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PEMODELAN STATISTIK BAGI PERAMALAN KEPEKATAN PM10 DI 

SEMENANJUNG MALAYSIA 

 

 

ABSTRAK 

 

Fenomena jerebu yang berlaku secara berulangan di Malaysia telah 

mendorong keperluan untuk mengawal pencemaran PM10 (habuk halus berdiameter 

kurang daripada 10µm) dengan berkesan. Hal ini memerlukan peramalan yang tepat 

dan pemahaman tentang hubungan antara pencemar PM10 dengan faktor-faktor lain. 

Oleh itu, kajian ini bermatlamat untuk meramal purata harian kepekatan PM10 di 

Semenanjung Malaysia dengan menggunakan kaedah pemodelan univariat iaitu 

pemodelan siri masa dan pemodelan regresi. Dalam analisis siri masa, suatu masalah 

yang biasa ialah penganggaran yang terlalu rendah terhadap kepuncakan. 

Memandangkan siri kepekatan PM10 yang berubah-ubah secara drastik, kajian ini 

mengemukakan penggunaan model siri masa berasaskan jelmaan wavelet bagi 

meningkatkan ketepatan ramalan, yakni penggunaan jelmaan wavelet diskret (DWT) 

sebelum pemodelan siri masa menggunakan model Box-Jenkins autoregresi terkamir 

purata bergerak (ARIMA) dan autoregresi heteroskedasticiti bersyarat teritlak 

(GARCH). Dengan menggunakan DWT, siri PM10 yang berubah-ubah diuraikan 

kepada beberapa sub siri dengan varians yang lebih kecil, dan dengan yang demikian, 

telah meningkatkan ketepatan ramalan agregat secara ketara terutamanya pada 

tempoh jerebu berbanding kaedah pemodelan siri masa tanpa DWT. Model regresi 

dengan ralat siri masa (RTSE) telah dikemukakan untuk menyelesaikan masalah reja 

yang berautokorelasi daripada model regresi linear berganda (MLR) yang piawai. 

Model ini berjaya mengambil kira autokorelasi tersebut. Hasil analisis telah 

menunjukkan bahawa perubahan kelembapan hari ini merupakan faktor utama yang 
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berkait dengan perubahan kepekatan PM10 pada keesokan hari. Di samping itu, 

perubahan-perubahan dalam nitrogen dioksida (NO2), ozon (O3), suhu dan arah angin 

hari sebelumnya juga merupakan faktor-faktor penting yang berkait dengan 

perubahan kepekatan PM10. Selain itu, prestasi peramalan kepekatan PM10 keesokan 

hari bagi model-model RTSE adalah memuaskan kerana mereka adalah setanding 

dengan peramalan univariat yang menggunakan kaedah DWT. Sebagai tambahan, 

regresi kuantil (QR) telah digunakan untuk menyiasat secara lebih lanjut perubahan 

kesan pembolehubah-pembolehubah meteorologi dan gas pada kepekatan PM10 

merentas kuantil. Daripada dapatan analisis, perubahan suhu yang lalu berkait rapat 

dengan perubahan yang besar dalam kepekatan PM10. Pada kuantil-kuantil rendah 

dan tengah, QR dapat mengesan kepentingan perubahan kelajuan angin yang lalu 

selain perubahan kepekatan PM10 yang lalu dan pembolehubah-pembolehubah lain 

yang penting dalam RTSE. Secara ringkas, model siri masa berasaskan jelmaan 

wavelet berkesan untuk meningkatkan ketepatan ramalan kepekatan PM10 di 

Semenanjung Malaysia. Model RTSE dapat mengambil kira autokorelasi dan 

menunjukkan ketepatan ramalan yang baik. Tambahan pula, model QR dapat 

memberi pemahaman yang holistik tentang hubungan antara pembolehubah-

pembolehubah peramal dengan PM10 pada pelbagai taburan kuantil. 
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STATISTICAL MODELLING FOR FORECASTING PM10 

CONCENTRATIONS IN PENINSULAR MALAYSIA 

 

 

ABSTRACT 

 

Recurring haze phenomena in Malaysia have prompted the need for effective 

control of PM10 (particulate matter with diameter less than 10µm) pollution. This 

demands accurate forecasts as well as understanding on relationship between PM10 

and other factors. Hence, this research aims to forecast the daily average PM10 

concentrations in Peninsular Malaysia by using univariate modelling, i.e. time series 

modelling and regression modelling. In time series analysis, a typical problem in 

forecasting is the underestimation of the peaks. Since the series of PM10 

concentrations change rapidly, this research proposed the use of wavelet-based time 

series model to improve the forecast accuracy, i.e. the application of discrete wavelet 

transform (DWT) before the time series modelling by the Box-Jenkins autoregressive 

integrated moving average (ARIMA) and generalized autoregressive conditional 

heteroscedasticity (GARCH) models. By employing DWT, the volatile PM10 series 

were decomposed into several subsidiary series with smaller variations, and 

consequently, helped in improving the total forecast accuracy substantially especially 

during haze periods when compared to the time series modelling without DWT. 

