

Novel Hardware Verification Methods for FPGAS

Nieuwe hardwareverificatiemethoden voor FPGA's

Alexandra Kourfali

UNIVERSITEIT
GENT

Promotor: prof. dr. ir. D. Stroobandt
Proefschrift ingediend tot het behalen van de graad van
Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. K. De Bosschere

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2018 - 2019

ISBN 978-94-6355-252-3
NUR 958, 959
Wettelijk depot: D/2019/10.500/60

Prof. Dr.

Prof. Dr.

Prof. Dr.

Prof. Dr.

Prof. Dr.

Prof. Dr.

Prof. Dr.

Em. Prof. Dr.

Examination Commission

Filip De Turck, Chairman

Department of Information technology - INTEC
Faculty of Engineering and Architecture

Ghent University, Belgium

Ingrid Moerman, Secretary

Department of Information technology - INTEC
Faculty of Engineering and Architecture

Ghent University, Belgium

Fernanda Lima Kastensmidt

Computer Science & Microelectronics Program - PGMICRO
Faculty Instituto de Informatica

Federal University of Rio Grande do Sul, Brazil

Dionisios Pnevmatikatos

Department of Electronic & Computer Engineering - ECE
Faculty of Electrical & Computer Engineering

Technical University of Crete, Greece

Nele Mentens

Department of Electrical Engineering - ESAT
Faculty of Engineering Technology
Katholieke Universiteit Leuven, Belgium

Joni Dambre

Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture

Ghent University, Belgium

Lieven Eeckhout

Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture

Ghent University, Belgium

Erik D’Hollander

Department of Electronics and Information Systems - ELIS
Faculty of Engineering and Architecture

Ghent University, Belgium

Ghent University

GHENT Faculty of Engineering and Architecture

UNIVERSITY

M. Eng. Alexandra Kourfali

Tel.: +32-9-264.34.25
Fax.: +32-9-264.35.94
Email: Alexandra.Kourfali@UGent.be

Advisor: Prof. Dr. Dirk Stroobandt

Ghent University

Faculty of Engineering and Architecture

Electronics and Information Systems (ELIS) department
Computer Systems Lab (CSL)

Hardware and Embedded System (HES) research group

iGent, Technologiepark - Zwijnaarde 126, B-9052 Gent, Belgium

Tel.: +32-9-264.34.01
Fax.: +32-9-264.35.94
Email: Dirk.Stroobandt@UGent.be

Electronics and Information Systems department

This work was supported by a IWT/FWO fundamental research doctoral grant, by
a HiPEAC collaboration grant and by the European Commission in the context of
the FP7 FASTER project (#287804) and the H2020 EXTRA project (#671653).

iv

Acknowledgements

It was my lifelong dream to be a scientist and pursue a PhD. Now that this journey
is almost complete, I would like to thank everybody that helped me reach this goal.

First, I would like to thank my advisor Prof. Dirk Stroobandt, for all of the
support that he provided me during all these years. He always gave me freedom
and flexibility to pursue my academic interests, to explore new ideas and to create
my own research path. This gave me the confidence to pursue my own research
and to slowly grow as an independent researcher. I would like to thank him for
giving me amazing professional opportunities, including the possibility to present
my work in Silicon Valley companies and patenting my research.

I would also like to thank the members of my examination committee for taking
the time to read and evaluate my thesis, giving excellent feedback, that contributed
to significantly improve my dissertation. I would like to thank them for the fruit-
ful and engaging discussions during the internal defense, that further improved my
work. Special thanks to Prof. Dionisios Pnevmatikatos of TUC in Greece, for trav-
eling to Ghent, and to Prof. Fernanda Kastensmidt of FURGS for traveling from
Brazil to serve in my internal defense and for giving me constructive feedback in
the conferences we both attended.

This thesis would not have been the same without David Merodio Codinachs
from the European Space Agency. I would like to thank him for hosting me in
the microelectronics group at ESA during the academic year 2015-2016, for his
willingness to help advance my work and for expanding my knowledge. This in-
valuable experience gave me a unique insight on reliability and space applications,
and resulted in multiple contributions in this thesis.

I would like also to thank the consortium of the H2020 EXTRA project that
provided engaging discussions on my work and excellent collaboration. A special
thanks to Prof. Michael Huebner and Florian Fricke for hosting me at RUB in
June 2018 and collaborating with me. I would like to thank my former and current
colleagues, and especially Amit and Poona for their support and friendship, Dries,
Yun and Vijay for taking time to review my presentations. I would also like to thank
my colleagues at the Design Project that we co-tutored, for the nice moments and
the knowledge they helped me gain on entrepreneurship.

ii

Science is built on the shoulders of giants, but a Ph.D. is built on the shoulders
of colleagues, friends and family. Therefore, this thesis would not have been the
same without their constant support.

I would like to deeply thank all my friends in Ghent and especially Anastasia,
Marios, Konstantinos, Ola, Vasilis, Thanos, Maria, the “Zwijnaardians” Giorgia,
Francesco, Chiara, Domenico, the many “amici y amigos” Vince, Kaat, Raffa,
Eva, Ursula, Olga and so many more for giving me nice moments, alongside ex-
cellent Belgian beers! Thank you, Vincent, for the hundreds of cups of coffee &
discussion, and for being there for me since I arrived in Belgium. I would also like
to thank my long distance friends that are either spread around the world (Thanos,
Kostis, Giorgos, Nikos) or in Greece (Thodoris, Sakis, Alexis, Giannis, Kiki, Iro)
for keeping tabs on me, visiting me in Ghent and always supporting me.

Infinite thanks to Domenico, my partner in crime! He came in my life a while
back, bringing joy and happiness! Thank you for the amazing moments, for all the
advice you gave me and for supporting me during immensely difficult times and
impossible decisions. I know that this last period was challenging, but you helped
me gain enough confidence and perseverance to reach to the finish line. I could
not be more grateful for all the love and the intellectual and emotional support you
are giving me, for all the moments that we laugh out loud in random places, and
for enjoying the little things in life! The best is yet to come! Grazie mille!

I would like to deeply thank my amazing sister Giota. She has always sup-
ported me and given me amazing memories and precious moments, as she never
shies away from a new adventure (with me, her and Bella)! She has always been
there for me, no matter the distance. Words cannot describe how important her
emotional support has been during my whole life. I will be forever grateful that
she chose to come to Ghent for her master studies and to finally live in the same
city with me, after a decade. I cannot stress enough about the amazing moments
that I had in Gent with Giota and Domenico. Without them, this Ph.D. would have
been if not impossible, definitely less enjoyable!

I am very grateful to my awesome family, my mom Anastasia and my dad
Aristotelis, that has redefined the term of unconditional support. They have been
encouraging me constantly to pursue my goals and dreams. I would like to thank
my dad that always supported my choices, learned to use apps to communicate
with me abroad and he started learning English to be able to be a part of my new
life; and my grandpa Panagiotis, that in his eighties, started using Skype to keep in
touch with me. I would especially like to thank my tech-savvy mom that raised me
as a feminist, gave me the confidence to be independent, to value education above
all and to chase my STEM dreams and never stopped supporting me.

Téta, popd. uround, mannol, ol AéEewg dev umopouv vo meptypddouy to
600 Gug ELYAPLOTE Yiol TNV amepLoELoTN NI xou cUVIGUNUATIXT UTOGTARLEN
TIOL YOV TEOo@EépaTe OAX OUTA To YEOVia, and Tnv oTyph mou Eexivnoo Tic
OTOLDEC YoL GTov Boho, péypt xat oruepa.

Ghent, June 16, 2019
Alexandra Kourfali

Samenvatting

Omdat de Wet van Moore het aantal transistoren in geintegreerde circuits (IC)
blijft opdrijven door het naar beneden schalen van de transistordimensies, worden
steeds complexere digitale circuits gerealiseerd. De voortdurende technologische
evolutie leidt tot steeds complexere architecturen. Het verifiéren en valideren
van deze ontwerpen is een steeds moeilijkere taak geworden. Bovendien bevatten
meerdere ontwerpen veiligheids-kritische eigenschappen en moeten ze voldoen
aan specifieke veiligheidsstandaarden. Dit maakt van IC-betrouwbaarheid een
fundamenteel aandachtspunt in het ontwerpproces.

Er bestaan verschillende hardware-verificatietechnieken, zoals formele veri-
ficatie, simulatie, foutinjectie, debugging, fouten vermijden, online test, enz. Ze
worden gebruikt naargelang de vereisten van elk ontwerp en in verschillende stadia
van de ontwerpcyclus. Er is een afweging tussen snelheid, ontwerpscomplexiteit
en vereiste foutdekkingsgraad. Deze afweging bepaalt de verificatiemethodologie
en het te volgen verificatieplan voor elk ontwerp. Verificatie, en zeker debugging,
zijn essentieel om de functionele correctheid van het volledige systeem te garan-
deren. Pre-Silicium-Verificatie slaat op de activiteiten vooraleer de silicium-chip
beschikbaar is. Deze processen bevatten o.a. het testen van circuits in een virtuele
omgeving met simulatie en formele verificatie.

Historisch gezien is de meest gebruikte verificatietechniek simulatie- geba-
seerd, door zijn flexibiliteit en gebruiksgemak. Simulatie-gebaseerde technieken
kunnen echter de toegenomen complexiteit van ontwerpen niet aan, zeker nu de
processorfrequentie niet langer schaalt. Bovendien ontsnappen vele fouten aan
pre-silicium-verificatie en kunnen ze pas na de creatie van de eerste silicium-chip
gevonden worden. In post-silicium debuggen hebben ontwerpers snel toegang
tot fouten omdat de testen direct op de hardware uitgevoerd worden. Tests lopen
op échte schakelingen op ware snelheid op échte systeemborden. De industrie is
dus overgeschakeld naar post-silicium-validatie, door gebruik van prototypering
en FPGA-emulatie.

Een Field Programmable Gate Array (FPGA) is een programmeerbare di-
gitale elektronische chip. In FPGA-ontwerp moet de ontwerper de functie bepalen
door het implementeren van een digitaal circuit op de beschikbare FPGA-blokken.
De FPGA kan geherprogrammeerd (geherconfigureerd) worden door het wijzigen
van de configuratiedata die de FPGA-functionaliteit bepaalt. Deze data kunnen
aangepast worden naargelang de noden van de gebruiker. Door partiéle herconfi-
guratie (PR) kunnen we een deel van het configuratiegeheugen configureren tijdens
de looptijd via de interne configuratietoegangspoort (ICAP).

iv NEDERLANDSE SAMENVATTING

Onderzoekers van de HES-groep hebben een techniek ontwikkeld, genaamd
geparameteriseerde herconfiguratie, om een geparameteriseerd ontwerp te cre-
éren en te implementeren. Een ontwerp wordt geparameteriseerd genoemd als
sommige ingangspoorten minder frequent van waarde veranderen dan andere in-
gangspoorten. In plaats van het implementeren van deze ingangen (parameters)
als reguliere ingangen, worden ze geimplementeerd als constante ingangen en het
ontwerp wordt geoptimaliseerd naar deze constanten. Voor elke verandering in de
parameterwaarden wordt het ontwerp geheroptimaliseerd (gespecialiseerd) tijdens
de looptijd en geimplementeerd door het geoptimaliseerde ontwerp te herconfigu-
reren voor een nieuwe set van paramaters. De bitstromen van het geparameteri-
seerde ontwerp worden voorgesteld als Boolese functies van de parameters. Voor
elke verandering in de parameters die af en toe optreedt, wordt een gespeciali-
seerde FPGA-configuratie gegenereerd door het evalueren van de overeenkomstige
Boolese functies en de FPGA wordt geherconfigureerd met de gespecialiseerde
configuratie.

In dit doctoraatswerk stel ik innovatieve technieken en tools voor om geinte-
greerde betrouwbaarheid en verificatie aan te bieden in FPGA’s met aangepaste
geinte-greerde componenten. Verder onderzoek ik methoden die de betrouwbaar-
heid en de interne observeerbaarheid van zowel commerciéle als academische
FPGA’s verhogen tijdens het debuggen. De doel-FPGA’s kunnen één of twee
FPGA-lagen aan.

Eerst introduceer ik een methode om efficiénte debugging te introduceren in
elk ontwerp. Door gebruik te maken van de PConf-techniek, voeg ik virtuele la-
gen toe die de debug-functionaliteit integreren in het ontwerp. Doordat de lagen
virtueel zijn, is de impact op het oppervlaktegebruik minimaal. Er is ook de ga-
rantie van virtuele verbindingen tussen signalen en traceergeheugens. Vervolgens
rangschik ik de interne signalen gebaseerd op klassificatiecriteria om de optimale
set van signalen te vinden die toelaat sneller fouten op te sporen.

Daarna onderzoek ik hoe een on-silicium debug-infrastructuur geintrodu-
ceerd kan worden in een FPGA met minimale invloed op de oppervlakte. Ik start
met het bestuderen van de rol van FPGA-debug-structuren op Virtual-Coarse-
Grained Reconfigurable Arrays (VCGRASs). Ik gebruik twee verschillende tech-
nieken gebaseerd op de doel-FPGA-architectuur en ik creger de Superimposed De-
bugging Architecture (SDA) die geintegreerd is in de VCGRA.

Na deze twee hoofdstukken ga ik over tot het tweede deel van de thesis, dat
focusseert op ontwerpmethoden om de betrouwbaarheid van Commercial-Off-
The-Shelf (COTS) FPGA'’s te verhogen. Eerst stel ik twee methoden voor die
toelaten het configuratiegeheugen te herschrijven gebaseerd op microherconfigu-
ratie. Nadien stel ik een eigen FPGA-structuur voor (herconfiguratiecontroller)
om de betrouwbaarheid te verhogen en de belangrijkste overhead (herconfigura-
tietijd) te verkleinen voor het vermijden van zachte fouten (of soft errors). Deze
structuur reduceert niet alleen de herschrijftijd maar heeft ook een versie die fout-
tolerant is en de algemene tolerantie verhoogt van COTS FPGA’s tegenover stra-
lingseffecten.

Daarnaast stel ik ook een fouttolerantieschema voor toekomstige zeer betrouw-

NEDERLANDSE SAMENVATTING A

bare toepassingen in stralingsomgevingen voor met meerdere niveaus van foutmi-
tigatie. 1k gebruik de meerlagige VCGRA-architectuur en zijn natuurlijke weer-
stand tegen stralingseffecten. Ik pas een spatiale redundantiemethode (TMR) toe
en integreer de twee eigen herschrijfmechanismen. Daarna breid ik de PConf-
methode uit, alsook de VCGRA tool-flow om een meer complete CAD flow te ver-
krijgen. Dit werk levert snelle herschrijfmethodes op met minder FPGA-middelen
en heeft als doel een geintegreerd foutmitigatiesysteem te bouwen dat de betrouw-
baarheid van COTS- FPGA’s verhoogt. Ik verifieer ten slotte de haalbaarheid van
deze methoden in een foutinjectieprogramma.

Als laatste focusseer ik op foutinjectie. Ik heb twee varianten van foutin-
jectiemethoden ontworpen die gebruikt kunnen worden op de gekozen FPGA-
architectuur. Ik deel ze in in twee types: de partieel geparameteriseerde foutin-
jectie (enkel LUT’s) en de volledig geparameteriseerde foutinjectie (TLUT’s en
TCON’s), athankeijk van de gebruikte graad van parameterisatie. Het foutinjec-
tieschema is geintroduceerd in schakelingen op poortniveau. Dit geeft ons het
voordeel dat we de technieken kunnen toepassen op een cluster van toepassingen
die op een gelijkaardige manier gemodelleerd kunnen worden. In deze doctoraats-
studie kunnen de voorgestelde methoden gebruikt worden om ofwel permanente
fouten te injecteren (voor testen post-silicium) of voor het injecteren van zachte
fouten (soft errors) voor veiligheidskritische systemen. Deze techniek vermindert
de oppervlakte-overhead van het met fouten geinjecteerd ontwerp drastisch.

vi

ENGLISH SUMMARY

Summary

As Moore’s Law continues to drive the number of transistors inside integrated cir-
cuits (IC) higher, alongside the scaling down of transistor dimensions, more com-
plex digital designs are being realized. Continuous technology evolution has led
to increasingly more complex architectures and designs. Verifying and validat-
ing these designs has become an increasingly difficult task. Additionally, multiple
designs contain a safety-critical feature, and are in need to comply with specific
safety-critical standards, making IC reliability a fundamental concern in the de-
sign and manufacturing process.

Various hardware verification techniques exist, such as formal verification,
simulation, fault injection, debugging, fault mitigation, online test, etc. They can
be used based on the requirements of each design and at different stages in the
design flow. There is a trade-off between speed, design complexity and required
fault coverage. This trade-off normally affects the verification methodology and
plan that will be followed for each design. Verification, and especially debugging
is essential to ensure the functional correctness of the entire system. Pre-Silicon
Verification indicates the activities before the silicon chip is available. These pro-
cesses include testing devices in a virtual environment with simulation and formal
verification tools.

Historically, the most accepted verification method has been simulation-based,
due to its flexibility and ease of use. However, simulation-based techniques are
unable to handle the increasing complexity of the designs. As processor frequency
scaling levels off, simulation-based techniques are unable to keep up with today’s
growing complexity. Additionally, many bugs escape pre-silicon verification, and
can only be discovered after the creation of the first silicon. In post-silicon debug
designers have early access to bugs, in high speeds, since tests are executed directly
on the silicon. Tests occur on actual devices running at-speed in real-world system
boards. Hence, the industry has shifted towards post-silicon validation, by using
prototyping and FPGA emulation.

A Field Programmable Gate Array (FPGA) is a programmable digital elec-
tronic chip. In FPGA design the developer has to define its function through imple-
menting a digital circuit on the FPGA resources. The FPGA can be reprogrammed
(reconfigured) by changing the configuration data that defines the FPGA function-
ality. These data can be modified according to the user’s needs. Partial Recon-
figuration (PR) enables us to configure a part in the configuration memory during
run-time, via the Internal Configuration Access Port (ICAP).

Researchers at the HES group have created a technique called parameterized

viii ENGLISH SUMMARY

reconfiguration technique to create and implement a parameterized design. A de-
sign can become parameterized if some of its input values change less frequently
than the rest. Instead of implementing these inputs (parameters) as regular inputs,
they are implemented as constants, and the design is optimized for these constants.
For every change in the parameter values, the design is re-optimized (specialized)
during run-time and implemented by reconfiguring the optimized design for a new
set of parameters. The bitstreams of the parameterized design are expressed as
Boolean functions of the parameters. For every infrequent change in parameters,
a specialized FPGA configuration is generated by evaluating the corresponding
Boolean functions, and the FPGA is reconfigured with the specialized configura-
tion.

In this dissertation I propose innovative techniques and tools to provide inte-
grated reliability and verification in FPGAs that have integrated custom com-
ponents. Furthermore, I investigate methods that increase the reliability and the
internal observability during debugging, in both commercial and academic FP-
GAs.

First, I propose a method to efficiently introduce debugging to any given de-
sign. By leveraging the Parameterized Configurations (PConf) technique I add a
virtual overlay that integrates debugging functionality in a design. Since it is vir-
tual, the impact on the area is minimal. A guarantee of virtual connections between
signals and tracing memories is provided. Then, I rank internal signals based on
classification criteria, to find optimal signal sets that will be able to trace the bugs
faster.

After that, I investigate how an on-silicon debugging infrastructure can be
introduced into an FPGA, in such a way that it introduces minimal area overhead. I
start studying the role of FPGA debugging structures on Virtual-Coarse-Grained
Reconfigurable Arrays (VCGRASs). I use two different techniques based on the
target FPGA architecture and I create the Superimposed Debugging Architecture
(SDA) that is integrated in the VCGRA.

After these chapters, I move on to the second part of the thesis, that focuses on
design methodologies that increase the reliability of Commercial-Off-The-Shelf
(COTS) FPGA:s. First, I propose two configuration memory scrubbing techniques
that are based on a fine-grained form of reconfiguration used for the PConf, called
microreconfiguration. Afterwards, I propose a custom FPGA structure (reconfig-
uration controller) to increase the reliability and reduce the main overhead (re-
configuration time) of soft error mitigation. This structure not only reduces the
scrubbing time, but it also has a fault tolerant version, that aims to increase the
overall tolerance of a COTS FPGA against radiation effects.

Additionally, I create a fault-tolerant scheme for future high-reliability appli-
cations in radiation environments, with multiple level fault mitigation. I leverage
the multi-layer VCGRA architecture and its natural resilience against radiation
effects. First, I apply a spatial redundancy method (TMR) and the two custom
scrubbing mechanisms. Then, I extend the PConf and the VCGRA tool-flow to
create a more complete CAD flow. This work provides fast scrubbing with less
FPGA resources and it aims at building an integrated fault mitigation scheme that

ENGLISH SUMMARY ix

enhances the reliability of COTS FPGAs. I then verify the feasibility of these
methods with a fault injection campaign.

Finally, I focus on fault injection. I have designed two variants of fault injec-
tion, that can be used based on the underlying FPGA architecture. I classify them
into two types: the partially parameterized fault injection, and fully parameterized
fault injection depending on the level of parameterization used. The fault injection
scheme is introduced in gate-level designs. This gives us the advantage of being
able to apply the techniques for a cluster of applications, that can be modeled in a
similar way. In this dissertation, the proposed method can be used either for inject-
ing permanent faults (for post-silicon testing), or for soft errors (for safety-critical
systems). This technique drastically reduces the area overhead of the fault injected
design.

