19 research outputs found

    Fault tolerant design implementation on radiation hardened by design SRAM-Based FPGAs

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections."June 2013." Cataloged from department-submitted PDF version of thesisIncludes bibliographical references (p. 197-204).SRAM-based FPGAs are highly attractive for space applications due to their in-flight reconfigurability, decreased development time and cost, and increased design and testing flexibility. The Xilinx Virtex-5QV is the first commercially available Radiation Hardened By Design (RHBD) SRAM-based FPGA; however, not all of its internal components are hardened against radiation-induced errors. This thesis examines and quantifies the additional considerations and techniques designers should employ with a RHBD SRAM-based FPGA in a space-based processing system to achieve high operational reliability. Additionally, this work presents the application of some of these techniques to the embedded avionics design of the REXIS imaging payload on the OSIRIS-REx asteroid sample return mission.by Frank Hall Schmidt, Jr.S.M

    Contributions to the fault tolerance of soft-core processors implemented in SRAM-based FPGA Systems.

    Get PDF
    239 p.Gracias al desarrollo de las tecnologías de diseño y fabricación, los circuitos electrónicos han llegado a grandes niveles de integración. De esta forma, hoy en día es posible implementar completos y complejos sistemas dentro de un único dispositivo incorporando gran variedad de elementos como: procesadores, osciladores, lazos de seguimiento de fase (PLLs), interfaces, conversores ADC y DAC, módulos de memoria, etc. A este concepto de diseño se le denomina comúnmente SoC (System-on-Chip). Una de las plataformas para implementar estos sistemas que más importancia está cobrando son las FPGAs (Field Programmable Gate Array). Históricamente la plataforma más utilizada para albergar los SoCs han sido las ASICs (Application- Specific Integrated Circuits), debido a su bajo consumo energético y su gran rendimiento. No obstante, su costoso proceso de desarrollo y fabricación hace que solo sean rentables en el caso de producciones masivas. Las FPGAs, por el contrario, al ser dispositivos configurables ofrecen, la posibilidad de implementar diseños personalizados a un coste mucho más reducido. Por otro lado, los continuos avances en la tecnología de las FPGAs están haciendo que éstas compitan con las ASICs a nivel de prestaciones (consumo, nivel de integración y eficiencia). Ciertas tecnologías de FPGA, como las SRAM y Flash, poseen una característica que las hace especialmente interesantes en multitud de diseños: la capacidad de reconfiguración. Dicha característica, que incluso puede ser realizada de forma autónoma, permite cambiar completamente el diseño hardware implementado con solo cargar en la FPGA un archivo de configuración denominado bitstream. La reconfiguración puede incluso permitir modificar una parte del circuito configurado en la matriz de la FPGA, mientras el resto del circuito implementado continua inalterado. Esto que se conoce como reconfiguración parcial dinámica, posibilita que un mismo chip albergue en su interior numerosos diseños hardware que pueden ser cargados a demanda. Gracias a la capacidad de reconfiguración, las FPGAs ofrecen numerosas ventajas como: posibilidad de personalización de diseños, capacidad de readaptación durante el funcionamiento para responder a cambios o corregir errores, mitigación de obsolescencia, diferenciación, menores costes de diseño o reducido tiempo para el lanzamiento de productos al mercado. Los SoC basados en FPGAs allanan el camino hacia un nuevo concepto de integración de hardware y software, permitiendo que los diseñadores de sistemas electrónicos sean capaces de integrar procesadores embebidos en los diseños para beneficiarse de su gran capacidad de computación. Gracias a esto, una parte importante de la electrónica hace uso de la tecnología FPGA abarcando un gran abanico de campos, como por ejemplo: la electrónica de consumo y el entretenimiento, la medicina o industrias como la espacial, la aviónica, la automovilística o la militar. Las tecnologías de FPGA existentes ofrecen dos vías de utilización de procesado- res embebidos: procesadores hardcore y procesadores softcore. Los hardcore son procesadores discretos integrados en el mismo chip de la FPGA. Generalmente ofrecen altas frecuencias de trabajo y una mayor previsibilidad en términos de rendimiento y uso del área, pero su diseño hardware no puede alterarse para ser personalizado. Por otro lado, un procesador soft-core, es la descripción hardware en lenguaje HDL (normalmente