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Abstract. The high potential performance of FPGAs cannot be ex-
ploited if a design suffers a memory bottleneck. Therefore, a memory
hierarchy is needed to reuse data in on-chip memories and minimize
the number of accesses to off-chip memory. Buffer memories not only
hide the external memory latency, but can also be used to remap data
and augment the on-chip bandwidth through parallel access of multi-
ple buffers. This paper presents a step-by-step methodology to construct
such a memory hierarchy. Special care is taken of the reusability of de-
sign modules and the optimization of address expressions to improve the
performance.

1 Introduction

FPGAs (Field Programmable Gate Arrays) offer a high computational power
thanks to the massive parallelism available and the huge on-chip bandwidth.
However, the total on-chip memory size is fairly small. Usually an off-chip mem-
ory is needed. The bandwidth to this external memory may become a bottleneck.
Typically, this memory is made in a technology, e.g., SDRAM, with an indeter-
ministic latency and with a low bandwidth if transfers are not done in burst
mode. This indeterministic latency may also be caused by the fact that the
main memory is shared with other cores on the FPGA.

To reduce the bandwidth requirements a memory hierarchy is needed. If fre-
quently used data is stored in on-chip buffers, the number of off-chip memory
accesses can be reduced and grouped into bursts. Using multiple parallel ac-
cessible memory banks (Fig. 1(a)), or expensive memory technologies (SRAM,
Z-RAM) increases the available off-chip bandwidth. However, to use the exter-
nal bandwidth more efficiently a memory hierarchy should still be used and the
memory access pattern should be optimized to use this hierarchy (Fig. 1(b)).

In processor-based systems a memory hierarchy consists of caches or scratch
pad memories. This is a fixed memory hierarchy and the application code has
to be optimized to optimally use this given memory structure, e.g., by doing
loop transformations to increase the data locality, i.e. to bring accesses to the
same or neighboring data elements closer together in the time. On an FPGA
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Fig. 1. Multiple memory banks (a). Single memory bank with on-chip memory buffers
(b).

the designer has to construct the memory hierarchy using the available memory
blocks. This offers the freedom to build an application specific memory hierarchy,
i.e. to adjust the memory system to the application and not only the application
to the memory hierarchy. In this paper, some aspects of this problem will be
studied starting from a hardware design point.

This paper does not focus on ways to improve the locality of data accesses
or map data to memories. For this we refer to related work (Sect. 2). Instead,
we focus on hardware implementation aspects of building a memory hierarchy
and the impact of choices made by the way data is mapped onto buffers.

We present the following contributions:

– To increase the reusability, a modular architecture is used. The computation
core is shielded from the IO (Input-Output) infrastructure to make adjust-
ments to different platforms more feasible. Hash functions will be used to
localize (i.e. make easier to adapt) the description of the memory mapping.
(Sects. 3 and 5)

– A step-by-step methodology is given to insert a memory hierarchy into a
system. (Sect. 5)

– Thanks to the modular architecture the complexity of address expressions
can be adapted. For cycle-by-cycle accesses to on-chip memories, simple,
i.e. fast and cheap, expressions will be used. For block transfers to off-chip
memory more complex expressions are allowed. (Sect. 4)

As a case study an implementation of an Inverse Discrete Wavelet Transform
(IDWT) will be extended with a memory hierarchy and integrated in a video
decoder on FPGA (Sect. 6).

2 Related Work

The focus of this paper is the system integration of a computation core on an
FPGA. To benefit from the construction of a memory hierarchy, complementary
techniques found in related work have to be applied.
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Fig. 2. General memory hierarchy. Several of the memories may coincide or consist of
multiple memories.

A good data locality is needed to reuse data stored on-chip as much as
possible. Loop transformations can be used to improve this locality [1, 2].

Since burst mode offers a higher memory bandwidth, off-chip memory ac-
cesses should be grouped into bursts or blocks. The term prefetching [3] is used
to denote the fact that a data transfer from an external memory to a buffer
is started before the execution reaches a point where that data is needed. This
contrasts with a classical cache where data is only fetched after a cache miss.

A side effect of loop transformations is that address expressions may be-
come complex. Therefore, address optimization techniques have been developed.
Many exploit the repetitive evaluation of these expressions in a loop and use
differences of the terms of an expression to calculate the next value. Sheldon
et al. [4] present techniques to eliminate division and modulo operations, by in-
serting conditionals and using algebraic axioms and loop transformations. Most
techniques optimize the evaluation of a given set of address expressions, possibly
sharing logic among different address expressions [5]. Only a few remap data to
simplify the address expressions [6, 7]. Most methods are useful for both software
and hardware implementations. [8] focuses on address optimization for FPGAs.

