1,218 research outputs found

    Simple Signal Extension Method for Discrete Wavelet Transform

    Full text link
    Discrete wavelet transform of finite-length signals must necessarily handle the signal boundaries. The state-of-the-art approaches treat such boundaries in a complicated and inflexible way, using special prolog or epilog phases. This holds true in particular for images decomposed into a number of scales, exemplary in JPEG 2000 coding system. In this paper, the state-of-the-art approaches are extended to perform the treatment using a compact streaming core, possibly in multi-scale fashion. We present the core focused on CDF 5/3 wavelet and the symmetric border extension method, both employed in the JPEG 2000. As a result of our work, every input sample is visited only once, while the results are produced immediately, i.e. without buffering.Comment: preprint; presented on ICSIP 201

    Parallel 3D Fast Wavelet Transform comparison on CPUs and GPUs

    Get PDF
    We present in this paper several implementations of the 3D Fast Wavelet Transform (3D-FWT) on multicore CPUs and manycore GPUs. On the GPU side, we focus on CUDA and OpenCL programming to develop methods for an efficient mapping on manycores. On multicore CPUs, OpenMP and Pthreads are used as counterparts to maximize parallelism, and renowned techniques like tiling and blocking are exploited to optimize the use of memory. We evaluate these proposals and make a comparison between a new Fermi Tesla C2050 and an Intel Core 2 QuadQ6700. Speedups of the CUDA version are the best results, improving the execution times on CPU, ranging from 5.3x to 7.4x for different image sizes, and up to 81 times faster when communications are neglected. Meanwhile, OpenCL obtains solid gainsĀ which range from 2x factors on small frame sizes to 3x factors on larger ones

    Building an Application-specific Memory Hierarchy on FPGA

    Get PDF
    The high potential performance of FPGAs cannot be exploited if a design suffers a memory bottleneck. Therefore, a memory hierarchy is needed to reuse data in on-chip memories and minimize the number of accesses to off-chip memory

    Multi-coefficient Parallel Adaptive Wavelet Rendering

    Get PDF
    Adaptive Wavelet Rendering is a sampling method used for ray tracing in order to render photorealistic images. The concept of wavelets and the so-called discrete wavelet transform is used to create a multi-scale view of the image when sampling. This allows the method to identify image variance on different levels and therefore to differentiate and appropriately handle variance resulting from sharp edges or blurred regions, thus creating visually appealing images with minimal work even for complex scenes. This thesis investigates the algorithm and specifically how it can be improved through multi-core concurrency. To this end an alternative version is proposed which works on multiple regions simultaneously. Parallelism is considered for both the original and the alternative version. Furthermore, they are compared both based on the qualita- tive difference between their results and their respective performance gains through concurrency. It is shown that although the structure of the algorithm limits the potential for concur- rency, some improvements can be made, especially for the alternative multi-coefficient version with results maintaining high quality, thus making it better suited to todays highly parallel compute systems. Finally some future directions are considered based on the detailed analysis of how concurrency affects the major components of the algorithm

    Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment

    Full text link
    Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.Comment: 13 pages, including 9 figures and 5 appendixe

    Wavelet/shearlet hybridized neural networks for biomedical image restoration

    Get PDF
    Recently, new programming paradigms have emerged that combine parallelism and numerical computations with algorithmic differentiation. This approach allows for the hybridization of neural network techniques for inverse imaging problems with more traditional methods such as wavelet-based sparsity modelling techniques. The benefits are twofold: on the one hand traditional methods with well-known properties can be integrated in neural networks, either as separate layers or tightly integrated in the network, on the other hand, parameters in traditional methods can be trained end-to-end from datasets in a neural network "fashion" (e.g., using Adagrad or Adam optimizers). In this paper, we explore these hybrid neural networks in the context of shearlet-based regularization for the purpose of biomedical image restoration. Due to the reduced number of parameters, this approach seems a promising strategy especially when dealing with small training data sets
    • ā€¦
    corecore