VDHL o Verilog) de un procesador, sintetizable e implementable en una FPGA. Habitualmente, los procesadores softcore suelen basarse en diseños hardware ya existentes, siendo compatibles con sus juegos de instrucciones, muchos de ellos en forma de IP cores (Intellectual Property co- res). Los IP cores ofrecen procesadores softcore prediseñados y testeados, que dependiendo del caso pueden ser de pago, gratuitos u otro tipo de licencias. Debido a su naturaleza, los procesadores softcore, pueden ser personalizados para una adaptación óptima a diseños específicos. Así mismo, ofrecen la posibilidad de integrar en el diseño tantos procesadores como se desee (siempre que haya disponibles recursos lógicos suficientes). Otra ventaja importante es que, gracias a la reconfiguración parcial dinámica, es posible añadir el procesador al diseño únicamente en los casos necesarios, ahorrando de esta forma, recursos lógicos y consumo energético. Uno de los mayores problemas que surgen al usar dispositivos basados en las tecnologías SRAM o la flash, como es el caso de las FPGAs, es que son especialmente sensibles a los efectos producidos por partículas energéticas provenientes de la radiación cósmica (como protones, neutrones, partículas alfa u otros iones pesados) denominados efectos de eventos simples o SEEs (Single Event Effects). Estos efectos pueden ocasionar diferentes tipos de fallos en los sistemas: desde fallos despreciables hasta fallos realmente graves que comprometan la funcionalidad del sistema. El correcto funcionamiento de los sistemas cobra especial relevancia cuando se trata de tecnologías de elevado costo o aquellas en las que peligran vidas humanas, como, por ejemplo, en campos tales como el transporte ferroviario, la automoción, la aviónica o la industria aeroespacial. Dependiendo de distintos factores, los SEEs pueden causar fallos de operación transitorios, cambios de estados lógicos o daños permanentes en el dispositivo. Cuando se trata de un fallo físico permanente se denomina hard-error, mientras que cuando el fallo afecta el circuito momentáneamente se denomina soft-error. Los SEEs más frecuentes son los soft-errors y afectan tanto a aplicaciones comerciales a nivel terrestre, como a aplicaciones aeronáuticas y aeroespaciales (con mayor incidencia en estas últimas). La contribución exacta de este tipo de fallos a la tasa de errores depende del diseño específico de cada circuito, pero en general se asume que entorno al 90 % de la tasa de error se debe a fallos en elementos de memoria (latches, biestables o celdas de memoria). Los soft-errors pueden afectar tanto al circuito lógico como al bitstream cargado en la memoria de configuración de la FPGA. Debido a su gran tamaño, la memoria de configuración tiene más probabilidades de ser afectada por un SEE. La existencia de problemas generados por estos efectos reafirma la importancia del concepto de tolerancia a fallos. La tolerancia a fallos es una propiedad relativa a los sistemas digitales, por la cual se asegura cierta calidad en el funcionamiento ante la presencia de fallos, debiendo los sistemas poder soportar los efectos de dichos fallos y funcionar correctamente en todo momento. Por tanto, para lograr un diseño robusto, es necesario garantizar la funcionalidad de los circuitos y asegurar la seguridad y confiabilidad en las aplicaciones críticas que puedan verse comprometidos por los SEE. A la hora de hacer frente a los SEE existe la posibilidad de explotar tecnologías específicas centradas en la tolerancia a fallos, como por ejemplo las FPGAs de tipo fusible, o, por otro lado, utilizar la tecnología comercial combinada con técnicas de tolerancia a fallos. Esta última opción va cobrando importancia debido al menor precio y mayores prestaciones de las FPGAs comerciales. Generalmente las técnicas de endurecimiento se aplican durante la fase de diseño. Existe un gran número de técnicas y se pueden llegar a combinar entre sí. Las técnicas prevalentes se basan en emplear algún tipo de redundancia, ya sea hardware, software, temporal o de información. Cada tipo de técnica presenta diferentes ventajas e inconvenientes y se centra en atacar distintos tipos de SEE y sus efectos. Dentro de las técnicas de tipo redundancia, la más utilizada es la hardware, que se basa en replicar el modulo a endurecer. De esta forma, cada una de las réplicas es alimentada con la misma entrada y sus salidas son comparadas para detectar discrepancias. Esta redundancia puede implementarse a diferentes niveles. En términos generales, un mayor nivel de redundancia hardware implica una mayor robustez, pero también incrementa el uso de recursos. Este incremento en el