0x6ac0c7.
The last value M̂4.0 =0x800000 is fictitious and corresponds to the next
exponent EZ + 1 = 128.

The last interval M̂3.5 ≤ M < M̂4.0 (= 0x800000 = 223) is fictitious and used to map
values to the next exponent EZ + 1 and mantissa Ŝ0 =0x000000 during quantization.
The fictitious interval is introduced in order to be able to rely on binary search in
M̄ during quantization. Table 3.2 summarizes the GLATE quantization mapping for
eMAX = 10.00 %.

51



3 Lossy In-Situ Compression for Scientific Floating Point Data

k Minimum Mantissa ≤ m < Maximum Mantissa → Quantized Mantissa
0 M̂0.0 = 0x000000 ≤ m < 0x0b95c2 = M̂0.5 → Ŝ0 = 0x000000
1 M̂0.5 = 0x0b95c2 ≤ m < 0x25fed7 = M̂1.5 → Ŝ1 = 0x1837f0
2 M̂1.5 = 0x25fed7 ≤ m < 0x45672a = M̂2.5 → Ŝ2 = 0x3504f3
3 M̂2.5 = 0x45672a ≤ m < 0x6ac0c7 = M̂3.5 → Ŝ3 = 0x5744fd
4 M̂3.5 = 0x6ac0c7 ≤ m < 0x800000 = M̂4.0 → Ŝ0 = 0x000000

Table 3.2: GLATE quantization table for exponent-aligned mantissa values. A trun-
cated set of mantissa values is obtained from an adjusted step function Ŝi

for eMAX = 10.00 %. The quantization process operates on the mantissa M
only. Each mantissa receives a mLUT index k ∈ {0, 1, 2, 3} determined using
binary search. The index k = 4 is mapped to k = 0 for the next exponent.

GLATE Sign Encoding

As stated, the similarities between the signs in the linearized input stream are encoded
using the XOR-operation on the current sign s and the previous sign ŝ in the stream,
i.e. the operation s XOR ŝ identifies a flip of the sign bit in the stream. If a sign flip
is indicated, the value of the corresponding mLUT index is increased. The decision
for encoding the sign bits in the mLUT indices was made due to spatial coherence in
linearized streams of float values in CFD grids, where long sequences of values share
the same sign. By marking only the positions in the stream where the sign flips, the
sequence of sign bits can be transformed to contain many zeros. In detail, if a sign flip is
detected using s XOR ŝ, the mLUT index k is increased by the mLUT size nM, as shown
in the following example.

ŝ 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1

s 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 ×
s XOR ŝ 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1 ×
k 0 3 3 2 1 1 0 2 3 2 1 1 0 0 2 3 3 2 ×

(nM=4) +nM +nM +nM +nM +nM

k′ 0 3 3 2 1 5 0 2 7 2 1 1 0 0 6 3 7 6 ×
(3.16)

Since the first value in the stream has no predecessor, the stream of previous signs ŝ is
right-shifted by one and the the gap in the beginning is filled with a 0 bit. Concretely,
the encoding of the sign transforms the mLUT indices k obtained form quantization
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into so-called signed mLUT indices k′. The signed mLUT indices are equal the mLUT

indices k, unless a sign flip was detected through s XOR ŝ = 1, then the signed mLUT

index is given by k′ = k + nM < 2 · nM, as highlighted in the previous example using
bold numbers. Therefore, signed mLUT indices k′ are in the interval [0, 2 · nM).

GLATE Compression Rate

After the exponents and the mLUT indices are determined for each value in the input
stream, the compression effect in GLATE is produced by applying a GPLC to the
exponents, and applying tpfor bit packing to the signed mLUT indices k′. Since e0 is
the smallest value not blanked to zero, the exponent EZ of e0 is subtracted from each
exponent E before the compression of the exponents according to E ′ = 1 + E − EZ .
Therefore, the stream of signed mLUT indices reflects the noise, whereas the exponents
constitute a smooth stream describing the order of magnitude for the float values. The
exponents are compressed using a GPLC. The signed mLUT indices are bounded by the
maximum value 2 ·nM corresponding to twice the size of the mLUT and are compressed
using tpfor bit packing.

The compression rate of GLATE is given by the storage required for the compressed
exponents, plus the compressed signed mLUT indices. The overall compession rate of
GLATE is given by the following equation:

CRGLA(N) =
MNTGLA + EXPGLA

4 ·N
× 100 % 32

b (3.17)

EXPGLA denotes the bytes required for exponents, which have been compressed using a
GPLC, and MNTGLA denotes the bytes required for signed mLUT indices k′ compressed
using tpfor. Both sizes are determined during run-time of GLATE.

GLATE Implementation

The procedure GLATE_compress (. . .), given in Alg. 3.3, corresponds to the algorithmic
steps after data linearization depicted in Fig. 3.10 (2)−(3). First, the exponent of e0
is determined using the function GLATE_float_expo(val). Second, the size of the
mLUT nM is determined, and the sequence M̄ required for mantissa quantization is
computed using the function GLATE_float_quant(errmax, erreps). Third, the streams
for exponents and LUT indices are constructed in a for-loop. If the exponent is smaller
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def GLATE_ compress(N , X, eMAX, out_stream):
2 expo_zero = GLATE_float_ expo(e0)

[nM, M̄ ] = GLATE_float_quant(eMAX, e1)
4 luti = [] // MLUT indices

expo = [] // exponents
6 sign = 0

for i in range(0, N ):
8 expo[i] = 1 + GLATE_float_ expo(X[i]) − expo_zero

if expo[i] ≤ 0:
10 // absolute zero

expo[i] = 0
12 luti[i] = 0

else:
14 // absolute value

luti[i] = Std: : UpperBound(0, nM + 1, M̄ , GLATE_float_mant(X[i]))
16 if luti[i] = nM:

// if first mantissa of next exponent
18 expo[i] += 1

luti[i] = 0
20 if GLATE_float_ sign(X[i]) XOR sign = 1:

// if sign flip detected
22 luti[i] += nM // signed MLUT index

sign = flip(sign)
24 out_stream.gplc_compress ([expo[0], . . ., expo[N − 1]])

out_stream.tpfor_pack ([luti[0], . . ., luti[N − 1]])

Algorithm 3.3: Pseudo code of GLATE compression procedure GLATE_compress (N ,
X, eMAX, out_stream). out_stream.gplc_compress(data) copies compressed
data into the stream using a GPLC, and out_stream.tpfor_pack(data)
copies compressed data into the stream using tpfor.

than the exponent of e0, a zero is encoded, otherwise the binary search implementation
Std: : UpperBound(lo, hi, ptr, val) from the C++ standard library is used in order to
determine the mLUT index. If the sign changes w.r.t. the previous sign, the mLUT

index is increased by nM. The sign and the mantiassa are extracted from float values
using GLATE_float_ sign(val) and GLATE_float_mant(val). Finally, the exponents
are compressed using a GPLC, and the signed mLUT indices are compressed using
tpfor.
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3.4 Evaluation of Lossy Float Compression on

Scientific Data Sets
The compression performance of ISABELA, SBD and GLATE is evaluated on the same
data sets alu, iso and jet as used for compression tests in Section 2.4, p. 21. Before
compression, the grids are subdivided into three dimensional blocks of size 64× 64× 64,
which are linearized using the Hilbert-curve in order to produce a linear input stream
for the in-situ compressors. The compression tests are carried out using eMAX = 1.00,
0.50, 0.25, 0.12 %, and e1 = 10−6.

The subdivision into blocks is considered in order to evaluate the compression rate
in simulations, where grids are typically fragmented across parallel processes. The next
three sections cover the in-detail compression tests on ISABELA, SBD and GLATE.
As explained in Section 2.5, grid linearization based on the Hilbert-curve provides better
locality properties than the Z-curve, row-major or column-major ordering.

3.4.1 ISABELA Compression

As mentioned in Section 3.3.1, p. 33, the start-up costs for ISABELA compression
depend on the size of the input stream N and on the number of B-spline control points
nB. On the one hand, ISABELA requires to store the sort order of the data, and on
the other hand, the B-spline fit needs enough parameters to model the sorted sequence
accurately. The fixed ISABELA start-up costs bound the minimal compression rate
that can be achieved.

ISABELA Fixed Start-Up Costs

ISABELA start-up costs depend on the input stream size N , which implies the number
of bits required for the encoding of one index value, i.e. dld(N)e bit each. As can be seen
in Table 3.3, for ISABELA start-up costs to be less than 50 % 32

b of the original data size,
one index value can have at most 16 bit. The sort order is stored uncompressed using
N/8 · dld(N)e byte, e.g. 512/8 · dld 512e = 576 byte corresponding to ∼28.1 % 32

b of the input
stream size.

The nB B-spline control points required to model the sorted sequence take up nB/N ×
100 % 32

b, e.g. ∼3.1 % 32
b for nB = 16 and N = 512. Since SFPD is clustered and usually has
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N 256 512 1024 2048 4096 8192 16384 32768
dld(N)e [ bit ] 8 9 10 11 12 13 14 15
dld(N)e/32 [ % 32

b ] 25.0 28.1 31.2 34.3 37.5 40.6 43.7 46.8

Table 3.3: ISABELA index start-up costs. The storage of the sort order containing N
unsigned numbers with dld(N)e bit each.

a bounded value range, the sorted sequence is smooth, and a low number of B-spline
control points is sufficient for modeling the sorted data accurately [45].

Fig. 3.15 (a) shows the start-up costs depending on the input stream size N including
the storage required for nB = 16 B-spline control points. For nB = 16, the start-up cost
is minimal for 256 and 512 float values accounting to ∼31.2 % 32

b of the input stream size.
For comparison, the figure also shows the start-up costs relative to the size of double
data, as stated in the original ISABELA publication [45]. Since double uses 64 bit, the
sort order occupies two times less space relative to double data, as compared to float.
Fig. 3.15 (b) shows the start-up cost on float data excluding the space required for
compressed errors ERRISA for nB = 16, 32, 64, 128, 256, according to Eq. (3.8), p. 37.
The start-up costs for sort order and B-spline are between ∼30−40 % 32

b.

ISABELA Number of B-Spline Control Points

The compression tests are carried out using input stream size N = 83 and 163. The
performance of GPLC inside ISABELA is evaluated in terms of compression rate and
compression speed. Input streams larger thanN = 163 are not considered for ISABELA,
because the storage of the sort order for N = 163 values demands for ∼37.5 % 32

b already
and would increase even more for larger input streams.

Fig. 3.16 shows the compression rate of ISABELA on the data sets aluR, isoR and
jetR. zstd is used for the compression of quantized errors at different error bounds
eMAX = 1.00, 0.50, 0.25, 0.12 %. The plots show the trade-off between additional B-
spline control points and the resulting noise in the error quantization. Hence, the plots
show the optimal choice of nB for the compression of the data sets aluR, isoR and jetR

for input streams with size N = 83 and 163.

For eMAX = 1.00 %, the compression rate of ISABELA ranges from ∼37.0−41.5 % 32
b for

N = 83, and ∼39.0−41.5 % 32
b for N = 163. Compared to the theoretical compression rate
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Figure 3.15: ISABELA startup costs. (a) Start-up cost for sort order relative to the
compression of float and double data using nB = 16 B-spline control
points. (b) Start-up cost for float data using nB = 16, 32, 64, 128, 256.
The space required for compressed errors ERRISA is not included. The
white circles in the plot show the start-up costs for ISABELA using input
stream size N = 83 = 512 and N = 163 = 4096.
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Figure 3.16: ISABELA compression rate for data sets aluR, isoR, jetR. ISABELA uses
GPLC zstd for input stream size (left) N = 83, and (right) N = 163,
and varying error bounds eMAX = 1.00, 0.50, 0.25, 0.12 %. zstd operates
at default compression level 6.
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without any error correction, ∼28.1 % 32
b forN = 83, and ∼37.5 % 32
b forN = 163, the B-spline

control points and quantized error introduce an overhead of ∼9.0−13.5 % 32
b for N = 83, and

∼1.5−4.0 % 32
b for N = 163. The application of ISABELA using eMAX = 0.12 % 32
b results

in a bad compression performance of ∼45−50 % 32
b and worse. Therefore, the application

of ISABELA with lower error bounds is not useful. For N = 83 and 163, a number of
nB = 10 and 28 B-spline control points is used for further testing of the compression
performance of ISABELA.

ISABELA Compression Performance

Tables 3.4 and 3.5 show the compression rate and run-time achieved using ISABELA

for the compression of the data sets aluR, isoR, and jetR using maximum error eMAX =

1.00 % and nB = 10 and 28 B-spline control points for N = 83 and 163. The quantized
errors of ISABELA are compressed using zstd, lz4, snappy and tpfor. zstd and lz4

are operated on default level 6, as well as, compression level 2 for zstd, and 4 for lz4.
Those levels provide a trade-off between compression rate and speed, as elaborated in
Section 2.3, p. 16.
As can be seen, the difference in compression rate between zstd and lz4 on level 6,

and 2 and 4, is less than 1 % 32
b. Therefore, a small penalty in compression performance

allows the application of faster compression of ISABELA. zstd on level 6 yields the
best compression rate of ∼37.6−41.6 % 32

b. snappy and tpfor yield the worst compression
rates of ∼41−55 % 32

b but are the fastest algorithms. Although lz4 yields the faster decom-
pression, zstd yields a faster compression and an improvement of the compression rate
by ∼1−3 % 32

b.
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[ % 32
b ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N

aluR 42.8 41.6 45.6 45.2 50.0 55.0 83

42.2 41.6 43.7 43.4 48.0 50.3 163

isoR 38.5 37.6 39.4 39.2 43.7 46.4 83

40.1 39.8 40.8 40.7 45.1 44.0 163

jetR 37.7 36.9 37.7 37.5 41.6 44.4 83

39.2 39.1 39.6 39.5 43.8 41.0 163

Table 3.4: ISABELA compression rate for data sets aluR, isoR, jetR using GPLCs
zstd, lz4, snappy and tpfor with input stream size N = 83 and 163, B-
spline control points nB = 10 and 28, and error bound eMAX = 1.00 %. zstd
operates on level 2 and 6, lz4 operates on level 4 and 6. tpfor operates on
block size 128.

(a)
[ s ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N
aluR 5.16 6.72 7.75 8.84 4.12 4.07 83

6.13 6.88 6.97 8.06 7.40 5.77 163

isoR 4.81 5.96 7.61 8.15 4.26 4.33 83

6.03 6.49 6.72 7.17 5.88 5.85 163

jetR 1.52 1.87 2.50 2.85 1.39 1.39 83

1.68 1.84 1.88 2.06 1.68 1.69 163

(b)
[ s ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N
aluR 1.89 1.84 1.34 1.35 1.41 1.34 83

2.57 2.56 2.41 2.40 2.45 2.37 163

isoR 1.78 1.71 1.37 1.35 1.42 1.32 83

2.49 2.50 2.43 2.41 2.48 2.37 163

jetR 0.52 0.54 0.44 0.46 0.46 0.45 83

1.11 0.81 0.79 0.85 0.82 0.78 163

Table 3.5: ISABELA run-time for (a) compression and (b) decompression of data sets
aluR, isoR, jetR using GPLCs zstd, lz4, snappy and tpfor with input
stream size N = 83 and 163, B-spline control points nB = 10 and 28, and
error bound eMAX = 1.00 %. zstd operates on level 2 and 6, lz4 operates on
level 4 and 6. tpfor operates on block size 128.
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3.4.2 SBD Compression

The compression rate of SBD only depends on the error bound eMAX, which directly
determines the amount of different unique values in the LUT and in the decompressed
data. Unlike ISABELA, which uses a B-spline and point-wise error quantization, SBD

replaces the original values with values determined according to the user-defined maxi-
mum error eMAX.

SBD Look-Up Table Size

Table 3.6 shows the size of the LUT L resulting from the data sets aluR, isoR and jetR

using SBD version 1 with the error bounds eMAX = 2.00, 1.00, 0.50, 0.25, 0.12 %, and
e1 = 10−6. The column min |L| shows the smallest LUT, and max |L| shows the largest
LUT encountered when compressing all time steps of the data sets. The table illustrates
the clustering of SFPD, i.e. all values in the aluR data set are mapped to ∼1000−1100

values for eMAX = 1.00 %.

aluR aluR isoR isoR jetR jetR
eMAX [ % ] min |L| max |L| min |L| max |L| min |L| max |L|

0.12 6025 7047 3208 5410 1784 2163
0.25 3324 3833 1838 2930 914 1112
0.50 1842 2085 1060 1616 483 587
1.00 997 1095 602 882 255 311
2.00 525 566 331 478 133 162

Table 3.6: LUT size in SBD for data sets aluR, isoR and jetR. Since SFPD is clustered,
all data set values are mapped to ∼1000−1100 LUT values using error bound
eMAX = 1.00 %.

Fig. 3.17 shows the relation between error bound eMAX and LUT size |L| for all three
data sets. Decreasing the error bound results in a strong growth of the size of the LUT.
The figure shows the absolute size of the LUT max |L|, as well as, the fraction of the
LUT size relative to the size N of the input stream. As can be seen, using an error
bound of eMAX = 1.00, 0.50, 0.25, 0.12 %, results in a LUT which requires at most
∼2.5 % 32

b of storage relative to the full data set size.
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Figure 3.17: Growth of LUT size depending on maximum error. LUT size increases
strongly for decreasing error bound eMAX. For error bounds eMAX ≥ 0.12 %
the LUT is smaller than 2.5 % of the data set.

SBD Compression Rate

In contrast to ISABELA, SBD has no start-up costs which are independent of the data
to be compressed. Since SBD uses scalar quantization in order to map each value to
a smaller set of LUT values, the internal integer data in SBD differs from that in IS-

ABELA. For LUT indices, the smallest index is zero, and the largest index corresponds
to the size of the LUT. Therefore, the internal data of SBD are unsigned values with
a bounded value range, i.e. LUT indices are amenable to bit packing compression like
tpfor. For ISABELA in contrast, the quantized errors consist of mostly small signed
integers, which can grow large in order to compensate the regression error of the B-spline.

Table 3.7 and Fig. 3.18 (a)−(c) show the compression rate of SBD on the data sets
aluR, isoR and jetR for eMAX = 1.00, 0.50, 0.25, 0.12 % using zstd, lz4, snappy and
tpfor for lossless compression of LUT indices. The compression is carried out on data
blocks of size N = 83, 163, 323, 643 in order to observe the effect of data fragmentation
inside parallel CFD simulations. zstd and lz4 operate on compression level 6, as well
as, on 2 and 4 respectively. tpfor operates on the default block size of 128 values.

As can be seen, the performance of the GPLC improves for larger input streams
N = 643, because the lossless compressors can perform more efficient coding on the
data. lz4 and snappy yield poor performance on LUT indices in SBD. For smaller
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block sizes N = 83 and 163, tpfor yields better compression rates than zstd on level 6.
For zstd on level 2, the difference in compression rate between zstd and tpfor declines,
and tpfor outperforms zstd. However, for large block sizes, zstd is ∼4 % 32

b better than
tpfor on the aluR data set.

[ % 32
b ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N

aluR 35.3 32.9 49.8 49.5 53.9 31.1 83

32.3 28.4 41.0 39.7 48.5 30.8 163

30.1 27.3 37.7 34.7 47.4 30.7 323

29.5 26.7 37.1 33.6 47.4 30.7 643

isoR 33.9 30.6 47.6 47.1 53.6 26.6 83

31.2 26.5 40.4 37.8 49.3 26.2 163

28.7 26.0 38.3 34.1 48.6 26.2 323

28.0 25.4 37.9 33.4 48.6 26.2 643

jetR 34.3 30.8 48.0 47.7 53.2 25.9 83

31.2 26.3 40.6 37.9 48.8 25.5 163

28.5 25.7 38.8 34.2 48.3 25.5 323

27.3 25.2 38.6 33.6 48.3 25.5 643

Table 3.7: SBD compression rate for data sets aluR, isoR, jetR using GPLCs zstd,
lz4, snappy and tpfor with input stream size N = 83, 163, 323, 643, and
error bound eMAX = 1.00 %. zstd operates on level 2 and 6, lz4 operates on
level 4 and 6. tpfor operates on block size 128.
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Figure 3.18: SBD compression rate for data sets aluR, isoR, jetR. SBD uses GPLCs
zstd, lz4, snappy and tpfor on input stream size N = 83, 163, 323, 643

with error bound eMAX = 1.00, 0.50, 0.25, 0.12 %. zstd and lz4 operate
on level 6. tpfor operates on block size 128.

64



3.4 Evaluation of Lossy Float Compression on Scientific Data Sets

SBD Compression Run-Time

Table 3.8 (a)−(b) shows the SBD run-time during compression and decompression using
input stream size of N = 83, 643, and error bound eMAX = 1.00 %. As can be seen,
during compression and decompression, tpfor is constantly faster than zstd, lz4 and
snappy. For compression, lz4 on level 4 yields a run-time comparable to zstd on level 6.
However, during decompression lz4 is consistently faster than zstd on level 2. snappy
is fast, but has a bad compression rate, as LUT indices have a complicated structure.
The bounded value range of LUT values allows for the application of tpfor, whereas the
maximum number of bits required for encoding the LUT indices is determined by the
tpfor compressor. Since tpfor operates on small blocks of 128 values, it can perform
fast coding on short input streams.

(a)
[ s ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N
aluR 5.86 7.94 7.92 8.06 4.04 3.82 83

4.63 6.83 7.17 11.23 4.13 3.69 643

isoR 5.71 8.22 8.27 9.07 4.14 3.83 83

4.67 6.66 7.22 11.84 4.07 3.81 643

jetR 1.78 2.63 2.65 2.87 1.24 1.17 83

1.42 2.08 2.27 3.92 1.21 1.11 643

(b)
[ s ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N
aluR 1.09 1.24 0.33 0.33 0.43 0.23 83

0.61 0.63 0.29 0.28 0.43 0.22 643

isoR 1.02 1.27 0.32 0.33 0.48 0.23 83

0.63 0.65 0.30 0.29 0.46 0.22 643

jetR 0.35 0.43 0.10 0.10 0.16 0.06 83

0.20 0.22 0.09 0.09 0.14 0.06 643

Table 3.8: SBD run-time for (a) compression and (b) decompression of data sets aluR,
isoR, jetR using GPLCs zstd, lz4, snappy and tpfor with input stream
size N = 83 and 643, and error bound eMAX = 1.00 %. zstd operates on level
2 and 6, lz4 operates on level 4 and 6. tpfor operates on block size 128.
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3.4.3 GLATE Compression
Similarly to SBD, the compression rate of GLATE depends on the error bound eMAX

only. The error bound directly determines the size of the resulting mLUT required for
the encoding of float values using a truncated set of mantissas for quantization. The
exponents are compressed using a GPLC, and the range bounded signed mLUT indices
are compressed using tpfor, as explained in Section 3.3.3.

GLATE Float Decomposition

The GLATE compression procedure decomposes each float value in the input stream
into two streams for exponents and signed mLUT indices. As can be seen in Fig. 3.19
(a)−(b) for eMAX = 1.00 %, the signed mLUT indices k′ contain the sign, as well as, the
noise of the floating point mantissas, whereas the exponents E ′ constitute a narrow band
of mostly smoothly changing values. As e0 is the smallest value not blanked to zero, the
actual floating point exponents E are subtracted by EZ before compression, according
to E ′ = 1 +E −EZ , whereas E ′ = 0 encodes a zero. The exponent EZ of e0 is stored in
the compressed data block.

The signed mLUT indices k′ shown in Fig. 3.19 (b) are bounded in the range [0, 2·nM),
i.e. if the sign in the input stream stays the same, then the signed mLUT index equals
the mLUT index k′ = k, and if the sign in the input stream changes, then the mLUT

index is incremented by nM according to k′ = k + nM.
Fig. 3.20 (a)−(b) shows the adjustment of the error bound eMAX for alignment with

floating point exponents during the GLATE compression procedure, as well as, the
number of quantized mantissas nM resulting from the adjusted error bound êMAX. As
can be seen, the adjusted error bound êMAX is only slightly lower than the requested
error bound. Using the error bounds eMAX = 1.00, 0.10, 0.01 % encodes float mantissas
with ∼5.13, 8.45, 11.77 bit, e.g. the error bound eMAX = 1.00 % implies nM = 35 mLUT

indices per exponent.
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Figure 3.19: GLATE internal data. The internal data has been computed using eMAX =
1.00 % and consists of (a) exponents E ′ = 1+E−EZ and (b) signed mLUT
indices k′. The exponent EZ of e0 is subtracted from every float exponent,
and E ′ = 0 encodes a zero. The signed mLUT indices k′ contain signs and
truncated mantissas. In the case the sign does not change k′ = k, and in
the case the sign flips k′ = k + nM. Both streams contain unsigned data.
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ê MAX  1

 4
 10

 35
 100

 1000

 10000

 100000

 0.001

 0.01
 0.1

 1  10
 100

2 bit

5.13 bit

8.45 bit

11.77 bit

S
iz

e 
of

 M
L

U
T

 n
M

Error Bound eMAX [%]

Figure 3.20: GLATE adjusted error bound. (a) Adjusted error bound êMAX depending
on the requested error bound eMAX. For alignment with floating point
exponents, the error bound is only lowered slightly. (b) The size of the
mLUT using logarithmic x- and y-scale. The GLATE quantization scheme
directly relates eMAX and the size of the mLUT nM.