An extensive overview of memory optimization techniques is found in [6].

3 Memory Hierarchy Template

Figure 2 shows the general memory hierarchy model that will be used here. A
computation core is connected with an external memory (Main Mem) via one or
multiple buffer memories. Intermediate results are stored in on-chip memories
(B), e.g., registers, RAM blocks or FIFOs, or when not enough on-chip memory
is available in the external memory, passing the I/O buffers (A and C). Also
the input data and final output have to pass these buffers. The usage of dual-
port memories allows to transfer data between the main memory and the buffers
in parallel with the operation of the functional unit, and to use different clock
domains for both tasks. Here only 3 buffer memories are shown. More separate
buffers create more on-chip bandwidth. The off-chip memory is considered to be
made in a technology, e.g., SDRAM, with an indeterministic latency and with
a low bandwidth if transfers are not done in burst mode. This indeterministic
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(a) Address (A(i, j)) = i × C + j (b) Address (A(i, j)) = i × C′ + j

Fig. 3. By inserting free space into the memory, address expressions can be simplified.

latency may also be caused by the fact that the main memory is shared with
other cores on the FPGA. Synchronization points are needed to ensure that read
(write) operations are delayed if data is not fetched (stored) from (to) the main
memory yet.

I/O modules drive the transactions between main memory and buffers. They
take care of address translations, similar to the direct and strided mapping sup-
ported by the Impulse memory controller [7].

To benefit from a memory hierarchy, the reuse of data in on-chip buffers
should be maximized and transferring data to and from off-chip memory should
be minimized and done in bursts as much as possible. Loop transformations can
be used to improve the data locality. Multiple memory banks can be used if
needed, but then with a memory hierarchy for each of them.

4 Address Complexity

Accesses to on-chip memory have to be fast since they limit the speed of the
functional unit. Therefore, the address expressions for these accesses have to be
kept simple. Address calculations for off-chip memory accesses can be spread
over several clock cycles, since only one evaluation is needed for an entire burst
transfer. By sacrificing on-chip memory, the addresses can be simplified.

Consider for example an image processing system that reads a 2-dimensional
array A. The typical way to store this array leads to address expressions with a
multiplication:

Address (A(i, j)) = BA + i × C + j ,

with BA the base address and C the number of columns. If C is not a power
of 2 or C is a parameter, which only receives a value during execution, this is
an expensive operation. After copying data to on-chip memory the base address
can be removed (Fig. 3(a)). A straight-forward simplification is to align all lines
to a multiple of a power of 2. This is shown in Fig. 3(b), where C′ is the smallest
power of 2 for which C′ ≥ C, if C is known, or C′ ≥ Cmax if C is a parameter
with Cmax the maximal possible value.

Only a few lines can be stored in the buffer. If this number of lines R’ is also
set to a power of 2 and the mapping of lines of the image to lines of the buffer



is done in a circular way the address becomes

Address (A(i, j)) = (i mod R′) × C′ + j

= i(r − 1 downto 0) & j , with R′ = 2r . (1)

As a result, only the least significant bits of i have to be generated. Note that
the addition is in fact only a concatenation, denoted with “&”.

Since RAM blocks on FPGAs have sizes that are a power of two, in many
cases no extra memory blocks are needed to apply the techniques described in
this section. Even when the off-chip memory can be accessed in one clock cycle
just like the on-chip RAM blocks, one can take benefit from on-chip buffers,
since simpler address expressions can be used, which may lead to higher clocking
frequencies. Another benefit is that when a buffer is composed of multiple RAM
blocks mutliple elements, one for each RAM, can be accessed in parallel.

5 A Step-by-step Approach

Many high-level synthesis tools generate one memory for each array in the input
code. Also when building a design manually, it is easier to start the design process
with multiple memories and only construct a memory hierarchy with one main
memory later on. Therefore, we present a step-by-step design flow to transform
a system with multiple memory banks, similar to the systems in Fig. 1(a) and
4(a), to a system with one external memory and on-chip buffers, similar to the
systems in Fig. 1(b) and 4(c). Here, an overview of the flow is given. A detailed
elaboration is found in the case study in Sect. 6.