Regression with time series error (RTSE) model was proposed to overcome the 

problem of autocorrelated residuals from the standard multiple linear regression 

(MLR) model. It successfully accounted for the autocorrelation. The analysis 

revealed that the difference of lagged humidity was the major factor related to the 

next-day difference of PM10 concentration. Furthermore, changes in lagged nitrogen 

dioxide (NO2), ozone (O3), temperature and wind direction were also the important 
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factors associated with the change in PM10 concentration. Besides, the one-day-ahead 

forecast performances of the RTSE models were acceptable since they were 

comparable to the univariate forecasting by method with DWT. In addition, quantile 

regression (QR) was conducted to further investigate the changes in effects of 

meteorological and gaseous variables on PM10 concentrations across quantiles. From 

the findings, the change in lagged temperature was associated with the large 

difference of PM10 concentrations. At low and middle quantiles, QR additionally 

detected the significance of change in lagged wind speed besides the change in 

lagged PM10 concentrations and those variables which are significant in the RTSE. In 

a nutshell, wavelet-based time series model is useful to enhance the forecast accuracy 

of PM10 concentrations in Peninsular Malaysia. RTSE model is able to account for 

the autocorrelation and has good forecast accuracy. Furthermore, QR model is able 

to provide a holistic insight about the relationship between predictor variables and 

PM10 at different quantile distributions.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction to Statistical Modelling 

A model is a mathematical equation which describes a process or system. A 

statistical model is a mathematical model which is built based on some sample data. 

Hence, statistical modelling is a process of building a statistical model, the purpose 

of which is to make general statements or to draw inferences about the general 

behaviours of a population or a random process which generates the sample data. A 

random process usually contains deterministic and random components. While a 

deterministic part is mostly the expected value which represents the general feature 

of a process, random component is the uncontrollable feature such as different 

characteristics among individuals. Therefore, a model is termed as statistical model 

by taking into account the random component through probability distribution. As 

such, a statistical model involves three main aspects, namely an equation, 

assumptions on the random component and the way to combine the deterministic and 

the random parts (model specification). The specification of models can be broadly 

classified as linear and nonlinear models. By formulating a statistical model, one can 

use it to predict future values and also to understand the process under study 

(Krzanowski, 1998). 

The scope of this thesis focuses on statistical modelling of time series data. 

Time series data is a series of ordered observations which is collected at fixed time 
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interval. Basically, the analysis of time series can be divided into frequency-based 

and time-based analysis. In frequency-based analysis, there are methods such as 

spectral analysis and wavelet analysis. For analysis based on time domain, the 

classical modelling technique is the Box-Jenkins autoregressive integrated moving 

average (ARIMA) model. Additional advanced models embody seasonal models, 

long memory models, heteroscedasticity models and so on. Among models which 

involve other driving factors are dynamic regression models and autoregressive 

integrated moving average with exogenous variables (ARIMAX) model. 

 

1.2 Background of Study 

This thesis focuses on statistical modelling of the concentrations of 

particulate matter (PM) in Peninsular Malaysia. PM is a mixture of solid particles 

and liquid droplets suspended in the air (Schwartz et al., 1996). PM is generally 

categorized by its size (measured in aerodynamic diameter) into three groups, 

namely coarse PM (PM10), fine PM (PM2.5) and ultrafine PM (PM0.1). PM10 is 

defined as the particles with aerodynamic diameter of less than 10 microns (µm), and 

it comprises PM2.5 and PM0.1 (Anderson et al., 2012). PM10 is of special concern by 

authorities and researchers because it is within the inhalation range and causes 

serious harm to human health (Schwartz et al., 1996). 

Besides the size, PM is also characterized by its various chemical 

compositions, and thus by its various sources. The wide range of compositions 

includes soil particles, elemental carbon, polycyclic aromatic hydrocarbons (PAH), 

nitrate, sulphate and volatile organic compounds (VOCs). These varying components 

are due to different emission sources. Primary PM is emanated directly from primary 

sources, whereas secondary PM is a product of chemical reaction of its precursors 
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such as VOCs, nitrogen oxides (NOx) and sulphur dioxide (SO2) in the atmosphere. 

The direct sources are of both natural and anthropogenic. Natural emissions include 

volcanoes and forest fires, while anthropogenic activities include agriculture, 

industries, power generation, traffic and combustion. Basically, coarse PM comes 

from mechanical activities such as agriculture, mining, construction and grinding. On 

the other hand, fine PM is mostly originated from combustion activities. Secondary 

PM usually appears in the form of nitrate and sulphate components, resulting 

respectively from oxidation of NOx and SO2. These precursor gases are primarily 

emanated from transportation, power plants and industries (Bhattacharjee et al., 1999; 

WHO, 2013; DOE, 2015). Furthermore, the sulphur component was also found to be 

attributed to forest fires and biomass burning during haze periods (Afroz et al., 2003).  

Apart from gaseous pollutants, the concentration of PM10 is affected by 

meteorological factors such as monsoons, rainfall, temperature, humidity, pressure, 

wind speed and direction. Normally, high concentrations are recorded during the dry 

season (southwest monsoon) from June to September (Liew et al., 2011). Conversely, 

the concentration of PM10 is lower during the rainy period from October to 

November as a result of dilution by rainfall (Liew et al., 2009). In addition, the 

formation of PM10 is more conducive under high temperature and calm weather 

(Shaharuddin et al., 2008). 