Table of Contents

Examination Commission

Acknowledgements

Samenvatting

Summary

I

1

2

Introduction

Introduction
1.1 Design Flow of Digital Integrated Circuits
1.1.1 Heterogeneous and Reconfigurable Computing
1.1.2 Debugging and Reliability
1.2 Design and Verification Trends
1.3 Design and Verification Methodology
1.3.1 Pre-silicon Validation
1.3.2 Post-silicon validation
1.4 Thesis Contribution
1.5 ThesisStructure
1.6 Publications

Field Programmable Gate Arrays

2.1 FPGA Architecture
2.1.1 Island-style FPGA architecture
2.1.2 Column-style FPGA architecture
2.1.3 Other FPGA Architectures

22 FPGACADToolFlow
2.2.1 LogicSynthesis
2.2.2 Technology Mapping
223 Placement.
224 Routing
2.2.5 Bitstream Generation

2.3 Reconfiguration methods and techniques
2.3.1 Dynamic Partial Reconfiguration

iii

vii

N O\ W W

11

13
15
17
21

xii

IT

2.3.2 Parameterized Reconfiguration

2.3.3 Micro-reconfiguration

2.4 FPGA Overlay Architectures
24.1 FPGAOverlayTypes
242 VCGRACADFlow
24.2.1 Firstgeneration

24.2.2 Second generation

2423 Third generation

2.4.3 FPGA Overlays for Verification

25 Conclusion

In-Circuit Debugging

In-Circuit Debugging using Parameterized Configurations
3.1 Introduction
3.1.1 Motivation
3.1.2 Contribution L.
32 RelatedWork
3.3 In-Circuit Debugging using Parameterized Configurations
3.4 In-Circuit Debugging Tool
34.1 Designphase
34.2 Debuggingphase
3.5 CEfficientsignal selection,
351 GateRank Lo
3.5.2 Signal Classification Tool
3.5.3 Trace-buffer Optimization
3.6 Resultsand Discussion
3.6.1 Offline Comparison of Area Utilization
3.6.2 Reconfiguration Overhead
3.6.3 SignalRanking,
377 Conclusion

Integrated Post-Silicon Validation for FPGA Overlays

4.1 Introduction
4.1.1 Prerequisites
4.1.2 Contribution,

4.2 In-Circuit Debugging for FPGA Overlays
421 VCGRAOverview
4.2.2 Architecture: SDA Overview

43 VCGRA-SDAToolflow
4.3.1 Application Mapping Toolset
432 VCGRA-SDA Toolset
4.3.3 Online SDA Generator
4.3.4 Theoretical Architectures Tool Flow

51

53
53
54
55
58
61
64
65
68
69
70
73
73
75
75
79
80
83

xiii

4.3.5 PConf Adaptations and Limitations
4.4 Resultsand Discussion
4.4.1 Offline Comparison of Area Utilization.
4.4.2 Online Execution Times
443 Internal Signal Analysis
4.4.4 GateRank Optimization
45 Conclusion

III Fault Tolerance

5 Mitigation of Radiation Effects with Microreconfiguration

5.1 Radiation Effects
5.1.1 Radiation Effectsin FPGAs
5.1.2 SRAM-based FPGAs in Radiation Environments
5.2 Mitigation of Radiation Effects in SRAM- Based FPGAs
5.2.1 User Logic Mitigation
5.2.2 Configuration Memory Mitigation
5.2.3 Block Random Access Memory

5.24 Mitigation Design Techniques for Design-Time Fault Tol-
5 1 Lo

5.2.5 Overview of Mitigation Techniques

5.3 Contributionso
5.4 Configuration Memory Microscrubbing
5.4.1 Prerequisites: Microreconfiguration
5.4.2 Multiple-level Configuration Scrubbing
5.4.2.1 Discrete Microscrubbing

5.4.22 Microscrubbing L.

5.4.2.3 Parameterized scrubbing

5.5 Custom Reconfiguration Controller
5.5.1 Introduction.,
5.5.2 Prerequisiteso
5,53 Motivationo
5.5.4 Superimposed Reconfiguration Controller
5.54.1 Architecture

5.54.2 StateMachine

5.5.5 Fault Tolerant Reconfiguration Controller

556 Results o o
5.5.6.1 Microscrubbing

5.5.6.2 Reconfiguration Controller

5.6 Conclusion e

99

99
101
107
108
109
111

113

Xiv

6 In-Circuit Fault Tolerance with Virtual FPGA Overlays 143
6.1 Introduction 143
6.1.1 Motivation 144

6.1.2 RelatedWork 144

6.1.3 Contribution 145

6.2 Architectureo 147
6.2.1 Superimposed Fault Mitigation 147

6.2.2 Superimposed Fault Injection 149

6.2.3 Configuration Scrubbing 150

6.3 ToolFlow e 151
6.3.1 Offline phase: Superimposed Fault Tolerant Tool 151

6.3.2 Online phase: SEU Mitigation 155

6.4 Resultsand Discussion 156
6.4.1 Sobel Edge Detection Algorithm 156

6.4.2 Reconfiguration Speed 157

6.4.3 Convolutional Neural Network 159

6.4.4 Fault Injection Campaign 160

6.5 Conclusion 163

7 Fault Injection with parameterized Configurations 165
7.1 Introduction 165
7.1.1 Motivation 167

7.1.2 Contribution 168

7.2 RelatedWork 169
7.3 Fault Injection with Parameterized Configurations 172
7.4 FaultInjectionTool 174
7.4.1 The Fault Injection phase (offline) 174

7.4.2 The Parameterized Configuration creation phase (offline) . 176

7.4.3 The Fault Testing phase (online) 177

7.5 Resultsand Discussion 177
7.5.1 AreaOverhead 178

7.5.2 CriticalPathDelay 180

7.5.3 Runtime Impact Estimation 180

7.6 Conclusion e 182
IV Conclusion 183
8 Conclusion and Future work 185
8.1 Conclusions e 186
8.1.1 In-Circuit Debugging 186

8.1.2 FaultTolerance 187

8.1.3 FaultInjection 187

82 FutureWork 189

8.2.1 Overlay-based fault tolerance and debug 191

XV

8.2.2 Intermediate Representation language for multiple archi-

(ECTUIES v v i e e e e e e e e e e 192

823 CADFramework 194

8.2.4 Integration With Vendor Tools 196

825 BeyondFPGAs 196
Appendices 197
A Radiation Effects 199
A.1 The space radiation environment 199
A.1.1 Galacticcosmicrays o cooiu L 200

A.1.2 Trappedradiation 200

A.1.3 Solar energetic particles during solar flares 201

A.2 Aircraft Radiation Environments 203
A.3 Radiation environment at ground level 204
A.4 Radiation environment below ground level 205
A4.1 LHCradiationsource 205

A.42 LHC Radiation Environment 206

A.5 Monitoring and Characterization of Radiation Environments . . . 207
A6 Conclusion 207

Bibliography 209

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8
29

2.10
2.11
2.12

2.13
2.14

2.15

2.16

3.1
3.2

List of Figures

Evolution of design and verificationflow 5
Time spend on different verification processes [36]. 8
Route source and types of FPGA errors [36] 10
Verification Methods oo 11
Design, verification and reliability flow 12
Thesis Contribution 16
Thesis Structure 18
Static memory (SRAM)cell 27
Island-style FPGA architecture 28
Column-style FPGA architecture 29
FPGA frame structure 31
FPGACADFlow 32
Classification of the main FPGA architectures based on their re-
configurability 35
Dynamic Partial Reconfiguration System 36
Parameterized Reconfiguration System 37
Parameterized configurations include Boolean functions of param-

eters and they are evaluated into specialized configurations 38
The two stage flow that supports parameterized configurations . . 39
Overlay architectures 41
A part of a VCGRA grid with PEs, Virtual Switch Blocks (hexagons)

and settings registers (rectangles) 43

The two stage flow that supports a generic VCGRA implementation 45
A schematic representation of a PE, with TLUTSs, TCONSs and set-

tings registers 46
The two stage flow that supports a parameterized VCGRA imple-
mentation 47

The tool flow that supports a Xilinx VCGRA implementation [38] 48

Visualization of this chapter’s contribution 57

Description of normal routing connections (a) and tuneable con-
nections(b) 62

Xviii

33

34

3.5

3.6
3.7

3.8

39
3.10

3.11

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1
52
53

Signal select. Multiple signals are controlled via a set of param-
eters. Mutually exclusive signals form a Boolean function of the

Parameters. e e e e e e 63
Outline of the conventional versus the proposed debugging pro-
cess. The elimination of one step boosts runtime efficiency. 65
Proposed debugging flow. The proposed two discrete offline and
online stages boost runtime efficiency. 66
Schematic of the generic stage of the proposed tool flow. 67
Demonstration of the separate layers. The user circuit, the param-
eterized multiplexers and the trace-buffers respectively. 68

Graphical representation of the area results (in LUTSs) and the num-
ber of parameterized resources (TLUTs, TCONs). The LUT in
the pie diagrams represents the total number of LUTs needed (in-
cluding the ones with the parameterized resources needed). The
TLUT and TCON show the number of parameterized resources

are needed inrespect to LUTs. 77
Graphical representation of the DUT 80
Graphical representation of the DUT, with the different colors show-

ing the gaterank of eachnode 81
Graph of the DUT, with the accumulatedbugs 82
Visualization of this chapter’s contribution 88

Overview of the multiple-level architecture showing the FPGA and
the two virtual levels (the VCGRA application and its adjacent

superimposed debugger). L oL, 90
The architecture that integrates the SDA ina VCGRA. 91
The tool flow that enables the SDA-integrated VCGRA implemen-

tation. L 94
IP design flow for the SDA-integrated VCGRA 97

The tool flow that enables the SDA-integrated VCGRA implemen-
tation. The repair phase shows the microreconfiguration of specific
frames, to repair a bug by resetting the parameters. 100
Schematic representation of the results after the implementation of
the target application. The comparison is between a static imple-
mentation, a VCGRA, a VCGRA with debugging with a vendor

tool (VCGRA-ILA) and the proposed one (VCGRA-SDA). 103
Graphic representation of the GateRank of a PE, for the target the-
oretical FPGA. 110

Results from various Mappers after installing the SDA 1in all sig-
nals (Debug) and only in the signals with the highest GateRank

(Debug_GR) and two different forms of parameterization. 111
Charged particles strike the silicon 116
Radiation Effects in SRAM-based FPGAs. 117

SEU effectin a SRAM Memorycell 118

Xix

54
5.5

5.6
5.7

5.8
59
5.10

6.1
6.2

6.3
6.4

6.5

6.6

6.7

6.8

6.9
6.10

7.1
7.2
7.3
7.4
1.5

8.1

Neutrons and alpha particles cause upsets in SRAM-based FPGAs. 121
Relationship of Device Configuration Bits, Essential Bits and Crit-

ical Bits 122
Traditional TMR Implementation 123
Mitigation Design Decision Graph. If the FPGA is constantly re-
configured, there is no need for a separate mitigation scheme. . . . 129
Details of the SRC architecture 135
Overview of the Fault Tolerant Controller on a Zyng-SoC. 139
Partial TMR: Mitigation of faults by triplication of sequential ele-
mentsand voting L. 140
Visualization of this chapter’s contribution 146
Overview of a VCGRA grid integrated fault mitigation for PEs and
VCs. . o 148
Triplicated voters 149
The mitigation decision graph that supports DCS, VCGRA and
microscrubbing. oL 152
The tool flow that integrates the VCGRA implementation with
mitigation schemes. 153
Representation of the procedure to create the fault-tolerant VC-
GRAIP. 155

Model of a Sobel edge detection filter as a reprogrammable PE.
Fig. (a) shows the graph of the filter, Fig. (b) shows how it can be
mapped on a VCGRA and Fig. (c) how the fault tolerance can be
applied. 157
Comparison of area results for a Virtex-5 FPGA and an academic
architecture that allows parameterized configurations. The y axis
is the area in terms of LUTs and the x-axis each design mapped on

commercial and academic FPGAs respectively. 158
Model of a single neuron structure as a reprogrammable PE 159
The Fault Injection System with its complete flow. 162
Visualization of this chapter’s contribution 169
Visual representation of a stuck-at fault in a SRAM-based FPGA. 173
The three-stage fault injection tool flow. 175
The fault injection tool flow for test set generation. 178

Area comparison with the conventional mapper(ABC) and the par-
tially parameterized fault-injection(PPD with TLUTMap) and fully
parameterized fault-injection (FPD with TCONMap). The initial
area (of the golden circuit) that is needed for the benchmark is
compared with different fault injection approaches for the fault in-
jected circuit, FPD.PPDand ABC. 179

Visualization of the future tool-flow 189

XX

8.2

8.3

Al

A2

A3

A4

Scheme that shows in (a) an example design, in (b) the Interme-
diate Representation language having no impact in the design and

(c) translation of the IR and mitigation of the design. 193
High level overview of the framework, that includes all the possi-
ble directions that can be targeted for future work 195

A descriptive drawing of the three types of motion of particles
trapped in the Earth’s magnetic field [135].. 201
World map at 500 km altitude of the trapped proton (> 10MeV)
and trapped electron (> 1MeV) distributions, respectively. The
SAA shows up clearly in both maps [134]. 202
The ambient dose equivalent rate as a function of altitude, and the
contributions made by different particle species to the dose [95, 134].204
The CERN accelerator complex, from the injector chain up to the
LHC[17]. . . . o 206

3.1

32

4.1

4.2

43

4.4

5.1

52

53

6.1

List of Tables

Logic Utilization of the debugging infrastructure for the bench-
marks implemented with different tools. The original design is
mapped with Vivado and ABC. The two proposed methods are the
PPD (partially parameterized debug) and FPD (fully parameter-
ized debug). ILA is the trace-based debugger by Xilinx and ABC
an academic synthesis tool that supports PConf. 76

Comparison of reconfiguration time between the proposed tech-
nique and Vivado-based implementation 79

Comparison of the Sobel Edge detection filter design implemented
on a Virtex-7 with Vivado 2016.1. The proposed (VCGRA-SDA)
technique is smaller than the static (no-VCGRA) implementation
(with no debugging infrastructure) and significantly smaller than
the conventional debugging core. 102
Logic Utilization for VCGRA-SDA designs implemented with dif-
ferent tools. The area results are shown in terms of LUTs and flip-
flops. For academic FPGAs the area is compared in LUTs with the

ABCtool [97]. e 104
Resource utilization and P&R results of VCGRA with and without
SDA . . . e 106

Configuration time (in s) with different reconfiguration controllers. 109

Comparison of reconfiguration time and power for reconfiguring
one LUT with different controllers and scrubbing techniques. . . . 140
Resource overhead comparison of various standalone reconfigura-
tion controllers for a Xilinx Zyng-7000 design. 141

Area and frequency of the proposed reconfiguration controller. Com-
parison between the golden version (SRC), the SRC mitigated with

a commercial tool (with TMR and DTMR) and the proposed ver-

sion (FT-SRC) mitigated with TMR. 141

Sobel Edge Filter utilization comparison between the golden ver-
sion, the proposed, the proposed with triplicated voters and with
Synplify. The design used is a processing element of the DUT. . . 157

xxii

6.2

6.3

7.1

7.2

Al

Area and Frequency comparison between the golden design (the
original circuit without mitigation), with the Synplify tool (TMR
and distributed TMR) and with the proposed method. The designs
compared are a neuron of a CNN and a complete CNN.
Fault Injection Campaign

Area results in #LUTs: The first column is for the fault-free de-
sign, the other columns contain fault injections. For the proposed
method, we distinguish mapping with parameterized configuration
of (1) logic, (2) logic & routing, (3) fully parameterized circuitry
(logic &routing).
Depth comparison between the initial circuit and the fault injected
version mapped with 6-input LUTs, with the proposed mapper
(FPD with TCONMap) and the conventional one (ABC), respec-
tively. . . .

Predicted ESA SEU Monitor upset rates due to GCR-induced at-
mospheric radiation, including contributions from neutrons, pro-
tons and heavier ions. The predictions are based on the MAIRE
model for location 45° N, 74°W, which has a vertical cut-off rigid-
ity of 1GV, and solar minimum conditions.

180

ABFT
AIG
ASIC
ATPG

BRAM

CAD
CERN
CGRA
CLB
CMS
CNN
CPU

DCS
DD
DMS
DSP

List of Acronyms

Algorithm-Based Fault Tolerance
And-Inverter- Graph
Application-Specific Integrated Circuit
Automatic Test Pattern Generation

Block Random Access Memory

Computer Aided Design

European Organization for Nuclear Research
Coarse-Grained Reconfigurable Array
Configurable Logic Blocks

Compact Muon Solenoid

Convolutional Neural Network

Central Processing Unit

Dynamic Circuit Specialization
Displacement Damage
Discrete Microscrubbing
Digital Signal Processor

XXiv

DUT
DWC

EDAC
ELA
ESA
ESD

FAR

FF
FIFO
FPGA
FT-SRC

GCR
GEO
GPU

H

HDL
HWICAP

IC

Design Under Test
Duplication with compare

Error detection and correction
Embedded Logic Analyzers
European Space Agency
Electro-Static Discharge

Frame address register

Flip-flops

First In First Out

Field Programmable Gate Array

Fault- Tolerant Superimposed Reconfiguration Con-
troller

Galactic Cosmic Rays
Geo-magnetic
Graphics Processing Unit

Hardware Description Language
Hardware Internal Configuration Access Port

Integrated Circuit

XXV

ILA
I0B
ISS

LFSR
LHC
LUT

MBU
mCW
MEO
MPSoC
MS
MUX

PConf
PE

PL
POR
PPC
PS

RAM
RPR
RPU
RTL

Integrated Logic Analyzer
Input/Output Blocks
International Space Station

Linear Feedback Shift Register
Large Hadron Collider
LookUp Table

Multi-bit upset

minimum Channel Width
Medium Earth Orbit
Multi-Processor System-on-Chip
Microscrubbing

Multiplexer

Parameterized Configurations
Processing Elements
Programmable Logic
Power-on-reset

Partial Parameterized Configuration
Processing System

Random Access Memory
Reduced-Precision Redundancy
Real-time Processing Unit
Register-Transfer Level

XXVi

SAA
SB
SCG
SDA
SEE
SEFI
SEP
SET
SEU
SFT
SMAP
SRAM
SRC

TC
TID
TLUT
TMR
TPaR
TT™

vC
VCGRA
VHDL
VPR
VTR

WL

South Atlantic anomaly

Switch block

Specialized Configuration Generator
Superimposed Debugging Architecture
Single Event Effects

Single Event Functional Interrupts
solar energetic particles

Single Event Transient

Single Event Upset

Superimposed Fault- Tolerant
SelectMAP

Static Random-Access Memory
Superimposed Reconfiguration Controller

Template Configuration
Total Ionizing Dose
Tuneable LUT

Triple Modular Redundancy
Tunable Place and Route tool
Time-to-Market

Virtual Channel

Virtual Coarse-Grained Reconfigurable Array
Very-high-speed Hardware Description Language
Versatile Placement and Routing

Versatile To Routing

Wire Length

Part 1

Introduction

Introduction

In this chapter, the background on Integrated Circuits design and the digital de-
sign and verification flow is given. The distinction between different computing
paradigms, such as CPUs, GPUs, ASICs and FPGAs is presented, as well as the
importance of heterogeneous computing in modern digital electronic designs. Re-
configurability plays an important role in heterogeneous computing, hence, an
overview of the different steps involved in the design and verification of reconfig-
urable designs is given. Next, the importance of verification is explained, as well
as the most common verification methodologies, for reconfigurable architectures.
Then, it is stated where this thesis stands for each of the mentioned matters. Fi-
nally, the overall structure of this dissertation is presented.

1.1 Design Flow of Digital Integrated Circuits

In 1965, Intel co-founder Gordon Moore observed that the number of transistors
per square inch on integrated circuits (ICs) had doubled every 1-2 years since
their invention, while their cost was halved. This later became known as Moore’s
law, and is the driving force in chip design since then. Although in recent years
the doubling of installed transistors on silicon chips occurs closer to every 24-36
months instead of annually.

Transistors are the building blocks of ICs. Up to billions of interconnected
transistors can form networks of Boolean gates, used to process digital signals and
produce an output for the IC. ICs are currently the core of every electronic device,

4 INTRODUCTION

from FM transmitters, to mobile phones, to nuclear power plants and rockets.

The increasing demand for performance from ICs pushes operation to higher
signal bandwidths, while rapid advances in manufacturing capabilities have signif-
icantly reduced the feature size and increased the density of these devices. Due to
the continuously shrinking transistor sizes, anomalies are caused in the design, that
need contingency plans, as the new transistors impacts of power, thermal integrity,
and reliability are becoming critical at ultra-low voltages. These contingency plans
need to be available as soon as possible in the design of an IC, to avoid costly
redesigns, reworks and other associated delays. Additionally, as the number of
transistors inside ICs increases, thus allowing more complex digital designs to be
realized, both verifying and validating these designs has become an increasingly
difficult task [36].

These constant technological and scientific advancements are forcing a trans-
formation of the traditional IC design flow as well. In the past, designers were
assembling their own flows by cobbling together a set of disconnected tools from
different vendors, as it is shown in Figure 1.1(a). The move away from such
Frankenstein flows is already underway as vendors have rolled out first-generation
platforms with loosely-coupled tools that feature connected and/or cloned engines
through the flow. This is depicted in Figure 1.1(b).

However, IC design is becoming unfeasible even with these first-generation
platforms, because there are still clear lines of demarcation between the major
phases of the design flow: Synthesis, Mapping, Place-and-Route and Sign-off.
These functional boundaries inevitably cause major rework due to the loosely-
connected tools, when transitioning from one design phase to the next, and from
one verification procedure to the following. This makes for non-linear, non- mono-
tonic, non-convergent progress that is far from optimal, with a direct impact on
time-to-market (TTM) constraints.

Although these fragmented, loosely-connected, multiple-vendor flows were
used in order to gain better consistency, they are still a sum of parts and only
as good as the weakest link. Large numbers of iterations at the tool boundaries
lead to poor full-flow time-to-results and unmet targets.

Nowadays, the need for a fusion of technologies across the entire spectrum of
the IC design and verification flow has become evident. The technology bound-
aries that existed in the past must be revisited and redefined. The next-generation
flow should have a backbone that assimilates and smooths out the boundaries lead-
ing to a monotonic, convergent flow that significantly accelerates the full design
flow and provides various forms of verification and reliability. This is illustrated
in Figure 1.1(c).

INTRODUCTION

Debugging

(a) Multi-vendor Flows

l Test I
Synthesis
| ®
[}
Debugging

g
° ®

1 ‘Pla,ce & Rout;J
L2 o Extraction
o Physical Powi:r, Timing
Sign-Off Sign-Off

(b) 1st Generation Flows

Test High Rel
e
Synthesis
o,

Debugging

Extraction Power,Timing
Sign-Off

(c) 2nd Generation Flows

Figure 1.1: Evolution of design and verification flow

6 INTRODUCTION

1.1.1 Heterogeneous and Reconfigurable Computing

Additionally to Moore’s law, which leads to the prediction that the number of
on-chip cores of a processor doubles for every two years (and is already slowing
down), stands the Dennard scaling [26]. According to Dennard scaling, the power
density stays constant as transistor sizes become smaller. Therefore, the power
usage remains in proportion with the area of the transistor [26, 106]. The Moore’s
law combined with Dennard scaling, means that performance per Watt grows at
this same rate, doubling about every two years. However, it is not possible any-
more to continue to ride the transistor count growth curve as per Moore’s law,
since the Dennard scaling on power density has failed for the technology nodes
below 65 nm, causing the phenomenon of dark silicon: due to the failure of power
density, the processors are unable to be powered-on at the same time.

In order to overcome this problem, heterogeneous computing has emerged,
allowing to use transistors more efficiently. This enabled the creation of hetero-
geneous computing architectures, which can be broadly classified into two main
categories, namely performance and functional heterogeneity.

Performance heterogeneous multi-cores share a common Instruction Set Ar-
chitecture and they are further classified into static asymmetric multi-core (ARM
big LITTLE, Cortex-A7, Cortex-A15) and dynamic asymmetric multi-core (Bahu-
rupi architecture).