GLATE Quantization and SBD Look-Up Table

The signs s, the exponents E ′, and mLUT indices k, which are determined in GLATE are
similar to the encoding of LUT indices encountered in SBD. Given a sign s, an exponent
E ′ and a mLUT index k, a so-called global mLUT index i, which is a representation
similar to LUT indices in SBD, can be computed using the following equation:

i = (−1)s · (E ′ · nM + k) (3.18)

As shown in Fig. 3.21 (a)−(b), the LUT indices i from SBD and the global mLUT

indices i exhibit a similar shape and reflect trends of the data. SBD uses a GPLC in
order to compress all LUT indices in one block. In comparison, GLATE compresses
exponents E ′ and signed mLUT indices k′ separately using different lossless compression
techniques. This way GLATE carries the trend of the data in the exponents, and the
sign and the noise are contained in the signed mLUT indices k′. By using a GPLC

for the exponents and tpfor for signed mLUT indices, GLATE achieves an efficient
encoding of float values.
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Figure 3.21: Comparison of GLATE quantization and SBD look-up table. (a) LUT
indices encountered in SBD compression. (b) Global mLUT indices i com-
puted from internal data of GLATE, i.e. sign s, exponent E ′ and mLUT
index k, according to i = (−1)s · (E ′ ·nM +k). In contrast to SBD, GLATE
allows for separate encoding of smooth exponents and noisy signed mLUT
indices.
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GLATE Compression Rate

Table 3.9 and Fig. 3.22 (a)−(c) show the compression rate of GLATE on the data sets
aluR, isoR and jetR for eMAX = 1.00, 0.50, 0.25, 0.12 % using zstd, lz4, snappy and
tpfor for lossless compression of the exponents stream. The signed mLUT indices
constitute a noisy stream of range-bounded unsigned numbers k′ ∈ [0, 2 · nM) and are
always compressed using tpfor. zstd and lz4 operate on compression level 6, as well
as, on 2 and 4 respectively. tpfor operates on the default block size of 128 values.

[ % 32
b ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N

aluR 25.5 24.9 27.6 27.5 28.1 38.1 83

23.2 22.6 25.6 25.4 26.2 37.6 163

22.7 22.3 24.7 24.2 25.7 37.6 323

22.6 22.2 24.3 23.7 25.6 37.5 643

isoR 25.2 24.6 25.9 25.8 26.4 41.8 83

22.7 22.1 24.2 23.9 24.8 41.2 163

22.3 21.9 23.7 23.2 24.5 41.1 323

22.1 21.8 23.5 22.9 24.4 41.1 643

jetR 25.6 24.9 25.6 25.5 26.1 42.6 83

22.7 22.0 24.0 23.7 24.6 42.0 163

22.3 21.7 23.6 23.0 24.4 42.0 323

22.1 21.6 23.5 22.9 24.3 42.0 643

Table 3.9: GLATE compression rate for data sets aluR, isoR, jetR using GPLCs zstd,
lz4, snappy and tpfor with input stream size N = 83, 163, 323, 643, and
error bound eMAX = 1.00 %. zstd operates on level 2 and 6, lz4 operates on
level 4 and 6. tpfor operates on block size 128. Signed mLUT indices are
always compressed using tpfor.

Unlike in SBD, lz4 and snappy yield a reasonable performance on compressing the
exponents, but zstd clearly yields a better compression rate. GLATE shows the same
behavior as SBD on small block sizes N = 83 and 163, where the GPLC performs coding
less efficient on short streams of exponents. Furthermore, the difference in compression
rate between zstd on level 2 and 6 is minor, which allows for a faster execution of zstd
on level 2 with nearly the same compression performance, as compared to SBD, where
zstd should by applied on level 6. Overall, GLATE consistently outperforms SBD by
∼3.6−5.6 % 32

b.
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Figure 3.22: GLATE compression rate for data sets aluR, isoR, jetR. GLATE uses
GPLCs zstd, lz4, snappy and tpfor with input stream size N = 83, 163,
323, 643, and error bound eMAX = 1.00, 0.50, 0.25, 0.12 %. zstd and lz4
operate on level 6. tpfor operates on block size 128. Signed mLUT indices
are always compressed using tpfor.
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GLATE Compression Run-Time

The run-time for compression and decompression is shown in Table 3.10 (a)−(b). As can
be seen, snappy is faster during compression of exponents than lz4 and zstd on level
6. snappy yields a compression rate only ∼2 % 32

b worse than lz4 on level 6 and ∼3.5 % 32
b

worse than zstd. tpfor is the fastest algorithm, but is not amenable to the compression
of the exponents. snappy constitutes an alternative for the compression of exponents
with the speed of tpfor and a compression rate comparable to other GPLCs. Although
zstd yields the best compression rate, zstd on compression level 2 and level 6 is slower
than snappy and lz4 during decompression. However, as the compression rate is to be
minimized, zstd is preferred.

(a)
[ s ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N
aluR 2.25 3.05 4.48 4.62 1.90 1.77 83

1.99 2.60 2.78 3.78 1.80 1.77 643

isoR 2.16 2.81 4.55 4.58 1.81 1.76 83

1.92 2.45 2.58 3.63 1.80 1.76 643

jetR 0.75 1.00 1.43 1.66 0.63 0.67 83

0.66 0.85 0.90 1.32 0.62 0.61 643

(b)
[ s ] zstd 2 zstd 6 lz4 4 lz4 6 snappy tpfor N
aluR 0.53 0.57 0.30 0.30 0.28 0.28 83

0.35 0.37 0.28 0.29 0.31 0.29 643

isoR 0.48 0.49 0.30 0.30 0.27 0.32 83

0.33 0.35 0.28 0.29 0.30 0.28 643

jetR 0.13 0.15 0.09 0.10 0.09 0.08 83

0.10 0.11 0.08 0.10 0.10 0.08 643

Table 3.10: GLATE compression run-time for data sets aluR, isoR, jetR using GPLCs
zstd, lz4, snappy and tpfor with input stream size N = 83 and 643,
and error bound eMAX = 1.00 %. Time in seconds for (a) compression and
(b) decompression. zstd operates on level 2 and 6, lz4 operates on level 4
and 6. tpfor operates on block size 128. Signed mLUT indices are always
compressed using tpfor.
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3.5 Summary
In this chapter, three schemes for lossy in-situ compression of SFPD, namely ISABELA,
SBD and GLATE were investigated. The algorithms ISABELA, SBD and GLATE

require less run-time and achieve a higher data reduction on noisy float data, as com-
pared to the direct application of GPLCs. During compression, all algorithms ensure a
global point-wise error bound eMAX according to the error correction policy described in
Section 3.2, p. 30.

ISABELA Algorithm

The ISABELA algorithm was specifically developed for the in-situ compression con-
text [45]. It achieves ∼20 % 64

b on double data, and ∼40 % 32
b on float data for eMAX =

1.00 %. The compression rate depends on the number of B-spline control points nB and
on the size of the input stream N , which also determines the storage required for the
sort order. Nevertheless, the B-spline control points and the sort order constitute fixed
start-up costs, which are independent from the data to be compressed. As the B-spline
fit yields low errors for a large amount of the data values, quantized errors in ISABELA

mainly consist of zeros and small signed numbers, which are compressed effectively using
a GPLC. By introducing only a small penalty of ∼1 % 32

b in compression rate, zstd level
2 can be used for increased compression speed over level 6.

SBD Algorithm

The SBD algorithm is a scalar quantization algorithm originally proposed as an of-
fline compression algorithm for unstructured simulation grids [36]. In order to emulate
the data fragmentation in parallel CFD simulations, SBD has been applied to smaller
subgrids containing float data. The application of SBD to smaller grids decreases
the compression performance compared to the original implementation of SBD, where
compression is applied to global data sets as a post-processing step. In contrast to com-
pression of subgrids, GPLCs perform much more efficient coding on LUT indices on
the whole data set. A parallel version of SBD, which works on a global data set inside
a numerical simulation is not considered here, as communication during the simulation
is avoided for the in-situ compressors developed in this thesis. Depending on the in-
put stream size N = 83, 163, 323, 643, the compression rate of SBD for float data is
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∼25−31 % 32
b for eMAX = 1.00 %. Compared to ISABELA quantized errors, LUT indices

have a more complex structure, and using zstd level 2 results in a penalty of up to
∼3 % 32

b in compression rate. Since LUT indices consist of bounded unsigned values, the
internal data of SBD is amenable to tpfor bit packing. However, zstd on level 6 results
in a improvement of compression rate by at most ∼4 % 32

b for eMAX = 1.00 %, as compared
to the faster tpfor.

GLATE Algorithm

The GLATE algorithm is a lossy compression algorithm for float numbers operating on
the IEEE754 float bit representation and benefits from spatial coherence in linearized
sequences of data values from CFD simulation grids. GLATE compresses exponents
and signed mLUT indices separately using a GPLC and tpfor bit packing. Although
the algorithm is only applied to float data in this chapter, GLATE can be applied to
double values with minor modifications as well. When applied to double, GLATE is
expected to result in higher data reduction if the same error bound is used. Because of
the spatial coherence in the linearized data streams, the exponents of nearby grid cells
in CFD simulation grids fluctuate only slightly. Therefore, the compression speed can
be increased by applying zstd on level 2 resulting in a negligible penalty of ∼0.5 % 32

b in
compression rate only. For different sizes of the input stream N = 83, 163, 323, 643,
GLATE achieves a compression rate of ∼21.6−25.0 % 32

b on float data. As compared
to SBD, GLATE decomposes float values into smooth exponents and noisy mLUT

indices and achieves a better compression also on small blocks.

Compression Rate Overview

Fig. 3.23 shows the compression rate of ISABELA, SBD and GLATE depending on the
maximum error of decompressed data. The error bounds are chosen to be eMAX = 1.00,
0.50, 0.25, 0.12 %. Lowering the error bound from 1.00 % to 0.12 % results in an increase
of ∼9.5 % 32

b for ISABELA and GLATE. For SBD, the increase was ∼12 % 32
b. Concluding,

ISABELA, SBD and GLATE establish a trade-off between error bound eMAX and the
quality of decompressed data. However, GLATE constantly yields the best compression
performance between ∼20−30 % 32

b on all data sets tested.
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Figure 3.23: Overview of compression rate for data sets aluR, isoR and jetR. Compres-
sion is applied using error bound eMAX = 1.00, 0.50, 0.25, 0.12 %. The data
sets aluR, isoR and jetR are compressed using ISABELA with zstd level
2, SBD with zstd level 6, SBD with tpfor block size 128, GLATE with
zstd level 2, and GLATE with zstd level 6. For GLATE, signed mLUT
indices are always compressed with tpfor block size 128.

Compression Run-Time Overview

Fig. 3.24 (a)−(b) shows the run-time for compression and decompression using IS-

ABELA, SBD and GLATE depending on the maximum error of decompressed data. As
can be seen, for ISABELA the run-time increases slightly with decreasing error bound
eMAX. During compression GLATE outperforms ISABELA and SBD when being used
with zstd on level 2. During decompression GLATE is less than two times slower than
SBD with tpfor. However, GLATE is still faster than SBD with zstd in level 6.

75



3 Lossy In-Situ Compression for Scientific Floating Point Data

(a)

 0
 0.66

 2

 4

 6

 8

 10

ISABELA 

SBD-SE  

zstd6

SBD-SE  

tpfor

GLATE   

zstd2

GLATE   

zstd6

ISABELA 

SBD-SE  

zstd6

SBD-SE  

tpfor

GLATE   

zstd2

GLATE   

zstd6

ISABELA 

SBD-SE  

zstd6

SBD-SE  

tpfor

GLATE   

zstd2

GLATE   

zstd6

C
om

pr
es

si
on

 R
un

-T
im

e 
[s

] eMAX = 0.12%
0.25%
0.50%
1.00%

aluR isoR jetR

(b)

0.06

 0.5

 1

 1.5

 2

 2.5

 3

ISABELA 

SBD-SE  

zstd6

SBD-SE  

tpfor

GLATE   

zstd2

GLATE   

zstd6

ISABELA 

SBD-SE  

zstd6

SBD-SE  

tpfor

GLATE   

zstd2

GLATE   

zstd6

ISABELA 

SBD-SE  

zstd6

SBD-SE  

tpfor

GLATE   

zstd2

GLATE   

zstd6

D
ec

om
pr

es
si

on
 R

un
-T

im
e 

[s
] eMAX = 0.12%

0.25%
0.50%
1.00%

aluR isoR jetR

Figure 3.24: Overview of compression speed for of data sets aluR, isoR and jetR. Com-
pression is applied using error bound eMAX = 1.00, 0.50, 0.25, 0.12 %. Time
in seconds for (a) compression and (b) decompression. The data sets aluR,
isoR and jetR are compressed using ISABELA with zstd level 2, SBD
with zstd level 6, SBD with tpfor block size 128, GLATE with zstd level
2, and GLATE with zstd level 6. For GLATE, signed mLUT indices are
compressed with tpfor block size 128 always.
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Closing Statement

Summarizing, lossy in-situ compression for SFPD overcomes the limitations of lossless
compression on SFPD. In particular, ISABELA, SBD and GLATE deliver improved
compression speed, improved compression rate and ensure decompression within a user-
defined error bound eMAX. Therefore, the algorithms also establish a trade-off between
compression rate and quality of decompressed data. In the tests conducted, the newly
developed GLATE compression algorithm achieved the best compression rate and fastest
compression speed using zstd and tpfor as lossless compression back end. ISABELA

and SBD using zstd are slower, and SBD with tpfor is faster but yields a worse
compression rate. However, by trading compression rate against compression speed, the
run-time of GLATE can be further improved by using snappy instead of zstd on level 2.
For storage of large-scale SFPD, error-bounded lossy compression using GLATE offers
a compression rate of ∼21.6−31.5 % 32

b within a maximum error of eMAX = 1.00, 0.50, 0.25,
0.12 %, e.g. for eMAX = 1.00 %, GLATE encodes float values with an average of ∼6.9 bit

per value.
Concluding, the lossy in-situ compression algorithms ISABELA, SBD and GLATE

constitute a practical approach for data reduction of CFD simulation girds and help
to reduce the I/O bottleneck when moving large-scale data. In the next chapter, IS-

ABELA, SBD and GLATE are extended for new temporal compression procedures,
which improve the compression rate even further.
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Scientific Floating Point Data

In this chapter, new algorithms for temporal in-situ compression are developed. The
algorithms focus on the improvement of the compression rate by exploiting the temporal
coherence, which is inherently present in time series of CFD data sets. First, temporal
compression is motivated for CFD simulations, and the temporal compression procedure
is explained briefly. Second, the existing algorithm d-ISABELA [45] is presented as an
entry point for practical temporal in-situ compression. Third, based on the ideas of d-
ISABELA, new temporal compression algorithms t-ISABELA, t-SBD and t-GLATE

are developed and implemented. Fourth, the performance of the temporal compression
schemes d-ISABELA, t-ISABELA, t-SBD and t-GLATE is evaluated on a temporal
CFD data set w.r.t. the compression speed and the improvement of the compression
rate.

4.1 Motivation for Temporal Compression
As shown in Chapter 3, lossy in-situ compression achieves a fourfold to fivefold data
reduction in CFD simulations for float data. As CFD simulations typically describe
continuous processes in time, the CFD data exhibits strong temporal coherence. There-
fore, it is argued, that Temporal Compression is a promising approach for further reduc-
tion of the data size of CFD data sets. Such compression algorithms which use temporal
schemes are already used in video compression.

Temporal Schemes in Video Compression

Video compression dramatically reduces the storage space of sequences of images through
exploiting temporal redundancy between consecutive images [32], e.g. the background
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in videos usually is static and objects move through the scene. Image elements found
in previous frames might be found in future frames and do not need to be reencoded
entirely new. Instead, similar parts of the image are matched and only differences are
encoded. Such procedures are called Motion Compensation, and are used for Temporal
Coding in typical Motion Picture Experts Group (MPEG) video compression methods.
From temporal coding, the following different frame types arise:

I-frames So-called Intra Frames are encoded independently of any other frames and
constitute entry points into the compressed video stream.

P-frames So-called Predictive Frames are encoded using information from the pre-
vious frame.

For the compression of I-frames, typically spatial blocks of 8 × 8 pixels are encoded
separately. In P-frames, the image data also is encoded in blocks. However, for each
block, a motion vector is estimated pointing to the location of the best matching block
in the previous frame, as shown in Fig. 4.1. The resulting error between the current
frame and the prediction is quantized and encoded.

I-frame P-frame

a
a'

v

Figure 4.1: Temporal coding in MPEG video compression methods. Motion compensa-
tion is used for exploiting temporal redundancy in image sequences. I-frames
are encoded independently. P-frames are encoded using information from the
previous frame, e.g. block a in a P-frame is matched with block a′ in the pre-
vious frame using motion vector v.
Image is adapted from [32].

As video compression methods for exploiting temporal redundancy typically consume
a reasonable amount of run-time [6], such methods are not suited for the application in
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the in-situ context. Further, as data in CFD simulations typically is fragmented across
many parallel processes, approaches like motion compensation would require message
passing and would introduce more overhead. Instead, a difference encoding on the
algorithm-specific internal data of ISABELA, SBD and GLATE is employed for the
development of new temporal compression schemes for CFD simulations.

Temporal Coherence in CFD Simulations

Typically CFD simulations are iterative procedures. Therefore, the data of the current
time step depend on the data of previous time steps. Based on a current solution, typi-
cally a numerical solver propagates the flow through the simulation domain. Depending
on the physical process and the temporal resolution of the CFD simulation, the strength
of the underlying forces change the current solution. The process puts the data of adja-
cent grid cells in a relationship on the temporal dimension. Fig. 4.2 (a)−(c) illustrates
the temporal coherence of the velocity magnitude Mt =

√
u2
t + v2

t + w2
t in an aluminum

melt casting simulation for two consecutive time steps t and t+ 1 [67]. As can be seen,
the differences between same grid cells Mt+1 −Mt are much smaller than the original
velocities and can be encoded more efficiently than the new data on its own. Other
effects also support temporal coherence, e.g. regions with stagnating or constant flow
are amenable to temporal compression.

(a) (b) (c)

Figure 4.2: Temporal coherence between two consecutive time steps of a CFD simula-
tion. The color plot on the slice shows (a),(b) velocity magnitude Mt and
Mt+1 at time points t and t + 1, and (b) difference of velocity magnitudes
Mt+1 −Mt of two consecutive time steps t+ 1 and t in a metal melt casting
simulation. The differences are determined between same grid cells.

81



4 Temporal In-Situ Compression for Scientific Floating Point Data

4.2 Temporal Compression Procedure

Similar to I-frames and P-frames in video compression, the temporal compression proce-
dure proposed in this section differentiates between so-calledKey Frames (KFs), and Dif-
ference Frames (DFs). KFs are compressed and decompressed independently, whereas
DFs require data from the previous frame. Fig. 4.3 shows a sequence of KFs and DFs,
in which three DFs follow one KF.

. . .

Key Frame
Difference Frames

Reference

Figure 4.3: Illustration of temporal compression procedure. Temporal compression dif-
ferentiates between so-called KFs and DFs. In KFs, lossy in-situ compres-
sion is applied independently. In DFs, the in-situ compression is extended
for a temporal compression scheme which improves the compression rate.

Similarly to I-frames and P-frames, KF are decompressed independently and consti-
tute entry points into the compressed stream. In contrast, DFs refer to information
of the previous frame and allow for higher data reduction through encoding of small
differences between frames. The temporal compression procedure employed for CFD

simulations has two parameters, which control the insertion of KFs and DFs, and the
temporal resolution of decompressed data.

Insertion of Key Frames and Difference Frames

The parameter kMOD ≥ 1 controls the insertion rate for KFs. Setting kMOD = 1 corre-
sponds to non-temporal compression. Using the parameter kMOD, KFs are inserted at
every time step t = 0, 1, 2, . . . of the CFD simulation for which t MOD kMOD = 0 holds.
Fig. 4.4 shows different distributions of KFs on the temporal dimension for kMOD = 1, 4,
16. The remaining frames between two KFs are filled up with DFs. The DFs reference
information from previous frames, which usually necessitates algorithm-specific data
caching for the realization of difference encoding in ISABELA, SBD and GLATE. An
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increasing amount of DFs, e.g. 15 DFs per KF for kMOD = 16, improves the compression
rate but only allows limited direct access to compressed contents.

kMOD = 1

kMOD = 4

kMOD = 16

Figure 4.4: Placement of KFs and DFs in temporal compression procedure. A KF is
inserted in every kMOD-th time step to be compressed. The remaining frames
in the sequence are encoded as difference frames for improved compression
performance. kMOD = 1 corresponds to no temporal compression, since all
frames are encoded as KFs.

Temporal Resolution of Decompressed Data

The parameter kD ≥ 1 is used for control of the temporal resolution of decompressed
data. By setting kD = 1 the decompressed data has the highest resolution, i.e. the same
temporal resolution as the CFD simulation. For values kD > 1, the time steps t = 0,
1, 2, . . . are subsampled, i.e. only every kD-th time step is included into the temporal
compression procedure. The KFs and DFs are distributed among the resulting set
of time steps. Fig. 4.5 shows the resulting temporal resolution for different choices of
kD = 1, 4, 16 and the distribution of KFs and DFs within the selected time steps
using kMOD = 2, 4. The parameter kD has a direct influence on the distance between
difference encoded frames. Therefore, kD determines the order of magnitude of the data
differences between time steps, which directly influences the compression rate of the
temporal compression procedure.

4.3 Lossy Temporal Compression Schemes

In this section, d-ISABELA [45] is presented as a starting point for practical temporal
in-situ compression, and three schemes t-ISABELA, t-SBD and t-GLATE for temporal
compression are newly developed and implemented. The algorithms transform data
differences into an internal representation, which is compressed using fast GPLCs.
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+k
D

kMOD = 2

kMOD = 4

kD = 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

kD = 4 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

kD = 16 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Figure 4.5: Selection of time steps for temporal compression procedure during CFD
simulation. The time steps to be compressed are determined by skipping kD−
1 time steps. The temporal compression procedure is applied to the resulting
subset of time steps, which are mapped to KFs and DFs according to e.g.
kMOD = 2, 4. kD determines the effective temoral resolution of decompressed
data. kD = 1 corresponds to the temporal resolution of the CFD simulation.

4.3.1 Differential ISABELA Compression

The original publication of ISABELA [45] proposes the d-ISABELA extension for tem-
poral compression, which improves the compression rate on sequences of SFPD. As ex-
plained in Section 3.3.1, p. 33, the sort order constitues fixed start-up costs and takes up
a reasonable amount of storage in the ISABELA compressed format, e.g. ∼28.1 % 32

b for
input stream sizeN = 512, and ∼37.5 % 32

b forN = 4096. By improving the storage scheme
of the sort order, d-ISABELA improves the overall compression rate of ISABELA.

d-ISABELA Temporal Compression Procedure

In KFs, the d-ISABELA algorithm applies the original ISABELA procedure, except
the sort order is cached at the end of each KF. As the indices of the sort order contain
N different numbers in arbitrary order, the sort order by itself is not amenable to
compression. Therefore, in DFs the sort order is encoded using differences relative to
the cached sort order of the previous frame. Fig. 4.6 shows the d-ISABELA compression
procedure in DFs.