Due to its detrimental effects on human health, PM10 has been formulated as 

one of the key pollutants, along with ozone (O3), carbon monoxide (CO), nitrogen 

dioxide (NO2) and SO2, in the Air Pollution Index (API) system by Malaysia 

Department of Environment (DOE). The API is an indication of the status of air 

quality from good to emergency, described in terms of a range of values instead of 

the actual concentrations of the pollutants, for easy understanding to public. The API 



4 

 

is calculated by taking the highest sub-index among the five air pollutants. The API 

categories also provide corresponding health effects, health advices and actions to be 

taken (DOE, 2000). The categorization of API and its air quality status is illustrated 

in Table 1.1.  

Table 1.1: Categorization of API 

 
API Air Quality Status 

0-50 Good 

51-100 Moderate 

101-200 Unhealthy 

201-300 Very Unhealthy 

>300 Hazardous 

>500 Emergency 

 

Based on the Malaysia Ambient Air Quality Guidelines (MAAQG), the 

standard concentration limits for PM10 are 150µg/m
3
 at an averaging time of 24 

hours and 50µg/m
3
 at an averaging time of 12 months. Breaching the limit of 

150µg/m
3
 will lead to the unhealthy level in API system on that particular day (DOE, 

2000). The World Health Organization (WHO) AQG implements stricter standard 

values for PM10 where 50µg/m
3
 for daily mean and 20µg/m

3
 for annual mean (WHO, 

2013). 

PM10 pollution causes damages to human’s health, environment and economy. 

Coarse PM can reach the larger and upper respiratory tracts, whereas fine PM can 

deposit deeper in the smaller airways and alveoli to give rise to respiratory and 

cardiopulmonary diseases (Peng et al., 2008). Studies have shown that PM10 

pollution leads to both acute and chronic health effects. The short term exposure to 

PM10 induces the respiratory problems such as asthma and attenuated lung function 

as well as increased hospital admissions (WHO, 2013), while long-term exposure to 

PM, especially PM2.5, is associated with mortality from cardiopulmonary diseases. 

The respiratory problems happen because of the oxidative stress and inflammation in 
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lungs, while the cardiovascular problems occur due to the plaque conglomerating in 

arteries (Anderson et al., 2012). The consequences may be more adverse for the 

vulnerable populations including the elders, children and those with existing lung 

and heart illnesses (WHO, 2013). Moreover, the exposure of pregnant women to 

PM10 emitted from motor vehicles increases the possibility of premature defects, 

especially attributed to musculoskeletal and chromosomal anomalies (Vinceti et al., 

2016). 

In addition to the health complications, PM10 also provokes environmental 

issues. The obvious impact is the downgrade of visibility during haze events in 

which PM10 was found to be the predominant pollutant (Shaharuddin et al., 2008). 

This is due to the light scattering or absorption effect by the particles, and thus 

reducing the amount of sunlight reaching to the earth. Notably, PM2.5 worsens the 

visibility more than PM10 does. Furthermore, PM also impairs visibility during 

humid days by forming fog (Bhattacharjee et al., 1999). Another implication of PM 

is acid deposition. Acid deposition on materials causes damage and soiling of man-

made sculptures, paints and buildings. PM acts as an agent for the accumulation of 

acidic gases such as SO2 and NO2. These acids accumulate on the material surfaces 

and accelerate the corrosion of the materials. On the other hand, acid deposition in 

water and soil destructs the aquatic system and vegetation. The excess sulphates and 

nitrates are poison to the aquatic lives and crops (Bhattacharjee et al., 1999). 

The health and environmental effects above-mentioned induce a great amount 

of economy losses following the health and environmental treatments. Furthermore, 

the reduced productivity due to haze-related sickness and restricted activity days also 

accounts for the economy losses (Afroz et al., 2003). 
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In order to control the emission of PM10, cooperative actions by authorities, 

industries and public are needed. The Malaysian government has developed the 

management policies covering different aspects such as emission legislation, 

prevention, enforcement and education. For example, incentives are given to 

industries which install the pollution control equipment (DOE, 2010). Penalties or 

jail sentence are to be judged for open burning activities (Prohibition, 2017). 

Recently in 2013, a New MAAQG was set up to include PM2.5 as one of the principal 

pollutants in the awareness of its severe health implications (ITA, 2016). The New 

MAAQG adopts three stages of interim targets in 2015, 2018 and 2020 in order to 

complete the implementation of emissions reduction. For PM10, the targets of limits 

in 2020 are 100μg/m3 and 40μg/m3 for the averaging time of 24 hours and one year, 

respectively (Air quality standards, 2017). Furthermore, regional efforts were also 

done to mutually maintain a cleaner environment in region. For instance, all 

Southeast Asia countries, including Malaysia have ratified the ASEAN Agreement 

on Transboundary Haze Pollution to combat the transboundary haze together (ITA, 

2016). 