Functional heterogeneous multi-cores allow for formerly discrete components
to become integrated parts of Multi-Processor System-on-Chip (MPSoC) used in
embedded products consisting of Central Processing Unit (CPU) cores, Graphics
Processing Unit (GPU) cores, Real-time Processing Unit (RPU) cores, Digital Sig-
nal Processor (DSP) blocks and Programmable Logic (PL) accelerators. The PL is
a Field Programmable Gate Array (FPGA), that is used to implement application
specific specialized hardware.

In general, modern ICs can be divided in general purpose and application spe-
cific (ASIC). In the first case, a general-purpose processor provides full flexibility
via hardware programming, but the performance and energy efficiency is much
lower than in an ASIC. On the other end, an ASIC provides high performance and
energy-efficient implementations with no flexibility. Reconfigurable computing is
a computer architecture that combines some of the flexibility of software program-
ming with the high-performance of hardware, by processing with very flexible
high-speed computing fabrics like FPGAs [77]. Hence, reconfigurable computing
fills the gap between the CPU flexibility and ASIC like performance.

1.1.2 Debugging and Reliability

Ensuring integrity in ICs begins early in the design process and continues through-
out all aspects of manufacturing a device, releasing it, and its eventual end of life.

INTRODUCTION 7

Therefore, it is always more efficient to make sure that the device is correctly
designed, properly configured, and loaded with high-quality software before it is
released, as even the smallest defect in software and hardware can compromise the
entire system. Once a vulnerable piece of hardware is out in the market, there are
real costs associated with service recalls or physical replacement. For a mobile
device, the cost may be as simple as a software update or a full unit replacement.
However, for an automotive recall, or for a high-reliability application, such as a
satellite, a nuclear plant, or an aircraft, the costs of recall or replacement may be
in the order of millions of euros. Furthermore, a malfunction can have devastating
effects, including loss of lives and environmental disasters. It is therefore evident,
that it is of utmost importance to verify and validate each IC, prior their product
release.

Continuous technology evolution has led to increasingly more complex archi-
tectures, with a large amount of embedded memories, combined with the scaling
down process of transistor dimensions (following Moore’s law), power supply re-
duction, and operating speed increase. However, these constant advancements
have compromised IC reliability. Reliability is defined as the probability of no
failure in a given operating period. It is used to measure how good a system is and
how frequently it goes down.

Various internal and environmental sources of noise and bombardment of par-
ticles of radiation led to an increase in the susceptibility of the circuit [74]. In
particular, the probability of upsets (also called Single Event Effects (SEE)) due
to radiation effects has increased significantly. SEE is the main concern in safety
critical applications. It occurs when charged particles hit the silicon transferring
enough energy in order to provoke a fault in the system. It can have a destructive
or transient effect, according to the amount of energy deposited by the charged
particles and the location of the strike in the IC. The main consequences of the
transient effect, also called Single Event Upset (SEU), are bit flips in the memory
elements.

This effect, in addition to the increased complexity of IC designs, have caused
the convergence of two major fields to emerge in both ASICs and FPGAs: Debug-
ging and Reliability. In the nanotechnology domain, reliability is a fundamental
concern in the design and manufacturing process of IC circuits, whereas debugging
is essential to ensure the functional correctness of the entire system. Thus, modern
designs suffer from two basic problems at the same time: bugs and inevitable soft
errors. Due to the increasing design size and complexity of IC circuits, the cost of
IC verification and debug has significantly increased [121]. Additionally, the fab-
rication process is now approaching a point where it will be unfeasible to produce
ICs that are free from SEEs. Therefore, more and more terrestrial applications
that are determined as critical, such as data centers, bank and telecommunication
servers, and automotive and avionics systems, are using fault-tolerant techniques

8 INTRODUCTION

Debug Other
4% N L

| Creating test & simulating
21%

FPGA Verification Time

Test Planning /
o
13% \.___ Testbench development
20%

Creating test & simulating @ Testbench development @ Test Planning
® Debug @ Other

Figure 1.2: Time spend on different verification processes [36].
to ensure reliability.

1.2 Design and Verification Trends

The electronic industry continues to move towards larger designs. In fact, 31% of
designs contain more than 80 million gates and 20% of the designs have more than
500 million gates. 72% of the designs have embedded processors and in FPGAs
specifically, 59% of the designs have embedded processors, according to broad,
vendor-independent studies of design verification practices around the world [36].

In order to be able to handle the increased design complexity, novel verification
areas have emerged. Hence, additionally to the conventional functional verification
domain, more requierements need to be verified, such as clock, power and security,
as well as software. Regarding the security domain, up to 46% of the designs,
contain a safety-critical feature, and are in need to comply with specific safety-
critical standards, such as 1SO26262, DO-254, IEC60601, etc. In order to comply
with all the verification requirements, design engineers spend from 51% up to 80%
of their time in verification [36].

In particular, debugging occupies the biggest portion during verification [36].
It is from 39% in ASIC/IC designs and 43% of the verification process in FPGA
designs, as it is shown in Figure 1.2. However, up to 84% of FPGA design projects
have non-trivial bugs that escape into production, and can manifest after the prod-
uct is shipped.

INTRODUCTION 9

For safety-critical designs, where the validation process is more detailed, in or-
der to comply with the required standards, 34% of the IC designs require 3 or more
spins, due to bugs. In spite of the rigorous testing and validation safety-critical ICs
endure, only 25% of the designs have (non-trivial) bugs after production. These
bugs that remain undetected and escape into production are mostly logic and func-
tional. They are due to design errors or to changes in their specifications, as it is
depicted in Figure 1.3.

Various verification techniques exist, such as simulation, emulation, prototyp-
ing, formal verification, etc. They can be used based on the requirements of each
design and at different stages in the design flow, as is illustrated in Figure 1.4.
There is a trade-off between speed, design complexity and required fault cover-
age. This trade-off normally affects the verification methodology and plan that
will be followed for each design. Figure 1.4 illustrates the main verification plans
and their stance regarding efficiency, coverage and speed.

Historically, the most widespread verification method has been simulation, due
to its flexibility and ease of use. However, simulation-based techniques are unable
to handle the increasing complexity of the designs, especially when the designs
under simulation include both software and embedded processors. Hence, acceler-
ation techniques, such as FPGA prototyping and emulation are required for large
designs (up to 80 million gates). By using FPGAs, the regression time (re-running
functional and non-functional tests) is 9-17 hours, from multiple days required for
an ASIC. Therefore, 35% of the industry has currently adopted emulation and 33%
has adopted prototyping.

Emulation and FPGA-based prototyping are two technologies used for verify-
ing complex hardware designs and validating systems with large software compo-
nents. Architecturally, these tools are quite different, but they overlap in various
their capabilities and applications.

Emulators are recognized for their strong debug capabilities that are compa-
rable to those of software simulators, they are flexible but they have a high cost.
Additionally, emulators can reach speeds of up to 1 MHz and they often have to
settle for 500 KHz. However, FPGA prototypes are regularly clocking in between
10 to 50 MHz, with some approaching 500 MHz (Xilinx Ultrascale) and they are
low-cost, small and lightweight and can allow multiple platforms to be deployed,
thereby accelerating overall performance. The largest drawback to FPGA-based
prototypes is that it can take a long time to set up (up to two months or more).
Moreover, FPGA prototypes can incur long FPGA place-and-route times when
iterating the design, and are typically weaker than emulators at hardware debug.

Both techniques have some serious drawbacks, despite their speed and ease of
use. Debug visibility is one of the biggest drawbacks of FPGA emulation and it is
addressed in Part II (Chapters 3-4) of the thesis.

Another major setback is represented by the FPGA capacity issues, due to

10 INTRODUCTION

60

45

30

XS
9
s &
Q\)

<)o‘
&
NS

(a) Errors contributing to FPGA rework
80
60

40

20

(b) Route cause of Logic and Functional errors

Figure 1.3: Route source and types of FPGA errors [36]

INTRODUCTION 11

A Basic Verification Method

Faster speed, closer to final product

>

Bigger Coverage

Figure 1.4: Verification Methods

hardware requirements that are essential to install the verification plan. This is
addressed in Parts II and III. Finally, power, performance and area overheads are
one of the biggest drawbacks of fault mitigation techniques for safety-critical ap-
plications. This is addressed in Part III (Chapters 5-7) in this thesis.

1.3 Design and Verification Methodology

A typical modern digital design is complex with multiple clock and reset domains,
memory interfaces, specialized I/O, and integrates third party IP. Therefore, it is
anticipated that the design and verification flow will be complex as well, where
continuous advancements are needed to locate and fix bugs earlier in the design
cycle while providing good results for performance and area to reduce system cost.
A wide variety of errors can manifest in different steps in the design process. As
the complexity and product requirements increase, designers need diverse flows
that are able to handle different faults at various stages of the design process. A
generic representation of a design flow with various integrated verification steps is
depicted in Figure 1.5.

12

INTRODUCTION

chip design & verification life cycle

Pre-silicon Post-silicon Production

+ * *
Circuit : :
Design :

FPGA
prototype

Market

FPGA
implementation

+
online test

yes
no
‘ redesign/respin l | fabricate ASIC
. . . .
Permanent non-Permanent
faults (PF) faults (NPF) Bugs

Figure 1.5: Design, verification and reliability flow

INTRODUCTION 13

1.3.1 Pre-silicon Validation

Pre-Silicon Validation (or Functional verification) indicates the activities before
the silicon chip is available. These processes include mainly formal verification
and simulation.

Formal Verification

In formal verification the designer attempts to prove the correctness of the tar-
get design with respect to a certain formal specification or property, using formal
methods of mathematics. There are various widely-known techniques for formal
verification, including model checking, equivalence checking, static analysis, etc.
These are tools aimed at verifying that the synthesis tool created a valid and equiv-
alent netlist to the original Register-Transfer Level (RTL). With a comprehensive
list of design rules, if these tools are employed correctly and each error reported
by the tools is adequately verified this process should yield a 1 to 1 equivalence
of the design to the resulting product in silicon. Except for equivalence checking
tools, which are targeted at low-level design errors, formal verification tools do not
currently scale well to large designs, as they often require exhaustive exploration
of all the states of the design under test (DUT).

Simulation

Simulation-based verification is also a widely-used verification technique, that pro-
vides debugging at early stages of the design process. It offers full visibility and
ease of use. However, simulation has not been able to keep up with the increasing
design complexity, as exhaustive simulation of multi-million gate designs is ex-
tremely slow and often unfeasible. While simulators and software-based analysis
tools have made significant progress over the years, these tools assume ideal, opti-
mistic conditions. Therefore, due to the infinite number of potential design states
in large designs, pre-silicon validation usually is unable to exhaustively check a
design and is invariably incomplete.

1.3.2 Post-silicon validation

Post-silicon validation encompasses all that validation effort that is integrated in a
system after the first few silicon prototypes become available, but before product
release.

Debugging

Many bugs (mainly logical and functional) inevitably escape pre-silicon verifica-
tion, and can only be discovered after the creation of the first silicon. In post-

14 INTRODUCTION

silicon debug designers have early access to bugs, in high speeds, since tests are
executed directly on the silicon. During the prototype debug phase of the de-
sign cycle in post-silicon debugging, design errors are discovered and isolated.
The basic methodologies for in-circuit FPGA debugging are external test equip-
ment, (oscilloscopes, external logic analyzers), embedded logic analyzers, FPGA-
implemented scan chains, Readback and FPGA overlays.

During the pre-silicon process, engineers test devices in a virtual environment
with simulation and formal verification tools. In contrast, post-silicon validation
tests occur on actual devices running at-speed in real-world system boards using
logic analyzers, assertion-based methods and external test equipment. Whereas
simulation-based methods have nearly perfect internal observability, current com-
mercially available silicon debug tools often offer limited visibility and impose
significant overhead in terms of resource utilization. These drawbacks are ad-
dressed in Part II of the dissertation.

Fault Injection

Automatic Test Pattern Generation (ATPG) is a process where a test sequence is
identified that can be later used to distinguish between the correct circuit behavior
and the faulty circuit behavior caused by permanent faults. The generated patterns
are used to test the DUT after fabrication, or to assist with determining the cause
of an FPGA failure. The faults that can be identified are the typical fault modes,
such as the stuck-at, open, bridging, short and delay faults. An ATPG is identi-
fied either with simulation-based techniques (PODEM, D algorithm, etc), or with
FPGA-based techniques that facilitate fault injection. The first techniques can be
inefficient for complex designs, while the latter can result in significant resource
overhead. This is addressed in Part III (Chapter 7) of the dissertation.

Fault Injection is also a way to test the fault tolerance and the efficiency of
an applied mitigation scheme. Fault injection can be done in two ways: either by
physically injecting faults on a gate level or by manipulating the bitstream. The
first methodology usually results in an extensive usage of the FPGA resources,
as the faults are physically injected and thus the area is increased. In the second
methodology it is essential to identify the exact bit locations in the bitstream that
need to be flipped to execute a specific fault in the desired circuit element. By using
fault injection, the system verification and validation engineers can construct test
cases to guarantee that the complete system responds to SEUs as expected, and
for testing the integration of the controller into larger system designs. This is
addressed in Part III (Chapter 6) of the dissertation.

INTRODUCTION 15

Fault Tolerance

Fault-tolerance on semiconductor devices has been researched since upsets due
to radiation effects were first experienced in space applications several years ago.
Since then, the interest in studying and advancing fault-tolerant techniques, to en-
hance the reliability of ICs in hostile environments has increased, driven by the
need of radiation tolerant circuits in space missions, satellites, high-energy physics
experiments and others. Based on the definition of fault-tolerance, the goal here is
not to avoid the upsets, which by definition is not possible as they are caused by
high-energy particles, but to maintain the IC’s correct operation despite the exis-
tence of these upsets. Efficient fault-tolerant solutions are still a challenge for the
semiconductor industry, especially because of the complexity of the new architec-
tures.

Mitigation techniques to increase the fault-tolerance of the IC exist both in
software-level and in hardware-level, as well as during pre-silicon and post-silicon
validation. In pre-silicon mitigation techniques simulation prevails. At that stage,
the system can be mitigated with a spatial redundancy technique before or after
synthesis. Then, simulations can guarantee the design’s correct operation. Al-
though simulation is essential while designing a safety critical application to guar-
antee the reliability of the system, it is not possible to simulate the entire system.
This is done during post-silicon validation, where a mitigated prototype design is
more vigorously tested, after it is implemented on an FPGA. At this stage, more
fault-tolerance techniques can be applied, besides spatial redundancy, such as con-
figuration scrubbing. This is addressed on Part III in the dissertation.

1.4 Thesis Contribution

This PhD thesis proposes innovative techniques and tools to provide integrated re-
liability and verification in FPGAs that have integrated custom components. Fur-
thermore, the reliability and debugging techniques are applied both in commercial
and academic ! FPGAs, that support (one or two) virtual FPGA overlays. All the
techniques developed during my PhD research are described in the chapters of the
thesis

e Introduce the proposed verification methodology
e Analyze the architecture used to support the verification strategy

e Outline the tools expanded to support the new methodology

! Academic FPGAs are architectures very similar to the commercial ones, but all their architecture
and CAD tools are free and available to be used for academic purposes. [97].

16

INTRODUCTION

High Rel

Debugging

Test

Place & Route

[0 PConf backbone

O One FPGA-overlay level
O ASIC or FPGA as final product

E Two FPGA-overlay levels
@ FPGA is the final product

Figure 1.6: Thesis Contribution

INTRODUCTION 17

e Discuss the overheads of the proposed approach and validate its accuracy,
by comparing it with state-of-the-art tools and commercial or academic ar-
chitectures.

In more detail, the thesis contributions are analyzed in five distinctive parts.
The first part serves as an introduction and provides a background for the contri-
butions. Parts II and III provide the main contribution of the thesis. Each part
describes a verification process and the proposed techniques and tools. Part IV
provides the conclusion and finally, an appendix gives a tutorial on one of the ver-
ification problems. A brief description of each chapter is presented here with their
contribution in the overall research, as shown in Figure 1.6. It is illustrated how
each chapter is contributing towards the three verification areas discussed in this
thesis, namely debugging, testing and high-reliability. Additionally, it is shown
whether each contribution targets FPGAs as a final product, as an intermediate
step during ASIC design, or both.

1.5 Thesis Structure

The thesis structure is illustrated in Figure 1.7 and outlined below.

Part I: Introduction
Chapter 1

The current chapter describes the basics of design, reconfigurable computing and
verification, as well as the thesis motivation and structure.

Chapter 2

Chapter 2 is used as a preface, to provide the basic background of the architecture
of FPGAs. Here, the background analysis regarding FPGA architectures and the
custom FPGA components needed to enable techniques that are used throughout
this thesis are introduced, such as parameterized configurations, DCS and Virtual
Coarse-Grained Reconfigurable Arrays (VCGRAs). For all the custom techniques,
an overview is also given of their architecture, the tool flows needed to enable their
functionality, and the impact of these techniques compared to traditional FPGA
design.

Part II: In-Circuit Debugging
Chapter 3

In this chapter, a novel method for hardware verification is proposed, to facili-
tate debugging, to reduce the area and reconfiguration overhead and to increase

18

INTRODUCTION

PN —

N

Novel Hardware Verification Methods for FPGAs

Part1
Introduction

Ch. 1: Design and Verification
Ch. 2: Field Programmable Gate Arrays

In-Circuit Debugging
Ch. 3: In-Circuit Debugging using Parameterised Configurations

Ch. 4: Integrated On-Silicon Verification for FPGA Overlays

Fault Tolerance

Ch. 5: Mitigation of Radiation Effects with Microreconfiguration

Ch. 6: In-Circuit Fault Tolerance with Dynamic
Reconfiguration and FPGA Overlays

Fault Injection

Ch. 7: Fault Injection with Parameterised Configurations

Part IV

Conclusion

Conclusion Future Work Appendix

Figure 1.7: Thesis Structure

INTRODUCTION 19

the internal signal observability. This technique can be either applied for FPGA
prototyping during ASIC verification, or when FPGA is the final product. First,
an in-circuit debugging with parameterized configurations approach is introduced.
Then, a method to enable functionality that allows the reconfiguration of the basic
logic blocks (LUTSs) and the routing infrastructure is proposed, alongside inter-
nal signal classification techniques. The results of the system are presented and
compared with commercial and custom debuggers. The area, time and power re-
sults and the trade-offs between internal signal observability and overhead are also
explained.

Chapter 4

This chapter presents an approach to enhance the observability of VCGRA-based
designs for functional debugging. The proposed technique is a custom-made in-
circuit-debugger that can be used for debugging when the FPGA is the final prod-
uct. It is installed during the initial recompilation and can be used to rapidly trace
functional errors in high-performance computing applications, that can be imple-
mented as FPGA overlays. This chapter describes first how the VCGRA is con-
structed and then how the proposed architecture can be integrated in a VCGRA,
so that the latter can be debugged. In this chapter, the basics of debugging with
FPGA overlays are also presented, alongside their characteristics.

Part II1: Fault Tolerance
Chapter 5

This chapter analyses and classifies radiation effects and mitigation methods. It
provides the basic reliability techniques for SRAM-based Commercial Off-the-
Shelf (COTS) FPGAs. Then, it discusses the proposed technique on integrated
fault tolerance for COTS FPGAs, with multiple-level configuration scrubbing.
Two reconfiguration controllers are also proposed that support the novel tech-
nique. This approach can achieve reliable and low-cost configuration scrubbing
for SRAM-based COTS FPGAs. The proposed techniques can be either applied
during ASIC validation, or when a commercial FPGA is the final product and it
requires mitigation.

Chapter 6

This chapter focuses on the major problem that reduces the fault tolerance of a
design, the SEUs. It targets commercial-off-the-shelf FPGAs as the final product.
Therefore, a Triple Modular Redundancy (TMR) method is proposed, for a virtual
coarse-grained reconfigurable architecture, with an embedded on-demand fault-
mitigation technique tailored for FPGA overlays. This method performs spatial

20 INTRODUCTION

redundancy and run-time recovery and can achieve fault tolerance and fast scrub-
bing, with less resources than conventional tools, by providing integrated layers of
fault mitigation. The technique first integrates into an FPGA overlay state-of-the-
art mitigation technique and shows how VCGRAs can be leveraged to increase the
reliability of a target design without compromises in area and time.

Chapter 7

This chapter discusses how the parameterized configurations method can be used
to inject faults in a gate-level design, with very small area overhead. This tech-
nique can be either applied during ASIC testing, or when an FPGA is the final
product and it requires testing for permanent faults and soft errors. It adds addi-
tional circuitry in order to model and apply permanent faults and soft errors with-
out increasing the area requierements. This is done in two different methods, one
for commercial FPGAS (partially parameterized) and one for academic FPGAs
(fully parameterized).

Part IV: Conclusion

The concluding remarks and potential future directions of this research are pre-
sented in Chapter 8. Finally, an appendix that provides a theoretical background
on the sources of radiation effects in microelectronics situates at the end of the
thesis.

INTRODUCTION 21

1.6 Publications

Journal Papers

e Alexandra Kourfali, Florian Fricke, Michael Huebner and Dirk Stroobandkt,
Integrated On-Silicon Verification Method for FPGA Overlays, Journal of
Electronic Testing, Springer Nature, March 2019.

(Contributes to Chapter 4)

e Alexandra Kourfali and Dirk Stroobandt, In-Circuit Fault Tolerance for
FPGAs using Dynamic Reconfiguration and Virtual Overlays, Microelec-
tronics Reliability, Elsevier, (accepted with minor revision).

(Contributes to Chapters 5 and 6)

e Alexandra Kourfali and Dirk Stroobandt, In-Circuit Debugging Methods
with Dynamic Reconfiguration of FPGA Interconnects, ACM Transactions
on Reconfigurable Technology and Systems (TRETS), submitted.

(Contributes to Chapter 3)

e Georgios Tzimpragos, Amit Majumdar, Alexandra Kourfali, Dirk Stroo-
bandt, Hussain Al-Asaad and Tim Sherwood, A Survey of Debugging Meth-
ods for FPGA-based Systems, to be submitted.

(Contributes to Chapter 3)

Patents

e Alexandra Kourfali and Dirk Stroobandt, Integrated Circuit Verification
using Parameterized Configuration, US10295594B2, WO2015181389A3,
patent granted.

(Contributes to Chapters 3 and 7)

Conference Papers

e Alexandra Kourfali and Dirk Stroobandt, Superimposed In-Circuit Debug-
ging for Self-Healing FPGA Overlays, IEEE Latin-American Test Sympo-
sium, 2018, Sao Paulo, Brazil

(Contributes to Chapter 4)

22

INTRODUCTION

Alexandra Kourfali, Amit Kulkarni and Dirk Stroobandt, SICTA: A Su-
perimposed In-Circuit Fault Tolerant Architecture for SRAM-based FPGAs,
Proceedings of the 23rd IEEE International Symposium on On-Line Testing
and Robust System Design, 2017, Thessaloniki, Greece.