Step (1), (3) and (4) correspond to the original ISABELA procedure. In step (2),
the linearized data is sorted, and differences between the previously cached and the
current sort order are computed. Given the fact that the data changes smoothly, it is
assumed that the sort order also changes smoothly over time, and a difference encoding
improves the ISABELA compression rate [45]. The difference encoding, as illustrated
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(1) (2) (3) (4)

unsorted data
sorted data

t=j-1

t=j

Δi

sorted data
B-spline

sorted data
B-spline

Figure 4.6: d-ISABELA temporal compression procedure in DFs. (1) Linearize data,
(2) sort data, compute sort order differences and update cache, (3) B-spline
regression on sorted data, and (4) error quantization.

in Fig. 4.6 (2), produces many small repetitive integers, which can be compressed using
a GPLC efficiently. Similar to KFs, at the end of step (2) in the DF, the sort order
cache is updated for continuation of the temporal compression procedure.

d-ISABELA Illustration

Fig. 4.7 (1)−(9) illustrate the d-ISABELA compression procedure for one KF at t = 0,
and four DFs at t = 1, 2, 3, 4. First, after carrying out the ISABELA procedure in
the KF, as shown in Fig. 4.7 (1), the indices of the sort order are obtained and cached.
During the caching, the sort order S is inverted into a list S−1 of positions in the order
of the data in the input stream. As the sort order constitutes a permutation S: (new

pos)→(old pos), it always can be inverted, i.e. S−1: (old pos)→(new pos). Second,
in the subsequent DF as shown in Fig. 4.7 (2), the ISABELA procedure is carried out
on new input data yielding a new sort order S̄ for the DF. Instead of storing the new
sort order in the DF directly, the difference is computed between the new position i in
the new sort order and the old position S−1[S̄[i]] of the same value in the cached list
of the KF, i.e. diff = S−1[S̄[i]] − i. As can be seen in in Fig. 4.7 (3), the resulting
differences are small. For each value in the input stream, the differences describe where
the value has moved relative to the position stored in the list cached in the KF. Before
d-ISABELA moves on to the next DF at t = 2, the new sort order S̄ is inverted and
used to update the list cached in the KF. Using this procedure, the differences in the
sort order between consecutive time steps stay small and can be compressed using a
GPLC efficiently.
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(1) (2) (3)

Key Frame, t = 0
Sort Order

Diff. Frame, t = 1
Sort Order

Diff. Frame, t = 1
Differences

(4) (5)

Diff. Frame, t = 2
Sort Order

Diff. Frame, t = 2
Differences

(6) (7)

Diff. Frame, t = 3
Sort Order

Diff. Frame, t = 3
Differences

(8) (9)

Diff. Frame, t = 4
Sort Order

Diff. Frame, t = 4
Differences

   (1) (2),(3) (4),(5) (6),(7) (8),...

  t = 0   t = 1   t = 2   t = 3   t = 4

Figure 4.7: d-ISABELA compression procedure. (1) In a KF, and (2)−(9) in DFs:
(1) shows the indices of the sort order obtained from sorting data in the KF,
(2),(4),(6),(8) show the indices of the sort order obtained from sorting the
new data in the DF, and (3),(5),(7),(9) show differences between sort orders,
relative to the sort order from the previous frame.
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d-ISABELA Implementation

The procedure dISA_compress (. . .), given in Alg. 4.1, corresponds to the algorithmic
steps depicted in Fig. 4.6 (1)−(4). In KFs, the original ISABELA compression procedure
ISA_compress (. . .), given in Alg. 3.1, is executed. At the end of the execution of the
KF, the inverted sort order invsort = S−1 is cached. In DFs, first, the inverted sort
order is loaded, which describes how unsorted values are rearranged in order to obtain
the sorted sequence. Second, the new sort order for the new input data is determined,
inverted and cached for the next DF. Using the inverted sort order and the new sort
order, the difference encoding is computed by subtracting old position from the new
position, i.e. diff[i] = invsort[S[i]] − i. Third, the original ISABELA procedure
is continued, except differences diff[i] are stored instead of the sort order itself. The
procedure dISA_decompress (. . .), given in Alg. 4.2, illustrates the caching mechanism
and the reconstruction of the sort order from differences during decompression. In KFs,
the sort order is inverted and cached according to the compression procedure. In DFs,
the cached inverted sort order is loaded, and the original sort order is reconstructed
using the differences.
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def dISA_ compress(time_step , N , nB, in_data , eMAX, out_stream):
2 if time_step mod kMOD = 0:

ISA_ compress(N , nB, in_data , eMAX, out_stream)
4 invsort = [] // invert sort order

for i in range(0, len(S)):
6 invsort[S[i]] = i

dISA_ cache_ set(invsort) // init cache
8 else:

[X, S] = Boost: : SpreadSort(in_data)
10 invsort = dISA_ cache_get() // load cache

diff = []
12 for i in range(0, len(S)):

// diff = (old sort pos) − (new sort pos)
14 diff[i] = invsort[S[i]] − i

invsort = [] // invert sort order
16 for i in range(0, len(S)):

invsort[S[i]] = i
18 dISA_ cache_ set(invsort) // update cache

// determine i−e1, i−e0, i+e0, i+e1, . . .

20 // . . . δ̄, coeff , X̂, quant − see ISA_ compress(. . .)
out_stream.write ([i−e1, i−e0, i+e0, i+e1, δ̄])

22 out_stream.write ([coeff [0], . . ., coeff[nB − 1]])
out_stream.gplc_compress ([diff[0], . . ., diff[N − 1]])

24 out_stream.gplc_compress ([ quant[0], . . ., quant[N − 1]])

Algorithm 4.1: Pseudo code of d-ISABELA compression procedure dISA_compress
(time_step, N , nB, eMAX, in_stream, out_data). The procedure illustrates
the caching mechanism during compression, as well as, the calculation
of the difference encoding. out_stream.write(data) copies data into the
stream, and out_stream.gplc_compress(data) copies compressed data into
the stream using a GPLC.

88



4.3 Lossy Temporal Compression Schemes

def dISA_decompress(time_step , N , nB, in_stream , eMAX, out_data):
2 if time_step mod kMOD = 0:

// decompress keyframe . . .
4 // reconstruct decompressed data . . .

out_data = . . .
6 invsort = [] // invert sort order

for i in range(0, len(S)):
8 invsort[S[i]] = i

dISA_ cache_ set(invsort) // init cache
10 else:

// load data i−e1, i−e0, i+e0, i+e1, δ̄, coeff , . . .
12 // . . . diff , quant from in_stream . . .

// reconstruct B-spline X̂ . . .
14 invsort = dISA_ cache_get() // load cache

S = []
16 for i in range(0, len(diff)):

// (new sort pos) = (old sort pos) + diff
18 S[i] = invsort[i + diff[i]]

// reconstruct decompressed data . . .
20 out_data = . . .

invsort = [] // invert sort order
22 for i in range(0, len(S)):

invsort[S[i]] = i
24 dISA_ cache_ set(invsort) // update cache

Algorithm 4.2: Pseudo code of d-ISABELA decompression procedure
dISA_decompress (time_step, N , nB, in_stream, eMAX, out_data). The
procedure illustrates the caching mechanism during decompression, as
well as, the reconstruction of the sort order from the difference encoding.
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4.3.2 Temporal ISABELA Compression

The ISABELA algorithm relies on sorting for the creation of smooth sequences and a B-
spline fit for the approximation of sorted data values. Compared to SBD and GLATE,
ISABELA has a lower compression performance due to start-up costs for storing the
sort order and the B-spline control points, as explained in Section 3.3.1, p. 33. The
original implementation of ISABELA [45] proposed a temporal compression scheme
d-ISABELA based on a difference encoding of the sort order, as explained in the pre-
vious section. d-ISABELA exploits the fact that the indices of the sorted data change
smoothly between consecutive time steps in data obtained from CFD simulations. How-
ever, by reusing the B-spline and the sort order of the previous time steps for modeling
the new data, the storage for the sort order and the B-spline can be omitted entirely.

t-ISABELA Procedure in KFs

Fig. 4.8 illustrates the procedure of t-ISABELA in KFs. There, the original ISABELA

algorithm is applied, except that the sign bit is extracted from the float values, and
only positive values are processed in the steps (2)−(4). The original sign bits are stored
in a bit stream and take up N/8 byte. At the end of step (2) and (3), the sort order and
the B-spline is cached.

(1) (2) (3) (4)

linearized
abs. data
sign bits11101

0111000110010111

sorted data
B-spline

sorted data
B-spline

Figure 4.8: t-ISABELA procedure in KFs. (1) Linearize data, (2) determine absolute
values by extracting signs, sort data and cache sort order, (3) B-spline re-
gression and cache B-spline, and (4) error quantization.

t-ISABELA Procedure in DFs

Fig. 4.9 shows the new procedure for temporal compression in DFs, which reuses the
sort order, as well as, the B-spline from the previous frames. Step (1) and (2) in DFs
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are conducted similarly to the procedure in KFs. However, in step (3), instead of ap-
plying sorting and B-spline regression, the sort order from the previous frame is used
for reordering the new data values around the B-spline from the previous frame. Since
high-resolution temporal data exhibits strong temporal coherence, the differences be-
tween data values in the same grid cells of consecutive time steps are typically small
and the reordering produces a point cloud close to the B-spline. In step (4), the noise
is compensated through quantization of the differences between B-spline and reordered
data values, similar to the error correction mechanism employed in ISABELA [55, 57].
During the error quantization in step (4), the decompressed data is reconstructed, sorted
and used to update the B-spline. The new sort order and the new B-spline are used to
update the cache for continuation of the temporal compression procedure.

(1) (2) (3) (4)

linearized
abs. data
sign bits11101

0111000110010111

reordered data
B-spline reordered data

B-spline

Figure 4.9: t-ISABELA procedure in DFs. (1) Linearize data, (2) determine absolute
values by extracting signs, and (3) reorder data using cached sort order
and restore B-spline from cache, and (4) error quantization, restore & sort
decompressed data and update cache with new sort order and new B-spline.

t-ISABELA Illustration

Fig. 4.10 (1)−(8) illustrates the t-ISABELA temporal compression procedure for one
KF at t = 0, and four DFs at t = 1, 2, 3, 4. First, in the KF at t = 0, shown in
Fig. 4.10 (1)−(2), the ISABELA compression is applied, and a B-spline fit and a sort
order are obtained. The B-spline and the sort order are cached, since they are needed
in the DF. Second, in the DF at t = 1, shown in Fig. 4.10 (3), the new input data is
reordered using the sort order from the previous frame. Because of the smooth data
changes in consecutive time steps, the reordering creates a point cloud close to the B-
spline from the previous frame. At this point, compared to d-ISABELA, which stores
index differences and quantized errors separately, t-ISABELA applies error quantization
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to the reordered new data directly. During the error quantization in the DF, the decom-
pressed data values of the DF are reconstructed at the same time. Before transitioning
into the next time step at t = 2, the decompressed data values are used to update the
sort order and the B-spline fit, as shown in Fig. 4.10 (4). Using this procedure, the sort
order and the B-spline are updated and yield a better prediction for the input data of
the next frame, shown in Fig. 4.10 (4)−(5). At the end of every frame, the decompressed
data is reconstructed and used to update the B-spline cache and the sort order cache.
Hence, a sequence of DFs can be compressed with improved performance.
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(1) (2)

Key Frame, t = 0
Unsorted Data

Key Frame, t = 0
Sorted Data

B-Spline

(3) (4)

Diff. Frame, t = 1
Key Frame B-Spline
Reordered New Data

Diff. Update, t = 1
Sorted Decompressed

Updated B-Spline

(5) (6)

Diff. Frame, t = 2
Updated B-Spline

Reordered New Data

Diff. Update, t = 2
Sorted Decompressed

Updated B-Spline

(7) (8)

Diff. Frame, t = 3
Updated B-Spline

Reordered New Data

Diff. Update, t = 3
Sorted Decompressed

Updated B-Spline

(1),(2) (3),(4) (5),(6) (7),(8)     ...

  t = 0   t = 1   t = 2   t = 3   t = 4

Figure 4.10: t-ISABELA compression procedure. (1)−(2) in a KF, and (3)−(8) in DFs:
(1) shows the unsorted data to be compressed in the KF. (2) shows the
sorted data and the B-spline fit obtained in the KF. (3),(5),(7) show the
new input data of the DF reordered around the B-spline from the previous
frame, and (4),(6),(8) show the new B-spline, which has been updated in
the DF using the sorted decompressed values.
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t-ISABELA Implementation

The procedure tISA_compress (. . .), given in Alg. 4.3, corresponds to the algorithmic
steps depicted in Fig. 4.8 (1)−(4) and Fig. 4.9 (1)−(4). In KFs, the original ISABELA

compression procedure ISA_compress (. . .), as shown in Alg. 3.1, is executed on the
positive data after the signs have been extracted. At the end of the execution of the KF,
the sort order S and the B-spline are cached. In DFs, first, the signs are extracted, the
cached sort order and the B-spline are loaded. Second, the new input data is reordered
around the cached B-spline using the cached sort order, and errors are quantized. Third,
decompressed data is sorted and fitted in order to update the cache.

The procedure tISA_decompress (. . .), given in Alg. 4.4, illustrates the caching mecha-
nism and cache update during decompression. In KFs, the sort order is cached according
to the compression procedure. In DFs, the reordered data is reconstructed using the
cached sort order, the cached B-spline and quantized errors. After the data has been
reconstructed, the data is sorted and fitted in order to update the cache. The signs are
used to reconstruct the decompressed data.
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def tISA_ compress(time_step , N , nB, in_data , eMAX, out_stream):
2 if time_step mod kMOD = 0:

[signs , abs_data] = tISA_get_ signs(in_data)
4 ISA_ compress(N , nB, abs_data , eMAX, out_stream)

// S − sort order
6 // X̂ − B-spline

// . . . obtained from ISA_ compress(. . .)
8 out_stream.nbit_encode (1, [signs[0], . . ., signs[N − 1]])

tISA_ cache_ set(S, X̂) // init cache
10 else:

[S, X̂] = tISA_ cache_get()
12 [signs , abs_data] = tISA_get_ signs(in_data)

[X, δ̄] = tISA_ reorder(abs_data , S)
14 // δ̄ for estimation of quantization step width

[quant , out_data] = tISA_quant_ error(N , X, X̂, δ̄, eMAX)
16 [X, S] = Boost: : SpreadSort(out_data)

coeff = BSplineFit3(N , X, nB)
18 X̂ = BSplineSample3(N , coeff , nB)

tISA_ cache_ set(S, X̂) // update cache
20 out_stream.write(δ̄)

out_stream.nbit_encode (1, [signs[0], . . ., signs[N − 1]])
22 out_stream.gplc_compress ([ quant[0], . . ., quant[N − 1]])

Algorithm 4.3: Pseudo code of t-ISABELA compression procedure tISA_compress
(time_step, N , nB, eMAX, in_stream, out_data). The procedure
illustrates the caching mechanism during compression, as well as,
the reordering of new data around the old B-spline. out_stream
.nbit_encode(nBIT, data) copies a vector of nBIT-bit numbers into
the stream, out_stream.write(data) copies data into the stream, and
out_stream.gplc_compress(data) copies compressed data into the stream
using a GPLC.
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def tISA_decompress(time_step , N , nB, in_stream , eMAX, out_data):
2 if time_step mod kMOD = 0:

// decompress keyframe . . .
4 // reconstruct positive decompressed data . . .

abs_data = . . .
6 // load signs from in_stream . . .

tISA_ cache_ set(S, X̂) // init cache
8 out_data = tISA_ set_ signs(signs , abs_data)

else:
10 // load δ̄, signs , quant from in_stream . . .

[S, X̂] = tISA_ cache_get()
12 // reconstruct positive decompressed data . . .

abs_data = . . .

14 [X̃, S] = Boost: : SpreadSort(abs_data)
// X̃ − sorted decompressed data

16 coeff = BSplineFit3(N , X̃, nB)
X̂ = BSplineSample3(N , coeff , nB)

18 tISA_ cache_ set(S, X̂) // update cache
out_data = tISA_ set_ signs(signs , abs_data)

Algorithm 4.4: Pseudo code of t-ISABELA decompression procedure tISA_decompress
(time_step, N , nB, in_stream, eMAX, out_data). The procedure illustrates
the caching mechanism during decompression and the cache update
mechanism using sorted decompressed data.

4.3.3 Temporal SBD Compression

The SBD algorithm replaces original data values by indices referring to discrete values
inside a LUT, as explained in Section 3.3.2, p. 40. Unlike ISABELA, which requires
the storage of the sort order, SBD yields a better compression rate and has no start-up
costs for compression. The t-SBD algorithm is a new temporal compression extension
for the SBD algorithm and is built on the observation that many LUT indices are
similar between subsequent time steps, or only change slightly. Therefore, a differential
encoding of LUT indices in the temporal dimension is applied in order to improve the
compression rate.

t-SBD Temporal Compression Procedure

Fig. 4.11 shows the original compression procedure of SBD, which is applied in KFs
without modification. However, at the end of step (4) in KFs, the LUT indices are
cached for the next iteration, as they are needed for the difference encoding in the next
DF.
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(1) (2) (3) (4)

linearized data
sorted data

sorted data
step function

table indices

Figure 4.11: t-SBD procedure in KFs. (1) Linearize data, (2) sort data, (3) determine
LUT values, and (4) map LUT values to LUT indices and update cache.

The procedure for DFs is shown in Fig. 4.12. The steps (1)−(3) remain unchanged
compared to the original SBD procedure in KFs. In step (4), new LUT indices for
the data values in the DF are determined in order to calculate the differences between
the new indices in the current DF and the old indices in the previous frame. Unlike
the LUT indices themselves, the resulting stream of differences contains many small
repetitive numbers allowing for more efficient compression using a GPLC. At the end
of step (4) in DFs, the new LUT indices are used to update the cache for continuation
of the temporal compression procedure.

(1) (2) (3) (4)

linearized data sorted data
step function

old indices
new indices
differences

Figure 4.12: t-SBD procedure in DFs. (1) Linearize data, (2) sort data, (3) determine
LUT values, and (4) map LUT values to LUT indices, compute differences
between old and new LUT indices, and update cache.

t-SBD Illustration

Fig. 4.13 (1)−(9) illustrates the t-SBD temporal compression procedure for one KF at
t = 0, and four DFs at t = 1, 2, 3, 4. First, in the KF at t = 0, shown in Fig. 4.13 (1),
the SBD compression procedure is applied, and LUT indices for the input data are
determined and cached. Second, in the DF at t = 1, shown in Fig. 4.13 (2), the LUT
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indices for the new input data are determined. Using the cached LUT indices from
the last KF, and the new LUT indices of the current DF, the differences between
LUT indices are computed, as shown in Fig. 4.13 (3). Similarly to the procedure in
t-ISABELA, before transitioning in the next DF, the indices cached in the KF are
replaced with the new indices determined in the current DF. Using this procedure, small
changes in a sequence of consecutive DFs can be encoded with improved compression
performance.
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(1) (2) (3)

Key Frame, t = 0
LUT indices

Diff. Frame, t = 1
LUT indices

Diff. Frame, t = 1
Differences

(4) (5)

Diff. Frame, t = 2
LUT indices

Diff. Frame, t = 2
Differences

(6) (7)

Diff. Frame, t = 3
LUT indices

Diff. Frame, t = 3
Differences

(8) (9)

Diff. Frame, t = 4
LUT indices

Diff. Frame, t = 4
Differences

   (1) (2),(3) (4),(5) (6),(7) (8),(9)     ...

  t = 0   t = 1   t = 2   t = 3   t = 4

Figure 4.13: t-SBD compression procedure. (1) in a KF, and (2)−(9) in DFs: (1) shows
the LUT indices computed in the KF, (2),(4),(6),(8) show the LUT indices
computed in DFs, and (3),(5),(7),(9) show the differences between LUT
indices of the current and the previous frame.
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t-SBD Implementation

The procedure tSBD_compress (. . .), given in Alg. 4.5, corresponds to the algorithmic
steps depicted in Fig. 4.11 (1)−(4) and Fig. 4.12 (1)−(4). In KFs and in DFs, the LUT

values and LUT indices are computed for the requested error bound using the input
data. The algorithm follows the original SBD compression procedure SBD_compress

(. . .), given in Alg. 3.2. However, at the end of the execution, the caching mechanism
for KFs and DFs is applied. In KFs, LUT indices are determined and cached. In
DFs, cached LUT indices are loaded and used for the calculation of differences between
new and old LUT indices. The procedure tSBD_decompress (. . .), given in Alg. 4.6,
illustrates the caching mechanism and cache update during decompression.
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def tSBD_ compress(time_step , N , in_data , eMAX, out_stream):
2 nL = 0 // LUT size

lutv = [] // LUT values
4 luti = [] // LUT indices

[X, perm] = Boost: : SpreadSort(in_data)
6 binmin = X[0]

for i in range(1, N ):
8 if SBD_bin_ error(binmin , X[i]) > eMAX:

// if new bin value exceeds maximum error
10 lutv.append(SBD_bin_value(binmin , X[i − 1]))

binmin = X[i]
12 nL += 1

luti[perm[i]] = nL
14 if luti[perm[N − 1]] = nL:

// if last value has a separate bin
16 lutv.append(X[N − 1])

out_stream.write ([nL, lutv[0], . . ., lutv[nL − 1]])
18 if time_step mod kMOD = 0:

// compress keyframe . . .
20 out_stream.gplc_compress ([luti[0], . . ., luti[N − 1]])

tSBD_ cache_ set(luti) // init cache
22 else:

luticache = tSBD_ cache_get() // load cache
24 diff = [] // LUT index differences

for i in range(0, len(luti)):
26 diff[i] = luti[i] − luticache[i]

out_stream.gplc_compress ([diff[0], . . ., diff[N − 1]])
28 tSBD_ cache_ set(luti) // update cache

Algorithm 4.5: Pseudo code of t-SBD compression procedure tSBD_compress
(time_step, N , eMAX, in_stream, out_data). The procedure illustrates the
caching mechanism during compression, as well as, the calculation of
the differences between LUT indices. out_stream.write(data) copies data
into the stream, and out_stream.gplc_compress(data) copies compressed
data into the stream using a GPLC.
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def tSBD_decompress(time_step , N , in_stream , eMAX, out_data):
2 nL = 0 // LUT size

lutv = [] // LUT values
4 luti = [] // LUT indices

if time_step mod kMOD = 0:
6 // load lutv , luti from in_stream . . .

tSBD_ cache_ set(luti) // init cache
8 else:

diff = [] // LUT index differences
10 // load lutv , diff from in_stream . . .

luti = tSBD_ cache_get()
12 for i in range(0, len(luti)):

luti[i] += diff[i]
14 tSBD_ cache_ set(luti) // update cache

// reconstruct decompressed data . . .
16 for i in range(0, N ):

out_data[i] = lutv[luti[i]]

Algorithm 4.6: Pseudo code of t-SBD decompression procedure tSBD_decompress
(time_step, N , in_stream, eMAX, out_data). The procedure illustrates
the caching mechanism during decompression and the cache update
mechanism.

4.3.4 Temporal GLATE Compression

The GLATE algorithm decomposes float values into exponents and mLUT indices
referring to a truncated set of mantissas used for quantization, as explained in Sec-
tion 3.3.3, p. 45. Because of the clustering properties of SFPD [37], GLATE yields
a very good compression rate by applying GPLC to exponents and tpfor bit packing
to signed mLUT indices. The approach to t-GLATE compression employs a novel dif-
ference encoding between consecutive time steps of CFD data. Since data differences
between time steps are usually smaller than the absolute values stored in the grid cells,
a differential encoding on the GLATE global stepfunction, depicted in Fig. 3.13, p. 50,
is employed for improving the compression performance.

t-GLATE Temporal Compression Procedure

Fig. 4.14 shows the original compression procedure of GLATE, which is applied in KFs
without modification. However, after completing compression of a KF, the exponents
and signed mLUT indices are cached for the next DF, as they are needed for computing
the difference encoding between consecutive time steps. Instead of caching the exponents
and signed mLUT indices separately, the values are merged into global mLUT indices
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referring to the global step function. The global mLUT indices are computed using
Eq. (3.18), p. 68, as explained in Section 3.4.3. On the global step function, each
decompressed value is represented by a unique integer value.

(1) (2) (3)

Trunc.Mant.

Sign i-1 
XOR  
Sign

 i

–Exp
 i

–Exp
Z

...

n
T
 Bit

23 Bit
Exponents

Mantissa

Figure 4.14: t-GLATE procedure in KFs. (1) Linearize, (2) decompose float into
exponents and signed mLUT indices, (3) compress exponents and signed
mLUT indices, and update cache.

The procedure for DFs is shown in Fig. 4.15. The steps (1) and (3) remain unchanged.
In step (2), after the exponents and signed mLUT indices are merged into new global
mLUT indices representing the new input data, the old global mLUT indices are loaded
from the cache. Following, the difference encoding computes differential mLUT indices
using old and new indices according to (new index − old index).

(1) (2) (3)

Δ Staircase Idx.

0x00Diff.
Abs.

              )  Diff. Abs.+–
Exponents

Mantissa

Figure 4.15: t-GLATE procedure in DFs. (1) Linearize, (2) compute differential mLUT
indices on global step function. If differential mLUT index is too large, the
signed mLUT index is used instead, (3) compress exponents and signed/d-
ifferential mLUT indices, and update cache.

As explained in Section 3.4.3, the mLUT size nM bounds the value range for mLUT

indices. Therefore, differential mLUT indices are only encoded if they are contained
in the interval (−nM/2, +nM/2), otherwise the absolute value is encoded according to the
GLATE compression procedure using the corresponding signed mLUT index. Using
this procedure, the difference encoding automatically regards differential mLUT indices
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in the case they would require more bits than a signed mLUT index, and t-GLATE

falls back to the absolute encoding of the signed mLUT index instead. Since differen-
tial mLUT indices are usually smaller than signed mLUT indices, tpfor bit packing
can encode the new stream with a lower number of bits improving the compression
performance.