 

1.3 Motivations 

PM10 forecasting plays an important role in giving advance health warnings 

to public. Increased mortality and morbidity rate during hazy days (Othman et al., 

2014; Sahani et al., 2014) provide evidences to the danger of PM10. Hence, by early 

warning, appropriate planning such as limiting outdoor activities can avoid exposure 

to PM10, and thus reducing the risk of getting ill or death. At the same time, medical 

expenses can be reduced. 
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In the long term, forecasting is significant as a part of PM10 pollution control 

program. With the reliable forecasts, authorities can take actions occasionally on 

those forecasted high PM10 days, thereby, mitigating the high cost of continuous 

emission control (Air Quality Research, 2001). 

Furthermore, PM10 is known to be associated with other pollutants such as 

SO2 and NO2. However, the compositions of PM10 at different areas may differ. 

Hence, understanding of these relationships aids in reduction of related pollutants 

and consequently, effectively reducing PM10 levels as well. 

For the sake of public and decision making, the forecasts of short-term trend 

should be provided. Therefore, the main goals of this research are to improve the 

forecast accuracy of PM10 concentrations as well as to forecast the PM10 

concentrations based on predictor variables in Peninsular Malaysia. 

 

1.4 Problem Statements 

PM10 forecasting is essential, especially to forecast the high PM10 

concentrations. Nonetheless, a common problem in forecasting is the 

underestimation of the abnormally high PM10 values (Liu, 2009). Furthermore, PM10 

series typically have peaks and troughs with different scales. Thus, no one global 

model is adequately fit (Joo and Kim, 2015). Albeit numerous methods have been 

used, there was no single conclusion on whether linear or nonlinear model was better. 

Hence, in this research, wavelet-based time series model is proposed to overcome 

this problem.  

In the context of modelling involving predictor variables, multiple linear 

regression (MLR) is a simple and common solution.  However, PM10 time series data 

may result in serial correlation (autocorrelation) among residuals which contradicts 
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to the independence assumption of MLR. In Malaysia, literatures such as those by 

Liew et al. (2011) and Dominick et al. (2012) did not consider the autocorrelation 

nature of time series, while some others such as Ul-Saufie et al. (2013) added lagged 

PM10 as the predictor variables. Therefore, regression with time series error (RTSE) 

model is proposed in this research. To our knowledge, wavelet-based time series 

model and RTSE approaches have not been used in pollution forecasting in Malaysia. 

Moreover, PM10 data normally exhibit heterogeneous conditional 

distributions over quantiles. Most researchers would be interested in the multifarious 

effects of predictor variables exerted on the PM10 concentrations, especially at the 

upper tail distribution. In Malaysia, Ul-Saufie et al. (2012) has used quantile 

regression (QR) to predict the future PM10 concentrations, but there were no detailed 

analysis and discussion on the relationship between PM10 and the predictor variables. 

Hence, QR is implemented to gain a better apprehension on different impacts of 

predictor variables on PM10. 

 

1.5 Objectives of Research 

There are two main objectives in this research. The first objective is to 

improve the forecast accuracy of daily average PM10 concentrations, and the second 

is to examine the relationship between PM10 and other predictor variables 

(meteorological and gaseous parameters). The details of the objectives are as follows: 

 

i. To model and forecast the daily average of PM10 concentrations at selected 

monitoring stations in Peninsular Malaysia using wavelet-based time series 

model. This technique transforms the PM10 concentrations series into several 

sub-series and then the autoregressive integrated moving average with 
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generalized autoregressive conditional heteroscedasticity (ARIMA-GARCH) 

method is applied. 

ii. To compare the performance of the above approach with the conventional 

method (series without wavelet transform (WT)), and hence, verify whether 

the WT improves the accuracy of forecasting. 

iii. To explore the association between PM10 and predictor variables and to 

forecast the one-day-ahead daily average PM10 concentrations at selected 

monitoring stations in Peninsular Malaysia using the RTSE approach. 

iv. To gain more insights on the heterogeneous effects of predictor variables on 

PM10 across different quantiles of PM10 distribution by applying QR. 

 

1.6 Methods and Data 

As illustrated in Figure 1.1, the thesis is divided into two main parts to fulfil 

the two main objectives of the research. The first part is time series modelling and 

the second part is regression modelling constitutes of RTSE and QR modelling. 

The data used in this study are the 24-hour daily averages computed from the 

hourly data obtained from Malaysia DOE. The dataset includes the concentrations of 

PM10, NO2, nitrogen monoxide (NO), SO2, CO and O3 as well as temperature, 

humidity, wind speed and wind direction in the years of 2013 and 2014. These data 

were collected continuously at a network of 52 air monitoring stations throughout 

Malaysia, managed by Alam Sekitar Malaysia Sdn Bhd (ASMA) which is endorsed 

by DOE. 
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Figure 1.1: Flow chart of research procedures 

 

In the first part of univariate time series forecasting, the PM10 concentrations 

from 2013 to 2014 were involved. Five monitoring stations situated at different 

locations and backgrounds, namely Seberang Jaya station (suburban), Nilai station 

(industrial), Klang station (urban), Petaling Jaya station (industrial) and Batu Muda 

station (urban) were selected.  

For the second part of regression, all the above-mentioned variables of air 

pollutants and meteorological variables in the year 2014 were considered. The 

selected monitoring stations are Seberang Jaya station (suburban), Petaling Jaya 

station (industrial), Sungai Petani station (suburban), Seremban station (urban) and 

Batu Muda station (urban). The air monitoring stations involved in this research are 

summarized in Table 1.2 below. 