(Contributes to Chapter 5)

Alexandra Kourfali, David Merodio Codinachs and Dirk Stroobandt, Su-
perimposed Fault Mitigation for Dynamically Reconfigurable FPGAs, Radi-
ations Effects on Components and Systems, RADECS 2017, CERN, Geneva,
Switzerland

(Contributes to Chapter 6)

Alexandra Kourfali and Dirk Stroobandt, Efficient hardware debugging us-
ing Parameterized FPGA Reconfiguration, IEEE International Parallel and
Distributed Processing Symposium Workshops, 2016, Chicago, USA.

(Contributes to Chapter 3)

Alexandra Kourfali and Dirk Stroobandt, Test set generation almost for
free using a Run-Time FPGA reconfiguration technique, IEEE 16th Latin-
American Test Symposium, 2015, Puerto Vallarta, Mexico.

(Contributes to Chapter 7)

Alexandra Kourfali and Dirk Stroobandt, Parameterised FPGA reconfigu-
rations for efficient test set generation, IEEE Proceedings International Con-
ference on Reconfigurable Computing and FPGAs, 2014, Cancun, Mexico

(Contributes to Chapter 7)

Alexandra Kourfali, Karel Bruneel and Dirk Stroobandt, Pre-mapping Fault
Injection in FPGA-based Parameterised Test Set Generation for ASIC Test-
ing, 23rd International Workshop on Logic & Synthesis, 2014, San Fran-
cisco, USA.

(Contributes to Chapter 7)

Vijaykumar Guddad, Alexandra Kourfali and Dirk Stroobandt, VHDL De-
sign Tool Flow For Portable FPGA Implementation, (to be submitted).

INTRODUCTION 23

Conference Posters / Short Papers

e Alexandra Kourfali and Dirk Stroobandt, In-Circuit FPGA Debugging us-
ing Parameterised Reconfigurations , 54th ACM/EDAC/IEEE Design Au-
tomation Conference (DAC’17), 2017, Austin, TX, USA

(Contributes to Chapter 3)

e Alexandra Kourfali, Post-Silicon Design Verification and Testing using Pa-
rameterised FPGA Reconfigurations, 54th ACM/EDAC/IEEE Design Au-
tomation Conference (DAC’17), 2017, PhD Forum, Austin, TX, USA.

(Contributes to Chapters 3-7)

e Alexandra Kourfali, David Merodio Codinachs and Dirk Stroobandt, En-
hancing the Reliability of COTS SRAM-based FPGAs with Microreconfigu-
ration in Space Applications, Military and Aerospace Programmable Logic
Devices, MAPLD, 2016, San Diego, California, USA.

(Contributes to Chapter 6)

e Alexandra Kourfali and Dirk Stroobandt, Towards Efficient Hardware De-
bugging Using Parameterized FPGA Reconfiguration, 52nd ACM/EDAC/
IEEE Design Automation Conference (DAC’15), 2015, San Francisco, CA,
USA.

(Contributes to Chapter 3)

Field Programmable Gate Arrays

This chapter provides background on FPGA architectures and the custom FPGA
components needed to enable techniques that are used throughout this thesis,
such as Parameterized Configurations, Dynamic Circuit Specialization, and Vir-
tual Coarse-Grained Reconfigurable Arrays. This chapter covers different as-
pects related to FPGAs and briefly discusses different FPGA technologies. First,
an over-view of the FPGA architectures is presented. Details of basic FPGA
logic blocks and different routing architectures are then described. After that,
an overview of the different steps involved in the FPGA design flow is given and
custom FPGA elements are presented. For all the custom FPGA elements used
throughout this thesis, I give an overview of their architecture, the tool flows
needed to enable their functionality, and their impact compared to traditional
FPGA design.

2.1 FPGA Architecture

An FPGA is a semiconductor fabric that allows users to configure its functionality
during run-time. FPGAs were first introduced almost two and a half decades ago.
Since then they have seen a rapid growth and have become a popular implementa-
tion media for digital circuits. They are pre-fabricated silicon devices that can be
electrically programmed in the field to become almost any kind of digital circuit or
system. FPGAs are classified in SRAM-based, flash-based and anti-fuse devices.
SRAM cells are the basic cells used for SRAM-based FPGAs. Most commer-

26 CHAPTER 2

cial vendors use static memory based programming technology in their devices.
These devices use static memory cells which are distributed throughout the FPGA
to provide the reconfiguration functionality. SRAM cells like the one shown in
Figure 2.1 are used to program the routing interconnects and to program the Con-
figurable Logic Blocks (CLBs) that are used to implement logic functions. SRAM-
based FPGAs have become the dominant approach for FPGAs for a variety of ap-
plications, such as DSPs, data centers and in various environments, high-radiation,
aerospace, nuclear, data centers.
FPGAs comprise of:

e Programmable logic blocks that implement logic functions.
e Programmable routing that connects these logic functions.
e]/O blocks that are connected to logic blocks through routing interconnects.

The main building blocks of FPGAs are CLBs, Input/Output Blocks (IOBs)
and a routing network. Typically, an FPGA contains a grid of CLBs ranging from
10,000s to 100,000s (even millions in today’s FPGAs) in number and hundreds
to thousands of IOBs. The CLBs include LUTs and flip-flops (FF) that can be
combined to realize any digital circuit.

The programmable logic and routing interconnect of FPGAs makes them flex-
ible, low cost, general purpose and having faster TTM, but at the same time it
makes them larger, slower and more power consuming than standard cell ASICs.
Additionally, FPGAs need less than a minute to reconfigure and they cost less than
ASICs (unless a very large number of he same ASICs are ordered). Moreover,
many FPGAs offer partial reconfigurability, since a portion of the FPGA can be
partially reconfigured while the rest of an FPGA is still running. This results in
easy upgrades of any future updates in a final product, by simply downloading a
new application bitstream. However, the main advantage of FPGAs i.e. flexibil-
ity is also the major cause of its draw back. These functionalities make FPGAs
slower, larger and more power consuming compared to ASICs.

Two different styles of SRAM-based FPGA architectures exist. The first is
the island style, that covers a basic version of the FPGA architectures and the
column-based style. The island style architecture covers a general, basic version
of the FPGA architectures, and the column-based style that is used in the modern
commercial FPGA architectures.

2.1.1 Island-style FPGA architecture

Island style is the most commonly used architecture among academic FPGAs. It is
called island-style architecture because in this architecture CLBs look like islands
in a sea of routing interconnects. The CLBs include LUTs and flip-flops. Each

FIELD PROGRAMMABLE GATE ARRAYS 27

Data - Data

Figure 2.1: Static memory (SRAM) cell

LUT can implement any arbitrary Boolean function for the given inputs depend-
ing on the truth table entries stored in the configuration memory. The truth table
entries of the LUT define the combinatorial logic for different values of the inputs.
The flip-flops are used to store the output of a LUT and hence are used for im-
plementing sequential logic. In this architecture, CLBs are arranged on a 2D grid
and are interconnected by a programmable routing network and can realize any
digital circuit. The routing network comprises of pre-fabricated wiring segments
and programmable switches that are organized in horizontal and vertical routing
channels. The network consists of multiple wires placed between the CLBs and
form the routing channel width. In the routing network there are two primitives
called Switch block (SB) and Connection block (CB). The IOBs on the periph-
ery of the FPGA are also connected to the programmable routing network and to
the external pins of the FPGA chip to establish communication with the external
world, and therefore they are placed along the perimeter of the FPGA fabric. The
Island-based FPGA architecture is depicted in Figure 2.2.

28 CHAPTER 2

Figure 2.2: Island-style FPGA architecture

2.1.2 Column-style FPGA architecture

Today’s commercial FPGA architectures can be best described as column style.
They contain an array of CLBs which encapsulate LUTs, flip-flops and multiplex-
ers. Each CLB contains 8 LUTs and is capable of realizing combinatorial and
sequential logic. The array of CLBs is divided into a number of Clock Regions.
Each clock region contains CLB columns with a fixed number of CLBs and the
height of the CLB column remains the same in all the clock regions. There are
multiple CLB columns adjacent to each other thus forming CLB rows. This is
visualized in Figure 2.3.

There are other heterogeneous primitives available in the commercial FPGAs
such as DSP columns (containing multiply accumulate operators), Block Random
Access Memory (BRAM) columns, high speed IO protocols (PCle, Gigabit Ether-
net, etc.), clock management resources, ADC. Important primitives are embedded
processors, such as ARM Cortex-A9, which is more powerful and efficient than
the softcore processor (MicroBlaze) implemented on the programmable logic of
the FPGA. These primitives help to meet the stringent performance requirements
for a given application.

FIELD PROGRAMMABLE GATE ARRAYS 29

| Columng of | [il ! oo |
licLBs, | 1 il ! hoon |
11BRANS, 1 | i ! oo |
11DSPs. [il ! TR |
| | | 1 | | I |
A o N A 4 »—4 o
v Y Y Y v YV Y
5 b4 b) bb b
A4 A4 W W WV 4 v A4
| | | [| | I |
I8 T il | - |
e :; I I il | il [} |
| | | il ! o |
555605 I | ! I ! ho i
PEEEE® [t e | gy [indpinipiniyd e | ity [edpinipinged Al | ity [t e | gy
cooooo
cooooo Xov2| [X1Y2
cooooo
cooooo
cooooo
=l=[=I=]=[=1 JE U U U Y W JEY O Y Ul U
cooooo
cooooo I7 | [il | oo |
oooooo 1 I I il | T I
'i 1 I il | " 'i |
I | | " | TR |
| [1 | | I |
N N N N N b—d N
A Y Y Y v YV Y
o yul | Iy Iy P b
s \s \s \s \s O—0 \s
I | | 1 | | I |
I7 oo il ! TR |
I \ i i I hoon 1
I \ 1l i I hoon |
1| | 1| i I oo 1
| Imguangny - - - [Imqamqpany - -_— | Imqamqpany - - - | Imguangny - - -
Xov1 || x1v1
T o e BT o S T | I s o [T o e N G Gt
I n I | 1 n I " I} 1l
1| f 1t 1 I f I 1l | 1
It " I [il [" ["
| | | | | 1 ! | ! |
& M N N N N S—4 &
Y Y Y Y Y Y Y Y Y Y
4 d—0 - & ¢ —0¢ ¢
| | ! | | | ! | ! |
| il Iy T il ! i ! i
| il I | | il ! " ! "
| " I | 1 " ! fl ! fl
|] I | | il ! " ! "
[Inpimiping -t -_— | Imgeigng e E— [Inpimiping -t -_— | Iy - pe— | Inpimgping -t - -
X0Y0|| X1Y0

Figure 2.3: Column-style FPGA architecture

Configuration Bitstream

The FPGA configuration functionality is enabled via a bitstream, and it defines the
hardware functionality. An FPGA comprises of an array of programmable logic
blocks that are connected to each other through programmable interconnect net-
work. Programmability in FPGAs is achieved through an underlying programming
technology. The configuration bitstream is a stream of bits that set all the LUT val-
ues and the multiplexer selection bits and thus define the functionality of a digital
circuit on an FPGA. It contains the configuration data and a set of commands that
are used to orchestrate the programming of the FPGA.

FPGA Frame

An FPGA frame is the smallest addressable element of an FPGA configuration. In
fact, the 7 series Xilinx FPGA configuration memory is arranged in frames that are

30 CHAPTER 2

tiled about the device. Each frame consists of 101 32-bit words, as it is shown in
Figure 2.4. Hence, each frame has identical length of 3,232 bits. A single frame
can contain truth table entries of multiple LUTs which are located in a single CLB
column. For every reconfiguration process, at least one frame has to be accessed
via the HWICAP.

Configuration Interfaces

Configuration interfaces are ports that are used to load the configuration bitstream
onto an FPGA. The basic interfaces are:

e The JTAG interface is a standard debugging port used by the external master.
This port can be used for configuration and configuration read-back.

e The ICAP/ICAPE2 is a primitive providing the embedded processor access
to the internal configuration of the FPGA. It is compatible with the external
SelectMAP interface. The ICAP primitive connects to the Hardware Internal
Configuration Access Port (HWICAP) driver with the bus so that it can be
accessed by the embedded processor.

e The SelectMAP, Serial, SPI and BPI interfaces can reconfigure the FPGA
during boot-up.

e PCAP: is a reconfiguration controller used for Partial Reconfiguration on the
Zyng-SoC. It has a configuration interface similar to the ICAP, that is tightly
coupled with the PS region of the Zyng-SoC. With the appropriate software
drivers, the PCAP supports configuration read-back.

2.1.3 Other FPGA Architectures

SRAM-based FPGAs are the most widely used FPGAs. However, there are two
other important FPGA programming technologies that are worth mentioning:

Flash-based FPGAs Flash-based FPGAs offer several advantages. First, they
are non-volatile, which is a crucial requirement in high-reliability environments,
as non-volatile FPGAs are immune to soft errors. Flash-based programming tech-
nology is also more area efficient than SRAM-based. However, unlike SRAM-
based FPGAs, flash-based devices can not be reconfigured/reprogrammed an in-
finite number of times. This disadvantage places flash-based FPGAs out of the
scope of this thesis.

FIELD PROGRAMMABLE GATE ARRAYS 31

31 Word 0
| L | CLB,
| 31 Word, 0 |
| 31 Word,, 0 | oLB
| 31 Word,, , 1 0 | 3
| 31 Wordgg 0 | cis,
| 39 Wordgg 0 |

Figure 2.4: FPGA frame structure

Anti-fuse FPGAs An alternative to SRAM and flash-based technologies are the
anti-fuse FPGAs. The main advantages of anti-fuse FPGAs is its low area, and
their immunity against radiation effects. Also this technology has lower on resis-
tance and parasitic capacitance and it is non-volatile. However, anti-fuse FPGAs
cannot be reprogrammed more than one or two times, making them out of the
scope of this thesis.

Ideally, one would like to have a programming technology which is repro-
grammable, non-volatile, and that uses a standard CMOS process. Apparently,
none of the above presented technologies satisfy these conditions.

SRAM-based programming technology is the most widely used programming
technology. The main reason is its use of standard CMOS process and for this
very reason, it is expected that this technology will continue to dominate the other
two programming technologies. However, they are prone to soft-errors, due to
their volatile nature, making flash-based and anti-fuse FPGAs a more preferable
option for high-reliability environments. Thus, one of the objectives of this work,
is to create techniques that make volatile FPGAs as immune to soft errors as their
non-volatile counterparts.

32 CHAPTER 2

3rd previous
RTL [party IP] [design files]

Y

‘ Synthesis H Tfﬁgggilggy]—v{ Slaag(e';%r‘?‘t HRoute]

[
v

. Bitstream
bitstream :
generation

Figure 2.5: FPGA CAD Flow

2.2 FPGA CAD Tool Flow

A major aspect of FPGA architecture research is the development of Computer
Aided Design (CAD) tools for mapping applications to FPGAs. It is well known
that the quality of an FPGA is determined by the effectiveness of its accompanying
CAD suite. The more optimized the accompanying tools, the more they exploit the
features of the FPGA architecture. In general, the CAD tools take a design in a
Hardware Description Language (HDL) or high-level language and they convert it
into a bitstream to be loaded in the FPGA, that determines the logical function that
the FPGA implements. This process is divided in five steps namely: synthesis,
technology mapping, packing, placement and routing. The process is similar to
the one used in ASIC design and is depicted in Figure 2.5.

2.2.1 Logic Synthesis

Logic synthesis transforms an HDL description (VHDL or Verilog) into a set of
Boolean gates and Flip-Flops. The tool translates an HDL, Register-Transfer-
Level (RTL), or high-level description of a design into a hierarchical Boolean
network. The Boolean network of logic gates is represented by a graph, such
as the And-Inverter- Graph (AIG) [53]. Each node in the graph represents a gate,
flip-flop, primary input or primary output. Each edge in the graph represents a
connection between two circuit elements. Afterwards various optimizations can
be applied, such as a reduced number of logic gates, lower logic depth, etc.

2.2.2 Technology Mapping

During technology mapping, the tool tries to find a network of cells that imple-
ments the Boolean network. The library of cells is composed of k-input LUTSs

FIELD PROGRAMMABLE GATE ARRAYS 33

and flip-flops. Therefore, this step involves mapping the Boolean network onto the
available resources of the target FPGA. Other primitives, such as DSPs, BRAM
blocks, etc. are directly inferred from the HDL, and hence they are not mapped
during technology mapping. Technology mapping algorithms can optimize a de-
sign for a set of objectives including depth, area or power.

2.2.3 Placement

Placement algorithms determine which physical block within an FPGA should im-
plement the corresponding logic block (instance) required by the circuit. Here the
LUTs and flip-flops produced during the previous step, are clustered into CLBs,
without any changes in the interconnections. This was a separate step, called pack-
ing. However in the last FPGA flows, it is merged with placement. Then, the
packed CLBs are placed to specific blocks of the target FPGA. Extensive opti-
mizations are applied, in order to minimize the wire length and the delay of the
interconnects. This is one of the most time consuming steps during FPGA design.

2.2.4 Routing

The FPGA routing problem consists of assigning nets to routing resources such
that no routing resource is shared by more than one net. It achieves that by con-
figuring the physical switch blocks and connection blocks to achieve the required
interconnect according to the circuit netlist. The routed netlist determines the crit-
ical path delay of the circuit. Therefore, routing is an iterative process that runs
until it meets the given timing constraints [145]. For a large FPGA, the routing
step can consume a huge amount of time.

2.2.5 Bitstream Generation

In the final step, a series of bits is generated that corresponds to the exact imple-
mentation of the routed netlist. The generated bitstream also consists of FPGA
platform specific commands and settings that orchestrate the FPGA programming.
The result of this step is a configuration bitstream.

2.3 Reconfiguration methods and techniques

A reconfigurable IC allows the user to change its functionality. Such systems ide-
ally would require no user interventions while changing the functionality of the
digital design. The FPGAs are configurable devices, since the digital implementa-
tion on the FPGA can be changed. Reconfiguration permits to trade-off between
performance (speed and/or latency) and area (number of used primitives) of the

34 CHAPTER 2

reconfigurable architecture. The process of changing the structure of a reconfig-
urable device at start-up-time (respectively run-time) is called (re)configuration,
and it signifies the possibility to send new configurations to an FPGA.

Depending on the (re)configuration capability, FPGAs can be classified as de-
picted in Figure 2.6. FPGAs can be divided between one or two time configurable
devices (flash-based) that can replace ASIC devices and reconfigurable FPGAs.
The reconfigurable FPGAs are SRAM-based and can be classified into partially,
dynamically reconfigurable and globally reconfigurable. Global reconfiguration is
supported by previous Altera (now Intel) models. A complete FPGA configura-
tion has to be swapped while performing global reconfiguration, which leads to a
change in the internal state of the hardware and thus the FPGA has to restart its
operation.

In partial reconfiguration, the user can change the function of part of the FPGA
while other sections remain operational. Partial reconfiguration can be performed
either statically by halting the operation of the application or dynamically, where
the operation of the application can continue during the reconfiguration. Static
reconfiguration is supported by Xilinx Spartan and NanoXplore models, whereas
dynamic reconfiguration is supported by all recent Xilinx models (Kintex, Virtex
7-series).

2.3.1 Dynamic Partial Reconfiguration

The resources of a reconfigurable architecture can be reused by multiple modules
over time. Only parts of a system might be updated while continuing operation of
the remaining system. Dynamic Partial Reconfiguration [98] is the modification
of a part of the FPGA’s logic blocks, while the rest of the system remains active.
The modification of the logic is achieved by downloading partial bitstreams. The
application software triggers the reconfiguration when a set of conditions at a time
are met. It triggers the reconfiguration by sending a reconfiguration request to the
configuration manager. A reconfigurable system consists of an on-chip or off-chip
CPU (PowerPC, ARM Cortex-A9 or MicroBlaze), a configuration database (SD
card), a configuration interface (HWICAP) and the PL (FPGA’s Programmable
Logic). The configuration manager downloads an appropriate partial bitstream by
fetching it from the configuration database. The partial bitstream is downloaded
via a configuration interface called HWICAP, that can swap between partial bit-
streams. Each partial bitstream represents a different partial reconfigurable mod-
ule. Each module has to undergo all the conventional FPGA toolflow steps (Syn-
thesis, Technology Mapping, Place and Route) to compile into a partial bitstreams.
These modules are stored in the configuration database which is located in a mem-
ory. The memory can be internal in the FPGA (DRAM) or it can be external to the
FPGA (SD card). This architecture is illustrated in the Figure 2.7.

FIELD PROGRAMMABLE GATE ARRAYS 35

Xilinx Microsemi
ProASIC
Intel
Max Microsemi
RTG

NanoXplore
Intel NX-eFPGA, BRAVE
Cyclone

Intel
Stratix Xilinx

Xilinx Intel

Kintex, Virtex Stratix V

Xilinx
Virtex 2,V,7

Figure 2.6: Classification of the main FPGA architectures based on their reconfigurability

2.3.2 Parameterized Reconfiguration

Parameterized Reconfiguration is suitable to implement parameterized applica-
tions. An application is said to be parameterized when some of its inputs, called
parameters, are infrequently changing compared to the other inputs. Instead of im-
plementing these parameter inputs as regular inputs, these inputs are implemented
as constants, and the design is optimized for these constants. When the parameter
values change, the design is re-optimized for the new constant values by recon-
figuring the FPGA. A parameterized configuration contains bits that are not only
static binary (0’s and 1°s) but also multi-valued Boolean functions of infrequently
changing parameters. For specific parameter values, we can instantly derive spe-
cialized configurations by evaluating the Boolean functions for the given parameter
values. This technique is also called Dynamic Circuit Specialization (DCS).

DCS is a technique used to optimize parts of a parameterized application and
switch between the specialized parts for the current specific conditions utilizing
Partial Reconfiguration (PR) at run-time. This technique improves the functional
density (number of computations that can be performed per unit area and unit time)
of the FPGA. [37, 150]. Figure 2.8 demonstrates this method. Parameterized re-
configuration is built on top of partial reconfiguration. Therefore, most parts in

36 CHAPTER 2

FPGA

CPU Static

Reconfiguration Controller ﬁ

Figure 2.7: Dynamic Partial Reconfiguration System

the system remain the same. The application software running on the CPU con-
stantly monitors the (parameterized) inputs. Once a change in parameter value is
detected, the specialization is performed by the configuration manager by evaluat-
ing the Boolean functions (that are stored in the configuration database) for given
parameter values, thus generating the specialized bitstreams. This is illustrated in
Figure 2.9.

Tool Overview

The conventional FPGA tool flow cannot be used to generate parameterized con-
figurations. Hence, an adapted version has been created, that is visualized in Fig-
ure 2.10.