uso de recursos de una FPGA supone tener menos recursos disponibles para el diseño, mayor consumo energético, el tener más elementos susceptibles de ser afectados por un SEE y generalmente, una reducción de la máxima frecuencia alcanzable por el diseño. Por ello, los niveles de redundancia hardware más utilizados son la doble, conocida como DMR (Dual Modular Redundancy) y la triple o TMR (Triple Modular Redundancy). La DMR minimiza el número de recursos redundantes, pero presenta el problema de no poder identificar el módulo fallido ya que solo es capaz de detectar que se ha producido un error. Ello hace necesario combinarlo con técnicas adicionales. Al caso de DMR aplicado a procesadores se le denomina lockstep y se suele combinar con las técnicas checkpoint y rollback recovery. El checkpoint consiste en guardar periódicamente el contexto (contenido de registros y memorias) de instantes identificados como correctos. Gracias a esto, una vez detectado y reparado un fallo es posible emplear el rollback recovery para cargar el último contexto correcto guardado. Las desventajas de estas estrategias son el tiempo requerido por ambas técnicas (checkpoint y rollback recovery) y la necesidad de elementos adicionales (como memorias auxiliares para guardar el contexto). Por otro lado, el TMR ofrece la posibilidad de detectar el módulo fallido mediante la votación por mayoría. Es decir, si tras comparar las tres salidas una de ellas presenta un estado distinto, se asume que las otras dos son correctas. Esto permite que el sistema continúe funcionando correctamente (como sistema DMR) aun cuando uno de los módulos quede inutilizado. En todo caso, el TMR solo enmascara los errores, es decir, no los corrige. Una de las desventajas más destacables de esta técnica es que incrementa el uso de recursos en más de un 300 %. También cabe la posibilidad de que la salida discrepante sea la realmente correcta (y que, por tanto, las otras dos sean incorrectas), aunque este caso es bastante improbable. Uno de los problemas que no se ha analizado con profundidad en la bibliografía es el problema de la sincronización de procesadores soft-core en sistemas TMR (o de mayor nivel de redundancia). Dicho problema reside en que, si tras un fallo se inutiliza uno de los procesadores y el sistema continúa funcionando con el resto de procesadores, una vez reparado el procesador fallido éste necesita sincronizar su contexto al nuevo estado del sistema. Una práctica bastante común en la implementación de sistemas redundantes es combinarlos con la técnica conocida como scrubbing. Esta técnica basada en la reconfiguración parcial dinámica, consiste en sobrescribir periódicamente el bitstream con una copia libre de errores apropiadamente guardada. Gracias a ella, es posible corregir los errores enmascarados por el uso de algunas técnicas de endurecimiento como la redundancia hardware. Esta copia libre de errores suele omitir los bits del bitstream correspondientes a la memoria de usuario, por lo que solo actualiza los bits relacionados con la configuración de la FPGA. Por ello, a esta técnica también se la conoce como configuration scrubbing. En toda la literatura consultada se ha detectado un vacío en cuanto a técnicas que propongan estrategias de scrubbing para la memoria de usuario. Con el objetivo de proponer alternativas innovadoras en el terreno de la tolerancia a fallos para procesadores softcore, en este trabajo de investigación se han desarrollado varias técnicas y flujos de diseño para manejar los datos de usuario a través del bitstream, pudiendo leer, escribir o copiar la información de registros o de memorias implementadas en bloques RAMs de forma autónoma. Así mismo se ha desarrollado un abanico de propuestas tanto como para estrategias lockstep como para la sincronización de sistemas TMR, de las cuales varias hacen uso de las técnicas desarrolladas para manejar las memorias de usuario a través del bitstream. Estas últimas técnicas tienen en común la minimización de utilización de recursos respecto a las estrategias tradicionales. De forma similar, se proponen dos alternativas adicionales basadas en dichas técnicas: una propuesta de scrubbing para las memorias de usuario y una para la recuperación de información en memorias implementadas en bloques RAM cuyas interfaces hayan sido inutilizadas por SEEs.Todas las propuestas han sido validadas en hardware utilizando una FPGA de Xilinx, la empresa líder en fabricación de dispositivos reconfigurables. De esta forma se proporcionan resultados sobre los impactos de las técnicas propuestas en términos de utilización de recursos, consumos energéticos y máximas frecuencias alcanzables