Collect data 

Assess various “effects” 

of predictor variables on 

PM10 

Model and predict 

PM10 concentrations 

Fit QR 

model 

Fit RTSE 

model 

Compare forecast performance 

Reconstruct final forecast 

from each wavelet 

transformed forecast 

Fit ARIMA-GARCH 

model to each wavelet 

series and forecast 

 

Fit ARIMA-GARCH 

model to PM10 series 

and forecast 

Apply DWT 

Wavelet detail and 

approximation series 

Time series modelling 

(Daily average PM10 

concentrations) 

 

Regression modelling 

(Daily average concentrations 

of PM10, meteorology and 
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Table 1.2: Summary of air monitoring stations involved 

 
Air monitoring station Station code Background type 

Seberang Jaya CA09 Suburban 

Nilai CA10 Industrial 

Klang CA11 Urban 

Petaling Jaya CA16 Industrial 

Batu Muda CA58 Urban 

Sungai Petani CA17 Suburban 

Seremban CA47 Urban 

 

In order to improve the forecast performance of time series method which is 

the ARIMA-GARCH model in forecasting PM10 concentrations, WT was applied to 

PM10 series before developing the ARIMA-GARCH model. PM10 series usually have 

large variances due to some extremely high concentrations in the series. This often 

makes the modelling process difficult and at the same time, reducing the forecast 

accuracy. Hence, the general concept here is to reduce the variability of input series 

to the time series model by decomposing the original time series into several wavelet 

detail and approximation sub-series using discrete wavelet transform (DWT). Instead 

of original time series with large variance, the wavelet transformed sub-series with 

lower variability are inputted into the time series model. Considering the reduction in 

variability, it is expected that the total forecast accuracy will be boosted. 

With regards to the second objective of investigating the relationship between 

PM10 and its predictor variables, RTSE model was used mainly to account for the 

autocorrelation of time series. In addition, it was also used in forecasting PM10 

concentrations based on the predictor variables. Moreover, QR was adopted to 

analyse the relationship between PM10 and predictor variables for various PM10 

quantile distributions.  

The DWT and regression modelling processes were implemented by using 

free R software, while time series modelling was conducted using Eviews 8 software. 
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1.7 Organisation of Thesis 

In the next chapter, the related literatures are reviewed where the discussion 

is divided into time series modelling and modelling involving predictor variables. 

Chapters 3 and 4 explain the methods of time series modelling (DWT, ARIMA and 

GARCH) and regression modelling (MLR, RTSE and QR), respectively. 

Subsequently, the forecasting results of time series and regression are discussed in 

Chapters 5 and 6, respectively. Finally, the conclusion remarks are presented in 

Chapter 7.  
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CHAPTER 2  

LITERATURE REVIEW 

 

In the last few decades, a great variety of statistical modelling techniques 

have been developed and used in air pollution forecasting. As this research is 

primarily partitioned into time series forecasting and forecasting based on predictor 

variables, Section 2.1 concentrates on literatures which used solely the time series 

data of one variable, whereas Section 2.2 discusses literatures which involved 

predictor variables. Finally, Section 2.3 summarizes the findings from the review. 

 

2.1 Time Series Modelling Techniques 

The univariate time series models are advantageous and have often been used 

when there is lack of information of other variables because it depends only on the 

historical data of the time series itself. Amongst all, Box-Jenkins ARIMA 

methodology is the mainstream. Usually, the forecast performance of any improved 

methods is compared to the ARIMA model. Other improved methods evolved from it 

in an attempt to improve the forecast accuracy. For example, there were ARIMA 

models associated with GARCH model and ARIMA with wavelet decomposition 

method. 

Kumar et al. (2004) used an ARIMA approach to forecast one-step-ahead 

daily maximum O3 concentrations in Brunei Darussalam. The time series from July 

1998 to March 1999 was found to be suitably fit by ARIMA (1,0,1) model. The 
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short-term forecast performance was satisfactory with fractional bias, normalized 

mean squared error and mean absolute percentage error of 0.025, 0.02 and 13.14%, 

respectively. 

In India, Chelani and Devotta (2006) made comparison between the nonlinear 

local polynomial approximation method and the linear autoregressive (AR) model in 

predicting the daily average PM10 concentrations from 1999 to 2002 in Mumbai. The 

local polynomial approximation was performed based on reconstructed phase space. 

The errors of prediction indicated that the nonlinear method produced better 

prediction than the AR model. 

Ismail (2011) used seasonal ARIMA (SARIMA) model to forecast the 

monthly O3 concentrations in Kedah, Malaysia. The forecast results from SARIMA 

(1,0,1)(2,1,2)
12

 model showed that there was significantly increasing trend of O3 

level in the long term. Furthermore, the model could also help in decision making 

such as planning strategies. 