Synthesis: During synthesis, the HDL design is converted into a network of
logic gates. The infrequently changing inputs in the HDL design are annotated
as parameters. This annotation distinguishes between parameter inputs and regu-
lar inputs. The parameter inputs are also a part of the Boolean network of logic
gates produced after synthesis and are not treated differently in the synthesis step.

FIELD PROGRAMMABLE GATE ARRAYS 37

FPGA

Static

Reconfiguration Controller ﬁ

Figure 2.8: Parameterized Reconfiguration System

Hence, at this point any synthesis tool can be used, as long as it is able to handle
the parameter annotations.

Technology Mapping: During technology mapping, the tool tries to find a net-
work of cells that implements the Boolean network, in the same way as in conven-
tional mapping. Here, the network is mapped in tuneable LUTs (TLUTs). These
are virtual LUTs whose inputs are defined as the Boolean functions of the pa-
rameter inputs instead of ones and zeros. To generate a parameterized bitstream,
authors of [55] changed the conventional mapping tool to a tuneable version, so
that the Boolean functions of parameter inputs are mapped on to TLUTS or tune-
able connections (TCONSs). This process will eventually create the parameterized
bitstream. This technology mapping algorithm can be integrated with the conven-
tional Xilinx tool flow [12].

e TLUT: a virtual LUT of which the truth table entries are defined as Boolean
functions of parameters instead of ones and zeros.

e TCON: a point-to-point connection which can be made or broken, based on

38 CHAPTER 2

Parameterised Specialised
Configuration Configuration

|....01a10a’11a|b100ba&b1 |

| ..011100111100001.. | a=1,b=0
| ..010101111100101 ... |

Figure 2.9: Parameterized configurations include Boolean functions of parameters and
they are evaluated into specialized configurations

the value of a Boolean function of parameters. It is implemented using the
FPGA’s routing network. The parameterized configuration is derived from
the Boolean function.

Placement and Routing As the parameters are already included in the LUT
functionality through the Boolean functions, they are no longer present in the phys-
ical implementation of the netlist so the entire netlist can be placed and routed as
if the parameters where not present. Therefore, a conventional placer and router
can be used.

Bitstream Generation The final output of the generic stage is the Template Con-
figuration (TC) and Partial Parameterized Configuration (PPC). TC is a static bit-
stream which contains static ones and zeros, which are used for configuring during
the start of the FPGA. The PPC contains sets of Boolean functions of the parameter
inputs. The PPC needs to undergo the specialization stage, along with parameter
values to produce the specialized configuration. The specialization stage consists
of a Specialized Configuration Generator (SCG), that takes the PPC and the pa-
rameter values as inputs and evaluates the Boolean functions of parameter inputs
for given parameter values to produce a specialized configuration. During run
time, the TLUTSs are reconfigured by downloading the specialized configuration
and thus accomplishing run time reconfiguration.

The SCG reconfigures the FPGA with the Internal Configuration Access Port
(ICAP), that is a configuration interface. The ICAP swaps the specialized bit-
streams into the FPGA configuration memory. Here, the HWICAP is used as
a reconfiguration controller, encapsulates the ICAP primitive port of the FPGA
and forms a controller that performs the swapping of specialized bitstreams via
the ICAP. The bitstreams are accessed frame-by-frame. A frame is the smallest

FIELD PROGRAMMABLE GATE ARRAYS 39

parameterised parameter
HDL values

|
y L

Synthesis

Technology
mapping
TLUT/TCON

Partial

P Parameterised
Configuration

\ 4

y

4
. evaluate
packing & Boolean
Placement -
function
4
Route
Specialised
Configuration

\ 4

Bitstream

generation

Generic Specialization
Stage Stage

Figure 2.10: The two stage flow that supports parameterized configurations

addressable element of the FPGA configuration data. Each frame contains recon-
figuration bits of tens of LUTs and has its unique frame address that can be used
to point to the frame during the reconfiguration.

2.3.3 Micro-reconfiguration

Micro-reconfiguration is a technique to change the configuration of few FPGA
resources frame-by-frame. The designer has to microreconfigure the frames that
contain truth table entries of the TLUT that is implemented on this physical LUT.
It is a fine-grained form of reconfiguration used for DCS.

40 CHAPTER 2

A supporting reconfiguration controller reads, modifies and writes-back the
frames from the configuration memory and a processor takes care of executing the
cycle of read, modify and write-back of frames. The reconfiguration controller
supports a software driver function called XhAwlIcap_setCIb_bits to perform the re-
configuration. The performance of DCS is entirely dependent on the trade-off
between the benefits and the costs of micro-reconfiguration. The changes in the
FPGA architecture directly influence the micro-reconfiguration costs [87].

2.4 FPGA Overlay Architectures

The FPGA reconfiguration can be beneficially done by introducing an intermediate
layer for the reconfiguration infrastructure. This intermediate layer exists in over-
lay architectures. Because we will use such architectures, we first describe them
here. An FPGA overlay is an additional virtual architectural layer that is concep-
tually located between the user application and the underlying physical FPGA, as
it is shown in Figure 2.11. It overlays on top of the physical FPGA configurable
fabric and can carry out a variety of predefined computations [132]. With this addi-
tional layer, the user application is no longer implemented onto the physical FPGA
directly, but in the overlay architecture, regardless of what the physical FPGA may
be. An additional step is required, to translate the overlay architecture to the phys-
ical FPGA. The overlay is a virtual architecture because its features (multiplexers,
LUTs, I/0Os) may not necessarily be present in the physical FPGA. However, if the
overlay is designed properly, any design that is mapped on the virtual overlay, can
be executed unmodified on the actual FPGA without knowing its details.

The FPGA overlay can carry out certain computations. An FPGA Overlay may
be designed as a virtual FPGA, a processor, a GPU, or as a (virtual) coarse-grained
reconfigurable array (CGRA). The virtual overlay architectures provide more flex-
ibility. The designers should be able to debug their virtual architecture designs in-
system, without detailed knowledge of the hardware’s limitations. However, none
of the mentioned techniques can currently support efficient debugging of virtual
architectures without extensive resource overhead or time-consuming recompila-
tion.

24.1 FPGA Overlay Types

FPGA overlays are classified in three types, that are presented below:

Virtual FPGAs

Virtual FPGAs are built virtually on top of the commercial FPGA fabrics. The vir-
tual FPGA overlays have a different set of configuration bits and features than the
commercial FPGAs. Therefore, having a virtual FPGA layer over an FPGA fabric

FIELD PROGRAMMABLE GATE ARRAYS 41

application
mapping

overlay

overlay
mapping

Figure 2.11: Overlay architectures

improves the application portability and compatibility. The virtual architectures
proposed in [25,48,78,99] are examples for virtual FPGAs.

Benefits of FPGA Overlays

FPGA overlays have three major benefits regarding designers’ productivity:

e Significant reduction of the design space, by constraining the flexibility of
an FPGA.

o Significant reduction of the CAD flow’s run time.

e Significant reduction of the design completion time, by using models more
familiar to software designers.

Therefore, FPGA overlays provide a trade-off between performance of the
hardware and the flexibility of a software program for compute intensive parts
of the applications.

Processor-like Overlays

A second category of overlays are processor-like overlays, that are using processor-
like designs as an intermediate layer. Here, the goal is the usability of the overlay
from a user’s perspective. These overlays feature a high degree of control and
provide ample data parallelism to make them suitable for FPGA accelerations.

42 CHAPTER 2

Hence, customized soft-processors fall under this category. Examples of these
overlays are presented in [69,70, 128, 157].

CGRAs and VCGRAs

FPGA overlays are not limited to making virtual FPGAs only. On the contrary,
many researchers have demonstrated the benefits of overlays that implement en-
tirely different computing architectures such as coarse-grained reconfigurable ar-
rays (CGRAs), by taking advantage of FPGA’s general-purpose configurable fab-
ric. The CGRAs are expensive to produce for low-volume products, as they are
ASICs. FPGAs are relatively cheaper for low volume products but they are not
so easily programmable. The combination of CGRAs and FPGAs results in im-
plementing a Virtual Coarse-Grained Reconfigurable Array (VCGRA) on top of
the fine-grained FPGA fabric. VCGRAs improve the power and the overall per-
formance of the system by trading off design flexibility. Additionally, they can
reduce the configuration granularity of an FPGA from its physical fine-grained
configurable fabric such as LUTs to one with coarser reconfiguration granularity.
VCGRAS can consist of small arithmetic blocks (adders, multipliers, DSP blocks),
up to very complex microprocessors connected with a sophisticated network-on-
chip.

VCGRAS can bridge the gap between FPGA implementations and high-level
application descriptions, as with VCGRAs the time consuming design cycle of
the FPGA (synthesis, mapping, place and route) can be moved forward to pre-
compilation times. Hence, the entire development cycle is reduced, as (re)compila-
tion is avoided for the (re)construction of the VCGRA. VCGRAs have been pro-
posed before, either as optimized architectures, as a solution for long compilation
times, or as a facilitator for high-level synthesis [25, 127]. This is achieved mainly
because VCGRAs allow the designer to write the code in a higher abstraction level
language, without requiring knowledge of the underlying hardware.

Many FPGA overlays are CGRAs that are built on top of the physical fine-
grained configurable fabric. Their computations are carried out by arrays of pro-
cessing elements (PEs) that are interconnected with virtual channels (VC). Instead
of implementing the user application using low-level configurable logic of the
FPGA, these operations are translated into computational tasks that take place in
the PEs. Therefore, VCGRASs consist of a large number of PEs, laid out in a grid
pattern, and VCs, that are a communication network connecting the PEs. This is
shown in Figure 2.12. Each PE is a coarse-grained element (realized mainly using
LUTs) and it is capable of computing incoming data and pass it on to the next PE,
via an adjacent VC.

The VCGRA can be efficiently implemented using reconfigurable connections,
with the assistance of the Parameterized Configurations (PConf) flow [90]. As
PConf is a methodology used for implementing an application for which (part of)

FIELD PROGRAMMABLE GATE ARRAYS 43

Figure 2.12: A part of a VCGRA grid with PEs, Virtual Switch Blocks (hexagons) and
settings registers (rectangles)

the input values change infrequently, the VCGRA needs to be changed/adapted
only infrequently. Hence, instead of implementing the VCGRA’s inputs as regu-
lar inputs, with PConf these inputs are implemented as constants and the FPGA
overlay is optimized for these constants. When these inputs change, the design is
re-optimized for the new constant values by reconfiguring the FPGA. The intra-
connects are mapped onto parameterized physical Switch Blocks and Connection
Blocks that are implemented using the PConf [147].

A VCGRA can be favored as a design option over traditional FPGA imple-
mentations, when architectural resources are scarce, reconfiguration is infrequent
and computational tasks are demanding. In these cases, the overlay (e.g. VCGRA)
can be chosen specifically to fit a specific application class. VCGRA implemen-
tations can use less area and power than the conventional ones [38], with a small
impact in processing speed. Hence, by creating a VCGRA, less area resources are
needed. Thus, it is often beneficial to transform an application into a VCGRA.
The VCGRA, as similar coarse grained architectures, is constructed with multiple
layers of PEs/VCs. The layers are physical pipelines in the VCGRA system and
not abstraction layers.

Therefore, VCGRAs also provide a trade-off between performance of the hard-
ware and the flexibility of a software program for computationally intensive parts
of the applications. Therefore, VCGRAs are suitable to accelerate compute inten-

44 CHAPTER 2

sive kernels. The overlays presented in [73,81,90,91] are examples of VCGRAs.

24.2 VCGRA CAD Flow

Multiple flows have been proposed for VCGRAs [42,57,143]. In general, the tool
flow is obtained by combining the standard FPGA tool flow with the VCGRA tool
flow as it is depicted in Figure 2.13. The bottom side of the tool flow leverages Spa-
tial programming to describe the mapping of an application on a given (V)CGRA
architecture. There are different approaches to solve the CGRA mapping problem
described, resulting in different generations of tools, as it will be analyzed below.

2.4.2.1 First generation

In order to map applications in CGRAs, the compilation time is shorter than map-
ping the application on a fine-grained FPGA. The VCGRA tool flow produces the
VCGRA settings (for the PEs and VCs) and they are subsequently loaded into the
settings register. The tool flow consists of a synthesis and a mapping tool. First,
the application is converted into an array of PEs, interconnected with VCs. Next,
the netlist of PEs is synthesized and mapped on virtual PEs of the VCGRA. All
VCGRA interconnects are implemented on the communication network. Then,
the Place and Route (P&R) tool provides the functionality of each PE and deter-
mines the functionality of the interconnects. The first version of the tool is shown
in Figure 2.13. This work is further analyzed in [42].

2.4.2.2 Second generation

In order to further leverage the functionality of FPGA overlays, two new tech-
niques have been created:

o Partially parameterized VCGRA: The functionality of the PE is decided by
the different combinations of data. Different circuits are multiplexed within
a parameterized PE. The multiplexers (intraconnects) within a PE are not
parameterized, and only TLUTs are used. To reprogram the functionality of
a PE, we perform micro-reconfiguration. This version can support commer-
cial FPGAs.

o Fully parameterized VCGRA: Here, also the interconnects are parameter-
ized. The parameterization is achieved by expressing the intraconnects of
a PE as Boolean functions of parameters. Subsequently, both TLUTSs and
TCONS co-exist within a PE. This version can support academic FPGAs.

In more detail, this VCGRA tool flow builds on top of the parameterized recon-
figuration tool flow. Here, there are also two stages: an offline version (generic)

FIELD PROGRAMMABLE GATE ARRAYS 45

i FPGA tool flow |
| i
| |
I Synthesis I
| i
: v !
|
| H(]))fL T;Zhn°¥°gy .| vcGra i
H apping > : '
! VCGRA configuration |
| |
| v v i
| |
i P&R VCGRA I
| programming |
o R A
i) . | VCGRA
| VCGRA tool flow '
| |
| |
i . |
i —_— Synthesis I
! App !
| v |
I PE VCGRA I
H Technology tti H
| settings |
: Mapping
! VCGRA I
| arch v |
| — |
i PE |
i P&R |
I |

Figure 2.13: The two stage flow that supports a generic VCGRA implementation

of the tool and the online one (specialized). During the offline stage, the HDL
design, has infrequent (parameterized) inputs. If a value changes in the parameter
inputs, the configuration bits of the TLUTs (and TCONSs) are reconfigured with
specialized bits that are thus generated after evaluation of the Boolean functions
for a specific set of parameter values. The Boolean functions are evaluated by
a Specialized Configuration Generator (SCG) to generate specialized bitstreams.
The SCG takes a specific parameter value and evaluates the Boolean functions to
produce specialized bits. The SCG can be implemented on an embedded processor
(PowerPC, ARM or MicroBlaze) present in the FPGA.

In this approach, the settings registers are mapped to the FPGA’s configura-

46 CHAPTER 2

settings register

Figure 2.14: A schematic representation of a PE, with TLUTs, TCONs and settings
registers

tion memory and not in flip-flops. This causes massive savings in flip-flops. If
we are reconfiguring only LUTS, and not the interconnects, we can map FPGA
overlays in Xilinx FPGAs as well. Otherwise, only theoretical, academic FPGAs
can be used, since we do not have access to the low level routing reconfiguration
infrastructure of commercial FPGAs. In general, in the second generation VC-
GRA:s, the PEs are optimized by symbolic constant propagation, that is integrated
in the parameterized configuration tool flow. VCGRA’s intraconnects are mapped
in TCONSs (lower level reconfigurable routing switches), resulting in overall reduc-
tion of LUT utilization for implementing the connection network. This is depicted
in Figure 2.14, and in Figure 2.15 and is further analyzed in [90,91].

2.4.2.3 Third generation

Here, the tool flow moves away from academic FPGA architectures, and creates
a VCGRA that can be used alongside the Xilinx flow, as a third party IP. The
researchers in [38] have proposed a VCGRA generator that is assisting the designer
in creating architectures and configurations for them and the implementation of
hardware using vendor tool-chains.

First, a VHDL generator creates the top-level entity and all the corresponding
architectural components for the VCGRA. The description of the communication
infrastructure and the processing elements are provided to the tool as input files.
A toolset processes the HDL-description of architectural templates for the com-

FIELD PROGRAMMABLE GATE ARRAYS 47

Synthesis

!

|
|
|
|
|
|
|
i of TCONMAP
|
|
|
|
|
|

HDL TLUTMAP VCGRA
VCGRA configuration
l VCGRA
BER programming
A
y
L S o o o o o o o o o o I o I o I I D I T I T T T T T .:'.:":"I VCGRA
| VCGRA tool flow
|
PE - p
Synthesis ™| configuration

!

|

i

i

i

i

!

BE VCGRA I
Technology settings !
Mapping !
|

i

i

|

i

i

|

Figure 2.15: The two stage flow that supports a parameterized VCGRA implementation

ponents, and a definition of the desired target architecture as input. At this point,
the VHDL generator can generate VHDL code and supplemental files, that are re-
quired to allow the mapping of algorithms and the creation of configuration vectors
for the VCGRA.

A mapping tool has been designed for this architectures and it requires two
graphs as input: a software graph of the application, and a hardware graph, of
the internal description of the VCGRA. The output of this tool is a schedule for
the graphs (if applicable), the description of the connection of inputs and outputs
between the graphs and the VCGRA configurations for all the partitions of the al-
gorithm’s data-flow-graph. The output is the VCGRA'’s configuration which can be
converted to bitstreams using the VCGRA generator [38]. This process is depicted
in Figure 2.16.

With the 3rd generation of VCGRA tools, applications can be mapped in over-
lays in commercial architectures. The overlay design increases the usability over
multiple hardware generations. Area reductions have been observed in compari-
son with traditional FPGA implementations. However, more than half of the whole
processing time is used to transmit data values and coefficients, due to the limita-
tions of the AXI interface. Moreover, frequent reconfigurations are not beneficial

48 CHAPTER 2

Application Library of VCGRA
C++ Operations properties

mapping

VCGRA
Implementation

VCGRA
wrapper

Figure 2.16: The tool flow that supports a Xilinx VCGRA implementation [38]

for the execution timings.

2.4.3 FPGA Overlays for Verification

Overlay architectures have become a popular option to support a variety of high-
performance computing applications implemented on heterogeneous computing
platforms. However, most of these architectures cannot offer an efficient way to
dynamically debug and repair them.

With the emergence of FPGA overlays and VCGRAs, the current debugging
techniques cannot efficiently debug the new designs. In order to perform FPGA-
based debugging, it is essential to store signal values to trace-buffers (internal
or external memories), as the signals cannot be accessed directly. Thus, the use
of current in-circuit debuggers will have two possible effects on debugging VC-
GRAs. First, there is a large area needed for trace-buffers in order to store all
the debugging information. Also, the designer will need to sit through long re-
compilation cycles to debug a design with the conventional tools. Hence, for a
high-performance application the design will need at least a day to recompile, to
adjust a new set of signals. The second effect is the fact that, if a conventional
debugger is used, the high-performance application designers will have to do a
hands-on debug.

There are a number of drawbacks associated with Static Random Access Mem-

FIELD PROGRAMMABLE GATE ARRAYS 49

ory (SRAM)-based programming technology and FPGA overlays. For example, an
SRAM cell requires 6 transistors which makes the use of this technology costly in
terms of area compared to other programming technologies. Furthermore, SRAM
cells are volatile in nature and external devices are required to permanently store
the configuration data in high-reliability environments. These external devices add
to the cost and area overhead of FPGAs. Additionally, the internal observability
of FPGAs is non-existent, making debugging a challenge. These drawbacks are
the focus of this thesis. Throughout this thesis, the two identified problems in de-
sign: technology shrinking that causes radiation effects and SoC complexity that
causes complex bugs are investigated in par with FPGA overlay solutions. First
with one-level FPGA overlays, and then with two-level overlay architectures.

2.5 Conclusion

In this chapter the basics of FPGA architectures and their respective tool flows are
presented and the concepts that will be used throughout in the thesis are analyzed.
In more detail, the parameterized configurations approach is presented, alongside
its architecture and tool flow, and the basics of FPGA overlays. At the end of the
chapter it is described how these custom FPGA techniques can be used to facil-
itate verification and reliability techniques. This chapter concludes the first part
of the dissertation, that is used to provide to the reader the necessary background
information needed in the remainder of the thesis.

Part 11

In-Circuit Debugging

In-Circuit Debugging using
Parameterized Configurations

In this chapter, a novel method for in-circuit debugging is introduced, that allows
the insertion of low-overhead debugging infrastructure, by exploiting the tech-
nique of parameterized configurations. This allows the parameterization of the
LUTs and the routing infrastructure, to create a virtual network of debugging mul-
tiplexers. It aims to facilitate debugging, to increase the internal signal observ-
ability and to reduce the debugging (area and reconfiguration) overhead. Signal
ranking techniques are also introduced, that classify signals that can be traced
during debug. Finally, the results of the method are presented and compared with
a commercial tool. The area, time and power results and the trade-offs between
internal signal observability and area and reconfiguration overhead are also ex-
plored.

3.1 Introduction

Ensuring functional correctness of implementations in hardware despite the rising
levels of design complexity has been a major focus of research and development
since the beginning of digital system design. This focus has led to remarkable
advances in the verification and debugging of digital designs. While failures can be
caused by various defects, such as logic, timing, circuit, layout, mask and process
errors, there is no straight forward way to locate the root cause of these errors.

54 CHAPTER 3

Therefore, specific verification (simulation-based) procedures have been used to
detect the failures in the design. These procedures are generally considered costly
and time consuming. Thus, verification and particularly hardware debugging has
become one of the biggest challenges in hardware design. Ensuring a design’s
functional correctness, within time-to-market constraints continues to stand as one
of the biggest challenges for today’s hardware design teams.

Designers have been using software-based analysis tools, such as simulators, to
ensure the design’s functional correctness. Simulators give the designer a view of
the system under test and its behaviour at any time. However, the rising complex-
ity of embedded systems, makes it inherently more difficult to isolate the silicon
failures and to find their root-causes. Moreover, simulators are time-consuming
and they test the design under ideal conditions, which can differ from run-time op-
eration. Thus, simulation can be incomplete and bugs can potentially escape from
the attention of the simulator.

A growing number of designers are now opting to prototype their design using
one or more FPGAs. Such FPGA emulation is much faster than simulation and
enables higher verification coverage compared to simulation, allowing designers
to test their design using realistic scenarios. The main fundamental drawback of
using FPGA emulation is the limited internal signal observability. While simula-
tion gives full visibility, FPGA emulation allows the designer to observe only a
restricted number of signals due to the scarce number of output pins. This limits
the productivity of debugging via FPGA emulation, as the designer has to recom-
pile the entire FPGA in order to observe different signals through the output pins.