    Reversing FPGA Architectures for Speeding up Fault Injection: does it pay?

    Full text link
    [EN] Although initially considered for fast system prototyping, Field Programmable Gate Arrays (FPGAs) are gaining interest for implementing final products thanks to their inherent reconfiguration capabilities. As they are susceptible to soft errors in their configuration memory, the dependability of FPGA-based designs must be accurately evaluated to be used in critical systems. In recent years, research has focused on speeding up fault injection in FPGA-based systems by parallelising experimentation, reducing the injection time, and decreasing the number of experiments. Going a step further requires delving into the FPGA architecture, i.e. precisely determining which components are implementing the considered design (mapping) and which are exercised by the considered workload (profiling). After that, fault injection campaigns can focus on those components actually used to identify critical ones, i.e. those leading the target system to fail. Some manufacturers, like Xilinx, identify those bits in the FPGA configuration memory that may change the implemented design when affected by a soft error. However, their correspondence to particular components of the FPGA fabric and their relationship with the implementation-level model are yet unknown. This paper addresses whether the effort of reversing an FPGA architecture to filter out redundant and unused essential bits pays in terms of experimental time. Since the work of reversing the complete architecture of an FPGA is titanic, as the first step towards this ambitious goal, this paper focuses on those elements in charge of implementing the combinational logic of the design (Look-Up Tables). The experimental results that support this study derive from implementing three soft-core processors on a Zynq SoC FPGA and show the interest of the proposal.Grant PID2020-120271RB-I00 funded by MCIN/AEI/10.13039/501100011033.Tuzov, I.; De-Andrés-Martínez, D.; Ruiz, JC. (2022). Reversing FPGA Architectures for Speeding up Fault Injection: does it pay?. IEEE. 81-88. https://doi.org/10.1109/EDCC57035.2022.00023818

    Dependability-driven Strategies to Improve the Design and Verification of Safety-Critical HDL-based Embedded Systems