As shown in Fig. 3.19 (b), p. 67, and as implemented in GLATE_compress (. . .) shown
in Alg. 3.3, all values |x| ≥ e0 receive an exponent E ′ ≥ 1. Further, GLATE uses the
zero exponent E ′ = 0 for indication of a absolute zero, which leaves room for encoding
of a zero difference and a non-zero difference. Therefore, t-GLATE uses the following
encoding.

absolute value → E ′ > 0 and signed mLUT index ≥ 0
difference value → E ′ = 0 and differential mLUT index > 1
zero difference → E ′ = 0 and differential mLUT index = 1
absolute zero → E ′ = 0 and signed mLUT index = 0

(4.1)

Exponent → E ′ = E − EZ

mLUT index → k ∈ [0, nM)

signed mLUT index → k′ ∈ [0, 2 · nM)

global mLUT index → i = (−1)s · (E ′ · nM + k)

differential mLUT index → i2 − i1 ∈ (−nM/2, +nM/2)

(4.2)

t-GLATE Illustration

Fig. 4.16 (1)−(4) illustrates the t-GLATE temporal compression procedure for one KF

at t = 0, and five DFs at t = 1, 2, 3, 4, 5. First, in the KF at t = 0, shown in
Fig. 4.16 (1), the exponents E ′ and the signed mLUT indices k′ are determined according
to GLATE compression procedure and used to compute the global mLUT indices. At
the end of the KF, the global mLUT indices are cached, since they are needed for the
temporal compression procedure. Second, in the DF at t = 1, the exponents E ′ and the
signed mLUT indices k′, as well as, the global mLUT indices are computed for the new
input data. After loading the old global mLUT indices from the previous frame, each
individual value can be encoded using signed/differential mLUT indices according to
Eqs. (4.1) and (4.2), as shown in Fig. 4.16 (2). Before the temporal compression moves
on to the next DF, the new global mLUT indices are used to update the cache. Using
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this procedure, the changes between consecutive time steps remain small and can be
compressed with improved performance. The same procedure is repeated for all DFs,
as shown in Fig. 4.16 (3)−(4).
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(1) (2)

Key Frame, t = 0
Signed MLUT Indices

Exponents

Diff. Frame, t = 1
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Diff. Frame, t = 2
Diff./Signed MLUT
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   (1)    (2)    (3)    (4)     ...
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Figure 4.16: t-GLATE compression procedure. (1) in a KF, and (2)−(4) in DFs:
(1) shows the exponents E ′ and signed mLUT indices obtained from en-
coding the input data in the KF, (2)−(4) show the t-GLATE difference
encoding according to Eqs. (4.1) and (4.2). As compared to the KF, the
differential mLUT indices reduce the largest unsigned number for large
parts of the stream in DFs, which allows for improved compression perfor-
mance using tpfor. Further, as differential mLUT indices are indicated by
a zero exponent, the difference encoding produces a lot of repetitive zeros
in the exponent stream.
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t-GLATE Implementation

The procedure tGLATE_compress (. . .), given in Alg. 4.7, corresponds to the algorith-
mic steps after data linearization, as depicted in Fig. 4.14 (2)−(3) and Fig. 4.15 (2)−(3).
In KFs and in DFs, the GLATE compression procedure GLATE_compress (. . .), given
in Alg. 3.3, is executed in order to determine the exponents and signed mLUT in-
dices. In KFs, after the original GLATE compression procedure has been executed,
the global mLUT indices are computed for all input values and cached, as described in
Eq. (3.18). In DFs, the cached global mLUT indices are loaded from the cache, and the
global mLUT indices for the new input data are computed. Thereby, the dummy_stream

is passed to GLATE_compress (. . .) in order to postpone writing of the data until the
difference encoding has been carried out. As shown in Eqs. (4.1) and (4.2), t-GLATE

differentiates between an absolute encoded value (expo[i] > 0 and luti[i] ≥ 0), the
absolute zero (expo[i] = 0 and luti[i] = 0), a difference value (expo[i] = 0 and luti[i]

> 1), and a zero difference (expo[i] = 0 and luti[i] = 1). As signed mLUT indices
are bounded by the mLUT size in the interval [0, nM), the differential mLUT values are
allowed to fluctuate in the interval (−nM/2, +nM/2) before they are discarded and encoded
as signed mLUT indices. For transforming differential mLUT indices into unsigned, the
value is left-shifted by one bit and the sign is encoded as the lowest bit, as illustrated
in Fig. 4.15 (3). After the difference encoding has been carried out, the new global
mLUT indices are used to update the cache. The procedure tGLATE_decompress

(. . .), given in Alg. 4.8, illustrates the caching mechanism and the reconstruction of the
data during decompression. The procedure call tGLATE_float_compose (expo, luti)
composes a float value using an exponent E ′ and an mLUT index k, and the call
tGLATE_float_ reconstruct(. . .) reconstructs a float value using a global mLUT in-
dex i.
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def tGLATE_ compress(time_step , N , X, eMAX, out_stream):
2 luti = [] // signed/differential MLUT indices

expo = [] // exponents − see GLATE_ compress(. . .)
4 if time_step mod kMOD = 0:

GLATE_ compress(time_step , N , X, eMAX, out_stream)
6 // luti , expo obtained from GLATE_ compress(. . .)

valcache = [] // global MLUT indices
8 for i in range(0, len(expo))

if luti[i] < nM:
10 valcache[i] = +( nM · expo[i] + luti[i] )

else:
12 // signed MLUT index

valcache[i] = −( nM · expo[i] + (luti[i] − nM) )
14 tGLATE_ cache_ set(valcache) // init cache

else:
16 GLATE_ compress(time_step , N , X, dummy_stream , eMAX) // compute

luti , expo
valcache = tGLATE_ cache_get()

18 valquant = 0 // global MLUT index , temporary variable
for i in range(0, len(expo)):

20 if luti[i] < nM:
valquant = +( nM · expo[i] + luti[i] )

22 else:
// signed MLUT index

24 valquant = −( nM · expo[i] + (luti[i] − nM) )
diff = valquant − valcache[i] // differential MLUT index

26 valcache[i] = valquant
if −nM/2 < diff < 0:

28 // differential MLUT index , negative
expo[i] = 0

30 luti[i] = ((−diff) << 1) | 0
elseif 0 ≤ diff < +nM/2:

32 // differential MLUT index , positive or zero
expo[i] = 0

34 luti[i] = ((+diff) << 1) | 1
else:

36 // differetial MLUT index is too large , . . .
// . . . use signed MLUT index instead

38 pass
tGLATE_ cache_ set(valcache) // update cache

40 out_stream.gplc_compress ([expo[0], . . ., expo[N − 1]])
out_stream.tpfor_pack ([luti[0], . . ., luti[N − 1]])

Algorithm 4.7: Pseudo code of t-GLATE compression procedure tGLATE_compress
(time_step, N , X, eMAX, out_stream). out_stream.gplc_compress(data)
copies compressed data into the stream using a GPLC, and out_stream
.tpfor_pack(data) copies compressed data into the stream using tpfor.
dummy_stream does not perform writes and is used to postpone writing in
GLATE_compress (. . .) for the determination of exponents and signed
mLUT indices.
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def tGLATE_decompress(time_step , N , in_stream , eMAX, out_data):
2 if time_step mod kMOD = 0:

// decompress keyframe . . .
4 // load expo , luti from in_stream . . .

// reconstruct decompressed data . . .
6 out_data = . . .

valcache = [] // global MLUT indices
8 // build up valcache . . . − see tGLATE_ compress(. . .)

tGLATE_ cache_ set(valcache) // init cache
10 else:

// load expo , luti from in_stream . . .
12 valcache = tGLATE_ cache_get() // global MLUT indices

// reconstruct decompressed data . . .
14 for i in range(0, len(expo)):

// update valcache . . .
16 if expo[i] = 0:

if luti[i] = 0:
18 // absolute zero . . .

out_data[i] = 0
20 elseif luti[i] & 1 = 0:

// positive difference . . .
22 valcache[i] += (luti[i] >> 1)

out_data[i] = tGLATE_float_ reconstruct(valcache[i])
24 else:

// zero or negative difference . . .
26 valcache[i] −= (luti[i] >> 1)

out_data[i] = tGLATE_float_ reconstruct(valcache[i])
28 else:

// absolute value . . .
30 out_data[i] = tGLATE_float_ compose(expo[i], luti[i])

// build up new valcache . . . − see tGLATE_ compress(. . .)
32 tGLATE_ cache_ set(valcache) // update cache

Algorithm 4.8: Pseudo code of t-GLATE decompression procedure
tGLATE_decompress (time_step, N , in_stream, eMAX, out_data). The
procedure illustrates the caching mechanism during decompression, as
well as, the data reconstruction from differences.

109



4 Temporal In-Situ Compression for Scientific Floating Point Data

4.3.5 Optimization of t-GLATE Keyframe

Compression

t-GLATE employs a difference encoding on a global step function in order to realize
temporal compression. As explained in Section 4.1, the temporal compression exploits
the temporal coherence inherently present in high-resolution CFD data. Concretely in
DFs, t-GLATE encodes data values in signed and differential mLUT indices, as shown
in Fig. 4.15 (2). The differential mLUT indices describe differences on the GLATE

global step function, for two values in the same grid cell at different points in time.
In principle, any difference between two data values can be encoded this way, as long
as the values are expected to be close to each other. As the Hilbert-curve is used for
grid linearization, the resulting sequence conserves the spatial coherence, and the same
difference encoding can be applied in the spatial dimension for compression of KFs.

t-GLATE Spatial Difference Encoding in KFs

As explained in Section 2.2, the linearization methods used for the creation of the linear
input stream for t-GLATE conserve the spatial coherence of data values from the three
dimensional simulation grid. Concretely, grid cells which are located close to each other
in the three dimensional simulation grid are also close to each other in the linearized
sequence, shown in Fig. 4.15 (1). Consequently, the spatial coherence inherently present
in the linearized sequences from high-resolution CFD simulation grids can be exploited
for the improvement of the compression rate in KFs in the same manner as in DFs.

t-GLATE Optimized Implementation in KFs

For the realization of the spatial difference encoding, the t-GLATE step (2) in KFs, as
shown in Fig. 4.14 (2), is extended for the difference encoding according to Eqs. (4.1)
and (4.2) applied in DFs, shown in Fig. 4.15 (2). Concretely, in KFs, the global mLUT

indices, as well as, differential mLUT indices are computed directly after the expo-
nents and signed mLUT indices have been determined using GLATE_compress (. . .).
Thereby, a dummy_stream is passed to GLATE_compress (. . .) in order to postpone writ-
ing of the data until the difference encoding is carried out. According to the t-GLATE

compression procedure in DFs, the differences of consecutive values in the spatial dimen-
sion are encoded in the same manner. The optimized t-GLATE compression procedure
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for KFs and DFs is illustrated in Fig. 4.17 (1)−(3). The pseudo code for steps (2)−(3) of
the optimized t-GLATE compression procedure tGLATE_compress_opt (. . .) is given
in Alg. 4.9.

(1) (2)(a) (2)(b) in KF (2)(c) (3)
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Figure 4.17: Optimized t-GLATE procedure in KFs and DF. t-GLATE uses difference
encoding in the spatial and temporal dimension. (1) Linearize, (2)(a) de-
compose float into exponents and signed mLUT indices, and compute
and cache global mLUT indices, (2)(b) in KF compute differential mLUT
indices between values in the linearized sequence, (2)(b) in DF compute dif-
ferential mLUT indices between values of consecutive time steps, (3) com-
press exponents and signed/differential mLUT indices, and update cache.
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def tGLATE_ compress_opt(time_step , N , X, eMAX, out_stream):
2 luti = [] // signed/differential MLUT indices

expo = [] // exponents − see GLATE_ compress(. . .)
4 if time_step mod kMOD = 0:

GLATE_ compress(time_step , N , X, dummy_stream , eMAX)
6 // luti , expo obtained from GLATE_ compress(. . .)

valquant = 0 // global MLUT index
8 valcache = [] // global MLUT indices

for i in range(0, len(expo))
10 if luti[i] < nM:

valcache[i] = +( nM · expo[i] + luti[i] )
12 else:

// signed MLUT index
14 valcache[i] = −( nM · expo[i] + (luti[i] − nM) )

diff = valcache[i] − valquant // differential MLUT index
16 valquant = valcache[i]

if −nM/2 < diff < 0:
18 // differential MLUT index , negative

expo[i] = 0
20 luti[i] = ((−diff) << 1) | 0

elseif 0 ≤ diff < +nM/2:
22 // differential MLUT index , positive or zero

expo[i] = 0
24 luti[i] = ((+diff) << 1) | 1

else:
26 // differetial MLUT index is too large , . . .

// . . . use signed MLUT index instead
28 pass

tGLATE_ cache_ set(valcache) // init cache
30 out_stream.gplc_compress ([expo[0], . . ., expo[N − 1]])

out_stream.tpfor_pack ([luti[0], . . ., luti[N − 1]])
32 else:

// compress difference frame . . .
34 // . . . see tGLATE_ compress(. . .)

Algorithm 4.9: Pseudo code of the optimized t-GLATE compression procedure
tGLATE_compress_opt (N , X, eMAX, out_stream). The statement
out_stream.gplc_compress(data) copies compressed data into the stream
using a GPLC, and out_stream.tpfor_pack(data) copies compressed data
into the stream using tpfor. dummy_stream does not perform writes and
is used to postpone writing in GLATE_compress (. . .).
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4.4 Temporal Compression of Scientific Data

Sets
The different temporal compression procedures d-ISABELA, t-ISABELA, t-SBD and
t-GLATE presented in the previous section are evaluated through a CFD simulation in a
cubic cell used to study particle dispersion [11]. The numerical model of the simulation
is based on the LBM [85]. The model is used to simulate the periodic flow of fluid
aluminum with inlet velocity 3.85 cm/s and temperature of 730 ◦C, as shown in Fig. 4.18.
The simulation has a Reynolds number of Re = 270 w.r.t. to the strut width and a
temporal step width of ∆t = 5.13 µs.

Figure 4.18: Flow of fluid aluminum inside a cubic geometry cell with periodic boundary
conditions. The grid consits of 128 × 128 × 128 voxel cells. Colors show
the magnitude of the velocity vector (u, v, w) (Black corresponds to slow,
Yellow corresponds to fast).

The LBM is used to produce a sequence comprising 1024 time steps of the aluminum
flow flow field (u, v, w) denoted as cubC. Each time step contains 128× 128× 128 voxels
corresponding to a cell size of 3 × 3 × 3 mm (voxel size 23.4 µm). Depending on the
configuration of the temporal compression procedure through kMOD and kD, a subset of
all 1024 time steps is compressed according to the placement of KFs and DFs, described
in Section 4.2.

The parameter kD controls how many time steps are skipped and not included in
the temporal compression procedure, thus kD determines the temporal resolution of the
decompressed data. kMOD decides how many DFs follow one KF. For kMOD = 1 no DFs
are present and full-random access is possible. For kMOD > 1 the direct access is only
possible to KFs, and DFs are stored with improved compression rate. In the following,
d-ISABELA, t-ISABELA, t-SBD and t-GLATE are applied for the compression of
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the data set cubC.

4.4.1 d-ISABELA Compression

As explained in section Section 4.3.1, d-ISABELA is part of the original ISABELA

algorithm and improves the compression rate in a temporal compression procedure [45].
d-ISABELA exploits the fact, that the ordering of data values in input streams is similar
between subsequent time steps.

d-ISABELA Difference Encoding

Fig. 4.19 (a) shows a sort order obtained inside step (2) in the KF procedure of d-
ISABELA. Since the sort order itself does not contain redundant values, it can be
considered incompressible. In contrast, the differences between positions in the sort
order of the previous and the current frame yield repetitive small numbers, which are
amenable to lossless compression.
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Figure 4.19: d-ISABELA internal data. (a) Sort order in a KF. (b) Differences be-
tween positions of the sort order from current DF and previous frame. The
boxplots show the distribution of differences for kD = 1, 4, 16 varying in
[−50, 50] up to [−400, 400].

Fig. 4.19 (b) shows the differences between positions for a DF in d-ISABELA using
kD = 1, 4, 16. As can be seen, with increasing temporal resolution, the fluctuation of
differences increases from close to zero up to ∼100 and more.
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d-ISABELA Compression Rate

Table 4.1 shows the compression rate of d-ISABELA resulting for kMOD, kD = 1, 2,
4, 8, 16. As can be seen, for kMOD = 16 and kD = 1, the compression rate is best at
∼22.4 % 32

b. Increasing the temporal resolution kD > 1, or decreasing the number of DFs
kMOD < 16, decreases the compression performance. For eMAX = 1.00 %, d-ISABELA

achieves a compression rate between ∼22.4−40.0 % 32
b depending on the amount of DFs

and on the temporal resolution of decompressed data.
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b ] kD 1 2 4 8 16

kMOD = 1 40.0 40.0 40.0 40.0 40.0
kMOD = 2 30.7 32.3 33.9 35.5 37.3
kMOD = 4 26.0 28.4 30.8 33.2 35.9
kMOD = 8 23.6 26.5 29.3 32.1 35.2
kMOD = 16 22.4 25.5 28.5 31.5 34.8

Table 4.1: d-ISABELA compression rate for data set cubC with kMOD, kD = 1, 2, 4, 8,
16 and input stream size N = 163. The compression is carried out using zstd
on level 2 and error bound eMAX = 1.00 %.

4.4.2 t-ISABELA Compression

Unlike d-ISABELA, t-ISABELA aims at compressing differences between new input
data and a B-spline from a previous frame. The new input values are reordered using
the sort order obtained from the same previous frame. Once the values have been
reordered using the cached sort order, the remaining error between B-spline and the
data is quantized yielding low integer numbers amenable to lossless compression. At
the end of the DF, the decompressed data is used to update the sort order and the
B-spline, which are used as prediction in the next frame.
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t-ISABELA Difference Encoding

t-ISABELA completely avoids the storage of the sort order and the B-spline inside DFs.
Therefore, t-ISABELA overcomes the fixed start-up costs induced by ISABELA. As
shown in Fig. 4.19 (a), the sort order is very noisy. However, once the data is sorted,
the B-spline yields a accurate approximation and the remaining error is quantized into
small integer numbers, as shown in Fig. 4.20 (a).
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Figure 4.20: t-ISABELA internal data. (a) Quantized errors in a KF. (b) Quantized
errors in a DF. The boxplots show the distribution of quantized errors for
kD = 1, 4, 16 varying in [−2, 2] up to [−10, 10].

Fig. 4.20 (a) shows the quantized errors in a KF, which are mostly zero because of
the accurate B-spline fit. The same observation holds when observing the error between
the old B-spline and the reordered data in a DF. Fig. 4.20 (b) shows the quantized
errors resulting for kD = 1, 4, 16. As can be seen, quantized errors are low and the
reordered data follows the trend of the old B-spline. As quantized errors are less noisy
than differences between sort order positions shown in Fig. 4.19 (b), t-ISABELA yields
better compression rates than d-ISABELA.

t-ISABELA Compression Rate

Table 4.2 shows the compression rate of t-ISABELA resulting for kMOD, kD = 1, 2,
4, 8, 16. For kMOD = 16 and kD = 1, the compression rate is best at ∼11.9 % 32

b, which
is a ∼9.5 % 32

b improvement compared to d-ISABELA. When decreasing the amount of
DFs using kMOD, or when increasing the temporal resolution using kD, the compression
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performance decreases. For eMAX = 1.00 %, t-ISABELA achieves a compression rate
between ∼11.9−42.4 % 32

b depending on kMOD and kD.
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b ] kD 1 2 4 8 16

kMOD = 1 42.4 42.4 42.4 42.4 42.4
kMOD = 2 26.1 27.2 28.8 30.7 32.8
kMOD = 4 18.0 19.5 21.9 24.9 28.0
kMOD = 8 13.9 15.7 18.5 22.0 25.6
kMOD = 16 11.9 13.8 16.8 20.5 24.4

Table 4.2: t-ISABELA compression rate for data set cubC with kMOD, kD = 1, 2, 4, 8,
16 and input stream size N = 163. Compression is carried out using zstd on
level 2 and error bound eMAX = 1.00 %.

4.4.3 t-SBD Compression

t-SBD also exploits similarities between the sorted data of consecutive time steps. As
the sort order changes smoothly, SBD yields similar sequences of LUT indices between
consecutive time steps. Particularly, t-SBD determines and stores the LUT repeatedly
in every time step, and encodes differences between sequences of LUT indices in order
to improve the compression performance.

t-SBD Difference Encoding

Fig. 4.21 (a) shows a sequence of LUT indices from an input stream taken from a KF of
the cubC data set. Progressing into the next DF, the resulting sequence of LUT indices
keeps the rough shape of the previous sequence, as can be seen in Fig. 4.21 (b). The
differences between the LUT indices of the DF and its previous frame are small, and
increase depending on kD = 1, 4, 16. As can be seen, differences constitute repetitive
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patterns and fluctuate within a narrow range. Therefore, they can be compressed more
efficiently than LUT indices using a GPLC.
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Figure 4.21: t-SBD internal data. (a) Sequence of LUT indices obtained from a KF in
the cubC data set. (b) Differences between LUT indices from the KF and
the DF. The boxplots show distribution of differences for kD = 1, 4, 16.

t-SBD Compression Rate

Table 4.3 shows the compression rate of t-SBD resulting for kMOD, kD = 1, 2, 4, 8, 16.
For kMOD = 16 and kD = 1, the compression rate is best at ∼7.4 % 32

b, which is better than
t-ISABELA and d-ISABELA. By decreasing the amount of DF through kMOD, or by
increasing the temporal resolution through kD, the compression performance of t-SBD

decreases. For eMAX = 1.00 %, t-SBD achieves a compression rate between ∼7.4−24.4 % 32
b

depending on kMOD and kD.

t-SBD Compression Artifacts

The t-SBD algorithm achieves a better compression rate than d-ISABELA and t-

ISABELA. However, the compression procedure of SBD introduces a systematic error
into the decompressed data. The construction of the LUT from a sorted sequence in
every time step causes visually noticeable artifacts, if the temporal resolution is too high
and changes in the data are too small. As can be seen in Fig. 4.22, the decompressed
data fluctuates randomly within the error bound if the temporal resolution is too high
and data changes are too small.
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b ] kD 1 2 4 8 16

kMOD = 1 24.5 24.5 24.4 24.4 24.4
kMOD = 2 14.0 14.3 14.8 15.5 16.6
kMOD = 4 10.1 10.7 11.5 12.6 14.2
kMOD = 8 8.3 8.9 9.8 11.1 12.9
kMOD = 16 7.4 8.0 9.0 10.3 12.3

Table 4.3: t-SBD compression rate for data set cubC with kMOD, kD = 1, 2, 4, 8, 16 and
input stream size N = 643. Compression is carried out using zstd on level 6
and error bound eMAX = 1.00 %.

The problem arises from SBD version 1, as implemented in Alg. 3.2. When sorting the
data, the smallest value of the sorted sequence usually fluctuates stronger than values
in the center of the sorted sequence. Therefore, the calculation of the LUT values is
not stable w.r.t. the LUT of the previous time step. Fig. 4.23 (1)−(3) shows original
and decompressed data or three consecutive time steps of the cubC data set. The red
rectangle illustrates the fluctuations of LUT values for fast velocity regions on high-
resolution temporal data.
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Figure 4.22: t-SBD fluctuating LUT values. The LUT values may fluctuate around the
original data value in a random way. If the changes between consecutive
time steps are too small, the fluctuations become visible.

(1) (2) (3)

Figure 4.23: t-SBD compression artifacts. The plot shows the velocity magnitude of the
cubC data set for (top) t-SBD decompressed data using eMAX = 1.00 %,
and (bottom) uncompressed original data (Blue corresponds to slow, Or-
ange corresponds to fast). Red rectangles indicate high velocity regions
with a strong fluctuation within the error bound.
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4.4.4 t-GLATE Compression

As compared to LUT values in t-SBD, t-GLATE encodes small differences on a global
step function, which does not require stabilization. Unlike SBD, the global step function
employed for quantization in GLATE only depends on the error bound eMAX and not
on the data. Therefore, the t-GLATE difference encoding can handle high-resolution
temporal data, and the decompressed values do not fluctuate within the error bound.

t-GLATE Difference Encoding

Fig. 4.24 (a) shows the signed mLUT indices from a KF in the t-GLATE compression
procedure. As already mentioned in Section 3.4.3, the signed mLUT indices fluctuate
in a bounded range [0, 2 · nM), which size is determined by the error bound eMAX only.
Fig. 4.24 (b) shows the signed/differential mLUT indices computed in the next DF for
kD = 1, 4, 16 using eMAX = 1.00 %.
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Figure 4.24: t-GLATE internal data. (a) Stream of mantissa indices in KFs using nM =
35 quantized mantissas in the range [0, 2 · nM). (b) Stream of differences
between mantissa indices in a DF in the range [0, nM). Data is generated
using eMAX = 1.00 %

The exponents and mLUT indices are encoded according to Eq. (4.1) and Eq. (4.2), p. 104.
As can be seen, the signed/differetial mLUT indices in the DFs are reasonably smaller
than the signed mLUT indices in the KF resulting in more efficient compression.
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t-GLATE Compression Rate

Table 4.4 shows the compression rate of t-GLATE resulting for kMOD, kD = 1, 2, 4,
8, 16. For kMOD = 16 and kD = 1, the compression rate is best at ∼7.9 % 32

b, which
outperforms t-SBD, t-ISABELA and d-ISABELA. Further, in KFs, the optimized t-
GLATE compression procedure improved the compression rate by ∼2.0−3.5 % 32

b, as can
be seen in Fig. 4.25. As t-GLATE performs quantization on a global step function, the
compression artifacts of t-SBD are prevented. t-GLATE establishes a trade-off between
the compression rate, the amount of DF through kMOD, and the temporal resolution
through kD. For eMAX = 1.00 %, t-GLATE achieves a compression rate of ∼7.9−17.4 % 32

b

depending on kMOD, kD and constitutes the best temporal compression performance.
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b ] kD 1 2 4 8 16

kMOD = 1 17.5 17.5 17.4 17.4 17.4
kMOD = 2 12.4 12.8 13.4 14.3 15.3
kMOD = 4 9.8 10.4 11.3 12.7 14.2
kMOD = 8 8.5 9.3 10.3 11.9 13.7
kMOD = 16 7.9 8.7 9.8 11.5 13.4

Table 4.4: t-GLATE compression rate for data set cubC with kMOD, kD = 1, 2, 4, 8, 16
and input stream size N = 643. Compression is carried out zstd on level 2,
tpfor with block size 128, and error bound eMAX = 1.00 %. The optimized
t-GLATE compression procedure for KFs and DFs is used.
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Figure 4.25: Compression rate improvement through optimized t-GLATE compression
procedure in KFs. Plot shows the compression rate for the velocity vector
(u, v, w) in the cubC data set. Dashed line shows the compression rate ob-
tained by t-GLATE compression procedure tGLATE_compress (. . .). Solid
line shows the compression rate obtained by the optimized t-GLATE com-
pression procedure tGLATE_compress_opt (. . .).

