107 research outputs found

    Short- and long-term forecasting of ambient air pollution levels using wavelet-based non-linear autoregressive artificial neural networks with exogenous inputs

    Get PDF
    Roadside air pollution is a major issue due to its adverse effects on human health and the environment. This highlights the need for parsimonious and robust forecasting tools that help vulnerable members of the public reduce their exposure to harmful air pollutants. Recent results in air pollution forecasting applications include the use of hybrid models based on non-linear autoregressive artificial neural networks (ANN) with exogenous multi-variable inputs (NARX) and wavelet decomposition techniques. However, attempts employing both methods into one hybrid modelling system have not been widely made. Hence, this work further investigates the utilisation of wavelet-based NARX-ANN models in the shortand long-term prediction of hourly NO2 concentration levels. The models were trained using emissions and meteorological data collected from a busy roadside site in Central London, United Kingdom from January to December 2015. A discrete wavelet transformation technique was then implemented to address the highly variable characteristic of the collected NO2 concentration data. Overall results exhibit the superiority of the wavelet-based NARX-ANN models improving the accuracy of the benchmark NARX-ANN model results by up to 6% in terms of explained variance. The proposed models also provide fairly accurate long-term forecasts, explaining 68–76% of the variance of actual NO2 data. In conclusion, the findings of this study demonstrate the high potential of wavelet-based NARX-ANN models as alternative tools in short- and long-term forecasting of air pollutants in urban environments

    Using ensembles of artificial neural networks to improve PM10 forecasts

    Get PDF
    High concentrations of atmospheric pollutants provoke negative effects that range from respiratory problems in humans to altered growth in crops due to the reduction of solar radiation. In this context, the study of suspended particulate matter (PM) in the atmosphere is especially relevant. Several works in the literature are dedicated to evaluate PM impacts and to develop models to forecast PM concentrations. Among these models, artificial neural networks (ANNs) are often employed mainly due to the facts that they are capable of learning from a set of training data samples and that they are known to be universal function approximators. However, most ANN training algorithms are susceptible to initial conditions, so the resulting models of distinct training phases may present different accuracies for the same problem. It is known from the machine learning literature that the ensemble approach, which basically combines a set of slightly different high-accuracy predictors, tends to lead to more accurate forecasts. Therefore, in this paper an ensemble of ANNs is proposed to forecast the daily concentrations of PM10 (phi <= 10 mu m) in the city of Piracicaba, Brazil. The ensemble was trained with daily samples collected from 07.2009 to 06.2013 and evaluated with one-day-ahead forecasts from 07.2013 to 06.2014. Experiments with distinct ANN configurations were made and an average reduction of 8.85 % was obtained in the Mean Squared Error. The ensembles were compared to individual ANNs that led to the best accuracy in the training dataset. It was also verified that, when compared to distinct single ANNs, the ensemble-based approach facilitated the generation of high accuracy models, as it increased the robustness of the development process. It is important to highlight that the proposed approach can be directly applied to other scenarios related to the prediction of PM concentrations, such as different atmospheric pollutants and meteorological data.High concentrations of atmospheric pollutants provoke negative effects that range from respiratory problems in humans to altered growth in crops due to the reduction of solar radiation. In this context, the study of suspended particulate matter (PM) in th4321612166sem informaçãosem informaçã

    Air pollution forecasts: An overview

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies

    Spatiotemporal and temporal forecasting of ambient air pollution levels through data-intensive hybrid artificial neural network models

    Get PDF
    Outdoor air pollution (AP) is a serious public threat which has been linked to severe respiratory and cardiovascular illnesses, and premature deaths especially among those residing in highly urbanised cities. As such, there is a need to develop early-warning and risk management tools to alleviate its effects. The main objective of this research is to develop AP forecasting models based on Artificial Neural Networks (ANNs) according to an identified model-building protocol from existing related works. Plain, hybrid and ensemble ANN model architectures were developed to estimate the temporal and spatiotemporal variability of hourly NO2 levels in several locations in the Greater London area. Wavelet decomposition was integrated with Multilayer Perceptron (MLP) and Long Short-term Memory (LSTM) models to address the issue of high variability of AP data and improve the estimation of peak AP levels. Block-splitting and crossvalidation procedures have been adapted to validate the models based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Willmott’s index of agreement (IA). The results of the proposed models present better performance than those from the benchmark models. For instance, the proposed wavelet-based hybrid approach provided 39.15% and 28.58% reductions in RMSE and MAE indices, respectively, on the performance of the benchmark MLP model results for the temporal forecasting of NO2 levels. The same approach reduced the RMSE and MAE indices of the benchmark LSTM model results by 12.45% and 20.08%, respectively, for the spatiotemporal estimation of NO2 levels in one site at Central London. The proposed hybrid deep learning approach offers great potential to be operational in providing air pollution forecasts in areas without a reliable database. The model-building protocol adapted in this thesis can also be applied to studies using measurements from other sites.Outdoor air pollution (AP) is a serious public threat which has been linked to severe respiratory and cardiovascular illnesses, and premature deaths especially among those residing in highly urbanised cities. As such, there is a need to develop early-warning and risk management tools to alleviate its effects. The main objective of this research is to develop AP forecasting models based on Artificial Neural Networks (ANNs) according to an identified model-building protocol from existing related works. Plain, hybrid and ensemble ANN model architectures were developed to estimate the temporal and spatiotemporal variability of hourly NO2 levels in several locations in the Greater London area. Wavelet decomposition was integrated with Multilayer Perceptron (MLP) and Long Short-term Memory (LSTM) models to address the issue of high variability of AP data and improve the estimation of peak AP levels. Block-splitting and crossvalidation procedures have been adapted to validate the models based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Willmott’s index of agreement (IA). The results of the proposed models present better performance than those from the benchmark models. For instance, the proposed wavelet-based hybrid approach provided 39.15% and 28.58% reductions in RMSE and MAE indices, respectively, on the performance of the benchmark MLP model results for the temporal forecasting of NO2 levels. The same approach reduced the RMSE and MAE indices of the benchmark LSTM model results by 12.45% and 20.08%, respectively, for the spatiotemporal estimation of NO2 levels in one site at Central London. The proposed hybrid deep learning approach offers great potential to be operational in providing air pollution forecasts in areas without a reliable database. The model-building protocol adapted in this thesis can also be applied to studies using measurements from other sites