Quintela-del-Rio and Francisco-Fernandez (2011) employed nonparametric 

functional data analysis (NFDA) for prediction and study of extreme value of O3 

concentrations by using the data in Switzerland (mean monthly data) and United 

Kingdom (daily maxima), respectively. For prediction, NFDA yielded more accurate 

forecasts in terms of mean squared error when compared to the conventional ARIMA 

method. The pro of the nonparametric approach is its flexibility in the sense that it 

does not assume normal distribution or linear relation, while its negligible con is the 

slightly heavier computational load. On the other side, NFDA also performed much 

better than the parametric generalised extreme value (GEV) fit in estimating the 

return levels of extreme O3 concentrations. 
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Kumar (2015) proposed a combined technique of Singular Spectrum Analysis 

(SSA) with ARIMA model (SSA-ARIMA) to forecast the daily maximum O3 

concentrations. The data from six European AIRBASE stations with different 

backgrounds were considered. The SSA was used to model the deterministic part, 

while ARIMA model was used to model the stochastic component. The proposed 

method was compared to the more popular Fast Fourier Transform (FFT) method 

integrated with ARIMA model. The findings proved that SSA-ARIMA provided 

more accurate and reliable (narrower 95% confidence interval) forecasts for one day 

ahead as well as multiple days ahead. Moreover, the better performance was more 

prominent for multiple-day-ahead forecasts. 

Stoimenova (2016) also applied ARIMA method to forecast the daily average 

PM10 concentrations in Pernik, Bulgaria. ARIMA (1,0,5) as the optimum model was 

used to forecast the seven-day-ahead PM10 concentrations and it produced quite 

satisfactory result. 

Considering the long memory and heteroscedasticity (changing of variance 

across time) of the time series, Reisen et al. (2014) applied SARFIMA (seasonal 

autoregressive fractionally integrated moving average)-GARCH model to the daily 

average PM10 series in Cariacica, Brazil. The comparison of forecasts between 

models with GARCH and without GARCH showed that the former outperformed the 

latter. In the meantime, the wider forecast interval of the GARCH model was able to 

cover more proportions of data of high volatility. 

Instead of fitting the nonlinear model to account for the heteroscedasticity of 

the series, some authors employed WT to break down the series into more auxiliary 

series with smaller variation so that simpler forecasting models can be fitted to the 

sub-series. Joo and Kim (2015) demonstrated the superiority of wavelet filtering in 
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different scenarios. Eight simulated series and eight real data series were fitted by 

two methods, namely ARIMA with wavelet filtering (proposed method) and ARIMA 

without wavelet filtering (customary method). In most cases, the proposed method 

yielded lower mean absolute percentage errors than the customary method. This 

study also showed that wavelet filtering was particularly useful for the seasonal time 

series with great amount of noises. 

Zhang et al. (2017) compared the performance of ARMA/ARIMA to 

wavelet-based ARMA/ARIMA models in forecasting the daily PM10 concentrations 

at four monitoring stations in Taiyuan, China. The results showed that the wavelet-

based ARMA/ARIMA models reduced the forecast errors for all monitoring stations. 

However, only short-term forecasting was suitable. 

Besides the conventional ARIMA models, many other different approaches 

were used. For instances, Fernandez de Castro et al. (2005) introduced a functional 

technique for forecasting the SO2 concentrations near a power plant in As Pontes, 

Spain. The functional models embodied a kernel-based approach and linear 

autoregressive Hilbertian model. They emphasized on an estimation method called 

“historical matrix” which classified the data according to shapes but not levels. 

Furthermore, bootstrap technique was employed to compute the forecast confidence 

intervals. The predictive performances of the proposed models were generally better 

when compared to artificial neural network (ANN) and semiparametric methods. 

In Malaysia, Md Yusof et al. (2010) fit the hourly PM10 series from 2000 to 

2004 in Seberang Perai by applying Weibull and lognormal distributions. The results 

demonstrated that lognormal distribution fit better to the data from 2000 to 2002, 

while Weibull distribution fit better to the data in 2003 and 2004 which showed 
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higher return periods, suggesting that Weibull distribution was more appropriate to 

model the high concentrations of PM10. 

Lawson et al. (2011) predicted the hourly mean NO2 and NOx concentrations 

in Dublin, Ireland by using a Structural Time Series (STS) model. In this 

methodology, different components of the time series such as trend, seasonal 

components and disturbances can be modelled separately whereby the model was 

expressed in state-space form and was solved by Kalman filter algorithm. The 

prediction results demonstrated that the STS method outperformed ANN and support 

vector regression (SVR). The findings testified that STS model possesses several 

advantages. The model provides clear and neat description of different components 

of time series and does not require stationarity. Additionally, it can easily handle the 

missing values and outliers. 

De Mattos Neto et al. (2014) presented Time-delay Added Evolutionary 

Forecasting (TAEF) architecture to forecast the daily mean PM2.5 and PM10 

concentrations in Helsinki. This method consists of two steps, namely the 

optimization of ANN parameters and phase adjustment based on the differences 

between the predicted and observed concentrations. The results showed that the 

proposed method was superior over the other methods shown in previous literatures. 

Furthermore, the authors attributed the great improvement in forecast accuracy to the 

phase adjustment which considers the random walk characteristic of PM time series 

and suggested this as a feasible way to improve the forecasting of intelligent systems. 

On the other hand, Chelani (2015) advanced the use of nearest neighbour 

method in forecasting the one-step-ahead PM10 concentrations in Nagpur, India. This 

method does not require information on predictor variables and distributional 

assumptions. Five function approximation techniques, namely mean, median, 
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persistence model, linear combination and kernel regression were used and compared. 