4.5 Comparison to ZFP Lossy Floating Point

Compressor

During the development of t-GLATE, the lossy floating point compressor ZFP [63] was
published. Whereas t-GLATE bounds the maximum relative error of decompressed data
using scalar quantization, the ZFP algorithm is inspired by fixed-rate texture compression
which is used in graphics hardware. ZFP takes into account the spatial coherence of
4 × 4 × 4 = 64 values in three dimensional uniform grids by employing a orthogonal
block transform and embedded coding [63].

From user perspective, ZFP allows for different modes of compression, i.e. near-lossless,
restrict absolute error, and restrict precision of decompressed data. In the context
of t-GLATE compression, which restricts the relative error, the ZFP precision level is
most interesting for this comparison. Specifically, ZFP allows for the configuration of a
precision level in the range of 1, . . ., 32 for float data, which is related to the relative
error of decompressed data eMAX used in t-GLATE. The precision level is related to the
number of bits of agreement between original data and decompressed data [63].
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t-GLATE and ZFP Compression Test

In order to outline the performance of t-GLATE temporal in-situ compression w.r.t.
the compression in ZFP, the compression rate and the compression error are determined
through compression tests on y-velocity component of 60 time steps (= 960, . . ., 1020)
in the temporal end state of the high-resolution temporal data set cubC. Specifically,
t-GLATE uses the error bounds eMAX = 1.00, 0.50, 0.25, 0.10, 0.05, 0.02, 0.01 %. For
ZFP, the compression of the cubC data set is carried out using the precision level 9, . . .,
20. Furthermore, ZFP is applied in three dimensional compression mode, i.e. ZFP knows
about the size of the underlying uniform grid and performs on the most competitive
compression mode.

Compression Performance for Uniform Grid Data

Fig. 4.26 (top) shows the compression rate resulting from the aforementioned compres-
sion test for t-GLATE and ZFP. As can be seen, both algorithms reach compression
rates of ∼25 % 32

b and better while establishing a trade-off between compression rate and
quality of decompressed data. ZFP reaches a better compression rate than t-GLATE for
precision level 9, . . ., 13. However, as can be seen in Fig. 4.26 (center), the mean error
of decompressed data varies between eMAX = 1.00, . . ., 0.1 % for ZFP, whereas t-GLATE

restricts the maximum error. The ZFP error varies by more than one order of magnitude,
whereas t-GLATE bounds the maximum error for similar compression rates.

Concluding, t-GLATE and ZFP yield similar performance w.r.t. different error-specific
compression tasks, i.e. ZFP restricts the mean error, whereas t-GLATE restricts the
maximum decompression error. However, regarding the policy for the restriction of the
maximum relative error proposed in Section 3.2, p. 30, t-GLATE achieves an improved
compression rate using scalar quantization and temporal compression, as elaborated in
the following.

Overview of Quality of Decompressed Data

Fig. 4.26 (bottom) shows the percentage q1.00 %
MAX , q0.10 %

MAX , q0.01 %
MAX of decompressed values,

which exceed the error bound eMAX = 1.00, 0.10, 0.01 %, i.e. the user-defined error
bound is violated. The value range of the y-velocity component used for testing spans
[−0.03, +0.07]. In order to count only the relevant decompressed data values, which
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Figure 4.26: Overview of compression performance for t-GLATE and ZFP on uniform
grid data set. t-GLATE (kD = 1, kMOD = 16) is shown for eMAX = 1.00,
0.50, 0.25, 0.10, 0.05, 0.02, 0.01 %, and ZFP using precision level 9, . . .,
20. Compression performance is shown w.r.t. (top) compression rate, and
(center) decompression error. (bottom) The table shows the amount
of values |x| > 1E−4 exceeding the error bound eMAX using the y-velocity
component of the cubC data set. The optimized t-GLATE compression
procedure in KFs and DFs is used. ZFP is operated in three dimensional
mode. Grayed out cells, correspond to configurations which do not restrict
the requested error bound. ZFP with precision level 16 approximately re-
stricts the error to at most ∼1.00 %.
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4 Temporal In-Situ Compression for Scientific Floating Point Data

violate the maximum decompression error, small numbers |x| ≤ 1E−4 are excluded from
the statistics. Therefore, the values q1.00 %

MAX , q0.10 %
MAX , q0.01 %

MAX in percent correspond to the
fraction of values |x| > 1E−4 for which the decompression error exceeds eMAX = 1.00,
0.10, 0.01 % respectively.
Taking into consideration the trend of the ZFPmean error only, ZFP is ∼5 % 32

b better than
t-GLATE but has a wider error distribution which also effects larger values |x| > 1E−4.
This behavior also occurs for lower error bounds, e.g. for ZFP precision level 16, an
amount of ∼4.6 % of decompressed values exhibit an error greater than eMAX = 0.10 %,
and for precision level 19, an amount of ∼7.1 % of decompressed values exceed an error
of eMAX = 0.01 %.

The following examples illustrate the t-GLATE and ZFP compression performance
w.r.t. to the compression rate and the decompression error.

(i) t-GLATE compression rate ∼8.5 % 32
b for eMAX = 1.00 %, q1.00 %

MAX = 0 %.

(ii) t-GLATE compression rate ∼12.9 % 32
b for eMAX = 0.10 %, q0.10 %

MAX = 0 %.

t-GLATE compression rate ∼21.7 % 32
b for eMAX = 0.01 %, q0.01 %

MAX = 0 %.

ZFP compression rate ∼7.6 % 32
b for precision level 13, q1.00 %

MAX = 2.8 %.

ZFP compression rate ∼9.5 % 32
b for precision level 14, q1.00 %

MAX = 1.3 %.

(iii) ZFP compression rate ∼14.2 % 32
b for precision level 16, q0.10 %
MAX = 4.6 %.

(iv) ZFP compression rate ∼16.8 % 32
b for precision level 17, q0.10 %

MAX = 1.9 %.

(v) ZFP compression rate ∼22.6 % 32
b for precision level 19, q0.01 %

MAX = 7.1 %.

(vi) ZFP compression rate ∼25.6 % 32
b for precision level 20, q0.01 %

MAX = 2.6 %.

The examples denoted as (i)−(vi) correspond to the boxplots in Fig. 4.26 (center) and
to the error scatter plots in Fig. 4.27 (i)−(vi). The plots support the error statistics,
e.g. for ZFP precision level 13, . . ., 14, about ∼1.4−2.8 % of values |x| > 1E−4 exhibit
decompression error greater than eMAX = 1.00 %.
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Figure 4.27: Scatter plot of relative error for t-GLATE and ZFP decompressed data.
The error is plotted against original data value. (i)−(ii) Relative error of t-
GLATE using eMAX = 1.00 %, and 0.10 %. (iii)−(vi) Relative error of ZFP
using precision level 16, 17, and 19, 20. The compression rate and the error
distributions for t-GLATE and ZFP are shown in Fig. 4.26. Compression
rate for t-GLATE and ZFP is shown in Fig. 4.26 (top). The boxplots corre-
sponding to the error scatter plots are shown in Fig. 4.26 (center) denoted
as (i)−(vi). The amount of values |x| > 1E−4 exceeding the error bound
eMAX is shown in Fig. 4.26 (bottom), whereas the gray area corresponds
to small values |x| ≤ 1E−4 which are excluded from the statistics.
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Linearization and Compression of Non-Uniform CFD Grids

Specifically, the development of t-GLATE has been tested through the compression
of uniform voxel-based grids using linearization curves, which conserve the spatial co-
herence of neighboring grid cells. However, other grid types are widely used for CFD

simulations e.g. unstructured grids have been used for the simulation of Air Flow in
Human Vocal Fold [81], as shown in Fig. 4.28.

Figure 4.28: CFD simulation of moving vocal cords using unstructured grid with dy-
namic mesh points. The image shows the color plot of the y-velocity com-
ponent. The simulation was conducted using the OpenFOAM CFD toolkit
and uses a non-static mesh for the simulation of moving vocal cords during
a 440 Hz vibration corresponding to the tone A.

The grid models the dynamic shape of the vocal cords during the creation of the tone
A in human phonetics. In contrast to uniform grids, which represent regular domains,
unstructured grids allow for modeling of complex domains, e.g. involving scales at dif-
ferent orders of magnitude, or even moving mesh parts, as shown in the red circle in
Fig. 4.28.

Compression Rate for Unstructured Grid Data

Since any linearization scheme can be used in t-GLATE, the compression is not limited
to uniform grids. By employing a different linearization scheme, an arbitrary grid type
can be fed into t-GLATE, and fast lossy in-situ compression and temporal compression
can be used. Referring to the unstructured grid shown in Fig. 4.28, the performance
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4.5 Comparison to ZFP Lossy Floating Point Compressor

of t-GLATE and ZFP is evaluated on the y-velocity component of Air Flow in Human
Vocal Fold [81].
Instead of employing a special linearization scheme for unstructured grids, the velocity

field is simply fed into t-GLATE in the order of mesh points provided by the mesh
topology, which often arranges mesh points close to each other and exhibits spatial
coherence [36]. As ZFP is specifically crafted for the compression of three dimensional
uniform grids, ZFP cannot be applied in the three dimensional compression mode when
compressing the unstructured grid data set. Therefore, ZFP is applied in the linear
compression mode resulting in a weaker compression performance.
Fig. 4.29 shows the compression rate of t-GLATE and ZFP for the compression of a

linear data stream coming from the y-velocity component of Air Flow in Human Vocal
Fold [81]. Similar to Fig. 4.26, t-GLATE uses error bound eMAX = 1.00, 0.50, 0.25,
0.10, 0.05, 0.02, 0.01 %, and ZFP uses precision level 9, . . ., 20. As can be seen, in com-
parison to Fig. 4.26, the compression performance of t-GLATE and ZFP diverges w.r.t.
comparable quality of decompressed data e.g. ZFP using precision level 13 already yields
a poor compression rate of ∼27.2 %, whereas t-GLATE compression rate is %11.1 % 32

b

for eMAX = 1.00 %. However, the resulting error for ZFP precision level 13 exceeds
eMAX = 1.00 %, whereas t-GLATE achieves the same compression rate of ∼27.2 % 32

b for
a maximum decompression error of eMAX = 0.01 %. As elaborated for uniform grids,
using ZFP with precision level 16 corresponds to approximately eMAX = 1.00 %.
Concluding, due to the algorithmic structure of t-GLATE, which uses grid lineariza-

tion as front end and lossless compression techniques as back end for scalar quantization,
t-GLATE constitutes a powerful tool for lossy in-situ compression and temporal com-
pression of CFD data sets composed of arbitrary grid types.
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Figure 4.29: Overview of compression performance for t-GLATE and ZFP on unstruc-
tured grid data set. t-GLATE (kD = 1, kMOD = 16) uses error bound
eMAX = 1.00, 0.50, 0.25, 0.10, 0.05, 0.02, 0.01 %, and ZFP uses precision
level 9, . . ., 20. Data is compressed in the order of mesh points, as provided
by the topology of the unstructured grid. Therefore, ZFP is operated in
one dimensional mode. According to Fig. 4.26 (bottom), ZFP with pre-
cision level 16 approximately restricts the error to ∼1.00 %. However, for
ZFP with level 16 the compression rate exceeds 30 % 32

b, whereas t-GLATE
for error bound eMAX = 0.01, . . ., 1.00 % achieves a compression rate of
∼11.1−27.2 % 32

b.
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4.6 Summary
In this chapter, three schemes t-ISABELA, t-SBD and t-GLATE for lossy temporal
in-situ compression of SFPD were developed, implemented and tested. The algorithms
improve the compression rate of the lossy in-situ compressors ISABELA, SBD and
GLATE presented in Chapter 3 and constitute new approaches for temporal compression
based on the idea of the existing temporal compression procedure d-ISABELA [45]. The
algorithms compress sequences of CFD data sets using an algorithm-specific difference
encoding and achieve an improvement of the compression rate.

t-ISABELA Algorithm

For eMAX = 1.00 %, t-ISABELA achieves a compression rate of ∼11.9−40 % 32
b, which

is an improvement of ∼10.5 % 32
b, as compared to d-ISABELA with ∼22.4 % 32
b minimum.

t-ISABELA avoids fixed start-up costs, i.e. the storage of the sort order. At the end
of each DF, the sort order and the B-spline are updated based on the decompressed
values in order to update the prediction for the next data. In contrast to d-ISABELA,
t-ISABELA decreases the t-ISABELA start-up costs by reusing the sort order and the
B-spline from the previous time steps.

t-SBD Algorithm

The application of t-SBD results in a further improvement of the compression rate by
∼4.5 % 32

b, as compared to t-ISABELA. For eMAX = 1.00 %, t-SBD achieves a compression
rate of ∼7.4−24.4 % 32

b. Particularly, t-SBD compresses the differences of LUT indices
between time steps. Since SFPD changes smoothly, a difference encoding of LUT

indices improves the compression rate. However, for high-resolution temporal CFD

data, t-SBD shows compression artifacts because decompressed data randomly jumps
within the error bound eMAX, as shown in Fig. 4.23. In order to apply t-SBD, additional
effort has to be spent on e.g. stabilization of LUT values between consecutive time steps.

t-GLATE Algorithm

The t-GLATE algorithm achieved the best temporal compression performance and the
best trade-off between temporal resolution of decompressed data and the resulting com-
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pression rate. Furthermore, as t-GLATE operates on a global step function, no com-
pression artifacts are present like for t-SBD. The application of t-GLATE to temporal
sequences of CFD data sets yields a compression rate of ∼7.9−17.4 % 32

b for eMAX = 1.00 %.
Specifically, t-GLATE encodes the data differences between time steps on a global step
function. Furthermore, the global step function is aligned with floating point exponents
and allows for encoding of global differences while differentiating between smooth ex-
ponents and noisy signs/mantissas. The approach for difference encoding automatically
restricts the maximum difference through fallback to an absolute encoding in the case
differences become too large. Therefore, no noticeable decline of compression rate was
introduced through the application of temporal compression.

Compression Rate Overview

Fig. 4.30 shows the compression rate of d-ISABELA, t-ISABELA, t-SBD and t-

GLATE for data set cubC using error bound eMAX = 1.00, 0.50, 0.25, 0.12 %. d-

ISABELA and t-ISABELA use zstd level 6 for the compression of sort order differences
and quantized errors, t-SBD uses zstd on level 2 and 6 for compression of differences
between LUT indices, and t-GLATE uses zstd on level 2 and 6 for the compression of
the exponents, and tpfor with block size 128 for signed/differential mLUT indices.
Originally developed for double data [45], the d-ISABELA extension for temporal

compression yields the worst compression rate on float data. For eMAX = 1.00 %,
d-ISABELA is outperformed by t-ISABELA, t-SBD and t-GLATE, which achieve a
compression rate between ∼7.4−11.9 % 32

b. However, as t-SBD cannot be used with high-
resolution temporal data, t-GLATE yields the best trade-off between compression rate
and decompression error. For eMAX = 1.00, 0.50, 0.25, 0.12 %, t-GLATE achieves a
compression rate betwen ∼7.9−11.9 % 32

b.
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Figure 4.30: Overview of compression rate for lossy temporal compression of data set
cubC. Compression is carried out using error bound eMAX = 1.00, 0.50, 0.25,
0.12 %. The data set is compressed using d-ISABELA and t-ISABELA
with zstd level 2, t-SBD with zstd level 2 and 6, and t-GLATE with
zstd level 2 and 6. For GLATE, signed/differential mLUT indices are
compressed with tpfor block size 128 always, and zstd is used to compress
the stream of exponents.
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Compression Run-Time Overview

Fig. 4.31 (a)−(b) shows the run-time for compression and decompression using the al-
gorithms d-ISABELA, t-ISABELA, t-SBD and t-GLATE for the compression of the
data set cubC. While t-ISABELA yields an improvement of compression speed compared
to d-ISABELA, t-SBD and t-GLATE are the faster algorithms. Where t-ISABELA

uses a rather complicated procedure, which requires sorting the decompressed data and
updating the B-spline. t-SBD and t-GLATE in contrast employ simple transformations
of the data and use carefully chosen lossless compressors for high compression speed.
As can be seen in Fig. 4.31 (a), t-SBD with zstd on level 2 and 6 take much longer

than t-GLATE. As the data complexity of LUT indices is much higher than the com-
plexity of t-GLATE exponents, zstd operates much faster in t-GLATE than in t-SBD.
Further, noisy mLUT indices in t-GLATE are compressed using the high-speed com-
pressor tpfor. During decompression, t-GLATE and t-SBD yield a similar speed during
decompression, as can be seen in Fig. 4.31 (b).
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Figure 4.31: Overview of compression speed for lossy temporal compression of data set
cubC. Compression is carried out using error bound eMAX = 1.00, 0.50, 0.25,
0.12 %, showing (a) compression run-time and (b) decompression run-time.
The data set is compressed using d-ISABELA and t-ISABELA with zstd
level 2, t-SBD with zstd level 2 and 6, and t-GLATE with zstd level 2
and 6. For GLATE, signed/differential mLUT indices are compressed with
tpfor block size 128 always, and zstd is used to compress the stream of
exponents.

135



4 Temporal In-Situ Compression for Scientific Floating Point Data

Closing Statement

Summarizing, temporal compression improves the performance of lossy in-situ compres-
sion for temporal sequences of CFD data sets. In particular, t-ISABELA, t-SBD and
t-GLATE deliver improved compression performance, while providing similar speed as
the non-temporal implementation described in Chapter 3. Whereas, d-ISABELA and
t-ISABELA yield moderate improvement of the compression rate, the t-SBD and t-

GLATE algorithm offer large improvements in compression rate and compression speed.
However, as the t-SBD algorithm showed compression artifacts for high-resolution tem-
poral data, the t-GLATE algorithm constitutes the best trade-off between compression
rate, compression speed and error of decompressed data. Further, by using zstd and
tpfor as back end for lossless compression, t-GLATE maintains a very good compres-
sion rate at high compression speeds. For eMAX = 1.00, . . ., 0.01 %, t-GLATE achieves
a compression rate between ∼7.9−11.9 % 32

b. Particularly, for eMAX = 1.00 %, t-GLATE

encodes float values with an average of ∼2.56 bit per value.
Concluding, t-GLATE lossy temporal in-situ compression decreases the bandwidth

requirements for transmission of sequences of CFD data sets and helps to reduce the
I/O bottleneck in the scientific workflow, which renders t-GLATE a practical tool for
reduction of temporal sequences of SFPD inside CFD simulations.
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in a Computational Fluid Dynamics

Simulation

In this chapter, lossy in-situ compression is evaluated inside a CFD simulation in a HPC

environment aiming towards the improvement of the Time-to-Analysis . First, lossy in-
situ compression is motivated within the context of a HPC environment with powerful
compute nodes and a parallel Lustre(R) file system. Second, a CFD simulation for metal
melt filtration inside a complex filter structure is described briefly. Third, different data
layouts for storing uncompressed data and compressed data are presented. Fourth, the
compression performance of GLATE and t-GLATE, as well as, I/O times for writing
compressed full/low-resolution data are evaluated inside a parallel CFD simulation and
compared to handling uncompressed data. Fifth, based on the evaluation results, the
in-situ applicability of t-GLATE and the improvement of the Time-to-Analysis in the
scientific workflow are discussed.

5.1 Motivation for Lossy In-Situ Compression

With scientific computations and simulations being able to generate virtually any amount
of data, the I/O bottleneck is more than evident. Therefore, lossy in-situ compression
for large-scale CFD simulations is researched because it helps to scale up applications
by reducing the I/O bottleneck. Although there are very powerful network file systems,
which can be scaled up expensively by hardware upgrades, the I/O bottleneck dominates
for data-intensive tasks [4]. Since FLOPS develop reasonably faster than the speed and
capacity of storage technology, moving data between main memory and storage likely
will be the limiting factor for applications of the future [50].
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Data-intenstive HPC Applications

In the present CFD domain, lossy GLATE compression was shown to achieve a data
reduction by ∼4−5× on offline data sets, while offering a trade-off between precision and
compression rate, as described in Section 3.4.3. For temporal compression, t-GLATE

encodes differences and achieves a data reduction by ∼6−12×, while outperforming the
other approaches ISABELA, SBD, d-ISABELA, t-ISABELA and t-SBD, which have
been developed and tested in Chapters 3 and 4.

Data compression achieves a decrease in Time-to-Analysis , if "simulation, compres-
sion, storage, transmission & decompression" using t-GLATE works faster than the
"simulation, storage & transmission" of uncompressed float data. However, in parallel
storage systems, the sole reduction of the memory footprint does not imply a direct
decrease of write time, as it is the case for moving data into e.g. local hard disks. The
optimization of the I/O performance in parallel file systems is a complicated task and
often involves multiple strategies, e.g. distribution patterns of processes among compute
nodes, coordinated I/O procedures, data aggregation, temporary local storage [43, 51,
71, 78, 79].

Reduction of Time-to-Analysis in Scientific Workflow

As illustrated in Fig. 5.1, the transfer of full-size data slows down the scientific workflow.
Especially if data is collected into temporary scratch storage, data movement is inevitable
and can take a long time, e.g. results usually are moved away from scratch storage using
a slower network connection.

Traditional approaches, which store the full uncompressed solutions have outlived
their feasibility due to the I/O limitations in HPC systems [86]. Particularly, t-GLATE

tackles the storage problem by lossy compression of full-resolution data, tackles data loss
with error-bounded decompression, and offers a reduction of storage cost by ∼4−12×.
In practice, collective I/O takes a considerable amount of the wall-clock time of data-
intensive HPC applications. Therefore, early data reduction during the simulation while
using "cheap" CPU time, allows to circumvent the I/O bottleneck by moving data sets
with strongly decreased memory footprint during analysis, i.e. improving the Time-to-
Analysis for analysis of full-resolution data.
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CFD
Simulation

Analysis &
VisualizationStorage

Collective I/O

Aggregated Bandwidth

Temporary Storage

Time-to-Analysis

Figure 5.1: Time-to-Analysis of data-intensive HPC applications. Collective I/O in
modern HPC systems offers large bandwidth but optimization of I/O per-
formance is non-trivial. Data transfer over slow networks into analysis and
visualization workstations directly benefits from very high data reduction by
temporal in-situ compression.
Image is adapted from [44].

5.2 Simulation of Metal Melt Flow in a

Complex Filter Structure

In the CRC920, numerical models based on the LBM are conducted for the simulation
of the filtration process inside a whole filter structure for analysis of flow field and particle
dynamics, as well as, for the estimation of the filtration efficiency [85].

LBM for CFD Simulations

The LBM is a powerful method for the simulation of fluid flow using distribution func-
tions of particles undergoing so-called streaming and collision steps on a discrete lat-
tice [5, 90]. The amount of different directions for streaming determines the quality
of the discretization. Typical LBM implementations use 19 directions c1, c2, c3, . . .,
c19, as shown in Fig. 5.2. Local pressure and velocity are given by the moments of the
particle distribution function. For the numerical implementation, the physical domain is
discretized into a uniform grid of voxel cells resulting in a staircase approximation of the
geometry. The LBM allows for efficient parallelization in HPC systems [85], and thus
allows the simulation of filters with complex geometries using high-resolution uniform
grids for discretization.
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Figure 5.2: Streaming directions in discrete lattice in the LBM. The so-called D3Q19
scheme has 19 streaming directions c1, c2, c3, . . ., c19. Increasing the number
of directions increases the quality of the discretization and the complexity of
the LBM.