    Full text link
    [ES] La utilización de sistemas empotrados en cada vez más ámbitos de aplicación está llevando a que su diseño deba enfrentarse a mayores requisitos de rendimiento, consumo de energía y área (PPA). Asimismo, su utilización en aplicaciones críticas provoca que deban cumplir con estrictos requisitos de confiabilidad para garantizar su correcto funcionamiento durante períodos prolongados de tiempo. En particular, el uso de dispositivos lógicos programables de tipo FPGA es un gran desafío desde la perspectiva de la confiabilidad, ya que estos dispositivos son muy sensibles a la radiación. Por todo ello, la confiabilidad debe considerarse como uno de los criterios principales para la toma de decisiones a lo largo del todo flujo de diseño, que debe complementarse con diversos procesos que permitan alcanzar estrictos requisitos de confiabilidad. Primero, la evaluación de la robustez del diseño permite identificar sus puntos débiles, guiando así la definición de mecanismos de tolerancia a fallos. Segundo, la eficacia de los mecanismos definidos debe validarse experimentalmente. Tercero, la evaluación comparativa de la confiabilidad permite a los diseñadores seleccionar los componentes prediseñados (IP), las tecnologías de implementación y las herramientas de diseño (EDA) más adecuadas desde la perspectiva de la confiabilidad. Por último, la exploración del espacio de diseño (DSE) permite configurar de manera óptima los componentes y las herramientas seleccionados, mejorando así la confiabilidad y las métricas PPA de la implementación resultante. Todos los procesos anteriormente mencionados se basan en técnicas de inyección de fallos para evaluar la robustez del sistema diseñado. A pesar de que existe una amplia variedad de técnicas de inyección de fallos, varias problemas aún deben abordarse para cubrir las necesidades planteadas en el flujo de diseño. Aquellas soluciones basadas en simulación (SBFI) deben adaptarse a los modelos de nivel de implementación, teniendo en cuenta la arquitectura de los diversos componentes de la tecnología utilizada. Las técnicas de inyección de fallos basadas en FPGAs (FFI) deben abordar problemas relacionados con la granularidad del análisis para poder localizar los puntos débiles del diseño. Otro desafío es la reducción del coste temporal de los experimentos de inyección de fallos. Debido a la alta complejidad de los diseños actuales, el tiempo experimental dedicado a la evaluación de la confiabilidad puede ser excesivo incluso en aquellos escenarios más simples, mientras que puede ser inviable en aquellos procesos relacionados con la evaluación de múltiples configuraciones alternativas del diseño. Por último, estos procesos orientados a la confiabilidad carecen de un soporte instrumental que permita cubrir el flujo de diseño con toda su variedad de lenguajes de descripción de hardware, tecnologías de implementación y herramientas de diseño. Esta tesis aborda los retos anteriormente mencionados con el fin de integrar, de manera eficaz, estos procesos orientados a la confiabilidad en el flujo de diseño. Primeramente, se proponen nuevos métodos de inyección de fallos que permiten una evaluación de la confiabilidad, precisa y detallada, en diferentes niveles del flujo de diseño. Segundo, se definen nuevas técnicas para la aceleración de los experimentos de inyección que mejoran su coste temporal. Tercero, se define dos estrategias DSE que permiten configurar de manera óptima (desde la perspectiva de la confiabilidad) los componentes IP y las herramientas EDA, con un coste experimental mínimo. Cuarto, se propone un kit de herramientas que automatiza e incorpora con eficacia los procesos orientados a la confiabilidad en el flujo de diseño semicustom. Finalmente, se demuestra la utilidad y eficacia de las propuestas mediante un caso de estudio en el que se implementan tres procesadores empotrados en un FPGA de Xilinx serie 7.[CA] La utilització de sistemes encastats en cada vegada més àmbits d'aplicació està portant al fet que el seu disseny haja d'enfrontar-se a majors requisits de rendiment, consum d'energia i àrea (PPA). Així mateix, la seua utilització en aplicacions crítiques provoca que hagen de complir amb estrictes requisits de confiabilitat per a garantir el seu correcte funcionament durant períodes prolongats de temps. En particular, l'ús de dispositius lògics programables de tipus FPGA és un gran desafiament des de la perspectiva de la confiabilitat, ja que aquests dispositius són molt sensibles a la radiació. Per tot això, la confiabilitat ha de considerar-se com un dels criteris principals per a la presa de decisions al llarg del tot flux de disseny, que ha de complementar-se amb diversos processos que permeten aconseguir estrictes requisits de confiabilitat. Primer, l'avaluació de la robustesa del disseny permet identificar els seus punts febles, guiant així la definició de mecanismes de tolerància a fallades. Segon, l'eficàcia dels mecanismes definits ha de validar-se experimentalment. Tercer, l'avaluació comparativa de la confiabilitat permet als dissenyadors seleccionar els components predissenyats (IP), les tecnologies d'implementació i les eines de disseny (EDA) més adequades des de la perspectiva de la confiabilitat. Finalment, l'exploració de l'espai de disseny (DSE) permet configurar de manera òptima els components i les eines seleccionats, millorant així la confiabilitat i les mètriques PPA de la implementació resultant. Tots els processos anteriorment esmentats es basen en tècniques d'injecció de fallades per a poder avaluar la robustesa del sistema dissenyat. A pesar que existeix una àmplia varietat de tècniques d'injecció de fallades, diverses problemes encara han d'abordar-se per a cobrir les necessitats plantejades en el flux de disseny. Aquelles solucions basades en simulació (SBFI) han d'adaptar-se als models de nivell d'implementació, tenint en compte l'arquitectura dels diversos