– On-chip memories are added to contain intermediate data sets that are small
enough to fit in them. If results produced by one operation are consumed by
another operation in the same order, FIFO buffers can be used

– Buffers are inserted between each external memory and the functional unit.
The size is kept as large as the external memory itself so that no remap-
ping of data and changes in address expressions are needed. A single copy
transaction (for each memory/buffer pair) of all data to the buffer at the
start of execution and a single transfer to the external memory at the end
suffices for correct behavior. Separate I/O modules take care of these copy
transactions.

– The two large copy operations are split into smaller prefetch and store oper-
ations, such that at each moment only a small amount of data in the buffers
is alive (= transferred and still needed). Synchronization between the data
transfers and the operation of the functional unit is needed to ensure correct
behavior.

– The data in the buffers is remapped such that the buffers can be resized and
fit in on-chip memories. A hash function (cf. caches) is used to translate the
indices of the arrays into the new address expressions.

– The external memories are merged to form one main memory. Base addresses
are added to the addresses used in the prefetch and store transfers. The I/O



modules are all connected to the same memory. Arbitration between the
transfers is needed to avoid conflicts.

By doing the transformations in small steps, errors can be detected easier
and faster, since simulation is possible at any time. To increase the reusability, a
modular architecture is used. When transferring the design to another platform
only the I/O modules have to be adapted. By using hash functions instead of
simply adapting the address expressions, the data mappings can be changed in
an easier way, e.g., when a device upgrade offers the option to use more on-chip
memory. This does not result in an area overhead since bits not used by the hash
function will be optimized away by the synthesis tools (cf. (1)).

6 Case Study: System Integration of an IDWT

The 2D Discrete Wavelet Transform (DWT) and its inverse (IDWT) are com-
monly used in image processing and compression applications, e.g, JPEG-2000.
The design without memory hierarchy we will start from is generated with
CLooGVHDL as described in [9]. The design flow is shown in Fig. 5. A soft-
ware implementation in C is split into statement definitions and loop control
structure. Loop transformations are applied on the latter to improve the spa-
tial locality, resulting in a so-called line-based variant. With CLooGVHDL a
loop control entity is generated. The statement definitions are translated to a
VHDL syntax using VIM-scripts [10].1 Array accesses are translated to memory
accesses with a one-cycle access time. The result is a list of execution steps for
each statement. On this, scheduling optimizations are done. The Steps2process

tool generates a finite state machine to execute the statements based on the
schedule specifications. The architecture of the generated design is shown in
Fig. 4(a).

The fact that software code equivalent to the hardware is available can be
exploited for the construction of a memory hierarchy as shown below.

6.1 Adding New Hardware Structures

The design tools mentioned above will be reused for the extension of the archi-
tecture. New hardware constructs are inserted one after another, iterating over
the following steps:

First, C preprocessor macros that simulate the behavior of the new construct
are written. For example, a push and a pop macro to write to and read from
a FIFO buffer. In C this is simulated by accessing an array and incrementing
a counter. A VHDL block that corresponds with the new construct is written
or instantiated. Procedures or functions that correspond to the functionality of
the C macros are written. For a FIFO this is the instantiation of FIFO entities
and writing the VHDL procedures push fifo and pop fifo that access such a

1 This is only a temporary solution. Plans are to integrate a C parser. This is only an
implementation issue and does not influence the methodology.
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Fig. 4. Line-Based IDWT without memory hierarchy (a), after adding buffers (b), and
after full system integration (c).
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structure. Next, the VIM-scripts are extended to replace the C macros with the
corresponding VHDL procedure or function calls.

After the equivalence of the C and VHDL constructs and the translation
is tested, the new C macro is used in all C code, where desired. Finally, the
generated VHDL is tested and the impact of the new hardware structure may
be examined after synthesis. Where possible optimizations are done. For ex-
ample, removing unused data structures or doing schedule optimizations. After
the introduction of the FIFOs more data elements can be accessed in parallel,
which allows to shorten the schedules. These optimizations can be included in
the scripts.

This approach is similar to the way many high-level synthesis tools work.
They extend C with macros that correspond to predefined hardware structures.
Here, the difference is that new macros, not predefined by such tools, can be
added and used with little effort.

6.2 Inserting Buffers

The extension of the design from Fig. 4(a) to (b) is done step-by-step. For each
new type of construct a flow is used as described in Sect. 6.1.