Simulation of Aluminum inside a Complex Filter Structure

Using the LBM as described above, the transient flow of liquid aluminum inside a com-
plex filter structure is simulated assuming a melt temperature of 730 ◦C and a superficial
velocity of 8.72 cm/s. Fig. 5.3 (a) shows, the dicretized porous foam-like filter, which is
generated algorithmically and ensures properties of filters from the real-world produc-
tion processes [2]. Using algorithmically generated filters allows for the prescription of
periodic boundary condition, and the control of the porosity, which amounts to 90 %

in the present case. The simulation has a Reynolds number of Re = 90 w.r.t. to the
strut width and a temporal step width of ∆t = 9.13 µs. The filter geometry comprises
216 pores inside a physical domain of 17.7 × 17.7 × 17.7 mm, which is discretized us-
ing 512 × 512 × 512 = 134,217,728 voxels with a spatial resolution of 34.5 µm in each
direction. In order to offer a preview and quick browsing of the data set D during
post-processing, for each variable an additional low-resolution grid is computed. The
low-resolution grid consists of 1/8 of the resolution, i.e. 256× 256× 256 voxels, as shown
in Fig. 5.3 (b)−(c).
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(a) (b) (c)

Figure 5.3: Discretization of complex filter structure with 216 pores in a uniform grid.
(a) The filter structure is discretized by 512× 512× 512 voxels. The geom-
etry is periodic and can be stacked. The filter was designed according to
properties of real-world production of ceramic filters and has a porosity of
90 %. (b)−(c) Comparison of full-resolution and low-resolution grid. Low-
resolution grid consists of 256×256×256 voxels and is computed during the
CFD simulation in order to provide a quick preview to the data set.
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Production of Temporal Sequences of CFD Data

During the LBM simulation a typical CFD data set D is generated. The data set
contains the melt flow field (u, v, w), as well as, two flow field properties: the velocity
magnitude M =

√
u2 + v2 + w2 describing the speed of the flow, and the Q-criterion Q1

describing vortex characteristics of the flowfield. The variables u, v, w, M , Q are calcu-
lated, compressed and written to the storage inside parallel CFD simulation processes.
The velocity field (u, v, w) allows for analysis of the melt flow in a post-hoc fashion
e.g. using stream lines, path lines, tracer particles, etc. As direct access to the velocity
magnitudes and vortex characteristics is convenient for exploration of the flow field, the
variables M and Q are computed during the simulation and written out in compressed
form. Further, the low-resolution grid for each variable is computed, compressed and
stored in all parallel processes.

The space requirements of a high-resolution simulation grid imposed by using the LBM

can be reduced dramatically using lossy in-situ temporal compression. For example, the
grid containing the complex filter structure consisting of 5123 voxels requires 512 MB

for each 32 bit float variable to be stored. Recording five variables requires 2.5 GB per
time step, 100 GB for a sequence of 40 time steps, and 1 TB for 4000 time steps to be
stored in the file system. The direct visualization of flow dynamics from long temporal
sequences of CFD data sets is a very data-intensive task. Using lossy in-situ temporal
compression, the amount of data to be written out can be reduced by a factor of ∼4−12×,
and even by a factor of ∼32× (' 1/8 × 25 %) for compressed low-resolution data.

5.3 Storage of In-Situ Compressed Data

This section summarizes strategies for data writing using collective I/O in HPC envi-
ronments. Different storage procedures for uncompressed full-size data and compressed
full/low-resolution data are presented and implemented using MPI Input/Ouput (MPI-

I/O). At the end of this chapter, the storage procedures are used for the evaluation of
I/O times for merging compressed data from 512 parallel processes into large files.

1Q = 1
2 (||Ω||2 − ||S||2), S and Ω are the symmetric and the anti-symmetric components of the ve-

locity gradient tensor [19]. They are also known as the strain rate tensor and the rotation tensor
respectively.
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5.3.1 Collective I/O in parallel HPC Environments

As described in Chapters 3 and 4, error-bounded lossy in-situ compression offers fast
and efficient data reduction for scientific data sets. However, in parallel environments
the grid is partitioned across numerous processes, which execute a collective algorithm
and typically use MPI for message passing and synchronization [24]. MPI is extensively
developed by the research community and the industry and is able to run on a large
variety of HPC systems. Leveraging the scalable algorithms of MPI, e.g. broadcast,
scatter, gather, MPI allows for up-scaling of algorithms and cluster systems to large
numbers of nodes and cores [51]. Further, MPI allows for collective I/O using the
MPI-I/O interface [16, 24].

MPI-I/O for Collective Storage Procedures

While MPI was developed for data transport between processes, the MPI-I/O inter-
face [16, 24] was developed for coordinating and improving the performance of I/O

in parallel environments. Collective I/O is needed, as standard I/O interfaces do not
provide features for parallel I/O, and uncoordinated I/O from many parallel processes
introduces a lot of overhead into the file system [79]. Instead of opening a seperate
file for each MPI process, data organization and collection is accomplished using spe-
cial routines, which collect metadata about the upcoming write operation and allow for
the optimization of the data flow between compute nodes and the nodes of the storage
system [78].

MPI-I/O for Writing Shared Files

Different patterns for parallel I/O have emerged during the development of MPI-I/O,
e.g. two-phase I/O [78] and data sieving [79]. Two-phase I/O coordinates many parallel
MPI processes, which access contiguous blocks of one shared file. Data sieving reuses
MPI data types for the definition of non-contiguous collective write operations, e.g. for
writing out uniform grids in a global column-major data layout into one large file. In
contrast to writing one file per process, which usually demonstrates poor scalability for
the management of file system metadata [51], using MPI-I/O yields better performance
and constitutes an important component for optimized I/O in HPC systems [51].
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int rank , size , status;
2 FILE* file_handle = NULL;
char* file_path = ”/storage/time001”;

4 MPI_Init (&argc , &argv); // initialize mpi
MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get process id

6 MPI_Comm_size(MPI_COMM_WORLD , &size); // get num procs
MPI_File_open(MPI_COMM_WORLD , file_path , // open file

8 MPI_MODE_WRONLY , MPI_INFO_NULL , &file_handle);
/*** Execute Collective Write Operations Here ***/

10 MPI_File_close (& file_handle); // close file

Algorithm 5.1: Opening a shared file using MPI-I/O. The file is opened using the MPI_
File_Open() statement. All MPI processes are involved in the collective
I/O operations according to the MPI communicator MPI_COMM_WORLD.
MPI_File_Close() closes the file. The example illustrates the MPI-I/O
library calls.

Implementation of Collective Write into Shared Files

For writing data which is fragmented across many parallel processes into a shared file,
MPI-I/O offers methods for the coordination of write operations, i.e. MPI_File_Open(),
MPI_File_write_at_all() and MPI_File_Close(). Specifically, as described in Alg. 5.1, the
MPI_File_Open() statement opens a shared file and communicates the active set of MPI

processes participating in the collective write operation. The set is specified using a MPI

communicator, e.g. MPI_COMM_WORLD for all processes writing into the file. Accordingly MPI_

File_Close() is used for closing the shared file. Often, the underlying storage system,
e.g. PanasasFS, Lustre, GPFS, GFS, provides a specialized implementation for the MPI-

I/O interface and offers methods for optimized distribution of data from/to parallel MPI

processes.

5.3.2 Column-Major Storage Layout for

Uncompressed Grid Data

In the simulation setup, as described in Section 5.2, a uniform LBM grid composed of
512×512×512 voxels is produced in each time step of the CFD simulation. The grid is
partitioned into 512 MPI processes, each containing one subgrid of size 64× 64× 64 =

262,144 voxels. After one time step has been computed, the data is written into the file
system before the simulation moves on to the next time step. If the uniform LBM grid
is written out without compression, it typically is stored in a global column-major data
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layout in one large file. However, since the subgrids are distributed among many MPI

processes, the simple concatenation of raw memory blocks from MPI processes does not
yield the desired data layout in the shared file.

Column-Major Global Grid Topology

Fig. 5.4 (a) shows a two dimensional data grid composed of 16 × 16 cells, which is
partitioned among four processes each containing 4 × 4 cells. As can be seen, the
concatenation of the raw memory blocks does not yield the column major ordering, as
shown in Fig. 5.4 (b). Instead, following the column-major ordering produces the data
linearization as shown in Fig. 5.4 (c), where local data chunks from processes 1&2 and
3&4 are interlaced.

(a) (b)

1 3

42
i

j
(c)

Figure 5.4: Global column-major data layout. (a) Two dimensional grid consisting of
16 × 16 cells distributed among four MPI processes. (b) Column-major
linearization of global grid. (c) data layout in shared file according to the
column-major ordering shown in (b). As the linearization crosses the bound-
aries of the subgrids, data chunks of MPI processes are interlaced.

MPI-I/O File Views for Global Uniform Grids

The column-major storage procedure for uniform grids is conveniently implemented in
the MPI-I/O interface itself. In particular, MPI data types are leveraged for the repre-
sentation of data distribution patterns describing the mapping of process-local data into
global positions of a shared file. Using MPI data types, local contiguous data is copied
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into a shared file and distributed non-contiguously using strides [79]. Thereby, the MPI

data types describe the striding pattern and are called File Views .
File views allow each process to configure its own striding pattern according to the

interlacing for the global column-major data layout, as shown in Fig. 5.5 (1)−(4). Bytes
that are written by the local process contain data, and bytes that are written by other
processes are skipped. Therefore, file views constitute a powerful tool for the repre-
sentation of contiguous and non-contiguous access patterns, which further allows for
integrated optimizations in MPI-I/O implementations.

(1)

(2)

(3)

(4)

Figure 5.5: File views for global column-major data layout. (top) non-contiguous in-
terlaced striding pattern resulting from the global column-major data layout
according to Fig. 5.4 (c). (1)−(4) file view as generated on MPI process 1−4.
The partition of the global grid into subgrids for MPI processes is shown in
Fig. 5.4 (b).

Specifically, the file views are used for carrying out an optimized two-phase I/O proce-
dure available in popular MPI-I/O implementations [78]. Since I/O cost is much higher
than communication cost for message passing, typically a subset of the MPI processes
collectc data chunks into larger contiguous data blocks and then performc a few large
I/O requests with increased performance instead of many concurrent small writes which
would reduce the performance. The negotiation, the communication and the buffering
of data is handled by the MPI-I/O implementation in the background.

Implementation of Collective Column-Major Storage Procedure

File views allow for the construction of arbitrary striding patterns, hence they constitute
a powerful tool for merging fragmented data. However, for the write of a uniform
grid in the column-major data layout, the MPI Subarray data type already supplies a
conforming MPI file view. As shown in Alg. 5.2, the MPI_Type_create_subarray() and
the MPI_File_set_view() statements are used for the configuration and activation of the
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int size_global [3] = {512, 512, 512}; // global grid size
2 int size_local [3] = { 64, 64, 64}; // size of local subgrid
int subgrid_origin [3] = {. . .}; // origin of subgrid

4 float data_local [64][64][64]; // computed by simulation
MPI_Datatype file_view; // data type handle

6 MPI_Type_create_subarray (3, size_global , size_local , // create view
subgrid_origin , MPI_ORDER_C , MPI_FLOAT , &file_view);

8 MPI_File_set_view(file_handle , 0, MPI_FLOAT , file_view); // set view
MPI_File_write_all(file_handle , data_local , size_local , // write data

10 MPI_FLOAT , &status);

Algorithm 5.2: Collective write of uniform grid with global column-major data layout
using MPI data types and MPI file views. The data is written
according to the column-major linearization used for the uniform grid
in the LBM. The MPI_Type_create_subarray() and MPI_File_set_view()
statements create and setup file views, and MPI_File_write_all() initiates
the collective write operation. The example illustrates the MPI-I/O
library calls.

MPI file view, and the MPI_File_write_all() statement is used for the execution of the
write operation. For each MPI process, the call to MPI_Type_create_subarray() results
in a different view for distribution of process-local data in the global grid depending on
the parameters size_local and subgrid_origin. The write operation creates one file per
time step per variable and results in the following file structure:

/scratch/archive/time001_variable001

/scratch/archive/time001_variable002

/scratch/archive/. . .

/scratch/archive/time002_variable001

/scratch/archive/. . .

5.3.3 Sequential Storage Layout for Compressed Grid

Data
The application of lossy in-situ compression creates binary blobs inside each node of
a parallel CFD simulation. The topology of the grid is no longer available after com-
pression. Additionally, the compression yields different data size on each subgrid, and
each process writes a data block of arbitrary size into the shared file. The data blocks
constitute spatial regions in the global grid, which can be decompressed independently.
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Global Topology for Compressed Sequential Data

Fig. 5.6 (a) shows the partition of the global grid consisting of 512×512×512 voxels into
512 subgrids composed of 64× 64× 64 voxels each. Each MPI process receives a unique
id, the so-called rank r = 1, 2, 3, . . ., 512. As each MPI process compresses its data
independently, the collective write operations result in a global sequence concatenating
the compressed blocks from 512 single processes.

(a) (b)
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Figure 5.6: Partition of global simulation grid used for the LBM. (a) A global grid
composed of 512 × 512 × 512 = 134,217,728 voxels is partitioned into 512
subgrids of size 64×64×64 = 262,144 voxels each. (b) Global column-major
ordering of subgrids LG used for writing the linear sequence of compressed
blocks into the shared file.

In general, MPI process ranks r are assigned in an internal manner and cannot be as-
sumed to order the data in a beneficial way, e.g. conserving locality of nearby compressed
blocks. Hence, a global column-major ordering LG is employed for the linearization of
compressed binary blobs into the shared file. Each MPI process compresses its local
subgrid and determines the starting position for writing the compressed format accord-
ing to LG. Using the global column-major ordering of subgrids, each MPI process r
receives a unique position pr = 1, 2, 3, . . ., 512 in the sequence of subgrids, as shown in
Fig. 5.6 (b).
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MPI-I/O File Offsets for Writing Global Sequence

After process with rank r at position pr has compressed its subgrid into a memory block
of size Apr bytes, the tuples (pr, Apr)r are distributed among all MPI processes using
the MPI_Allgather() statement. During the distribution, each MPI process constructs a
matrix which contains all positions pr and all sizes Apr of the compressed subgrids for
r = 1, 2, 3, . . ., 512. After the distribution, the matrix has the following structure on
each process: (

p1 p2 p3 p4 . . . p512

Ap1 Ap2 Ap3 Ap4 . . . Ap512

)
(5.1)

Since MPI_Allgather() arranges the data in the order of the MPI rank r, the columns
of the matrix are sorted w.r.t. the first row. The first row contains the position pr of
the subgrid r in the global ordering LG of subgrids. Consequently, the elements of the
second row in the matrix are rearranged according to the order of subgrids in LG. After
the sorting is finished, the second row of the matrix contains the sequence A1, A2, A3,
. . ., A512 which now describes the size of the compressed data blocks in the final order
on disk, as shown in Fig. 5.7. The sorted matrix has the following structure:(

1 2 3 4 . . . 512

A1 A2 A3 A4 . . . A512

)
(5.2)

Lastly, before the data can be written, each MPI process r needs to compute its
starting offset Bpr in the shared file according to the sorted data sizes A1, A2, A3, . . .,
A512. The offsets Bpr are calculated as partial sums using the following equation:

Bpr =

pr∑
i=1

Ai (5.3)

As further shown in Fig. 5.7, the partial sums B1, B2, B3, . . ., B512 directly describe the
file offsets required for placing the compressed data in the global sequence of subgrids
while taking into account the varying data size resulting from the compression. It has
to be noted that in order to extract single compression blocks from the file, the offsets
B1, B2, B3, . . ., B512 have to be stored in the header of the shared file. Therefore, the
process with rank r at position pr = 1 writes a header at the very beginning of the file
before writing its own compressed data.
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Figure 5.7: Global sequential layout for compressed data on disk. Each MPI process
with rank r writes one compressed data block into a shared file. The data
size Apr of compressed subgrids is numbered according to the global column-
major ordering LG (pr = 1, 2, 3, . . ., 512), as shown in Fig. 5.6 (b). The
partial sums Bpr of the data size Apr correspond to the starting offsets for
each process during the collective write operation. As denoted by the dashed
rectangle, the process at position pr = 1 writes a header containing the offsets
B1, B2, B3, . . ., B512.

Implementation of Collective Sequential Storage Procedure

Given the file offsets B1, B2, B3, . . ., B512, where MPI processes r at position pr start to
write their data, the MPI_File_write_at_all() statement is used for the collective write
of the global sequential data layout. As shown in Alg. 5.3, each MPI process invokes
the statement with a different offset Bpr , as well as, a different data size Apr . The write
operation creates one file per time step per variable and results in the following file
structure:

/scratch/archive/time001_variable001

/scratch/archive/time001_variable002

/scratch/archive/. . .

/scratch/archive/time002_variable001

/scratch/archive/. . .
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int rank , size , status;
2 FILE* file_handle = NULL;
char* file_path = ”/archive/time1_variable1”;

4 char* buffer = new char[MAX_BUFFER_SIZE ];
// initialize mpi

6 MPI_Init (&argc , &argv);
MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get process id

8 MPI_Comm_size(MPI_COMM_WORLD , &size); // get num procs
// compute pr, Apr , gather p∗, A∗

10 // compress data into buffer [] and merge header if pr = 1
// sort tuples (p∗, A∗), compute offsets B∗

12 MPI_File_open(MPI_COMM_WORLD , file_path , // open file
MPI_MODE_WRONLY , MPI_INFO_NULL , &file_handle);

14 MPI_File_write_at_all(file_handle , bpr , // write data
&buffer [0], apr , MPI_BYTE , &status);

16 MPI_File_close (& file_handle); // close file
MPI_Finalize (); // finalize mpi

Algorithm 5.3: Collective write of length-varying compressed data using MPI-I/O.
Compressed blocks are linearized into a sequence and written using MPI_
File_Open(), MPI_File_write_at_all() and MPI_File_Close() statements.
The example illustrates the MPI-I/O library calls.

5.3.4 Storage Layout for Compressed Low-Resolution

Data

The sequential data layout described in the previous section offers individual access
to spatial regions, which have been compressed independently. Therefore, data access
based on the original grid topology requires decompression, and only decompression of
single full-resolution regions is possible.

Low-resolution Data for Visualization

As direct rendering of low-resolution preview data is not possible using compressed full-
resolution data, the low-resolution data is computed additionally and stored separately.
Fig. 5.8 (a) shows a visualization of a melt data set at two different levels of resolution,
i.e. at full resolution with 64 × 64 × 64 voxels per subgrid, and at low resolution with
32 × 32 × 32 voxels per subgrid. As can be seen in Fig. 5.8 (b), low-resolution data
is sufficient for e.g. overview browsing, the visualization of trends, content delivery for
mobile devices/web browsers etc. [53, 56]. Many post-processing scenarios which involve
visual analysis and exploratory visualization can use low-resolution data for e.g. offering
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preview and quick browsing, or creating a context next to full-resolution data. As
compressed low-resolution data exhibits an extremely small memory footprint, it can
be loaded quickly during interactive applications, or it can be rendered quickly during
iterative adjustment of visualization parameters.

(a) (b)

643 323

  64³64³

  32³32³

Figure 5.8: Visualization of melt data set in two different levels of resolution.
(a),(left) full-resolution data with 643 = 262,144 voxels per subgrid.
(a),(right) low-resolution data with 323 = 32,768 voxels per subgrid. (b) vi-
sualization using full-resolution data for regions of interest and low-resolution
data for context.

Computation of Low-Resolution Data

Each MPI process computes the low-resolution data by using an octree averaging opera-
tion. An octree is a tree data structure for the spatial organization of three dimensional
uniform grid data, where each node has eight children. Nodes partition the space into
octants, and leaves correspond to voxels [53]. However, instead of spanning a full octree
over the whole data set, each MPI process executes the averaging operation on its own
local subgrid for only one iteration, as shown in Fig. 5.9.

One uncompressed subgrid of size 32 × 32 × 32 requires 128 kB = 1/8 · 1 MB of the
full-resolution data. Therefore, writing out compressed multi-resolution data further
decreases the data size per core, which may complicate collective writes in HPC applica-
tions. According to the compression tests conducted for GLATE in Section 3.4.3, p. 66,
GLATE yields a stable compression performance also on shorter streams consisting of
N = 83, 163, 323 values. Therefore, GLATE is a reasonable choice for the compression
of low-resolution data, and the memory footprint of the compressed low-resolution data
is expected be in the order of 128 kB× 25 % 32

b

= 1/32 · 1 MB = 32 kB.

152



5.3 Storage of In-Situ Compressed Data

Level 7 = 643323

128kB
float
per core

1MB
float
per core

163

16kB

st
op

 o
ct

re
e 

tr
av

er
sa

l

Figure 5.9: Octree averaging operation for computation of low-resolution data. Eight
voxels are merged into one using averaging. One averaging operation trans-
forms a subgrid into a grid with 8× less voxels, i.e. from 64× 64× 64 voxels
to 32× 32× 32 voxels.

Concretely, each MPI process computes the averaging operation for levels 7 and 6,
i.e. 643 → 323 voxels. The averaging is carried out using the following equation for
i, j, k = 1, 2, 3, . . ., 32:

x6(i, j, k) = 1/8 · [ x7( 2i+0 , 2j+0 , 2k+0 ) +

x7( 2i+1 , 2j+0 , 2k+0 ) +

x7( 2i+0 , 2j+1 , 2k+0 ) +

x7( 2i+1 , 2j+1 , 2k+0 ) +

x7( 2i+0 , 2j+0 , 2k+1 ) +

x7( 2i+1 , 2j+0 , 2k+1 ) +

x7( 2i+0 , 2j+1 , 2k+1 ) +

x7( 2i+1 , 2j+1 , 2k+1 ) ]

(5.4)

x6(i, j, k) and x7(i, j, k) correspond to the data of variable x stored in the voxel (i, j, k)

on the level of resolution 6 and 7 respectively.
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Writing Low-resolution Data using Sequential Storage Layout

Before writing data to the storage system, the low-resolution subgrids are computed and
cached temporarily inside each MPI process. Both full-resolution and low-resolution
grids are compressed and ordered into the global sequential data layout, as described
in the previous section. In contrast to the sequential data layout for full-resolution
data, which creates one file per variable, the sequential data layout for low-resolution
data creates two files per variable, i.e. one for low-resolution and one for full-resolution
grids. In each time step of the CFD simulation, the procedure creates the following file
structure.

/scratch/archive/time001_level001_variable001

/scratch/archive/time001_level001_variable002

/scratch/archive/. . .

/scratch/archive/time001_level002_variable001

/scratch/archive/time001_level002_variable002

/scratch/archive/. . .

/scratch/archive/time002_level001_variable001

/scratch/archive/. . .

5.4 In-Situ Tests in the Taurus HPC Cluster

As described in Section 5.2, the evaluation of GLATE and t-GLATE is carried out
on the Taurus HPC Cluster , where the LBM is conducted for a CFD simulation of
metal melt in a complex filter structure. The LBM code is used as a vehicle for mass
data production and execution of in-situ data compression. The storage procedures,
as explained in Section 5.3, are integrated into the MPI-based LBM solver [85] and
applied during the running CFD simulation in order to record the I/O times for writing
uncompressed and compressed full/low-resolution data.

Compute Hardware in Taurus HPC Cluster

The tests are carried out on the Taurus HPC Cluster located in the Centre for Infor-
mation Services and High-Performance Computing in Dresden, Germany. By the end
of 2017, the cluster comprised ∼340 cores with large main memory for shared memory
parallelization, ∼340 GPUs, as well as, ∼38,000 cores housed in more than 2,000 nodes.
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Specifically for the compression tests, nodes with two 12 core Intel(R) CPUs (Xeon(R) E5-
2680 at 2.50 GHz, MultiThreading disabled) are used. The data products are written to
a parallel Lustre(R) [75] file system.

Architecture of the Lustre(R) Parallel File System

Lustre(R) is a distributed file system for HPC clusters based on object storage principles,
which can handle large amounts of storage devices distributed over many storage nodes.
A Lustre storage system consists of a set of storage nodes, so-called Object Storage
Servers (OSSs), used for spanning a distributed storage across many devices, so-called
Object Storage Targets (OSTs), typically a set of hard drives in a RAID configuration.
One node, the so-called Metadata Server (MDS), is dedicated to the management of the
metadata stored on the so-called Metadata Target (MDT), and maps data blocks to a
file system hierarchy [75]. Fig. 5.10 shows the architecture of a typical Lustre distributed
file system.
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Figure 5.10: Architecture of a Lustre(R) distributed file system. The data throughput is
limited by the speed of storage devices and network connections. Therefore,
Lustre allows for the aggregation of I/O bandwidth, i.e. MPI processes can
use designated channels for data transfer.
Image credits: https://www.nics.tennessee.edu/files/images/lustre-components.jpg

In total, by the end of 2017, the storage system comprised 192 OSTs in 16 OSS

providing ∼5.2 PB of temporary scratch storage for results of HPC computations. The
parallel file system and the compute nodes are connected using a 56 Gbit/s Infiniband(R)
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link. Although the file system offers a huge storage, a large difference in the total amount
of compute nodes and storage nodes is present, i.e. more than 35,000 CPU cores and
several hundred GPUs are available for data production in more than 2,000 nodes,
whereas 16 nodes are designated for data storage.