components de la tecnologia utilitzada. Les tècniques d'injecció de fallades basades en FPGAs (FFI) han d'abordar problemes relacionats amb la granularitat de l'anàlisi per a poder localitzar els punts febles del disseny. Un altre desafiament és la reducció del cost temporal dels experiments d'injecció de fallades. A causa de l'alta complexitat dels dissenys actuals, el temps experimental dedicat a l'avaluació de la confiabilitat pot ser excessiu fins i tot en aquells escenaris més simples, mentre que pot ser inviable en aquells processos relacionats amb l'avaluació de múltiples configuracions alternatives del disseny. Finalment, aquests processos orientats a la confiabilitat manquen d'un suport instrumental que permeta cobrir el flux de disseny amb tota la seua varietat de llenguatges de descripció de maquinari, tecnologies d'implementació i eines de disseny. Aquesta tesi aborda els reptes anteriorment esmentats amb la finalitat d'integrar, de manera eficaç, aquests processos orientats a la confiabilitat en el flux de disseny. Primerament, es proposen nous mètodes d'injecció de fallades que permeten una avaluació de la confiabilitat, precisa i detallada, en diferents nivells del flux de disseny. Segon, es defineixen noves tècniques per a l'acceleració dels experiments d'injecció que milloren el seu cost temporal. Tercer, es defineix dues estratègies DSE que permeten configurar de manera òptima (des de la perspectiva de la confiabilitat) els components IP i les eines EDA, amb un cost experimental mínim. Quart, es proposa un kit d'eines (DAVOS) que automatitza i incorpora amb eficàcia els processos orientats a la confiabilitat en el flux de disseny semicustom. Finalment, es demostra la utilitat i eficàcia de les propostes mitjançant un cas d'estudi en el qual s'implementen tres processadors encastats en un FPGA de Xilinx serie 7.[EN] Embedded systems are steadily extending their application areas, dealing with increasing requirements in performance, power consumption, and area (PPA). Whenever embedded systems are used in safety-critical applications, they must also meet rigorous dependability requirements to guarantee their correct operation during an extended period of time. Meeting these requirements is especially challenging for those systems that are based on Field Programmable Gate Arrays (FPGAs), since they are very susceptible to Single Event Upsets. This leads to increased dependability threats, especially in harsh environments. In such a way, dependability should be considered as one of the primary criteria for decision making throughout the whole design flow, which should be complemented by several dependability-driven processes. First, dependability assessment quantifies the robustness of hardware designs against faults and identifies their weak points. Second, dependability-driven verification ensures the correctness and efficiency of fault mitigation mechanisms. Third, dependability benchmarking allows designers to select (from a dependability perspective) the most suitable IP cores, implementation technologies, and electronic design automation (EDA) tools. Finally, dependability-aware design space exploration (DSE) allows to optimally configure the selected IP cores and EDA tools to improve as much as possible the dependability and PPA features of resulting implementations. The aforementioned processes rely on fault injection testing to quantify the robustness of the designed systems. Despite nowadays there exists a wide variety of fault injection solutions, several important problems still should be addressed to better cover the needs of a dependability-driven design flow. In particular, simulation-based fault injection (SBFI) should be adapted to implementation-level HDL models to take into account the architecture of diverse logic primitives, while keeping the injection procedures generic and low-intrusive. Likewise, the granularity of FPGA-based fault injection (FFI) should be refined to the enable accurate identification of weak points in FPGA-based designs. Another important challenge, that dependability-driven processes face in practice, is the reduction of SBFI and FFI experimental effort. The high complexity of modern designs raises the experimental effort beyond the available time budgets, even in simple dependability assessment scenarios, and it becomes prohibitive in presence of alternative design configurations. Finally, dependability-driven processes lack an instrumental support covering the semicustom design flow in all its variety of description languages, implementation technologies, and EDA tools. Existing fault injection tools only partially cover the individual stages of the design flow, being usually specific to a particular design representation level and implementation technology. This work addresses the aforementioned challenges by efficiently integrating dependability-driven processes into the design flow. First, it proposes new SBFI and FFI approaches that enable an accurate and detailed dependability assessment at different levels of the design flow. Second, it improves the performance of dependability-driven processes by defining new techniques for accelerating SBFI and FFI experiments. Third, it defines two DSE strategies that enable the optimal dependability-aware tuning of IP cores and EDA tools, while reducing as much as possible the robustness evaluation effort. Fourth, it proposes a new toolkit (DAVOS) that automates and seamlessly integrates the aforementioned dependability-driven processes into the semicustom design flow. Finally, it illustrates the usefulness and efficiency of these proposals through a case study consisting of three soft-core embedded processors implemented on a Xilinx 7-series SoC FPGA.Tuzov, I. (2020). Dependability-driven Strategies to Improve the Design and Verification of Safety-Critical HDL-based Embedded Systems [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159883TESI