There is a growing need, as the designs become more complex, for software-
like debugging. The designer should have a hands-off debugging without a de-
tailed knowledge of the underlying hardware. Moreover, the designer should have
early and easy access to all signals with an automated tool. Last but not least, as
the designs scale, the available FPGA resources can become scarce. As FPGAs
scale to even larger capacities, we need simulator-like observability. Even though
FPGA emulation operates orders of magnitude faster than simulation, it is critical
to provide simulator-like observability for FPGA emulation during debugging and
verification and within TTM constraints.

3.1.1 Motivation

In-circuit debuggers offer a practical solution to efficient debugging and verifica-
tion. However, the widely used, commercially provided debug tools, such as ILA
by Xilinx, Quartus by Intel and Identify by Synopsys, offer limited internal-signal
observability and they induce large additional resource overhead. Usually, design-
ers use their own experience to overcome the limited internal signal observability
by intuitively selecting the most critical signals to be observed, in order to avoid

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 55

the long recompilation cycles. Additionally, vendors want more software design-
ers to also use FPGAs and they may not have the knowledge to select the critical
signals, adding more pressure to get software-like debugging capabilities. In order
to overcome the limited observability, the commercially available solution tends
to insert trace-buffers to record various cycles of a trace of a subset of internal
signals, while the device operates. Xilinx and Altera and technology independent
vendors both provide in-circuit debuggers with trace-buffer integration [65, 155].
The main drawback of these techniques is that the subset of signals has to be pre-
determined before the nature of the bug is known, during compile-time. Then, if
the source of the bug is not found, the designer has to recompile the design, in
order to pick a new subset of signals. Often many recompilations and/or recon-
figurations are required during debugging, to narrow down the root cause of the
unexpected behaviour.

Researchers have proposed the use of incremental routing in order to connect
signals to trace-buffers without a complete recompilation [61]. However, these
techniques are still slow. Moreover, these tools perform independently, after the
design is finalized. There is a need though, for a debugging tool flow that is
completely integrated within the normal CAD flow, in order to limit hands-on,
experience-based signal selections.

3.1.2 Contribution

In this chapter I propose a novel in-circuit verification toolflow that integrates de-
bugging functionality in the typical FPGA design flow, before the design is final-
ized. It operates in two stages. During compile time, it automatically generates an
overlay debugging infrastructure, based on the parameterized reconfiguration prin-
ciples, and an adaptive number of trace-buffers. Instead of signal pre-selection, all
signals are parameterized and virtually connected to on-chip memories. Then, dur-
ing debug time, the tool enables a trigger-to-debug infrastructure. In this mode, the
adaptive debugging starts to connect signals to trace-buffers by using the reconfig-
urable routing switch blocks of the target FPGA.

The proposed method combines the advantages of enhanced internal signal ob-
servability and fast FPGA reconfiguration in one tool flow. It has three main parts:
a design step to add the debugging infrastructure incrementally, a parameterization
step that applies the parameterized configurations technique in the design under
test and an online step that applies the debugging methodology to a target design.
This approach has various benefits over other debugging methods:

o Extended internal observability: With integration with Parameterized FPGA
Configurations, the designer can trace a new set of signals fast, completing
the debugging process within TTM constraints.

e Reduced area resources: By parameterizing all possible internal signals, and

56 CHAPTER 3

dynamically adapting the added on-chip memories, the extra resources are
reduced.

e Minimal debugging cycles: By prioritizing between signals with ranking
algorithms, the source of the bug can be found faster, hence reducing the
total number of debugging turns needed.

e Automated tool: The designer has only to select the DUT and to run the
flow to perform hands-off signal tracing. Minimal user interventions assure
that the DUT can be less prone to errors that can potentially occur during
debugging. The less gate-level manipulations the user has to perform, the
more the original design can stay unaffected.

The main contribution is a novel methodology where all internal signals of a
given design can be selected automatically for tracing. Then, a signal selection
algorithm adds the possibility of ranking internal signals. The ranking is done
based on various criteria. In this way, the signals are organized based on their
expected impact on a design. A signal-selection step has been added to ensure
the signal selection efficiency and quality. The generated netlist has integrated
debugging functionality and can be enabled and disabled without affecting the
design under test.

The added functionality enables the user to debug large designs without sig-
nificant area overhead. We use the standard benchmarks that are widely accepted
and used by the testing community (ITC99), to validate the usage of the in-circuit
debugger in realistic designs. In the experiments section, we perform design space
exploration to validate the scalability of the method and of the signal selection al-
gorithms, while increasing the design size and decreasing the size of the available
FPGA resources. Additionally to the added functionality, the efficiency of the pro-
posed CAD tool is explored alongside its compilation times for large designs. The
proposed on-the-fly adaptation of the debugging infrastructure achieves a balanced
trade off between area overhead, signal observability and compilation time. The
benchmark suite is used in order to calculate compilation times and area overhead
of the debugging infrastructure.

The main contributions are:

1. Dynamic data folding of the internal signals of a given design under test.
Signal compression of mutually exclusive signals.

2. Two Signal Ranking techniques, that classify the internal signals to allow
debugging of larger designs.

3. A tool flow that applies the above-mentioned techniques to a given design.

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 57

In-Circuit Debugging

Synthesis<j8

Place & Route

@ One FPGA-overlay level
O PConf backbone

Figure 3.1: Visualization of this chapter’s contribution

The contribution can be visualized in high-level in Figure 3.1 and is a first
step towards adding debugging in the next generation tool flow that was depicted
Figure 1.1(c) in Chapter 1.

The remainder of this chapter is organized as follows: Section 3.2 reviews
the state-of-the-art techniques for in-circuit debugging. Section 3.3 presents the
proposed technique and Section 3.4 the proposed tool-flow. Section 3.5 presents
optimizations on the original technique and the adapted design flow that supports
it. Finally, Section 3.6 describes the experiments that were performed and the
results, followed by the Conclusion in Section 3.7.

58 CHAPTER 3

3.2 Related Work

Most FPGA designers use pre-silicon design verification and analysis tools before
downloading a design into the physical device. However, the designers cannot rely
only on pre-silicon design verification to detect all design bugs, as it is not possible
to reproduce realistic environmental conditions that a design will encounter with
pre-silicon verification. It is several orders of magnitude slower than the actual
silicon. It is very useful for some situations, such as the verification of individual
bugs, but it faces scalability issues for full chip-level verification [36]. Therefore,
it is often impractical to simulate complete systems, because software simulation
scales badly, as it becomes slower when the design is bigger. Also, it is not al-
ways easy to create realistic scenarios and fault models to locate design errors.
Furthermore, the complexity of integrated circuits continues to increase, making
simulation impractical.

There are four basic methodologies for in-circuit FPGA debugging, namely
Embedded Logic Analyzers (ELAs), Embedded scan chains, external test equip-
ment and readback.

Debugging with External Test equipment, such as oscilloscopes and external
logic analyzers is convenient if there is access to the necessary equipment [58].
External Test equipment operates by monitoring the external output pins of the
integrated circuit. It analyzes how the states of the external output pins respond
to certain signals placed on the external input pins, in order to determine if an
error has occurred within the integrated circuit. However, since the external logic
analyzers are capable of accessing the integrated circuit only through the external
pins, internal conditions of interest for debugging cannot be monitored directly.
With these models, it may be impossible to accurately determine the precise source
of a bug, as there is no direct access to the internal inputs and outputs of the
components under test.

On-chip observability can be enhanced using trace-based techniques. Trace-
based techniques operate by allocating a significant amount of the FPGA’s mem-
ory resources to record a small subset of internal signals while the FPGA is op-
erating in real time. Various trace IP solutions are provided by the commercial
vendors [64, 142, 146]. Here, the subset of signals are connected to on-chip mem-
ories, called trace-buffers, and it must be determined by the designer before the
circuit is implemented. The trace-buffers are used to record a history of the im-
portant signals (or nets), during normal device operation [59]. Then, an engineer
can use this information to understand the behaviour of the system. The drawback
of this technique is that only a limited amount of such instruments can be inserted
due to resource constraints.

Debugging with ELAs is one of the basic methodologies for in-circuit FPGA
debugging [64, 142, 146]. However, it offers limited observability, as only a few

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 59

signals can be observed at the same time. Therefore a recompilation is needed
if a new debug cycle starts. Additionally, their area overhead increases with the
number of signals to be observed. ELAs are provided by commercial vendors, as
debug IPs. Both Xilinx’s Vivado and Intel’s Quartus use general-purpose incre-
mental compilation to avoid full recompilation if the debug core is updated during
debug iterations, whereas Intels SignalTap II compiles the debug core with the user
circuit as a separate partition (and recompiles this partition separately if the prop-
erty of the debug core is updated). Synopsys Identify requires a recompilation if
new logic is introduced to the debug core.

There are tools that avoid recompilation, such as Certus by Mentor Graph-
ics [103]. However, these tools still require the designer to predetermine a few
signals that they can observe. Therefore, the subset of signals that can be observed
is small as well. Another drawback is that the signals have to be selected before
synthesis. Hence, observing a new subset of signals requires the circuit to be re-
instrumented and recompiled, a process that can take hours [22]. Additionally,
the insertion of the debug circuitry and the pre-selection of signals can alter the
place and route of the design and can potentially create other problems, such as
the user circuit may no longer fit in the FPGA device, or artificial timing limita-
tions caused by the debugging circuitry. Therefore, complete on-chip visibility is
still not provided and a full recompilation is not always avoided.

All the above-mentioned techniques are slow and/or have large area overheads.
Also, they offer limited observability, as their area overhead increases with the
number of signals to be observed. The approaches described below aim at enhanc-
ing the limited on-chip observability by recording more signals for longer periods
of time, by minimizing the area and time overhead and by avoiding recompilation
or re-instrumentation of the design.

Embedded scan chains offer very high observability and operate in virtual-
time, but they have reduced performance [79, 148]. Most commercial FPGAs offer
a way to read out the contents of its flip-flops and block-RAMs through a suitable
interface, without destroying the machine-state. It does so without any overhead
on the FPGA fabric and hence no perturbation of the application. These FPGAs
can support readback-based techniques. Readback stands between embedded logic
analyzers and scan chains, as they introduce less area overhead and they don’t need
to restore to the initial state.

Readback is used to retrieve the entire state of the circuit. It is initiated by
sending a sequence of commands to the device, from where the machine-state
captured in LUT registers, block RAMs and distributed RAMs can be read out
through an interface. Readback approaches offer full observability without requir-
ing re-synthesis, nor additional resources. Effort has been made to enhance their
functionalities by adding features that enable the design to run unsupervised until
it finds an error and then launch Modelsim automatically. However, this can be

60 CHAPTER 3

done only for a single clock domain [75]. This is solved at [144], where the au-
thors extend the debugging functionalities to support multiple asynchronous clock
domains in a clock-deterministic manner at negligible cost. Most importantly, no
BRAMs or additional routing circuitry are required.

Readback-based solutions have an advantage over their counterparts, as they
offer full observability, without requiring re-synthesis when changing or adding
debug signals. However, they cannot provide the same level of flexibility as do
overlay architectures. Moreover, they also need to halt the circuit before scan-out.
Also they may cause data loss without a specific support mechanism. Moreover,
the introduction of a trigger mechanism can potentially affect the critical path.
This can greatly slow down their use for real-time debugging [4, 144, 156]. Thus,
in order to efficiently debug the hardware designs in-system, the current limitations
of the in-circuit debuggers have to be addressed.

Trace buffers are on-chip memories that are used to record a specific set of sig-
nals for off-line analysis, during debug. Academic works have used overlay-based
incremental techniques for signal tracing while avoiding full recompilation during
debug [31,47,61,62]. In [47,62] the researchers used incremental routing tech-
niques to connect signals from the user circuit to trace buffers, whereas in [31,61]
the researchers extended these techniques into a virtual overlay routing network
and an accompanying routing algorithm to route trace signals to trace-buffers, by
connecting all on-chip signals to the available trace buffers. Then, during debug,
the designer can choose any set of the design signals for observation. If this set has
to be changed, then only the control signals of the overlay’s routing multiplexers
have to be updated. In that way, the need for a full recompilation is eliminated and
the original mapping remains unaffected. In [32, 60, 63] academic works demon-
strate the post-implementation insertion of debugging infrastructure. All these
techniques distribute the debugging logic over unused resources. However, these
works demand adequate empty regions to install their circuitry. These techniques
can be proven problematic in highly utilized FPGAs. Additionally, they can create
a new longer critical path and cause routing congestion. In order to handle the
resource overhead, researchers use the properties of compiler-optimized HLS cir-
cuits and adaptable trace-buffers to enable dynamic tracing [43,44] with limited
resource overhead. They also adapt the trace-buffer architecture for even more ef-
ficiency. Dynamic signal tracing techniques increase observability. However, on
a highly-utilized FPGA, it may be hard or even impossible to find a region large
enough to implement the additional logic. In that case as well, a trigger mecha-
nism, can also potentially introduce a new long critical path. Most importantly,
this technique is only available for compiler-optimized HLS designs. Even though
readback solutions are more efficient in terms of resource requirements, the over-
lay and dynamic tracing architectures provide more flexibility. However, all of the
above-mentioned techniques can introduce a longer critical path and due to the

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 61

fact that they perform non-automatic manipulations, they can be time consuming,
introduce errors to the original design and affect the circuit’s optimization.

3.3 In-Circuit Debugging using Parameterized Con-
figurations

In this chapter, the first contribution of this thesis is presented. This chapter aims
at building a debugging infrastructure, where internal signals are (virtually) con-
nected to trace-buffers in an efficient manner. The proposed technique targets ei-
ther ASIC designs that are prototyped in FPGAs to expedite verification, or designs
that use FPGAs as a final product. First, it is proposed a new trace-based debug-
ging approach that is combined with the Parameterized Configurations method,
where the latter is used to virtualize the internal signals. Then, it is shown how
these signals can be prioritized in order to minimize the number of debugging
cycles.

Hence, the remainder of this chapter discusses the proposed technique, where
the debugging instrumentation is fully automated and it occurs during the original
compilation of the design. The debugging infrastructure is added incrementally
as a latency insensitive design and alongside the original RTL design, making
it less prone to errors. The debugging circuitry is fully adapted, integrated and
optimized alongside the original circuit. Additionally, since the tool is automated,
the designer does not have to indulge in manual-level optimization and hands-on a
priori signal selections.

Efficient Routing of Debugging resources

In order to increase the routing efficiency in large designs, the concept of a TCON
is used [147]. A TCON is defined as a connection with a connection condition
expressed in terms of parameters. A TCON is implemented by a set of wires
and switches, and the dynamic reconfiguration of some of the switches in the set.
Regular connections have a source and a sink. A TCON has a source and a sink as
well. Additionally, every TCON has a connection condition:

((p): B" = B

where n is the number of parameters, as it is shown in Figure 3.2. This is a Boolean
function of the parameters that returns true when the design requires the connection
to be active. The connection conditions of the TCONSs reflect the fact that not all
connections are needed at the same time, since in debugging not all signals need
to be observed at the same time.

TCON:Ss allow us to distinguish which signals are mutually exclusive in time.
These signals will be allowed to share the FPGA routing resources. TCONs are

62 CHAPTER 3

— Up)
— A
L - — |
(@) (b)

Figure 3.2: Description of normal routing connections (a) and tuneable connections (b)

abstractly generated during technology mapping and are later refined to concrete
FPGA resources during placement. After placement, the endpoints of the TCONs
are fixed to the specific signals-multiplexers to be traced and the router further
refines the DUT by reserving the switches and wires to realize the connection
between the subset of multiplexers and trace-buffers.

During routing the tool flow has to route a large set of TCON-containing sig-
nals. These signals have more than one resource sharing possibility. They may
share resources if they have the same source or if they are not active at the same
time. Two TCONSs, sgn, and sgny with their connection conditions (7 and (5, are
not active at the same time, if their connection conditions are not simultaneously
true for every parameter value (ng and ni). Thus, if sgn; and sgns are not active
simultaneously for each parameter p in a set of parameters P then

V(p) € (P) = —~(Ci(p) A CG2(p)) (3.1)

The results of Equation 3.1 are reflected in Figure 3.3. Here, the tool has
detected during technology mapping that the sgng and sgns that represent the
gates NAN Dy and NAN D; are not used at the same time, so they can share
resources. Therefore, during debugging, the signal set will contain the sgny and
not sgne. This is defined by the Boolean function that uses as parameter inputs the
multiplexers’ selection bits: ng, n1, ..., n,. Hence, the tool will create a subset of
signals that for each multiplexer-cluster are never used at the same time.

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 63

sgng

T

Figure 3.3: Signal select. Multiple signals are controlled via a set of parameters. Mutually
exclusive signals form a Boolean function of the parameters.

Oo <= 19 < ngny
0, <=1« noni (32)
Oy < iy < —NgN2

The mutually exclusive signals are now the outputs of the debugging multi-
plexers ig, %1, ...,%,. New connections are made to the on-chip memory for ob-
servation. These connections are not parameterized, since they are active all the
time, tracing different signal sets for multiple cycles for each debugging turn. The
corresponding RAM inputs are depicted in Equation 3.2.

The proposed method depends solely on time-exclusive internal signal mul-
tiplexing. This means that the tool will attempt to route all signals to the trace
buffers while minimizing their wirelength. As a first step, in this method a fixed
number of trace-buffers is initiated. Then, the tool tries to route all possible signals
to the trace-buffers. In this case a maximum signal observability is defined, with
a penalty on area resources and possible routing congestion. Here, the design is
fully parameterized, with all signals being connected to virtual multiplexers and
all the new multiplexers are guided to a fixed number of on-chip RAMs. Since the
time-multiplexing aspect exists, that uses the same resources for signals that are
not used during the same clock tick, it is more resource-efficient than the conven-
tional ELAs. This algorithm is efficient, in the case that there are available FPGA
resources.

The multiplexers’ selection bits that have been incrementally added, are anno-
tated as parameters, as they change (but less frequently than the other parts of the
design) depending on the set of signals that will be observed during the verification

64 CHAPTER 3

phase. These parameters indicate whether or not a single signal has to be observed
in a certain debugging run. All the debugging multiplexers are implemented in
the FPGA’s reconfiguration resources (instead of the regular resources) reducing
the overhead significantly. This is achieved with the TCON mapper, that has been
explained in Chapter 2.

The parameterized Boolean network that implements the debugging infrastruc-
ture is generated during the synthesis step. Then, it is not mapped onto the resource
primitives available in the target FPGA architecture, but on abstract primitives in
the routing infrastructure that represent parameterized versions of these resource
primitives. This procedure is further explained in Section 3.4. This process has
to be performed in such a way that after the new modifications, the new descrip-
tion remains synthesizable. In our case, it is guaranteed due to the fact that the
incrementally added parts are pre-verified and synthesizable. During the signal
parameterization, the internal signals are interconnected with the debugging in-
frastructure, based on the latency insensitive design theory [14]. This means that
we incrementally add pre-verified design components (multiplexers and memo-
ries) that are insensitive to communication delays and we integrate them in the
design, in order to meet performance criteria. With latency-insensitive designs the
added logic has no strict constraints on the number of clock cycles in which it must
return a result. On-chip memories that are used as trace-buffers are a good example
of latency-insensitive logic, as the trace-buffers are used to record multiple cycles
of on-chip signal activity for debugging. This improved flexibility usually comes
at the cost of area overhead. However, in our case, most of the added components
(the multiplexers) have some virtual inputs. Thus, even though they are added,
they are parameterized. The parameterized infrastructure will be able to assign
signals to trace-buffers.

3.4 In-Circuit Debugging Tool

In this section, we present the proposed in-circuit debugging method, which con-
sists of two phases, as with the conventional design flow depicted in Figure 3.4:
the design (generalized) phase and the debugging (specialised) phase.

The first stage is the design phase and it is dedicated to creating a virtual net-
work of multiplexers that contains Boolean functions and describes multiple sig-
nal sets, according to the PConf flow. The parameterized debugging architecture
in fact is created during this phase, by annotating as parameters the selection bits
of the internal signals. The debugging infrastructure is added on a design and the
design is then synthesized, placed and routed and a generalized bitstream (with
Boolean logic) is created. This varies from the conventional bitstreams, as a vir-
tual FPGA overlay is created that has a Boolean function that describes the way
signals are connected through trace buffers.

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 65

f adapt core/ reimplement

i Step 1 Step 2 Step 3 E
Q
i g
!| Create & Implement | Add debugging core - Use Analyzer to 5
Il > >
! design to the design debug the design % H
: 2
1 =
1 1
I I
1 1
1 1
;

\
1 Step 1 Step 2 1
; o |

3 !
1 | Create, Implement, Use Analyzer to S
: add hw to design debug the design 2 1
i g
1 1
1 ’

Figure 3.4: Outline of the conventional versus the proposed debugging process. The
elimination of one step boosts runtime efficiency.

At the end of these steps, before the bitstream is loaded within the FPGA con-
figuration memory, the tool evaluates the Boolean function with the parameter val-
ues denoting which signals are observed and creates a specialised (conventional)
bitstream. The intermediate steps that complete the design phase are the main
focus of this work.

The second stage is called the debugging phase and performs the actual debug-
ging. During this phase, for each debugging turn, the design can be reconfigured
with different signals. The signals that are not traced at the same time can share
routing resources (based on the parameter settings). This is outlined in Figure 3.5.
Each phase is described step-by-step in the remainder of this section.

3.4.1 Design phase

The method used to apply the proposed technique enables automatic generation
of PConfs starting from the DUT and is based on the same steps as conventional
FPGA tool flows: synthesis, technology mapping, placement and routing [56].
Figure 3.6 outlines this stage of the tool flow.

Custom Hardware Addition

At the beginning of the design phase, the tool locates the internal signals and adds
the multiplexer network, that is connected to the internal signals. Then, the trace-
buffers are integrated in the design.

In more detail, the tool reads the DUT and locates the internal signals and con-
nects them with the debugging infrastructure randomly. The multiplexer’s selec-
tion bits are annotated as parameters. The parameters will indicate whether or not

66 CHAPTER 3

t \
1 1
! . Full Compile ! Tape
l (hours) ’ | out
1 1
1 1
! FPGA !
. reconfiguration !
[,
(a) Conventional Debug Flow

\"Offline stage - Compile time” ~~~~) { Online stage - Debug time
1 1 1
] Generic Stage |' £ !
Ty I T R e
. esign Parameterised | 1 S s1gnal s
! Signal Selection [} & | A
= T A pmisine)
\ ! C

. 1 1
: Parameterised | 1 : TCON =

!)

: FPGA X +>| Reconfiguration OdE te
! P
! Full Compile Configuration | ! ' (milliseconds)
| (hours) K '

Generic Stage Specialisation Stage

(b) Proposed Debug Flow

Figure 3.5: Proposed debugging flow. The proposed two discrete offline and online stages
boost runtime efficiency.

a single signal has to be selected to be observed in a certain debugging run. In or-
der to achieve that, these multiplexers are implemented not in the regular resources
but in the FPGA’s reconfiguration resources, reducing the overhead significantly.