Four FIFO buffers are inserted to transfer data from the vertical to the hor-
izontal wavelet transformation. This halves the accesses to the main memories
Mem 0 and Mem 1. Line buffers (B1, B2 and B3) in which several lines of an
image can be stored are inserted between the main memories and computation el-
ements. A block transfer system copies data from the main memories to and from
the buffers. A queue of prefetch and store requests is kept in the Prefetch(/Store)
Requests entities. A new fetch request is added each time space becomes available
in the buffers and not just before the data is needed. Therefore, if the system is
not bandwidth limited, only in the beginning time is wasted waiting for data. A
block transfer is specified by the source and target address and the amount of
data to be copied. Synchronization points are used to ensure that when a line in
one of the buffers is accessed, all transfers between that line and the main mem-
ory are finished. Some line buffers are split into parallel accessible buffers of one
line to increase the on-chip bandwidth. This results in a large reduction in the



Table 1. Synthesis results of the IDWT with and without memory hierarchy. CIF
resolution = 288 × 352 pixels. Results obtained with Altera QuartusII v6.1 for the
Altera Stratix EP1S25F1020C5 (S25C5) and EP1S60F1020C6 (S60C6, lower speed
grade). The number of cycles and frame rate assume a one cycle (1/fmax) access time
to the main memories. With an SDRAM, this would be the performance when a cache
running at fmax is used and no misses occur (i.e. the latency to the SDRAM is hidden,
e.g., by prefetching).

Mem- LE Buf Mem DSP bl. Cycles fmax (MHz) Frames/s (CIF)
hierarch. (bit) (#Mul) (72×88) S25C5 S60C6 S25C5 S60C6

Fig. 4(a) 10836 0 18 (9) 161037 50.12 43.40 19.71 17.07
Fig. 4(b) 17350 297504 18 (9) 59240 47.22 45.60 50.50 48.77

number of clock cycles as shown in Table 1. For the Stratix S60 the clock speed
is increased after adding the memory hierarchy, thanks to the simplification of
the address expressions. The clock speed on the S25 is lowered due to congestion
in the FPGA routing (area usage of almost 70%).

6.3 Further Integration

Further integration work is needed to put the design on an Altera PCI Devel-
opment Board with a Stratix EP1S60F1020C6 FPGA and 256 MiB of DDR
SDRAM memory (from Fig. 4(b) to (c)).

The content of the two main memories is mapped onto the single DDR
SDRAM memory. The Avalon switch fabric [11] is used to connect the DDR
core (memory controller) with the I/O blocks. The latter take care of the con-
version of local addresses, used within the IDWT, to addresses in the global

memory space. Since the 18 bit word width, used until now, does not correspond
to the 128 bit data ports of the DDR controller, the word size at the left side of
the line buffers is set to 4× 18 = 72 bit and converted to and from 4× 32 = 128
bit using sign extension and truncation.

The Avalon fabric only supports burst transfers that are a multiple of 16
B (128 bit) long and start at an address that is a multiple of 16 B. Therefore,
the lines in all wavelet subbands are aligned to a multiple of 128 bit by letting
each row start at a multiple of 512 pixels (1 pixel = 4B). This inserts more
unused space than strictly needed, but memory space was not a problem in the
DDR-memory and it simplifies address calculations, similar to the example in
Sect. 4. A DMA controller (Direct Memory Access) is used to drive the burst
transfers [11].

To allow the memory controller and the wavelet transform to run at their
maximal frequency, different clock domains are introduced. The dual-port mem-
ories offer a safe clock domain crossing for the data. For the control signals extra
registers are inserted (brute-force synchronization).

Finally, other blocks are connected to the switch fabric to build the RE-
SUME scalable wavelet-based video decoder described in [12]. It can decode



26.15 frames/s (clocking the DDR at 65 MHz, limited by the FPGA synthesis
proces). The IDWT on its own, clocked at 54 MHz (reached with other tool
settings than for Table 1), can transform 53 frames/s.

7 Conclusions

A system using multiple memories with short access times can be transformed
step-by-step into a system with a memory hierarchy connected to an external
memory with less predictable access times. Using a modular design description
increases the reusability. With a good choice of data mapping in the buffers,
addresses can be simplified to optimize the performance, possibly at the cost of
a higher memory usage. This has been demonstrated with the system integration
of an IDWT.
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