Kernel regression was the best. In addition, the combination forecasting where more 

weightage was put on the model with smaller error was suggested. It outperformed 

the individual kernel regression model and was able to capture the nonlinear pattern 

of time series. 

 

2.2 Modelling Techniques Involving Predictor Variables 

In the pollution study, researchers often seeks to model and to understand the 

relationship between pollutant and meteorological and emissions factors, as well as 

to use the model to forecast its future values. While there are various techniques, 

MLR and ANN models have stood out from the others and have been extensively 

used. 

A study by Van der Wal and Janssen (2000) compared Kalman filtering to 

MLR in predicting PM10 concentrations in Netherlands based on wind direction, 

temperature and duration of precipitation. The Kalman filtering performed better 

than MLR as it considers the explaining variables as time-varying. However, Kalman 

filtering as a linear model failed to capture the nonlinear behaviour of PM10 during 

peak seasons. 

In order to accommodate the advantage of both nonlinear and linear models, 

Diaz-Robles et al. (2008) proposed a hybrid model of ANN and ARIMA to forecast 

the daily maximum PM10 moving average from 2000 to 2006 in Temuco, Chile. This 

hybrid method was compared to MLR as well as ANN and ARIMAX models 

separately. The findings showed that the hybrid method effectively reproduced 100% 

of alerts and 80% of pre-emergency events and it outperformed the three individual 

models. 
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Liu (2009) suggested RTSE model with principal component analysis (PCA) 

to forecast the daily average PM10 concentrations in Ta-Liao, Taiwan. RTSE was 

employed instead of MLR because it allows autocorrelation among observations. The 

models with inclusion of principal component (PC) triggers of neighbouring PM10 

concentrations were proved to be advantageous in forecasting the PM10 

concentrations more than 150 µg/m
3
 as it improved the forecast accuracy in terms of 

increased probability of detection and critical success index and reduced false alarm 

rate, as compared to the models without PC triggers of neighbouring concentrations. 

Liew et al. (2011) employed MLR to analyse the possible factors affecting 

the daily PM10 concentrations during summer monsoon (May to August) in Malaysia. 

The PM10 concentrations, local meteorological variables, synoptic weather patterns 

and hotspot counts from 2003 to 2006 at six monitoring stations in Klang Valley 

were included. Based on the findings, surface air temperature, relative humidity and 

wind speed were the consequential factors. Furthermore, the synoptic weather and 

foreign hotspot also explained the variability of PM10 concentrations besides the 

location of cyclone formation. The authors concluded that MLR was practical for 

determining the factors influencing the PM10 concentration. 

Study by Vlachogianni et al. (2011) also supported the usefulness of MLR. 

They constructed stepwise MLR models to predict the NOx and PM10 concentrations 

at Athens and Helsinki. The prediction results were compared to those from ANN. 

Although ANN produced slightly better results, MLR was preferred for practical use 

because it excels in the way of easy interpretation and implementation. However, 

MLR did not work well in situation with abrupt changes. 

Dominick et al. (2012) used correlation analysis and MLR to study the 

association of meteorological parameters with daily average PM10 and NO2 at three 
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monitoring stations (Shah Alam, Johor Bahru and Kuching) in Malaysia. The results 

showed that PM10 correlated positively to temperature but correlated negatively with 

humidity and wind speed. On the other hand, NO2 correlated positively with 

temperature and humidity but correlated negatively with wind speed. 

Ul-Saufie et al. (2013) predicted the future (the next-day, next-two-day and 

next-three-day) PM10 concentrations in Negeri Sembilan, Malaysia by using the 

MLR and ANN models incorporating with PCA. The predictor variables included 

previous days of PM10, SO2, NO2, CO, wind speed, temperature and relative 

humidity. The results confirmed the advantage of PCA in improving the prediction 

accuracy for both methods. Particularly, PCA-ANN was the best for the next-day 

prediction, while PCA-MLR yielded the best results for the next-two-day and next-

three-day predictions. 

Targeting to understand the behaviour of PM10 anomalies, Shaadan et al. 

(2015) used an integration of robust project pursuit and robust Mahalanobis distance 

methods to convert the PM10 concentrations at three monitoring sites in Klang Valley 

into functional data. The functional data analyses revealed that PM10 anomalies were 

linked to monsoon, days in a week and wind speed. More frequent of high 

concentrations were observed during Southwest and Northeast monsoons as well as 

weekdays and they were related positively to the wind speed. 

Catalano et al. (2016) presented an ensemble of ANN and ARIMAX 

approaches to improve the accuracy in forecasting the hourly NO2 peaks at 

Marylebone road in London. The variables involved were total traffic volume, hourly 

mean wind speed, wind direction and temperature. The findings showed that the 

ensemble performed the best in predicting extreme values. Individually, ARIMAX 
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model was better than ANN in detecting peaks but ANN could better represent the 

behaviour of NO2 based on the wind variables. 