An overlay network that routes the possible signals to the available trace-
buffers is created and the appropriate annotation is automatically generated, that
will enable the parameterization of the added hardware, at a later stage. Figure
3.7 demonstrates in different layers how the signal parameterization is achieved.
The middle layer shows the FPGA and the signals that need to be observed. Then
the virtual level adds the infrastructure that multiplexes the signals to trace-buffers
(top layer). Therefore, after the hardware addition the DUT has an integrated de-
bugging infrastructure, that is almost the same size as the original circuit, but for
an extended circuit with tracing infrastructure installed at its signals. Hence, dedi-
cated FPGA resources (that are claimed before implementation) for the multiplexer
network and for the trace-buffers are no longer needed.

The parameterized debugging infrastructure is integrated inside the normal
CAD flow, in order to alter as less as possible the critical path delay, to prevent
additional routing stress when new signals are to be traced, and to offer automation
of the process. Since the debugging infrastructure is incrementally added during
compilation, it is optimized alongside the original design.

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 67

HDL circuit

e mmmm e >[ﬁi?rz:ﬁ::gggg parameterised netlist

Synthesis

A4

Synthesised gate-level netlist
(Quartus)

!

Logic optimisation
(ABC)

'

Signal-Set Select Toolset

L et Signal -
SignalRank |—>| GateRank |

Technology Mapping L
(TCONMAP) -

(T)LUTs & (T)CONs -------1

.net netlist of logic &
heterogeneous blocks

FPGA
architecture - --|

Packing (TPack)
description file

Routing (TRoute)

Y

parameterised towards Verification
FPGA |-------- * Phase
configuration

Figure 3.6: Schematic of the generic stage of the proposed tool flow.

Synthesis

At this point, the DUT is synthesized. The synthesis step can be performed by
ABC, or by any tool that is able to synthesize functional blocks to an FPGA flow
and communicate directly with it. ABC is a part of the VIR flow [97] (a common
academic FPGA CAD flow). This is needed, as the next stage we will use the
graphs that are generated by ABC. Additionally, a synthesis tool that can pass the
parameterization information without altering the design is needed.

68 CHAPTER 3

/ Overlay

B Design

Trace Buffers

Figure 3.7: Demonstration of the separate layers. The user circuit, the parameterized
multiplexers and the trace-buffers respectively.

TCON Technology Mapping

During technology mapping, the parameterized Boolean network of the added de-
bugging infrastructure that was generated during signal parameterization is not
directly mapped onto the resource primitives available in the target FPGA archi-
tecture, but intermediately on abstract primitives that introduce and allow the re-
configurability of the logic and routing resources. Therefore, the extra multiplexers
added to guide the internal signals to the (also added) trace-buffers have their selec-
tion bits parameterized into Boolean functions and mapped in the virtual abstract
primitives.

TPaR Placement and Routing

Next, the Tuneable Place and Route tool (TPAR) places and routes the netlist and
performs packing, placement and routing with the algorithms TPack, TPlace and
TRoute accordingly [12,56, 147]. These algorithms route the DUT in a way that
their routing resources can be reused to route a new subset of signals to the trace-
buffers during debugging. Hence, the signals that can be traced can share routing
resources (based on the parameter settings).

3.4.2 Debugging phase

At the end of the computationally intensive design phase the TPaR creates a PConf.
The debugging phase is the specialised stage of the flow, where the DUT’s trigger
is initiated and the debugging can start. During this phase, for each debugging
turn, the design can be reconfigured with different signals. The signals that are

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 69

not traced at the same time can share routing resources (based on the parameter
settings). For each debugging cycle the network that is partially reconfigured with
the exact signals the designer wishes to trace, the new signal selection translates
directly into a new evaluation of the function that represents the selected signals.
Then it can be reconfigured with Dynamic Partial Reconfiguration.

The multiplexer network added with the signal parameterization tool is recon-
figured with the specialised solution which is evaluated according to the new sig-
nals that have to be observed. In order to generate a new set of signals, a specialised
configuration is automatically performed, with minimal user interaction and with-
out halting the DUT. The Boolean functions are evaluated for a specific parameter
value by the Specialized Configuration Generator to generate a specialized bit-
stream. Usually it is implemented on an embedded processor. The embedded
processor is responsible to swap the specialized bitstream into the configuration
memory using the HWICAP. It is worth noting that here, only the configuration
cells of all the routing switch boxes and the connection boxes for the memory
resources will be reprogrammed, instead of the full recompilation and/or reconfig-
uration, (as it is the case in related work). Therefore, by implementing a PConf
the extra recompilations are avoided during debugging, since only an evaluation
of a Boolean function is needed, instead of recompilation and/or reconfiguration.
Moreover, there are no FPGA resources dedicated to the inserted multiplexers.

3.5 Efficient signal selection

In order to multiplex signals in the on-chip memories efficiently, the random-set
selection implementation is not enough. The basic drawback is the fact that opti-
mally the designer would want to randomly enable all signals to possibly connect
to a set number of trace buffers. The efficiency of the PConf lies in the mutual ex-
clusivity of the signal parameters. Therefore, the mutual exclusivity in the case of
multiple parameters (all internal signals) cannot be guaranteed and/or introduces
routing congestion. In order to overcome this, two options are currently available.
The verification engineer can either allocate the trace-buffers in the spare FPGA
resources [61], or pre-select a subset of signals to trace, so that the trace-buffers
needed are significantly less than the total signals. The first option is not viable,
since the debugging infrastructure is added after synthesis and optimized along-
side the DUT. Thus, the leftover resources are not yet known. The second option,
regarding signal pre-selection is not optimal, since in that case the designer needs
to reserve a large area for the signals.

However, since the designs are becoming more complex, on-chip debugging
based on signal sets that are decided by the design engineer, is not always effi-
cient. Moreover, the exploitation of the routing infrastructure has its limitations.
Additionally, the designer often needs an indication of the criticality of each part

70 CHAPTER 3

of the design, without having to indulge in the design itself. Hence, avoiding ran-
dom signal selection and giving a set of signals that are more prone to bugs, could
reduce the number of debugging cycles. Furthermore, the set itself can provide an
indication of the design’s complexity and even on the total amount of resources
needed to be pre-installed during this first compilation, to ensure a smooth debug-
ging process. In that way, the verification engineer doesn’t need to have detailed
knowledge for the underlying hardware and about the design itself to perform de-
bugging in an efficient manner. Therefore, in the remainder of this chapter, the
signal selection process is transformed from random into a classification problem
and we propose two signal selection techniques that select signals based on speci-
fied criteria and not solely on randomization.

SignalRank is an algorithm that we created that partitions the signals between
critical and non critical signals. The critical signals are the subset of the total
number of signals that have many connections within the design. Hence, if the
gate u has a large fanout (F,) and/or fanin (F};), according to SignalRank, it will
be added at the top of the list. That means that during debugging, the signals of
the gate v are immediately traced. Moreover, SignalRank can give an indication
of the congestion of the netlist and adapt the trace-buffers accordingly.

SignalRank has significant limitations. Despite the fact that it can give an
indication of the criticality of a single signal or gate, there is no way to tell which
signal/gate is more critical, if they share the same fanin and fanout. In order to
take into account these facts, alongside fault propagation, SignalRank has been
extended to GateRank.

3.5.1 GateRank

A gate-level netlist can be described as a set of nodes that represent the gates and
a set of edges that represent the wires that connect these gates. This structure is
similar to the representation of the World Wide Web, where pages are represented
as nodes and hyperlinks as edges. The World Wide Web contains countless number
of web pages. An objective measure of the importance of a web page can be found
by looking at the pages that link to it. The PageRank algorithm created by Page
and Brin [114], is the first and primarily used algorithm by the Google search
engine. PageRank assigns a rank to every web page and influences the order in
which Google displays its search results. It is based on the link structure of the
web graph and it does not depend on contents of web pages nor on the query.
Since gate-level netlists can be represented in similar graphs as webpages, one
can use some principals of the PageRank algorithm to rank the impact that each
gate has on the design, in a same way the PageRank determines the importance
of its webpage based on the amount of hyperlinks that are connected to it. The
problem of ranking gates is similar as ranking pages. If a gate has a higher number

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 71

of inputs (and/or fanout), it has a lot higher chance of influencing the output and
hence is more important than other gates. This is similar to the number of links in
web pages.

GateRank creates a stochastic matrix with adjacency functions that represent
whether its gate is connected with all other gates. The graph shows not only the
adjacent nets to each gate, but also how important each gate is based on propaga-
tion. Not only the designers can see the ranking for every gate, but they can have
a first estimation of the fault propagation. Thus, the critical and non critical region
of each design can be identified. In other words, the GateRank for every gate w,
(with nets v;) is the sum of the GateRank of all gates contained in a set B,, (having
an input from u) divided by the fanout of each gate v € B,,. This is generalized in
Equation 3.3, where vy, vo, . .., vy, are the logic gates under consideration, B, is
the set of gates that have an output to u; (so the number of elements of it is equal
to the fanin of B,,,), F,(v;) is the fanout of the gate v;, F;(v;) is the fanin of this
gate and NV is the total number of gates.

o~ Crnlvy)
Grr(u) = ¢ x SR x Sk (3.3)
oep, Folvs)
Finally, (is a factor for normalization, and it is 0 < { < 1 because there are
a number of gates with no forward links and their weight is lost from the system,
due to the fact that some gates have primary inputs and outputs. The eigenvector

contains all the values of the GateRanks for each individual gate:

Grrvo
G’r‘krvl
Yv; € BY, R= : (3.4)
Grrvi—1
Grkvi

A gate-level netlist can be easily described as a finite graph (AIG during map-
ping). This graph can be represented as an adjacency matrix, which is a square ma-
trix used to represent a finite graph. The elements of the matrix indicate whether
its pairs of vertices are adjacent or not in the graph. Subsequently, let A be a square
matrix with the rows and columns corresponding to logic gates.

Let Ay, = ﬁ if there is an edge from v to v and A,, , = 0 if not. If we treat
R as a vector over gates, then we have R = (AR. Therefore, R is an eigenvector
of A with eigenvalue . Normally, since we have initially a Markov matrix, ¢
should be 1. However it is described below why ¢ # 1.

A limitation with the custom gate ranking functions is that there is no way
to indicate whether there are not only gates pointing only to the same gates in
the graph, forming a closed loop. During the iterations, this loop will neither

72 CHAPTER 3

accumulate ranking nor distribute any ranking, since there is no way to indicate
from where the GateRank function can start nor finish. In order to overcome this
problem we introduce the F,,, F; ranks alongside the normalization factor (:

_ Prim.F;(v;)
G"'ksource - W
N src __
Vo; € BY — Fre = (3.5)
_ 1—=Prim.F,(v;)
G’I‘ksink - Fo(uj)o :

In Pagerank, the graph is unweighted. However, weights are added, based on
the net’s fanout data. In Eq. 3.5 we describe that Vu € B,,,, if gate u contains a
source as an input (primary input) it has a priority value equal to the number of its
sources F;. That means, that the gate with the largest number of primary inputs
will be computed first, then the next one, and so on, until the gates that are starting
to compute their rank have only internal signals as F; or F,. This value is not
included in the GateRank, only in the priority of computations. The normalization
factor is defined as:

0.95, if Prriea) — q,

0.75, if 7””';;1};)(“1’ >0,

Voj € BlY, (=025, if Trpretd s, (3.6)
. p Prim.Fo(v;)
0057 Zf W = 1,

0.5, otherwise

Additionally, instead of adding weights, we can also just duplicate every output
connection as many times as the fanout (change a net into a set of connections) and
then apply GateRank. Both options produce the same results.

In a similar way, Vv € B,,,, if u is a sink, then the priority value is the lowest.
That means that the gates with at least one of their outputs being a primary output
will be computed last. Hence, the more primary inputs an individual logic gate
has, the more priority it gains to compute its GateRank.

w(go,g0) --- w(go,gn)
w(gn,go) .- w(gn,gn)

In Eq. 3.7, the w(g,, g;) represent whether or not a gate connects to another,
via a single wire. Therefore for every column j we have:

N
Vje N, A= {Zi=1 w(gi,9;) = 1, gates connected 35

0, otherwise

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 73

The sum for each column equals to 1, making R a stochastic matrix. Finally,
sparse matrix properties have been used, to construct a weighted matrix representa-
tion of the adjacency matrix for the calculations. Since a sparse stochastic matrix
has to be solved, it will scale very well and the scaling factor for large netlists
would be roughly linear in log(V), where N is the total gate number.

3.5.2 Signal Classification Tool

The signals can be classified based on the GateRank computation. This is an op-
tional step that can be used if the FPGA resources are scarce. It can be applied
in synthesized designs, as it is shown in Figure 3.6 in Section 3.4. Therefore, af-
ter synthesis, the GateRank algorithm runs and calculates the adjacency matrices.
In order to create a graph that describes the netlist, the AIG from ABC [97] is
used. After the graph’s creation, the netlist can be adapted based on the new in-
formation, by adding debugging infrastructure only in the signals with the highest
GateRank. The newly formed signals and trace-buffers can then be added to the
netlist incrementally.

At this point, the designer can decide about the amount of signals that can be
observed at the same time. The factors here that are crucial for the internal signal
selection are the GateRank number, the routing congestion (also estimated by the
GateRank density graph) and an estimation of the FPGA’s available resources. A
pre-processing step can be also executed to assess these metrics. First the tool is
executed once to estimate the available area. The maximum fanin/fanout (derived
from SignalRank) describes the trace-buffer number N, as long as there is still
enough space on the FPGA. Then, the N trace-buffers are connected to the N
most significant signals (derived from GateRank), from total signals M. After this
process is complete, the tool can synthesize, map, place and route the design (that
now contains the debugging infrastructure) and form a parameterized configura-
tion.

However, this reduces flexibility as we can no longer observe signals that were
not selected by GateRank. If we need to debug one of these, we do need another re-
compilation step. So, this is a new trade-off between area overhead and debugging
flexibility. Therefore, we can use the GateRank optimizations when the available
FPGA resources are scarce and a signal selection for the debugging infrastructure
needs to be made anyway.

3.5.3 Trace-buffer Optimization

Trace-buffers are implemented as RAMs. They have to be kept minimal, to avoid
draining the FPGA resources, while being able to store and trace the maximum
possible number of data. Increasing the number of signals causes more RAMs
to be consumed by the tool and can adversely affect design performance. If the

74 CHAPTER 3

designer needs to observe more signals, more parameters are needed and more
area will be subsequently be consumed (for the trace-buffers).

Therefore, the more signals will be observed at the same time, the larger the
area penalty will be. Additionally, due to the parameterization of the debugging
infrastructure, multiple (parameterized) reconfigurations will probably be needed,
to observe more signals. Hence, there is a reconfiguration time penalty as well.

By using signal classification techniques before adding the debugging instru-
mentation, some properties of the signals can be known before the integration with
trace-buffers into the design. Thus, the number of signals to-be-traced can be dy-
namically adapted, in order to limit the area requirements (and possibly the number
of reconfigurations).

Firstly, the signal classification algorithm is performed to have a clear view of
the fault propagation, by creating ranked signal sets. This is based on the fact that
at the moment that a bug is singled out during tracing, the backward propagation
defines the next signal set, until the source of the bug is found. In that way, there is
always a constrained number of debugging cycles, with an upper bound defined by
the design’s depth, that can be easily extracted from the AIG. Hence, there can be
a maximum number of the times a parameterized configuration can occur, in order
to reconfigure to create a new signal set until the source of the bug is reached.

Secondly, the length of trace-buffers added to the design is found by constrain-
ing the maximum number of debugging cycles needed during debug. The designer
can determine for how many cycles the signals will be monitored. This is done
by creating a linked list during the construction of the fault propagation method
that has width and depth arguments. The width defines the maximum number of
signals that can be traced each time (from the previous step) and the depth defines
the maximum number of linked gates (connected directly via a single wire).

The trace-cycles can be adapted dynamically, based on the density of the Gat-
eRank graph. ! In a dense graph, more tracing cycles and/or debugging resources
are needed, as there are more connections among signals, compared to graphs with
smaller density. Therefore, it is possible that more signals will need to be traced in
a dense graph.

The amount of trace-buffers and their respective depths and widths can be
adapted. Therefore, the classification of the signals and the density of the DUT’s
AIG can influence the size of the trace-buffers. Since the width defines the number
of debugging cycles and the depth the number of trace-buffers to be added, both
the width and the depth of the tracing instrumentation needs to be adaptable. That
means that the RAMs that will be used as trace-buffers need to be adaptable. Since
the trace-buffers can have an adapted number of trace-cycles and signal sets, the
designer can use asymmetric RAMs as trace-buffers instead of the conventional
symmetric ones.

'A dense graph is a graph in which the number of edges is close to the maximal number of edges

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 75

Therefore, asymmetric trace-buffers are added in the design incrementally. An
asymmetric trace-buffer is modelled in a similar way as a symmetric trace-buffer,
with an array object. Its aspect ratio corresponds to the port with the lower data
width (larger depth). Trace-buffer resources can be configured with two asymmet-
ric ports. One Port accesses the physical memory with a specific data width defined
by the GateRank classification and the second port accesses the same physical
memory with a different data width. Both ports access the same physical memory,
but see a different logical organization. Such an asymmetrically configured trace-
buffer has ports with different aspect ratios. A typical use of port asymmetry is
to create storage and buffering between two data flows. One data flow for storage
and one data flow for trace. Hence, they can operate at asymmetric speeds. Like
RAMs with no port asymmetry, trace-buffers with asymmetric ports are modelled
with a single array of array object. The depth and width characteristics of the
modelling signal or shared variable match the trace-buffer port with the lower data
width (subsequently the larger depth). As a result of this modelling requirement,
describing a read or write access for the port with the larger data (signal trace)
width no longer implies one assignment, but several assignments (multiple trace
cycles). The number of assignments equals the ratio between the two asymmetric
datawidths.

3.6 Results and Discussion

The architecture is evaluated in terms of area and time overhead. The designs used
have been derived from the ITC99 benchmark suite. This benchmark suite meets
all of our requirements, including a variety of realistic algorithms, defined inputs,
scalability, and portability. These benchmarks are specifically designed for testing
and include a set of input vectors that are designed by the automated test pattern
generation community. Here, they utilize approximately 1% of the commercial
FPGA (Xilinx Virtex-7).

3.6.1 Offline Comparison of Area Utilization

First, the debugging infrastructure that incrementally adds a multiplexer network
to be connected with trace-buffer infrastructure is integrated in the design. It is
assumed that the trace-buffers pre-exist in an FPGA and the user can add only an
overlay network that routes all possible signals to all possible trace-buffers.

For the comparison of the area utilization, the benchmarks were synthesized
with Vivado 2016.1 and the two PConf tool flows. The FPGA architectures used
were a Virtex 7 (in Vivado) and a theoretical architecture that is mimicking the
basic structures of commercial architectures, but with full transparency on the
configurable infrastructure, so that it is supported by the PConf tool flows. All

76 CHAPTER 3

Vivado ILA ABC | PPD | FPD
LUT | FF | LUT | FF || LUT | LUT | LUT
b12 | 224 | 119 | 15538 | 19715 || 309 | 343 | 329
bi3 | 37 | 51 | 4092 | 5552 || 51 | 72 | 59
bld | 2165 | 219 | 46749 | 53316 || 1047 | 1165 | 1101
b15 | 1948 | 416 | 26710 | 33464 || 1952 | 2015 | 1979

Table 3.1: Logic Utilization of the debugging infrastructure for the benchmarks
implemented with different tools. The original design is mapped with Vivado and ABC. The
two proposed methods are the PPD (partially parameterized debug) and FPD (fully
parameterized debug). ILA is the trace-based debugger by Xilinx and ABC an academic
synthesis tool that supports PConf.

architectures contain 6-input LUTs for fair comparison.

Multiplexer Network

The proposed debugging architecture (the one attached to each internal signal)
needs tuneable connections and tuneable LUTs. If it is implemented with the con-
ventional tools, it needs up to 56x more LUTS to ensure all signals can be linked
to the trace-buffers. The proposed architecture has a small impact on physical
LUTs for each design. This happens because the debugging infrastructure is pa-
rameterized and integrated in the reconfiguration resources. Hence, the number of
physical resources remain almost constant. The multiplexer network creates vir-
tual connections between the signals and the trace-buffers, as it was explained in
Section 3.3, reducing the debugging overhead significantly.

Integrated Logic Analyzer

In order to support commercial architectures, a similar design and verification pro-
cess as the one described in Section 3.4 needs to be followed with minor modifi-
cations to support commercial FPGA architectures (Xilinx, Virtex-7). The basic
difference is that the Vivado’s Integrated Logic Analyzer (ILA) core is used, in-
stead of any parameterization-based optimizations. The core has been configured
in such way that it is able to debug as many signals as possible, with a trigger and
probe set to minimal, to maximize the area savings. However, even though the
area overhead of the debugging core is kept minimal, there is a massive increase
in the used resources. This effect results in two designs (b14, b15) not being able
to be placed on the FPGA, requiring a larger device and repetition of the whole
process. The results are depicted in the ILA column in Table 3.1.

With our proposed methods, the only area overhead that exists, is a minimal
increase in the number of physical FPGA resources (LUTs) after the installation of
the debugging architecture, which is expected, as not all the multiplexers’ inputs

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 77

H ABC I PPD W FPD
2200

1650

1100

550

b12 b13 b14 b15
©® LUT @ TLUT
106
1.979

Figure 3.8: Graphical representation of the area results (in LUTs) and the number of
parameterized resources (TLUTs, TCONs). The LUT in the pie diagrams represents the
total number of LUTs needed (including the ones with the parameterized resources
needed). The TLUT and TCON show the number of parameterized resources are needed
in respect to LUTs.

® LUT @ TCON

78 CHAPTER 3

are parameterized. There is a large increase in the virtual FPGA resources (TLUTSs
and TCONSs), but with minimal impact on the design’s area and performance. The
results are shown in Table 3.1. In the table, the benchmarks were first synthesized
with the Vivado and ABC tools. The columns Vivado and ABC show the area in
number of LUTs for each benchmark without any debugging infrastructure. The
ILA column shows the area impact after the instantiation of the debugging core on
a commercial device. The PPD column shows the area results obtained with the
TLUT flow, were only the LUTs were parameterized, presented as the Partially Pa-
rameterized Debugging (PPD) results. The FPD results in the last column indicate
the Fully Parameterized Debugging (FPD) infrastructure, where all the debugging
infrastructure has been fully parameterized with the TCON tool flow (parameter-
ized routing infrastructure). We can observe that with the proposed tool, we have
significantly less debugging resources (shown in the last two columns), compared
to the vendor tool (ILA).