File Striping in the Lustre(R) Parallel File System

One of the most important features of the Lustre file system is File Striping , i.e. large
fragmented files can be distributed across many OSTs. A so-called Striped File is sep-
arated into constant sized chunks, so-called Stripes , which are distributed over several
OSTs. The main advantage of striping is that many I/O operations can be performed
on multiple OSSs/OSTs in parallel, i.e. a single shared file can be read or written using
the aggregate I/O bandwidth of multiple OSTs in multiple OSSs. The amount of OSTs
and OSSs participating in the write operation are both controlled by the so-called Stripe
Count and configured per directory using the lfs utility. Files created automatically in-
herit the present striping configuration of the directory. For the Stripe Size, the default
configuration of the Lustre file system of size 1 MB is used. In order to create a directory
where files are striped accross e.g. 4 OSTs, the following command is invoked.

lfs setstripe -c 4 /scratch/archive/

Writing Stripe-Aligned Uncompressed Data

As the data throughput is limited by the speed of storage devices and network connec-
tions, the aggregation of I/O bandwidth and network bandwidth allows for collective
write of fragmented data into shared files at very high speeds. In the extreme case,
each MPI process moves its data into one OST. There, each MPI process can use an
exclusive channel for data transfer similar to a local hard drive. Usually a lower stripe
count is used and stripes are distributed across OSTs in a round robin fashion.

For the highest performance, the MPI processes need to ensure a Stripe-Aligned Data
Fragmentation, i.e. the size of the data fragments of the MPI processes is aligned with
the Stripe Size [38, 62]. In the case each MPI process has a designated set of targets, un-
needed message passing is avoided, and Lustre can achieve an effective data throughput
in the order of giga byte per second [75]. Accordingly, for writing the two dimensional
16 × 16 grid shown in Fig. 5.4 (c), the stripe count of 4 is used, which results in a
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stripe-aligned data fragmentation, as shown in Fig. 5.11.

OST 1 OST 2 OST 3 OST 4

1817

21 3 4
65 7 8
109 11 12
1413 15 16

2019
2221 2423
2625 2827
3029 3231

Figure 5.11: Distribution of stripe-aligned data fragments across four OSTs.
Low cost for communication and data distribution.

As the data chunks of MPI processes are interlaced, the linearization of the global
column-major grid, as described for the column-major storage layout in Section 5.3.2,
directly results in a stripe-aligned data fragmentation. Hence, the stripe count is selected
for single MPI processes to access only a small number of OSTs, i.e. one stripe is written
by at most one MPI process, and one MPI process accesses only two different OSTs.
According to the example in Fig. 5.5, p. 146, MPI processes 1&3 perform stripe-aligned
writes to OSTs 1&3, and MPI processes 2&4 to OSTs 2&4.

Writing Size-Varying Compressed Data

As noted above, stripes in the Lustre file system are data chunks of constant size.
Therefore, the amount of message passing required for the distribution of the data accross
OSSs and OSTs increases if the size of the data chunks is not aligned with the stripe size.
In general, compression results in Size-Varying Data Fragments , which are merged into a
shared file with increased message passing overhead, as shown in Fig. 5.12. Consequently,
the collective write operation is not stripe-aligned and the I/O time of the data write is
not expected to scale according to the reduction of data size due to compression.
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OST 1 OST 2 OST 3 OST 4

MPI 1 MPI 2  MPI 3 MPI 4

Figure 5.12: Distribution of size-varying data fragments across four OSTs.
Increased cost for communication and data distribution.

5.4.1 In-Situ Compression using GLATE

The run-time performance of GLATE and the I/O performance for writing size-varying
compressed full/low-resolution data into the Lustre(R) file system is evaluated in a parallel
CFD simulation with 512 processes. Further, the I/O times are compared to the write
of stripe-aligned uncompressed data, as well as, compressed data generated by the ZFP

lossy floating point compressor. Whereas the comparison of I/O times for compressed
and uncompressed data highlights the overhead in message passing for joining unevenly
fragmented data, the comparison to ZFP highlights the run-time performance of the
current implementation of GLATE.

In-Situ Compression Test

The tests carried out on the Taurus cluster were not executed with exclusive access to
the file system. Therefore, during each simulation 128 time steps are stored in order to
report the average I/O times for writing one time step of the CFD data set. Additionally,
in order to lower the influence of the cluster usage by other users, the jobs are started
e.g. at the end of the month, in the nights, and on the weekends. Each simulation is
spawned on 512 MPI processes using 22 physical nodes exclusively, which corresponds
to the most dense packing of MPI processes on compute nodes possible.

As explained in Section 5.2, the flow field (u, v, w) is computed along with the flow field
properties velocity magnitude M and vortex characteristics Q. All CFD simulations
are conducted inside the same filter structure, as shown in Fig. 5.3, p. 141, and are
started from the same checkpoint solution, hence producing the same data. During
the simulation, the five variables u, v, w, M , Q are computed in full/low-resolution and
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stored without compression as float, and with compression using GLATE and ZFP. For
the storage of the uncompressed data and the compressed full/low-resolution data, the
global column-major data layout and the sequential data layout are used respectively,
as explained in Sections 5.3.2 to 5.3.4.

Compression Rate in CFD Simulation

Each one of the 512 MPI processes computes the flow field for 64×64×64 voxels, which
accounts for 1 MB of uncompressed float per variable per time step. For evaluation
of the compression rate, the GLATE compressor is configured to use the error bound
eMAX = 1.00 %, and the optimized compression procedure tGLATE_compress_opt (. . .)
is used, as given in Alg. 4.9, p. 112. The execution of the temporal compression procedure
using kMOD = 1 results in non-temporal compression, as only KFs are inserted. ZFP is
executed with precision level 15 corresponding approximately to a point-wise maximum
error of eMAX = 1.00 %, i.e. 0.5 % of all values greater than 1E−4 exhibit decompression
error greater than 1.00 %, according to q1.00 %

MAX shown in Fig. 4.26 (bottom), p. 125.
Fig. 5.13 (a) shows the average compression rate for all simulation variables u, v, w, M ,
Q resulting from the application of ZFP and GLATE in the CFD simulation.

The storage of uncompressed float data is denoted as float Grid and accounts to
100 % 32

b. ZFP and GLATE show a similar average compression rate w.r.t. the error-specific
compression task, as discussed in Section 4.5, i.e. ZFP achieves ∼16.4 % 32

b and GLATE

achieves ∼18.7 % 32
b. GLATE in non-temporal compression using eMAX = 1.00 % is slightly

worse by ∼2.5 % 32
b, as compared to ZFP. However, unlike ZFP, GLATE guarantees the

error bound for all values. By showing a more than five fold data reduction on 32 bit

float data, GLATE constitutes a powerful scalar quantization method while restricting
the maximum error of decompressed data. The lowest compression rate of ∼14.1 % 32

b is
achieved for the variable M by both ZFP and GLATE.

As shown in Fig. 5.13 (b), using ZFP and GLATE for the compression of low-resolution
data introduces at most ∼3.0 % 32

b of additional storage overhead on top of the compressed
full-resolution data. In contrast, storing additional uncompressed low resolution data
would demand for 12.5 % 32

b additional storage.
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Figure 5.13: Compression rate of ZFP and GLATE on full-resolution and low-resolution
data for simulation variables u, v, w, M , Q. (a) Compression of full-
resolution data. The average compression rate for ZFP is ∼16.4 % 32

b, and for
t-GLATE is ∼18.7 % 32

b. (b) Additional compression of low-resolution data
introduces at most ∼3 % 32

b overhead. float Grid corresponds to writing un-
compressed data in global column-major layout. t-GLATE is applied with
kMOD = 1 and eMAX = 1.00 %. ZFP is applied with precision level 15.

Run-Time of CFD Simulation

Fig. 5.14 shows the simulation run-time when writing uncompressed data and for writing
compressed data from ZFP and GLATE. The reported times include the run-time of the
LBM solver. Each test has been executed using an increasing stripe count of 4, 8, 16,
32, 64, 128. Using 4, 8, 16, 32 stripes, the average run-time per iteration decreases
constantly for writing uncompressed data. Since 1 MB float data per MPI process
corresponds to the default stripe size, the write of uncompressed data results in a stripe-
aligned data fragmentation. Therefore, an optimized I/O performance is given, which
is improved by increasing the stripe count, as more aggregate bandwidth is available.

As the 512 MPI processes are spawned on 22 physical nodes, several MPI processes
share the bandwidth of one compute node and no further improvement was observed
for larger stripe counts of 64, 128 stripes. When writing compressed data with reduced
memory footprint, the total simulation run-time including data writes decreases for
lower stripe counts of 4, 8 stripes. Using lower stripe counts for writing compressed
data allows for the acceleration of the simulation, as less aggregated bandwidth between
compute nodes and storage nodes is available. Using the GLATE implementation given
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Figure 5.14: Simulation run-time when writing uncompressed and compressed data into
the Lustre(R) file system using different data layouts. float Grid corre-
sponds to using the global column-major layout with uncompressed data.
The plots show the overall simulation run-time including the run-time of the
LBM solver and the I/O time for data writing. The simulation run-time
decreases strongly for an increasing stripe count of 4, 8, 16, 32 stripes when
uncompressed data is written. The simulation which uses compression has
an increased cost for message passing and distribution of size-varying com-
pressed data, and the improvement does not scale according to the data
reduction. Writing low-resolution data with extremely small memory foot
print introduces a nearly constant run-time penalty. Fastest simulation
run when writing full-resolution data for ZFP is ∼1.9 s, and for GLATE is
∼2.39 s.
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in Alg. 4.9, p. 112, the fastest simulation run was ∼2.39 s, which introduces about ∼0.49 s

run-time overhead per time step, as compared to ZFP with ∼1.9 s, i.e. slightly increased
I/O time due to ∼2.5 % 32

b larger data size, and additional time spent for data preparation,
float decomposition and quantization.

For writing out additional low-resolution data, the effect intensifies even more as
compressed low resolution data has an even smaller memory footprint. Particularly
in this case, the GLATE compression reduces the data size from 1 MB to less than
∼205 kB ' 1 MB× 20.0 % 32

b per variable per MPI process for full-resolution data, and to
less than 26 kB ' 128 kB × 20.0 % 32

b per variable per MPI process. For such small data
per core, the overhead in message passing dominates and results in a nearly constant
run-time penalty for writing the low-resolution data for all stripe counts 4, 8, 16, 32, 64,
128 stripes. Write-out of uncompressed low-resolution float data was not conducted.

I/O Times of Collective Write Operations

Fig. 5.15 shows the I/O times for writing uncompressed float data and compressed
full/low-resolution data from ZFP and GLATE without run-time of the LBM solver.
The fastest write operation of stripe-aligned full-size data lasted ∼1.05 s using 32 stripes.
The same time was required for writing GLATE compressed data without taking into
account the time spent in tGLATE_compress_opt (. . .) for data preparation, float
decomposition and quantization.

The current implementation of the non-temporal GLATE compression procedure us-
ing kMOD = 1 introduces a run-time penalty of ∼0.27 s. Compared to the run-time
of tpfor and zstd, the implementation of tGLATE_compress_opt (. . .), as given in
Alg. 4.9, p. 112, consumes a disproportionate amount of run-time due to an unopti-
mized implementation.

According to the compression rate of ZFP, which is ∼2.5 % 32
b ahead of GLATE, the time

for writing the compressed data slightly decreases to ∼0.9 s. Because of the optimized
implementations, the run-time of the ZFP algorithm itself and the run-time for the lossless
compression using zstd, tpfor inside of GLATE only take a negligible fraction of
≤0.08 s. The fastest write of compressed data occurs using 32 stripes and took ∼0.9 s for
ZFP and ∼1.05 s for GLATE, i.e. compressed data was written at least as fast as stripe-
aligned uncompressed float data. As OSTs are accessed concurrently, the increased
overhead of message passing and distribution of data fragments over OSTs/OSSs hinders
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Figure 5.15: I/O times for writing uncompressed and compressed data into the Lustre(R)

file system using different data layouts. float Grid corresponds to writing
uncompressed data in global column-major layout. Fastest I/O time for
GLATE compressed data is ∼1.05 s, which is ∼0.15 s slower than ZFP com-
pressed data with ∼0.9 s because of the ∼2.5 % 32

b larger data size. The appli-
cation of zstd, tpfor and ZFP only introduce a negligible run-time penalty.
The current GLATE implementation introduces a run-time penalty of
∼0.27 s for data preparation, float decomposition and quantization.
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a further speed-up. However, for low stripe counts of 4, 8 stripes, the improvement of
the I/O times is clearly visible, as compared to writing uncompressed data.

5.4.2 Temporal In-Situ Compression using t-GLATE

As shown in the previous section, ZFP and GLATE yield more than a fivefold data
reduction of 32 bit float data for the flow field computed in the CFD simulation.
Using 16, 32 stripes, the compressed full-resolution data was moved into the Lustre(R)

file system at least as fast as moving stripe-aligned full-size data.

Using t-GLATE during the CFD simulation allows for further reduction of the size
of full-resolution data using temporal compression, as explained in Section 4.3.4, p. 102.
The run-time performance of t-GLATE temporal compression using kMOD > 1 and the
I/O performance for merging temporal compressed full-resolution data into large files
stored in the Lustre(R) file system is evaluated in the same CFD simulation with 512

processes. Low-resolution data is not compressed in this test.

Temporal In-Situ Compression Test

The evaluation of the run-time and compression rate of t-GLATE temporal compres-
sion takes place through the variation of the parameters kD and kMOD, which control
the trade-off between temporal resolution, amount of KFs, and the compression rate, as
explained in Section 4.2, p. 82. When decreasing the temporal resolution using kD > 1,
the computation time for the LBM solver increases relative to the run-time of compres-
sion and data writing, as time steps are skipped in the temporal compression procedure.
As the parameter kMOD > 1 determines how many DFs are inserted before the next KF,
kMOD = 1 corresponds to non-temporal GLATE compression.

Specifically, for each combination of kD, kMOD = 1, 2, 4, 8, 16, one simulation run is
conducted, in which temporal compressed data is written into the Lustre(R) file system
using a stripe count of 16 stripes. In each run, a total of 128 time steps are compressed
and written in order to report the average I/O time for moving one compressed full-
resolution data set to storage. Depending on kD = 1, 2, 4, 8, 16 the actual number
of iterations in the CFD simulation run varies between 128, 256, 512, 1024, 2048 (=
kD · 128).
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Compression Rate in CFD Simulation

Table 5.1 shows the average compression rate for all five simulation variables u, v, w,
M , Q resulting for temporal compression depending on kD and kMOD. For kMOD =

1, the compression performance of GLATE is reproduced, as shown in the previous
section. For temporal compression using kMOD > 1, the compression rate ranges from
∼8.4−16.0 % 32

b. As can be seen, temporal compression improves the compression rate of
t-GLATE twofold when using kMOD = 16, as compared to non-temporal GLATE and
ZFP. This confirms the excellent data reduction capabilities of the t-GLATE temporal
compression algorithm which ensures a point-wise error of at most eMAX = 1.00 % for
the decompressed data.
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kMOD = 2 13.2 13.7 14.3 15.0 16.0
kMOD = 4 10.5 11.1 12.0 13.2 14.6
kMOD = 8 9.1 9.9 10.9 12.3 14.0
kMOD = 16 8.4 9.3 10.4 11.8 13.6

Table 5.1: t-GLATE compression rate in parallel CFD simulation with kMOD, kD = 1,
2, 4, 8, 16, input stream size N = 643, and maximum error eMAX = 1.00 %.
t-GLATE is applied using zstd on level 6 and tpfor with block size 128.
Depending on kD the temporal resolution of the decompressed data decreases,
as only every kD-th iteration is compressed.

CFD Simulation Run-Time and I/O Performance

Fig. 5.16 shows the run-time of the CFD simulation including the run-time of the LBM

solver. The simulation run-time is shown for kMOD = 2, 16 and kD = 1, 2, 4, 8, 16,
which corresponds to the second and fifth row of Table 5.1. The compression rate is
lower than ∼16.4 % 32

b of ZFP using precision level 15, i.e. the t-GLATE compression rate
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varies between ∼13.2−16.0 % 32
b for kMOD = 2, and between ∼8.4−13.6 % 32
b for kMOD = 16.

As can be seen, the run-time of the LBM solver increases for kD = 2, 4, 8, 16, whereas
the time required for compression and collective write stays the same.
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Figure 5.16: Varying run-time time of CFD simulation during temporal compression
procedure. The plot shows the simulation run-time including the time re-
quired for compression and data writing. The CFD simulation is carried
out with 512 MPI processes on 22 nodes. Temporal compression is applied
using a low/high number of KFs for kMOD = 2, 16. Depending on kD = 2,
4, 8, 16, the simulation is run for 256, 512, 1024, 2048 iterations. The
simulations using kD = 1 or ZFP on level 15 are run for 128 iterations.

The temporal compression yields a compression rate of ∼8.4−16.0 % 32
b. Therefore, the

data per MPI process to be moved into the shared file fluctuates between ∼85 kB and
∼165 kB, which constitutes a further reduction of data size, as compared to non-temporal
compression. Fig. 5.17 shows the average run-time per write of one CFD data set during
the temporal compression procedure using kMOD = 2, 16 and kD = 1, 2, 4, 8, 16 without
run-time of the LBM solver. Although t-GLATE achieves a further reduction in data
size, the I/O times fluctuate around the same range of ∼0.9−1.05 s as observed for non-
temporal compression in the previous section, i.e. time required for collective writing
does not reflect the reduction of data through temporal compression. As limited cluster
access and the available time make it difficult to produce further significant results, no
further analysis of the I/O time is carried out.

Similar to non-temporal compression, the current implementation of the t-GLATE

temporal compression procedure introduces a run-time penalty of ∼0.29 s using kMOD >

1. The run-time of ZFP and the lossless compression back end using tpfor and zstd
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Figure 5.17: I/O time for writing temporal compressed data into the Lustre(R) file sys-
tem during the CFD simulation. The collective write operation uses 16
stripes and incorporates 512 MPI processes on 22 nodes. Although the
data size is further reduced by using temporal compression, the I/O times
do not decrease according to the reduction in data size and fluctuate around
the I/O times ∼0.9−1.05 s for non-temporal compressed data. The current
GLATE implementation introduces a run-time penalty of ∼0.29 s for data
preparation, float decomposition, quantization and caching.

consume a negligible amount of time ≤0.08 s.

5.5 Summary
In this chapter, GLATE compression and t-GLATE temporal compression were applied
in a large-scale CFD simulation using 512 MPI processes on the Taurus HPC Cluster .
For different configurations of the compression procedure, the run-time and compression
rate of GLATE and t-GLATE were compared to ZFP. Further, the I/O performance for
writing compressed full/low-resolution data into the Lustre(R) file system was compared
to writing full-size float data. To this end, GLATE and t-GLATE were integrated into
an in-house LBM solver written in FORTRAN, which is executed for the computation
of the test data, i.e. the flow field (u, v, w), and two flow field properties M , Q.

Overview of Compression Rate

Fig. 5.18 summarizes the compression rate achieved by ZFP, GLATE and t-GLATE

for the compression of full/low-resolution data during the CFD simulation. For the
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compression of temporal sequences of CFD data sets, t-GLATE is applied using kD,
kMOD = 1, 2, 4, 8, 16. The non-temporal GLATE compression corresponds to the
application of t-GLATE using kMOD = 1. The parameter kD controls the temporal
resolution of the decompressed data, as only every kD-th iteration is included into the
temporal compression procedure. As can be seen, t-GLATE temporal compression
reduces the data size between ∼8.4−16.0 % 32

b and restricts the decompression error to
at most eMAX = 1.00 %. Therefore, while improving the data reduction for temporal
sequences of full-resolution CFD data sets, t-GLATE creates a trade-off between the
compression rate and

kMOD the amount of inserted KFs,

kD the temporal resolution of decompressed data,

eMAX the maximum error of decompressed data.

Further, the compressed low-resolution data takes up at most ∼3.0 % to provide a global
low-resolution preview for the full data set. The extremely small memory footprint of
compressed low-resolution data allows for fast transfer into visualization and analysis
applications.

Collective Write of Compressed Data

Considering the small memory footprint of the compressed low-resolution data, as well
as, the high reduction of temporal compressed data, the data size per MPI process to be
moved from main memory to storage falls far below the default stripe size of 1 MB used
in the Lustre(R) file system. The compressed data is small and not stripe-aligned, which
introduces overhead for message passing between compute nodes and storage nodes when
using collective I/O procedures. As compared to writing stripe-aligned full-size float

data using the global column-major data layout, the collective write of compressed data
does not accelerate the process in the same manner as compression reduces the data
size.

Moving compressed full-resolution data into the Lustre(R) file system has however been
at least as fast as moving stripe-aligned full-size data. In all cases for non-temporal ZFP
and GLATE compression, as well as, temporal t-GLATE compression, the time required
for the write operation using 16 stripes fluctuates around the time ∼0.9−1.05 s required
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Figure 5.18: Overview of compression rate of ZFP and t-GLATE in CFD simulation.
ZFP operates on precision level 15. t-GLATE uses kD = 1, 8, 16, kMOD = 2,
4, 8, 16, and eMAX = 1.00 %. GLATE corresponds to the application
of t-GLATE using kMOD = 1. kMOD > 1 corresponds to temporal com-
pression. For kMOD ≥ 2 and all values of kD = 1, 2, 4, 8, 16, t-GLATE
improves the compression rate, as compared to ZFP which achieves ∼16.4 % 32

b.
Low-resolution is stored with extremely small memory footprint of at most
∼3.0 %

to move uncompressed data. For low stripe counts of 4, 8 stripes, the improvement of the
I/O times compared to writing uncompressed data is clearly visible, as less aggregate
bandwidth is available for the data transfer. In the extreme case using only one stripe,
the I/O performance resembles a constant data throughput similar to e.g. data transfer
using a slower network connection, or data movement into a local hard drive.

t-GLATE Implementation State

The implementation of the temporal compression procedure tGLATE_compress_opt

(. . .) in its current state introduces a run-time penalty of ∼0.27−0.29 s, as explained in
Sections 5.4.1 and 5.4.2. Including the time ∼0.08 s for the application of zstd and tpfor,
the run-time for t-GLATE compression takes pG = 0.37 s in the worst case. According
to Alg. 4.9, p. 112, the t-GLATE implementation uses a lot of conditional branching,
i.e. if-statements inside of for-loops, which produce a bad run-time performance [39].
Further, the run-time performance of the binary search for quantization of the mantissa
is to be tested against the analytical determination based on the inverse step function,
as shown in Fig. 3.11, p. 48. Nevertheless, the current t-GLATE implementation offers
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potential for optimizations, and, as motivated in Section 4.5, constitutes a promising
approach for fast compression, which is, unlike ZFP, not limited to the compression of
uniform grids. Further improvement of the current t-GLATE implementation appears
possible. Hence, t-GLATE is a promising approach for fast compression of float data
supporting temporal compression. Unlike ZFP, the t-GLATE algorithm can compress
arbitrary grid types through employing linearization schemes or indices of the mesh
topology, as motivated in Section 4.5, p. 123.

Data Transfer during Post-Processing

Despite the absent improvement of I/O times for writing compressed data in the Lustre(R)

file system using high stripe counts, the high data reduction rates improve the scientific
work flow if data is moved from the HPC environment to the analysis workstations. In
many modern storage systems for HPC clusters, which employ e.g. temporary scratch
storage during mass data production, or node-local/rack-local storage as burst-buffer
for data-intensive applications, data movement is inevitable [43]. There, a strong re-
duction of the memory footprint using Temporal Lossy In-Situ Compression accelerates
the scientific workflow in the case data has to be moved at least one time after its
creation. Unlike the mass production of data during the CFD simulation, the access
patterns during visualization tasks are often problem-specific and hard-to-predict [26,
52]. Here, early data preparation and compression enhance the accessibility of large data
sets e.g. for iterative loading of subregions, or by fast transfer into remote visualization
workstations.

Improvement of Time-to-Analysis

The improvement of the Time-to-Analysis in the scientific workflow is estimated through
the transfer time savings for moving compressed data. As shown in Fig. 5.15, p. 163 and
Fig. 5.17, p. 167, the I/O times for writing out GLATE and t-GLATE compressed data
fluctuate around the write times for the stripe-aligned full-size float data. The storage
of strongly compressed data using collective I/O routines did not improve the write
performance according to the reduction of the data size. Further, as explained above,
the current implementation of t-GLATE introduces a run-time penalty of ∼0.27−0.29 s

per write operation. Specifically, the following relation describes the condition under
which an improvement is possible: The time for "simulate & store (tS) and transfer
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(tT ) uncompressed float data" is to be greater than the time for "simulate, compress
& store (t′S) and transfer & decompress (t′T ) using t-GLATE".

Run Simulation,
Store float,

Transfer float

 >


Simulate & Compress,
Store Compressed,

Transfer & Decompress


tS + tT > t′S + t′T

(5.5)

The time t′S is estimated through the tests which have been conducted for temporal
compression using t-GLATE, as described in Section 5.4.2. Assuming a nearly tenfold
data reduction using kD = 4, kMOD = 16, which results in a compression rate of cG =

∼10.4 % 32
b according to Table 5.1, the time required for simulate, compress & store equals

t′S = 3.0 s according to Fig. 5.16. Further, according to Fig. 4.31 (a)−(b), p. 135, the
t-GLATE decompression consumes dG = 0.07 s/0.23 s ' 30.4 % of the compression run-
time. Assuming the t-GLATE compression run-time to be of at most pG = 0.37 s,
including zstd and tpfor run-time, the times tS, t′S, t′T can be estimated as follows:

t′S Simulate, compress & store using t-GLATE:
t′S = 3.0 s, cf. Fig. 5.16, p. 166

cG Compression rate using t-GLATE:
cG = 10.4 % 32

b for kD = 4, kMOD = 16, cf. Table 5.1, p. 165

pG Compress using t-GLATE:
pG = 0.37 s

tGLATE_compress_opt (. . .) run-time ∼0.27−0.29 s

zstd and tpfor run-time ∼0.08 s

pG · dG Decompress using t-GLATE:
dG = 0.07 s/0.23 s ' 30.4 %, cf. Fig. 4.31 (a)−(b), p. 135
pG · dG = 0.37 s× 30.4 % = 0.11 s

tS Simulate & store uncompressed float data:
tS = t′S − pG = 2.63 s

(Assuming I/O time uncompressed float = I/O time compressed data.)