    Reconfigurable system on an FPGA

    Get PDF

    Toward Fault-Tolerant Applications on Reconfigurable Systems-on-Chip

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Reconfigurable system on an FPGA

    Get PDF
    Práce se zabývá tvorbou metodiky návrhu rekonfigurovatelného systému na FPGA obvodu. Tato metodika využívá pokročilých technik založených na částečné dynamické rekonfiguraci za účelem optimalizace rekonfigurovatelných systémů z hlediska flexibility, vyžadované paměti, času potřebného pro implementaci návrhu a množství logických zdrojů FPGA obvodu nezbytného pro vytvoření rekonfigurovatelného systému. V textu jsou představeny základní pojmy z oblastí struktury a konfigurace FPGA obvodů, dále pak základní vlastnosti částečné rekonfigurace, relokace částečných konfiguračních souborů, vyčítání konfigurační paměti FPGA a zapisování dat do interních registrů obvodu. Jádro práce představuje metodiku návrhu rekonfigurovatelného systému s využitím výše zmíněných technik. Dílčí části této práce jsou ověřeny na různých experimentech. V závěru jsou shrnuty výsledky jednotlivých přístupů a diskutovány přínosy použitých technik.This work is focused on a methodology of the reconfigurable system design implemented on an FPGA. This methodology uses advanced techniques based on a partial dynamic reconfiguration in order to optimize a reconfigurable system in terms of system's flexibility, memory requirements, implementation time requirements and logic sources consumption.The text describes basics of the FPGA structure and important features of the dynamic partial reconfiguration, partial bitstream relocation, FPGA's configuration memory readback and FPGA's internal registers states restoration techniques.The main part of the work presents a design methodology of the reconfigurable system where all mentioned techniques are supported. Individual parts of this work were verified on several applications with different sizes. Conclusion summarizes the results of the different approaches and discussed the benefits of the involved techniques
    corecore