Besides the popular ANN models, another type of nonlinear model which is 

the GARCH model was often coupled with other linear model to overcome the 

problem of changing variances of air pollutants over time. For example, Wu and Kuo 

(2012) used the GARCH together with vector autoregressive moving average 

(VARMA) model to investigate the correlation among air pollutants and their 

variation patterns at eight monitoring stations in Central District of Taiwan. This 

hybrid method has successfully provided informative findings. 

WT is also useful in the analysis of air pollutants. Shaharuddin et al. (2008) 

used non-decimated WT to study the relationship between PM10 concentration in 

Petaling Jaya and other meteorological parameters (temperature, rainfall and wind 

speed). It was found that there were relations between PM10 and the parameters at 

low frequencies but not at the high frequencies. 

Zainuddin and Ong (2011) demonstrated wavelet neural networks in function 

approximation and pollutant prediction. Three different wavelet functions, namely 

Mexican Hat, Gaussian and Morlet wavelet functions were used as the activation 

function in the hidden layers of neural networks. They emphasized the importance of 

the choice of wavelet functions in order to improve the efficiency of the models. The 

results suggested that Gaussian wavelet neural networks surpassed the other two 

types of wavelet neural networks. 

Siwek and Osowski (2012) forecasted the daily average PM10 concentrations 

in Warsaw by conducting wavelet decomposition and applying ensemble of neural 

networks. They deduced that wavelet decomposition has played a significant role in 

enhancing the forecast accuracy. 
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While MLR is still a very prevalent technique, QR has started to attract more 

interests recently in pollution study. QR was first proposed by Koenker and Bassett 

(1978) to provide a robust modelling technique for non-Gaussian-distributed data 

(Koenker and Bassett, 1978). In addition, its feature of producing a range of 

coefficient estimations at various distributions of pollutant enabling researchers to 

assess different covariates effects across quantiles on pollutant makes it favourable to 

researchers. 

In 2004, Baur et al. used QR approach to analyse the nonlinear relationship 

between O3 and meteorology in Athens. This method revealed the heterogeneous 

covariate effects at different O3 levels which were masked by the MLR model using 

the ordinary least squares (OLS) estimation method. They also showed that QR 

significantly elevated the global goodness of fit when compared to the MLR. 

Similar research was conducted by Sousa et al. (2009) on O3 data in Portugal. 

Results of QR indicated the different influences of predictors at different points of O3 

distribution. The results also showed some significant variables at both end tails of 

distribution which MLR showed to be insignificant. Furthermore, the prediction 

performance of the next-day O3 concentrations by using QR in training phase 

excelled the MLR model. 

Ul-Saufie et al. (2012) predicted future PM10 concentrations in Seberang 

Perai, Malaysia by employing QR. The QR model outperformed MLR for the next-

day, next-two-day and next-three-day predictions. 

Munir (2016) studied the correlation between PM10 and meteorological 

parameters in Makkah. By using QR, the author confirmed the changing impacts of 

covariates at different PM10 quantile distributions and concluded that QR was able to 

offer new perspective to inspect air quality data.  
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2.3 Summary 

This chapter has reviewed a number of different methods for time series 

forecasting and modelling of the relationship between pollutant and the predictor 

variables. Through the review, it can be concluded that there were two primary 

aspects of interests, namely the accuracy in forecasting the extreme values and the 

modelling of the nonlinear pattern of the pollutant.  

In forecasting, there were no certain linear or nonlinear models which are 

good for all. While most of the studies have proved that nonlinear models such as 

ANN and GARCH hybrid models outperformed the linear models such as ARIMA 

and MLR models, there were still some papers such as those by Vlachogianni et al. 

(2011), Ul-Saufie et al. (2013) and Catalano et al. (2016) whose results supported the 

superiority of linear models. Since there have been a great deal of studies validating 

the virtue of WT (Shaharuddin et al., 2008; Siwek and Osowski, 2012; Joo and Kim, 

2015; Zhang et al., 2017), this research aims to develop a wavelet-based time series 

model to enhance the forecast performance of the PM10 abnormalities in Peninsular 

Malaysia. By using this method, the nonlinearity such as heteroscedasticity of the 

time series is considered. Furthermore, since accuracy of long-term forecasting 

cannot be guaranteed (Zhang et al., 2017), only short-term forecasting are performed. 

Besides, even though Shaharuddin et al. (2008) have used WT in pollution study in 

Malaysia, our research focuses on its applicability in forecasting but not on the 

analysis of relationship as in their study.  

On the other hand, this research also intends to construct a model to represent 

the relationship between PM10 and predictor variables. Although MLR has been 

proven to be useful in most literatures, this approach is considered inappropriate to 

model the time series as the independence assumption is violated. In Malaysia, most 
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of the studies such as Liew et al. (2011), Dominick et al. (2012)  and Ul-Saufie et al. 

(2013) either neglected the autocorrelation or included the lagged response variable 

as the predictors. Therefore, a modified MLR model, namely the RTSE model is 

employed in this research to consider the serial correlation of time series. Moreover, 

QR is also employed for supplementary purpose to the analysis of RTSE which 

models the average distribution of PM10 concentration only. To our knowledge, there 

was only a study in Malaysia by Ul-Saufie et al. (2012) which used QR for 

prediction of PM10 concentrations but they did not conduct deep analysis on the 

relationship of PM10 with other variables. 

 

 