171



5 Application of In-Situ Compression in a Computational Fluid Dynamics Simulation

t′T Transfer & decompress using t-GLATE:
t′T = cG · tT + pG · dG

tT Transfer uncompressed float data:
Estimated by speed of network connection.

For the estimation of the data transfer time t′T between HPC scratch storage and local
visualization workstations, a constant network speed is assumed, i.e. the data transfer
time scales according to the t-GLATE compression rate cG. Substitution of tS, t′S, t′T
in Eq. (5.5) yields the following relation for the estimation of the improvement of the
Time-to-Analysis .

��tS + tT > ��tS + pG + dG · pG + cG · tT
(1− cG) · tT > (1 + dG) · pG
tT × 89.6 % > 0.48 s

(
Transfer Time

Savings

)
>

(
t-GLATE

Run-Time

) (5.6)

In conclusion, as long as the time saved through transferring the compressed data exceeds
the run-time required for the invocation of the t-GLATE compression and decompression
procedure, the Time-to-Analysis in the scientific workflow is improved by using Temporal
Lossy In-Situ Compression. Specifically for kD = 4, kMOD = 16, the Time-to-Analysis
is improved, if ∼89.6 % of the transfer time of uncompressed float data exceed ∼0.48 s.

Speed-Up of the Scientific Workflow

The aforementioned improvement of the Time-to-Analysis , as described by Eq. (5.6),
is quantified using the practical CFD simulation scenario, as described in Section 5.2.
After the CFD simulation has been used for the production of the flow field and its
properties, the data needs to be transferred into local visualization workstations. In
order to transfer one time step of the data set D containing u, v, w, M , Q, a total
amount of aD = 5 · 512 MB = 2,560 MB of uncompressed float data needs to be
moved. Although, for kD = 4 the data is simulated & stored in only tS = 2.63 s, as
explained above, assuming a constant network transfer speed of bD [ MB/s ], the data
needs tT = aD/bD [ s ] for transmission. Further, t-GLATE requires (1 + dG) · pG =
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130.4 % × 0.37 ' 0.48 s run-time for compression & decompression per time step, and
for kD = 4, kMOD = 16, t-GLATE achieves a compression rate of cG = 10.4 % 32

b using
eMAX = 1.00 %. Inserting the numbers into Eq. (5.6) yields the following relation:

(1− cG) · aD
bD

> (1 + dG) · pG

2,293.76 MB

bD
> 0.48 s

(5.7)

Assuming a network transfer speed of bD = 1 Gbit/s ' 128 MB/s, the transfer time
savings of ∼17.92 s significantly exceed the t-GLATE run-time of ∼0.48 s. Therefore, for
each time step which is transferred, the data is ready for analysis ∼17.44 s = 17.92 s −
0.48 s earlier than for transfer of uncompressed float data. Consequently, for transfer of
1,000 time steps, the data is ready ∼4.8 hours earlier, and for 10,000 time steps, ∼2 days
earlier. Fig. 5.19 (a) summarizes the transfer time savings for network connections
between 1 Gbit/s, 2.5 Gbit/s, . . ., 10 Gbit/s transfer speed.
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Figure 5.19: Transfer time savings and speed-up of the scientific workflow by using t-
GLATE in-situ compression. The usage of temporal lossy in-situ compres-
sion in the scientific method cycle, as shown in Fig. 5.1, p. 139, improves
the Time-to-Analysis , i.e. (a) transfer time savings according to Eqs. (5.6)
and (5.7), and (b) speed-up of the scientific workflow according to Eq. (5.8)
for network connections with maximum speed of 1 Gbit/s, 2.5 Gbit/s, . . .,
10 Gbit/s.
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The speed-up of the scientific workflow describes how many time steps can be "sim-
ulated, compressed, transferred & decompressed" using t-GLATE in the same time in
which one uncompressed float data set is "simulated, stored & transferred" . The speed-
up is given by the following equation:

S =
Time for Simulate, Store, Transfer Uncompressed float

Time for Simulate, Store, Transfer Compressed + Compression & Decompression

S =
tS + tT
t′S + t′T

=
tS + aD/bD

tS + cG · aD/bD + (1 + dG) · pG

(5.8)

Assuming the same network transfer speed of bD = 1 Gbit/s ' 128 MB/s, a total amount
of ∼4.3× more time steps are ready for analysis in the same time, as compared to using
uncompressed data. Fig. 5.19 (b) summarizes the speed-up of the scientific workflow
when using t-GLATE for in-situ compression and a 1 Gbit/s, 2.5 Gbit/s, . . ., 10 Gbit/s

network connection for data transfer. As can be seen, for the t-GLATE compression
rate of cG = 10.4 % 32

b using kD = 4, kMOD = 16, an amount of ∼1.4−4.3× more time
steps can be transferred in the same time as one uncompressed float data set, i.e. the
analysis can happen quicker.

Closing Statement

The in-situ applicability of t-GLATE was evaluated using a large-scale CFD simulation
for aluminum metal melt in a complex filter structure, as described in Section 5.4.1.
Further, the improvement of the Time-to-Analysis in the scientific method cycle was
discussed based on the evaluation results. All measurements of I/O times are carried
out for writing stripe-aligned uncompressed float data, and by applying GLATE, t-
GLATE, as well as, ZFP for compression directly inside of the LBM solver.

For high stripe counts of 16, 32, the I/O performance when writing out fragmented
size-varying compressed full-resolution data does not scale according to the compression
rate ∼8.4−18.7 % 32

b achieved by GLATE and t-GLATE. Even for a tenfold data reduction,
the I/O times of t-GLATE compressed data fluctuate around the I/O times for stripe-
aligned uncompressed float data due to increased message passing for distribution of
size-varying data chunks. In contrast, for low stripe counts 4, 8, the improvement of the
data throughput is clearly visible, as less aggregate bandwidth to storage nodes is avail-
able. Further, as the memory footprint of compressed low-resolution data decreases even
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more, the storage of additional multi-resolution data introduces a significant overhead
in I/O times.
In order to improve the Time-to-Analysis w.r.t. storage & transfer of uncompressed

float data, the time saved through transfer of compressed data must be at least as large
as the run-time required for compression and decompression. Depending on the speed of
the network connection, which is used for movement of the data away from HPC scratch
storage, a speed-up of the scientific workflow by a factor of at least ∼1.4−4.3× is achieved
when using a network connection between 1 Gbit/s, 2.5 Gbit/s, . . ., 10 Gbit/s transfer
speed and kD = 4, kMOD = 16 for temporal compression. Even larger improvements are
expected to be possible when using a run-time optimized implementation of t-GLATE.
As a concrete example, for the application scenario motivated in Sections 5.2 and 5.4,

the simulation results of metal melt casting simulations are moved away from HPC

scratch storage inDresden into local visualization workstations in Freiberg using 1 Gbit/s.
According to Fig. 5.19 (b), moving data using a 1 Gbit/s ' 128 MB/s connection allows
for the "simulation, compression, storage, transfer & decompression" of ∼4.3× more
time steps, as compared to "simulation, storage & transfer" of uncompressed float

data, i.e. for 1,000 time steps 1.4 hours instead of 6.2 hours, and for 10,000 time steps
14.4 hours instead of 2.6 days when using t-GLATE temporal in-situ compression with
kD = 4, kMOD = 16. Concluding, t-GLATE is a viable option for decreasing the
Time-to-Analysis for data-intensive HPC applications through Temporal Lossy In-Situ
Compression.
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6 Conclusion and Future Work

In this chapter, first, a brief summary of the research in this dissertation is given. Second,
the contributions of this dissertation are summarized, and third, future research direc-
tions are proposed, which relate to the integration of Lossy In-Situ Compression and
Temporal Compression into future Data Management and Data Processing applications.

6.1 Research Summary

During the research for this dissertation, the I/O bottleneck in the scientific workflow
was reduced by employing Lossy In-Situ Data Compression and Temporal Compression
inside a large-scale CFD simulation run on the Taurus HPC Cluster . The newly de-
veloped compression methods achieved a high data reduction during the running CFD

simulation, and the data was stored in the parallel Lustre(R) file system with a much lower
memory footprint. As the data is compressed, transferred and decompressed faster than
the time required for sole transfer of full-size data, the scientific workflow is accelerated.

Development and Implementation of New Algorithms

The newly developed GLATE algorithm as well as the temporal compression procedure
t-GLATE allow for fast compression of time series of CFD data sets. GLATE achieved
a fourfold to fivefold data reduction during non-temporal compression, and t-GLATE

achieved a sixfold to twelvefold data reduction during temporal compression of flow
fields from a metal melt casting process. In order to ensure the data quality for scientific
applications, GLATE and t-GLATE restrict the maximum decompression error eMAX

in percent, as described in Section 3.2. Further, GLATE and t-GLATE establish a
trade-off between the maximum allowed decompression error, the temporal resolution of
the decompressed data, and the resulting compression rate.
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Specifically, GLATE and t-GLATE use scalar quantization and are developed based
on the ideas of the existing compression algorithms ISABELA, d-ISABELA [45] and
SBD [36]. Two other temporal compression procedures for ISABELA and SBD, namely
t-ISABELA and t-SBD have been developed and implemented before t-GLATE. How-
ever, the t-GLATE temporal compression procedure outperformed the other implemen-
tations w.r.t. compression rate and compression speed. As compared to ISABELA and
SBD, GLATE decomposes float values into two streams containing smoothly fluctu-
ating exponents and noisy signs and mantissas. By employing different real-time lossless
compression techniques, t-GLATE achieves a higher data reduction for SFPD.

Collective Write of Compressed Data

The application scenario is motivated by the CRC920, where large-scale CFD simula-
tions are conducted for analysis and visualization of the flow field dynamics in complex
porous filter structures. During the parallel CFD simulation the performance of data
writes into the parallel Lustre(R) file system depends on the stripe count used for the cre-
ation of shared files, i.e. the effective bandwidth for moving the data from MPI processes
into OSTs is the aggregate of many designated transfer channels. Hence, parallel stor-
age systems resemble a scaling of throughput according to the reduction of the data size
only if the data is stripe-aligned. For high stripe counts of 16, 32 stripes, the storage of
uncompressed float data is accelerated according to the available aggregate bandwidth.
In contrast, moving t-GLATE compressed data with high stripe counts did not yield a
decrease in I/O times, as merging of size-varying data fragments resulted in increased
message passing overhead for distribution of data across storage nodes. However, for
lower stripe counts of 4, 8 stripes, the write of compressed data was faster than the write
of stripe-aligned full-size data.

Improvement of Time-to-Analysis

Based on the evaluation results, the improvement of the Time-to-Analysis in the scien-
tific method cycle was discussed and quantified. As shown in Fig. 6.1, the data sets have
been stored with a reduced memory footprint of ∼8.4−16.0 % 32

b using t-GLATE temporal
compression during the CFD simulation. As stated above, using high stripe counts did
not decrease the data throughput as compared to uncompressed float data. However,
when the results are moved away from temporary HPC scratch storage into local stor-
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age, compressed data is moved ∼6.25−12× times faster than uncompressed float data.
Using a 1 Gbit/s ' 128 MB/s network connection, the scientific workflow is accelerated
by a factor of about ∼4.3×, i.e. "simulate, compress, store, transfer & decompress" using
t-GLATE happenes faster than "simulate, store & transfer" of full-size float data.

CFD
Simulation

Analysis &
Visualization

Storage
~8.4-16.0%

Temporal In-Situ Compression
as fast as write stripe-aligned
uncompressed FLOAT data

Transfer Compressed Data
~6.25-12x times faster
block-wise data access

 Reduction of Time-to-Analysis  Reduction of Time-to-Analysis 

Figure 6.1: Improvement of Time-to-Analysis in the scientific workflow. Fast Temporal
Lossy In-situ Compression reduces the memory footprint during the simu-
lation. The I/O times for writing compressed data were similar to writing
stripe-aligned uncompressed float data into the Lustre(R) paralell file sys-
tem. Temporal compressed data allows for faster transfer and decompression
using t-GLATE, as compared to transfer of uncompressed float data.

Comparison to Lossy Float Compressor ZFP

During the development of GLATE and t-GLATE, the lossy float compressor ZFP [63]
has been published, which is optimized for the compression of uniform grids. ZFP allows
for near-lossless compression, and for restriction of the mean relative/absolute error of
decompressed data. Concerning the error policy, as motivated in Section 3.2, p. 30,
the compression performance of t-GLATE is compared to ZFP w.r.t. to the same error-
specific compression task, i.e. the restriction of the maximum relative error.
For compression tests on uniform grids, t-GLATE achieved a better compression rate

through temporal compression, as shown in Fig. 4.26, p. 125, e.g. for maximum de-
compression error of eMAX = 1.00 %, ZFP on precision level 16 yields ∼14.2 % 32

b, whereas
t-GLATE yields an improved compression rate of ∼8.5 % 32

b through temporal compres-
sion.
Further, for the compression of data stored in non-uniform grids like unstructured

grids, it was shown exemplarily, that t-GLATE achieves a better compression rate than
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ZFP, as shown in Fig. 4.29, p. 130. For the compression of unstructured grid data
t-GLATE achieved a compression rate of ∼11.1 % 32

b for eMAX = 1.00 %, whereas ZFP,
without knowledge of the underlying grid topology, yielded a worse comprerssion rate
of ≥30 % 32

b at worse error rates using precision level 14.

Conclusion

The evaluation of t-GLATE in a modern HPC environment showed that lossy temporal
in-situ compression decreases the Time-to-Analysis for the scientific workflow within the
CFD setup described in Section 5.2. Although the parallel file system makes it difficult
to speed up writing of compressed data when using high stripe counts, the transmission
of the temporally compressed data from the cluster into workstations occurs much faster
than transmission of full-size raw float data, i.e. data can be analyzed earlier.

Further, the architecture of t-GLATE allows for the easy adoption of arbitrary grid
types. If the grid linearization conserves the spatial coherence of the data, GLATE

achieves a very good compression performance through using carefully selected real-time
lossless compression algorithms for compression of internal data.

Although the current implementation of t-GLATE introduces a small run-time penalty,
t-GLATE yields very good compression rates while restricting the maximum decompres-
sion error. Summarizing, t-GLATE constitutes a powerful compression algorithm for
temporal sequences of SFPD generated during CFD simulations.

6.2 Research Contributions
The objective of this research is the reduction of the Time-to-Analysis in the scientific
workflow through employing Lossy In-Situ Data Compression. Specifically, the research
focuses on the development of new schemes for Temporal Compression for time series of
CFD simulation data. Using the new GLATE and t-GLATE algorithms, the spatial
and temporal coherence being inherently present in continuous CFD processes has been
exploited for successful improvement of the compression rate. In this regard, the main
contribution of this work is the new scalar quantization algorithm GLATE and the
temporal compression procedure t-GLATE, which allow for fast compression at very
good compression rates while restricting the maximum decompression error eMAX for
SFPD.
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The contributions of this work are summarized in the following:

Algorithmic Contributions

1. Development and implementation1 of the Lossy In-Situ Compressor GLATE based
on the ideas of ISABELA [45] and SBD [36]. GLATE decomposes float values
into smoothly fluctuating exponents and noisy signs/mantissas. Through the ap-
plication of different real-time lossless compressors on the internal data, i.e. zstd
for exponents and tpfor for noisy mantissas, GLATE achieves very good com-
pression rates at high compression speeds and outperforms ISABELA and SBD.

2. Development and implementation2 of the Temporal Compression Procedures t-

ISABELA, t-SBD and t-GLATE based on the idea of d-ISABELA [45]. t-

GLATE achieves a the best compression rate at high compression speed by employ-
ing a difference encoding on a global step function and outperforms d-ISABELA,
t-ISABELA and t-SBD.

3. Development and implementation3 of the Optimized Compression Procedure for
KFs based on the idea of the t-GLATE difference encoding used in DFs. The op-
timized t-GLATE algorithm for KFs takes into account spatial coherence between
consecutive values in the linearized input stream by employing the same difference
encoding in KFs. The compression rate is improved by ∼2.0−3.5 % 32

b.

Evaluation of Lossless Compression Back End

Design decisions for the development of new in-situ compressors GLATE and t-GLATE

were informed by comprehensive performance evaluations of state-of-the-art lossless com-
pressors in the CFD context.

1. Evaluation of the compression performance of different GPLCs on three different
float CFD data sets using different grid linearization schemes. Particularly, data

1The pseudo codes for ISABELA, SBD and GLATE are given in Alg. 3.1, p. 39, Alg. 3.2, p. 44 and
Alg. 3.3, p. 54.

2The d-ISABELA, t-ISABELA, t-SBD, t-GLATE pseudo codes for the compression procedure in
KFs are given in Alg. 4.1, p. 88, Alg. 4.3, p. 95, Alg. 4.5, p. 101, Alg. 4.7, p. 108, and in DFs are
given in Alg. 4.2, p. 89, Alg. 4.4, p. 96, Alg. 4.6, p. 102, Alg. 4.8, p. 109.

3The pseudo code for the optimized t-GLATE compression procedure in KFs is given in
Alg. 4.9, p. 112.
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was linearized using the column/row-major linearization, the Z-curve, and the
Hilbert-curve, and was compressed using zstd, bzip, lzma and zstd. The usage
of the Hilbert-curve yields an improvement of the compression rate by ∼3 % 32

b.

2. Comprehensive evaluation of compression performance for currently available state-
of-the-art GPLCs w.r.t. to the application as back end for lossy in-situ compression
in the CFD context. zlib, bzip, lzma, lz4, snappy, tpfor, zstd, bsc, snappy,
tpfor have been tested on signed/unsigned integer data w.r.t. the application as
back end for lossy float compression algorithms. zstd on level 2 and 6, lz4 on
level 4 and 6, snappy and tpfor have been selected as candidates for the lossless
compression of internal data of lossy in-situ compressors.

3. Evaluation of different real-time GPLCs for compression of internal data of IS-

ABELA, SBD and GLATE. Using tpfor and zstd on level 6, GLATE yields the
best compression rate of ∼21.6−22.2 % 32

b for eMAX = 1.00 % on three CFD data sets
and outperforms ISABELA and SBD w.r.t. compression rate and compression
run-time. Using zstd on level 2 or snappy for compression of exponents increases
the compression speed of GLATE while imposing a ∼0.5−3.0 % 32

b penalty on the
compression rate.

4. Evaluation of the Temporal Compression Procedures t-ISABELA, t-SBD and t-
GLATE on a high-resolution temporal CFD data set. Using zstd and tpfor,
t-GLATE temporal compression yields the best compression rate of ∼7.9−15.3 % 32

b
for eMAX = 1.00 % and outperforms d-ISABELA, t-ISABELA and t-SBD w.r.t.
compression rate and compression speed.

Comparison to ZFP Lossy Float Compressor

ZFP is a recent state-of-the art lossy in-situ compressor optimized for the compression
of data in uniform grids. Unlike GLATE and t-GLATE, ZFP ensures the mean relative
error of decompressed data, instead of the maximum relative error.

1. Evaluation of compression performance of ZFP [63] on Uniform Grid and compar-
ison to t-GLATE w.r.t. to compression rate and the maximum relative error of
decompressed data. ZFP is operated in the optimized mode for three dimensional
uniform grid data. Using precision level 16, ZFP achieves a compression rate of
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∼14.2 % 32
b, where ∼0.2 % of data values |x| > 1E−4 exhibit a decompression error

greater than 1.00 %. Using temporal compression, t-GLATE achieves an improved
compression rate of ∼8.5−12.9 % 32

b for eMAX = 0.10, . . ., 1.00 % while guaranteeing
the error for all data values.

2. Evaluation of compression performance of ZFP [63] on Unstructured Grid and com-
parison to t-GLATE w.r.t. to compression rate and the maximum error of decom-
pressed data. ZFP is operated on a one dimensional sequence of data without
knowledge of the underlying grid. ZFP using precision level 15 achieves a com-
pression rate of ∼32.9 % 32

b, whereas t-GLATE achieves a better compression rate
of ∼11.1−18.2 % 32

b for eMAX = 0.10, . . ., 1.00 % while guaranteeing the error for all
data values.

In-Situ Evaluation of t-GLATE in Taurus HPC Cluster

1. In-Situ Application of t-GLATE in large-scale LBM simulation using 512 MPI

processes. t-GLATE yields the best compression rate of ∼8.4−16.0 % 32
b. ZFP using

precision level 15 yields a compression rate of ∼16.7 % 32
b. The current implementa-

tion of t-GLATE introduces a small run-time penalty for decomposition of float
data into two streams for exponents and signs/mantissas.

2. Evaluation of the speed of writing data from 512 MPI processes into the Lustre(R)

parallel file system using collective I/O with high and low stripe counts. Using
high stripe counts of 16, 32 stripes, the stripe-aligned uncompressed float data
is written out with a high aggregate bandwidth as fast as compressed data. Using
low stripe counts of 4, 8 stripes, the write of compressed data is faster.

3. Discussion of the improvement of the Time-to-Analysis through the application of
t-GLATE in the scientific method cycle. Based on the evaluation results, the worst
case is assumed, i.e. no faster write due to using high stripe counts and a small
run-time penalty for t-GLATE compression. Using the current implementation
of t-GLATE, "simulate, compress, store, transfer & decompress" happened ∼4.3×
faster than "simulate, store & transfer" of uncompressed float data when using
a 1 Gbit/s ' 128 MB/s network connection for moving away data from temporary
HPC storage.
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6 Conclusion and Future Work

6.3 Future Work
t-GLATE lossy in-situ compression accelerates the scientific workflow through the re-
duction of storage costs for CFD data sets, and through decreasing transfer times of
compressed data sets, as explained in Section 5.5, p. 167. In the following, two direc-
tions for further integration of t-GLATE into the scientific workflow are proposed. First,
the integration of temporal compression into popular scientific data formats and I/O

libraries, and second, the improvement of data access mechanisms by using an in-situ
generated index for selective decompression [46].

6.3.1 Tool Integration for Temporal Compression

Temporal lossy in-situ compression yields very good compression rates and directly con-
tributes to the feasibility of data capture in high-resolution CFD simulations. Especially
if the acquisition of additional storage resources is too expensive, temporal in-situ com-
pression is a viable option for reducing storage requirements. Therefore, it is desirable to
provide fault tolerant and transparent implementation of temporal compression which
simplifies the integration into existing applications.

Different scientific file formats, e.g. the HDF5 [33] file format and the formats of
the Open-Source Visualization Toolkit (VTK) [91], as well as, different middlewares for
scientific applications and collective I/O, e.g. ADIOS [64] and MLOC [26], offer plug-in
mechanisms for integrated compression of float and double data stored in simulation
grids. The tool integration of temporal compression would allow for usage of metadata
from file formats which is associated with e.g. the underlying numerical grid, or the time
step of the data, while leveraging optimized algorithms for data processing and data
management.

6.3.2 Selective Decompression using In-situ generated

Index

As described in Section 5.3.4, the support for compression into a multi-resolution data
format facilitates access mechanisms with direct control of the amount of data loaded
for visualization tasks. The amount of data is controlled by the pre-defined levels of
resolution in which the data is stored. However, if the locations to be loaded are un-
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known, then the spatial grid locations accommodating the values of interest have to
be determined by using expensive linear search in the entire full-resolution data set. If
the data set is compressed, the whole data set needs to be decompressed in order to
execute linear search. Such workflows may greatly benefit from an In-Situ Generated
Index allowing for Selective Decompression during post-processing.
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Figure 6.2: Selective decompression by using an in-situ generated index. The GLATE
quantization on the global step function can be employed for binning during
generation of the Inverted Index . Using Range Queries on e.g. the Q variable
describing vortex characteristics, the indices of grid cells containing the data
of interest are loaded and used to steer the decompression of flow vectors for
analysis of the flow field.

By employing a so-called Inverted Index [46], a compressed Write-Once/Read-Often
database for scientific data can be realized, as illustrated in Fig. 6.2. The t-GLATE

global quantization mechanism can be employed for error-bounded binning and collecting
of grid locations with same data values. Similar to SBD with Differential Encoding [36],
the index structure can be compressed efficiently using tpfor. Using Range Querys , e.g.
q0 ≤ Q ≤ q1 for indicating vortexes using the Q-criterion, the index allows for the fast
selection of grid locations, which can be used to steer the decompression of t-GLATE

compressed contents during post-processing.
Summarizing, the combination of an in-situ generated index with temporal in-situ

compression allows for database-like access to compressed contents. By employing se-
lective decompression, the Time-to-Analysis can further be reduced through minimizing
the amount of data to be loaded and decompressed for analysis.
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