    A review of artificial neural network models for ambient air pollution prediction

    Get PDF
    Research activity in the field of air pollution forecasting using artificial neural networks (ANNs) has increased dramatically in recent years. However, the development of ANN models entails levels of uncertainty given the black-box nature of ANNs. In this paper, a protocol by Maier et al. (2010) for ANN model development is presented and applied to assess journal papers dealing with air pollution forecasting using ANN models. The majority of the reviewed works are aimed at the long-term forecasting of outdoor PM10, PM2.5, and oxides of nitrogen, and ozone. The vast majority of the identified works utilised meteorological and source emissions predictors almost exclusively. Furthermore, ad-hoc approaches are found to be predominantly used for determining optimal model predictors, appropriate data subsets and the optimal model structure. Multilayer perceptron and ensemble-type models are predominantly implemented. Overall, the findings highlight the need for developing systematic protocols for developing powerful ANN models

    Statistical Modelling For Forecasting Pm10 Concentrations In Peninsular Malaysia

    Get PDF
    This research aims to forecast the daily average PM10 concentrations in Peninsular Malaysia by using univariate modelling, i.e. time series modelling and regression modelling. In time series analysis, a typical problem in forecasting is the underestimation of the peaks. Since the series of PM10 concentrations change rapidly, this research proposed the use of wavelet-based time series model to improve the forecast accuracy, i.e. the application of discrete wavelet transform (DWT) before the time series modelling by the Box-Jenkins autoregressive integrated moving average (ARIMA) and generalized autoregressive conditional heteroscedasticity (GARCH) models

    A novel model for hourly PM2.5 concentration prediction based on CART and EELM

    Get PDF
    Hourly PM2.5 concentrations have multiple change patterns. For hourly PM2.5 concentration prediction, it is beneficial to split the whole dataset into several subsets with similar properties and to train a local prediction model for each subset. However, the methods based on local models need to solve the global-local duality. In this study, a novel prediction model based on classification and regression tree (CART) and ensemble extreme learning machine (EELM) methods is developed to split the dataset into subsets in a hierarchical fashion and build a prediction model for each leaf. Firstly, CART is used to split the dataset by constructing a shallow hierarchical regression tree. Then at each node of the tree, EELM models are built using the training samples of the node, and hidden neuron numbers are selected to minimize validation errors respectively on the leaves of a sub-tree that takes the node as the root. Finally, for each leaf of the tree, a global and several local EELMs on the path from the root to the leaf are compared, and the one with the smallest validation error on the leaf is chosen. The meteorological data of Yancheng urban area and the air pollutant concentration data from City Monitoring Centre are used to evaluate the method developed. The experimental results demonstrate that the method developed addresses the global-local duality, having better performance than global models including random forest (RF), v-support vector regression (v-SVR) and EELM, and other local models based on season and k-means clustering. The new model has improved the capability of treating multiple change patterns

    Data Mining Paradigm in the Study of Air Quality

    Get PDF
    Air pollution is a serious global problem that threatens human life and health, as well as the environment. The most important aspect of a successful air quality management strategy is the measurement analysis, air quality forecasting, and reporting system. A complete insight, an accurate prediction, and a rapid response may provide valuable information for society’s decision-making. The data mining paradigm can assist in the study of air quality by providing a structured work methodology that simplifies data analysis. This study presents a systematic review of the literature from 2014 to 2018 on the use of data mining in the analysis of air pollutant measurements. For this review, a data mining approach to air quality analysis was proposed that was consistent with the 748 articles consulted. The most frequent sources of data have been the measurements of monitoring networks, and other technologies such as remote sensing, low-cost sensors, and social networks which are gaining importance in recent years. Among the topics studied in the literature were the redundancy of the information collected in the monitoring networks, the forecasting of pollutant levels or days of excessive regulation, and the identification of meteorological or land use parameters that have the most substantial impact on air quality. As methods to visualise and present the results, we recovered graphic design, air quality index development, heat mapping, and geographic information systems. We hope that this study will provide anchoring of theoretical-practical development in the field and that it will provide inputs for air quality planning and management.Facultad de Ciencias Exacta
    corecore