Figure 3.8 visualizes the number of actual and parameterized resources needed
for the debugging infrastructure. The lower part of the figure shows the area of
the virtual multiplexer network mapped in TLUTs and TCONSs instead of actual
resources. In this figure is illustrated how the the existence of virtual resources
(TLUTS in PPF and TCONSs in FPD) allows the designs to maintain low area over-
head, despite the insertion of the debugging infrastructure. We can observe that
due to the virtualization, the area overhead increases up to 10% with the proposed
method.

The results indicated as PPD contain LUTs and TLUTs, while the results in-
dicated as FPD contain LUTs and TCONs. In general, some Vivado implementa-
tions can use fewer LUTs for the golden design (Vivado column) in commercial
tools compared to the tools that target theoretical architectures (ABC column).
This is due to the fact that these tools probably contain better optimizations for
numerical operations, compared to the generic theoretical FPGA architectures that
are used in academic tools. However, designs with more multiplexers are better
optimized using the PConf tools. Especially TCONSs are heavily used for the im-
plementation of the multiplexing between internal signals and trace-buffers for the
debugging architecture, because multiplexers are well suited for optimizations of
shared resources.

One can observe in Table 3.1, that with Vivado 2016.1 the implementations on
a Virtex-7 are on average 21.3x larger than the proposed implementations. The
proposed architecture (FPD) with the integrated debugging functionality is in fact
11x smaller than the design integrated with Vivado’s ILA and 1.9x larger than
the golden application(ABC column). Therefore, with an area penalty of approxi-
mately 10%, the debugging functionality can be integrated in a given design. How-
ever, there are some kinds of design that debug can be more complicated, such as
with third-party IPs that realize high frequency, high-dense communication (neural

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 79

Vivado Proposed
AXI-HWICAP | AXI-HWICAP (DMA) | HWICAP | MiCAP-Pro
b12 480 1690 32 1.03
b13 500 1684 2.9 0.83
b14 2050 7500 13.8 3.846
b15 2420 8530 8.97 2.49

Table 3.2: Comparison of reconfiguration time between the proposed technique and
Vivado-based implementation

networks), or high DSP utilization. In these cases, the proposed approach should
be integrated in the Vivado toolflow in a way that it can still access the internal
signals within the IP. This is investigated in Chapter 4.

3.6.2 Reconfiguration Overhead

The speed of configuration is directly related to the size of the BIT file and the
bandwidth of the configuration port. Here, a comparison of the reconfiguration
times between different reconfiguration controllers and the target application is
performed. Since the bitstreams that are generated from the application have sim-
ilar size, the impact on the reconfiguration time is similar. This is depicted in
Table 3.2.

If the proposed architecture is integrated in the benchmarks, there is a small
impact in the configuration time (from the Boolean function evaluation), as no
calculation of a new reconfiguration is needed to evaluate a new signal set, only
an evaluation of a Boolean function. Moreover, the proposed technique is instan-
tiated during the original implementation of the design, resulting in a negligible
compilation overhead. However, with the conventional tools, in order to instan-
tiate a debug core, the CAD tools need a significant amount of time (minutes to
hours). Then, in order to adapt the core, the tools need to repeat the process. All
this compilation overhead does not exist in the proposed technique, as instead of
debug core adaptations we use Boolean-function evaluations.

There is a significant acceleration in the reconfiguration time, if the MiCap-
Pro controller [89] is used instead of the conventional HWICAP. With a PConf
adaptation, there is no need to recompile the entire FPGA in order to create a new
(specialized) reconfiguration, as only an evaluation of a parameterized configura-
tion needs to be performed. The MiCap-Pro controller takes care of this process.
Then, the design needs to perform only micro-reconfigurations in the FPGA and
not a full conventional reconfiguration. One microreconfiguration of 1 TLUT takes
64.1us. Therefore, in order to reconfigure each design we need maximum 3.8s
(for the b14 design that has the maximum number of TLUTSs). This is calculated
based on the total number of TLUTs in each benchmark. This metric is 3 orders

80 CHAPTER 3

Figure 3.9: Graphical representation of the DUT

of magnitude faster than the conventional reconfiguration time without parameter-
ized configurations and the Xilinx AXI-HWICAP reconfiguration controller, as it
is depicted in in Table 3.2.

3.6.3 Signal Ranking

Here the results of the signals selected from Vivado ILA and the proposed tech-
nique are compared.

With Vivado’s ILA, only up to 30% of the internal signals could be instantiated
in the ILA core. However, only 10% of the signals could be fully integrated in the
design (to be routed and create a bitstream). Moreover, with ILA, the designer
needs to manually select all the signals of the synthesized design. Then the tool
emerges on an additional compilation overhead to install the extra infrastructure.
This dramatically increases the overhead of the FPGA in terms of LUTs (the b12
benchmark for example becomes up to 70x larger) and an additional compilation
overhead is needed to install the debugging functionality (up to one hour). This
process needs to be repeated if the correct signal set is not selected. However,
with the proposed method, the integration of the debugging functionality is done
without any compilation overhead. The debugging infrastructure is automatically
integrated in the DUT before synthesis. Additionally, the designer doesn’t pre-
select signals. All internal signals are selected automatically. Then the signals can
be transferred for analysis. Therefore, more signals can be traced (up to 100%)

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 81

GateRank

0.045
0.040

0.035
0.030

40.025

40.020

40.015

0.010

Figure 3.10: Graphical representation of the DUT, with the different colors showing the
gaterank of each node

with the proposed technique, in comparison with ILA that can trace up to 10% of
the target application’s signals.

In the case that there is increased routing congestion, the designer can opt to
use the SignalRank and GateRank algorithms to further analyze the design before
implementation. These two techniques are integrated in the normal FPGA flow and
can be initiated when the design is synthesized. After completion of the ranking,
the techniques can influence the debugging framework installation. SignalRank
will provide the initial signal congestion to define the number of trace-buffers
needed. GateRank will provide the fault congestion to create efficient signal sets,
based on their ranking.

For this work the designs of the ITC benchmarks have been used, to demon-
strate the impact of the proposed algorithms. After synthesis, a directed graph has
been created, of the AIG representation of the circuit. This is shown in Figure 3.9.
Then, the GateRank algorithm has been applied. The impact of the algorithm in
Figure 3.10 can be observed. The trace-buffers of the design can be adapted by
choosing to observe the signals that are above the median GateRank. This totals
in observing only 20% of the signals, reducing the area overhead by 17%.

The FPGA can suffer from bugs that are either physical or design errors. Phys-

82 CHAPTER 3

Figure 3.11: Graph of the DUT, with the accumulated bugs

ical errors are the errors that happen spontaneously in the FPGA fabric and they
can normally be solved with reconfiguration. They include bit flips, two nets used
by the same node, two nodes used by the same net, opens and redirected nets.
Design Errors are the ones that have been proven to be discovered late in the de-
sign and verification process and include signal source errors (30% of all errors),
missing logic, such as missing instance, missing input, missing term, or missing
state (26% of all errors) and wrong inversions and unconnected inputs (17% of all
errors).

In order to evaluate the quality of the GateRank-based signal-sets, the design
is injected with different types of bugs. It has been assumed that the design was
synthesized despite the critical physical and design errors that can occur after the
fault injections. In order to achieve that, the errors have been injected directly to
the graph of the synthesized design. All the errors were assumed to be detected
with the worst case scenario. That means, at the end of the fault propagation list.
The results indicate the maximum number or steps (tracing cycles) needed to locate
the source of the error. The errors injected count for 10% of the total nodes of the
DUT and they are both physical and design errors. This is considered an extreme
scenario, as the design would never be able to synthesize with so many bugs.

For the DUT, all errors were detected in the first signal set, as the first set was
the one selected with the highest GateRank. This made it more likely to detect the
faults, as the nets with the highest GateRank had the most connections. Thus, the

IN-CIRCUIT DEBUGGING USING PARAMETERIZED CONFIGURATIONS 83

source of the error was always located in the first step. The graphic representation
of the modified design is shown in Figure 3.11. Here, we can observe the differ-
ence in the connections compared to Figure 3.9. The connections of the nodes
are significantly less, due to all the accumulated bugs (on 10% of all signals), that
have a total effect on approximately 50% of the signals. This is an extreme sce-
nario that is designed only for experimental purposes, as a design would never be
synthesizable with so many bugs.

3.7 Conclusion

FPGAs have been increasingly used as prototyping platforms and in various ap-
plications. Due to their reconfiguration centered functionality they can achieve
significantly higher operating frequencies allowing designers to increase their ver-
ification coverage by several orders of magnitude. However, in case of unexpected
behaviour, the internal FPGA observability is limited. In this chapter we have pre-
sented an integrated debugging method that offers extended internal observability.
With integration with the parameterized Configurations tool-set, the designer can
rapidly trace different sets of signals. The proposed tool offers low area overhead
for the debugging infrastructure and less debugging cycles, with the use of signal
ranking techniques. The proposed techniques integrate the hardware infrastructure
and optimize it alongside the original design, with an area penalty of 10% - 30%.

Integrated Post-Silicon Validation for
FPGA Overlays

This chapter presents my approach to enhance the observability of VCGRA-based
designs for functional debugging. The proposed approach is a custom-made in-
circuit-debugger that is installed during the initial recompilation and can be used
to rapidly trace functional errors in high-performance computing applications,
that can be implemented as VCGRAs. This chapter describes first how a VCGRA
is constructed and then how the proposed architecture can be integrated in a VC-
GRA, so that the latter can be debugged.

4.1 Introduction

With the emergence of FPGA overlays and VCGRAs, the current debugging tech-
niques cannot efficiently debug these new VCGRA implementations. The use of
current in-circuit debuggers will have two possible effects on debugging VCGRAs:
a large area needed for trace-buffers in order to store all the debugging information
and manual debug.

In the previous chapter, we were focused in providing a low-overhead debug-
ging architecture for ASIC designs, that use FPGA prototyping as a step to reduce
the (simulation-based) debugging and verification cycle. Here, we target FPGA
architectures that implement FPGA overlays and VCGRAs.

As the FPGA architectures become more complex and as they integrate cus-

86 CHAPTER 4

tom components (such as VCGRAs), there is a growing need for more efficient
FPGA-based debugging. The designer should have a hands-off debugging with-
out a detailed knowledge of the underlying hardware, and early and easy access to
multiple signals with an automated tool. In this work, we investigate each of these
problems, and provide a framework that is able to integrate debugging infrastruc-
ture into a VCGRA, for efficient FPGA-based debugging.

In more detail, in this chapter, a semi-automated in-circuit debugging method
is introduced, for theoretical and commercial FPGA architectures, that integrates
FPGA overlays with debugging properties, with minimal user intervention. A cus-
tom two level overlay architecture is proposed where the debugging instrumen-
tation is virtual, automated and it is integrated in the design during the original
compilation. The debugging infrastructure is added incrementally and optimized
alongside the target FPGA. The first overlay level is the VCGRA, whereas the
second overlay implements the proposed debugging functionality.

4.1.1 Prerequisites

The virtual and overlay architectures provide more flexibility. The designers should
be able to debug their virtual architecture designs in-system, without detailed
knowledge of the hardware’s limitations.

VCGRAS consist of a large number of processing elements (PEs), laid out in
a grid pattern, and Virtual Channels (VCs), that are a communication network
connecting the PEs. Each PE is a coarse-grained element (realized mainly using
LUTs) and it is capable of computing incoming data and pass it on to the next PE,
via an adjacent VC. The VCGRA is implemented using reconfigurable connec-
tions, with the assistance of the PConf flow. A VCGRA needs to be changed when
the application implemented on the FPGA needs to change or adapt. Since some
of the VCGRA'’s inputs are implemented based on the PConf tool flow, that means
that the VCGRA needs to be changed/adapted infrequently, as the reconfiguration
time is the bottleneck of these architectures. Hence, instead of implementing the
VCGRA's instruction inputs as regular inputs, with PConf these inputs are imple-
mented as constants and the FPGA overlay is optimized for these constants [90],
as it was analyzed in Chapter 2.

Academic works have leveraged FPGA overlays to improve their debugging
methods. In debugging with the use of FPGA overlays, the authors have used
mainly incremental compilation, to insert trace-buffers, after the design is mapped
and finalized on the FPGA [31,32,61]. These tools support only academic FPGAs
and they use the remaining FPGA logic to construct virtual routing networks for
signal tracing and to add debugging circuitry. However, the size of the overlay and
the amount of its resources and routing needed can make its construction challeng-
ing and can affect the original design’s timing and critical path. Moreover, in the

IN-CIRCUIT DEBUGGING FOR VCGRAS 87

above-mentioned methods, the researchers create overlays to assist the debugging
process, without the possibility to debug the FPGA overlay itself.

4.1.2 Contribution

The proposed method combines the advantages of enhanced internal signal ob-
servability and fast FPGA reconfiguration in one tool flow. It has four main parts:
a parsing and mapping step to create the VCGRA, a design step to add the debug-
ging infrastructure incrementally, a parameterization step that is used in the case
of virtual FPGA architectures in the DUT and an online step that adapts the debug-
ging methodology to a target design. This approach has some benefits over other
debugging methods:

e Extended internal observability: By integrating with the PConf approach,
the designer can trace sets of signals fast, completing the debugging process
within time constraints.

e Reduced area resources: By adding the debugging infrastructure on a higher-
abstraction level (overlay architecture) and dynamically adapting the added
on-chip memories, the extra resources are reduced.

e Automated tool: The designer has just to select the DUT and to run the
flow to create the debugging infrastructure for the VCGRA in order to per-
form signal tracing. Semi-automated interventions reassure that the DUT’s
debugging hardware remains minimal and fully parameterized.

The main contribution in the debugging integration is the possibility of adding
debugging hardware on a higher abstraction level. This is done when the appli-
cation is transformed to a VCGRA. In this way, the signal tracing hardware is
co-designed alongside the VCGRA. A netlist is generated that has integrated de-
bugging functionality and can be adapted without affecting the VCGRA under
test [80].

The contribution of this chapter is illustrated in Figure 4.1, where it can be
visualized how it is connected with the rest of the thesis. It is shown how this
chapter enhances the debugging step with a second overlay (VCGRA generation)
and a more automated debugging process (SDA).

This technique integrates in-circuit debugging functionality in an FPGA over-
lay. The added functionality enables the user to debug large designs mapped on
FPGAs without significant area overhead. A realistic application is used in order
to validate the feasibility of the debugging architecture. In the experiments sec-
tion, an exploration of the area and runtime overhead is realized, to validate the
scalability of the method and of the signal integration algorithms, while increas-
ing the design size and decreasing the size of the available FPGA resources. In

88 CHAPTER 4

In-Circuit Debugging with VCGRAs

yole yHHOA

Place & Route

O One FPGA-overlay level
B Two FPGA-overlay levels
O PConf backbone

Figure 4.1: Visualization of this chapter’s contribution

addition to the added functionality, the efficiency of the proposed tool is explored,
for both academic and commercial FPGA architectures. Moreover, an on-the-fly
adaptation of the debugging infrastructure is proposed, that achieves a balanced
trade-off between area overhead, signal observability and compilation time.

This chapter analyzes how a second FPGA overlay can be applied on a specific
overlay (VCGRA) architecture, in such a way that it will provide in-circuit debug-
ging functionality and without altering the original design. First, parameterization
of the internal signals of a given design under test, on a VCGRA level is proposed.
Then, signal compression of mutually exclusive signals (during runtime) is used to
reduce the area overhead of the debugging circuitry, while increasing its flexibility.
The entire concept of debugging with FPGA overlays is applied for two different
FPGA architectures. Thus, three contributions are made:

IN-CIRCUIT DEBUGGING FOR VCGRAS 89

1. This chapter introduces FPGA overlay debugging methodologies in both
academic and commercial FPGAs. Integration with state-of-the-art FPGA-
design platforms is also presented, that allows researchers to map their de-
signs in commercial FPGAs.

2. The unique architecture of the VCGRAs is leveraged, alongside its layer-
by-layer data path, to selectively add debugging functionality in such a way
that with minimal monitoring, it can perform on-silicon debug, where the
designer can observe the results and adapt the VCGRA. Both parameterized
configurations and conventional dynamic reconfigurations are used, as well
as an AXI-wrapper that packages the VCGRA-SDA system. This is intro-
duced as a third-party IP. The creation of an IP will allow real applications
of the proposed system. This method can be used by integrating the IP in a
design.

3. A tool flow that applies the above-mentioned techniques to a given design
automatically. A complete tool that co-creates the VCGRA and the debug-
ging circuitry is provided, where the same automations that can create a VC-
GRA can generate an SDA as well. A second layer is created, that provides
dynamic signal tracing in the VCGRA. The tool co-designs the VCGRA and
the SDA in such a way that they are interconnected. The tool is integrated
in the Vivado tool flow and it can rapidly generate (offline) the files needed
for the tool to create the IP and install both the VCGRA and the SDA.

The remainder of this chapter is organized as follows: Section 4.2 presents the
proposed two-overlay technique and its architectures and Section 4.3 presents the
adapted design flows that support them. Section 4.4 describes the experiments that
were conducted and their results, followed by the Conclusion in Section 4.5.

4.2 In-Circuit Debugging for FPGA Overlays

This section presents the main approach to enhance the observability of VCGRA-
based designs for functional debugging. The Superimposed Debugging Architec-
ture (SDA) approach is a custom-made in-circuit-debugger that is used to rapidly
trace functional errors in high-performance computing applications, that can be
implemented as VCGRAs. In order to use the SDA, first a VCGRA needs to be
constructed from a dataflow graph representation (or a VHDL design) of an appli-
cation. Hence, this section describes first how the VCGRA is constructed and then
how the SDA can be integrated in a VCGRA, so that the latter can be debugged.

90 CHAPTER 4

Superimposed / EM / c
level — =
B ©
DI / d
- =)
[dafain] =
VOGRA PEn | [Re] |[CPE] 8
eve { irtual Channé [o
[Pe] SRR | | g
—% data out - = 'g
Desi [I il =
esign 3] g
A:VJ L 5
LUT fﬂ 8

[t/ FPGA

Figure 4.2: Overview of the multiple-level architecture showing the FPGA and the two
virtual levels (the VCGRA application and its adjacent superimposed debugger).

4.2.1 VCGRA Overview

A VCGRA is a hierarchical architecture consisting of several levels, where each
level consists of logic functions (PEs) and connections between them (VCs). In
order to build a custom VCGRA application, the first step is to design the PE and
VC, according to the target application. Different functionalities form different
PEs. Multiple PEs are connected with VCs, forming one level of the VCGRA.
Then, multiple layers of the VCGRA form the VCGRA grid. The grid’s structure is
described by the number of PEs in each level of the architecture and the elements’
input and output bandwidths. The VC configuration controls the data flow among
the VCGRA’s levels, and the PE configuration controls the operation of a PE. The
size of the configuration bitstreams is defined by the number of PE operations and
the number of PEs within a VCGRA level and is determined during design time.
The VCGRA is depicted in the middle layer of Figure 4.2 and in the left part of
Figure 4.3.

All components of the VCGRA are described in VHDL and they contain pa-
rameters that later will be used by the PConf backend, in order to reduce the utiliza-
tion of LUTs in the target-FPGA. The PEs are created by parsing and converting
a textual description of a synthesized application into a netlist of PEs. PEs are
designed as state machines. Their inputs perform an operation and their output
is a buffer that saves the result for one cycle. The inputs and outputs of the PE
can be multi-bit and they are defined during the implementation stage, based on
the target application. VCs have one multiplexer at each output in order to con-
nect one specified input with its configured output. In order to select the inputs, a
multiplexer with multiple select inputs is added (Figure 4.2). Consequently, this

IN-CIRCUIT DEBUGGING FOR VCGRAS 91

VCGRA SDA

datain

pe pe pe
\A 2NN A A A /

virtual channel

virtual channel

pe pe pe

/ / /
dataout

Figure 4.3: The architecture that integrates the SDA in a VCGRA.

architecture requires a lot of routing resources. In order to reduce the routing re-
sources, all select-lines of the multiplexers are considered infrequently-changing
constants, and subsequently parameterized. Therefore PConf can be used on these
parameters. Since PConf uses resources sharing, the debugging resources can be
reduced.

4.2.2 Architecture: SDA Overview

The SDA is a network of multiplexers that will connect to trace-buffers that store
inputs and outputs of a VCGRA layer. This circuitry is co-designed during the
initial VCGRA implementation. The SDA technique aims to tackle the drawbacks
of the current in-circuit debuggers in the following way:

e The use of on-chip resources (which can also impact the design’s timing
performance and create additional debugging requirements) is optimized,
by minimizing the signals to be traced with the SDA and by using a small
amount of multiplexers and trace-buffers, tailored to the requirements of the
VCGRA application.

92 CHAPTER 4

e The need to recompile and reprogram the design to observe different sets of
signals is eliminated with the use of the PConf approach.

e By creating a layer-by-layer debugging approach and reconfiguring to debug
each VCGRA layer, the area overhead is controlled.

e The observability of the internal signals is enhanced with the debugging
meta-layer (SDA).

The number of the trace-buffers needed for debugging is equal to the number
of PEs and their size (their length) is equal to the length of the traces one wants
to store. The tracing cycles (number of times tracing has to be performed in a
debugging cycle) can vary based on the demands of the application. Some of
the debugging infrastructure’s elements, such as multiplexers, are incrementally
added at the outputs of the PEs, in such a way that they use minimal LUTs. This is
achieved by tracing only specific signals of each layer (based on the application)
and not all possible signals. For commercial FPGAs we cannot yet use PConf on
the routing infrastructure so the multiplexers have to be actually implemented in
LUTs (or only TLUTSs). However, for academic FPGAs the debugging circuitry is
completely implemented in the FPGA’s reconfiguration resources. This network of
multiplexers will subsequently be connected to trace-buffers to perform functional
debugging. The SDA is shown in the upper layer of Figure 4.2 and in the right part
of Figure 4.3.

The SDA distinguishes from the state-of-the-art debuggers in two basic ways:
First, the basic elements that are observed are layers of PEs and not solely signals.
Hence it operates on a higher abstraction level, accelerating the debugging process,
without reducing the high observability, as there is a guarantee of a connection
between an important signal and a trace-buffer. The second distinguishing element
is the fact that the SDA can be installed on specific components of the design
(tracing specific signals) and rapidly check for possible bugs, compared to the
long recompilation cycles that are needed to check different sets of signals in the
whole design, as in conventional in-circuit debugging.

The SDA is structured in layers, similar to the VCGRA. Each layer has a num-
ber of multiplexers that is in accordance to the number of PEs per layer. Each mul-
tiplexer is connected with one PE. All layers are then interconnected with trace-
buffers using parameterized connections. These are statically determined at design
time. The SDA’s components are described in VHDL and contain annotations that
can also be used by the PConf backend to control the reconfiguration, determining
which VCGRA layer is being traced at a certain time.

The VCGRA-SDA system mitigates the use of on-chip resources in two differ-
ent ways. For academic FPGAs is achieved by creating a PConf, that compresses
signals that are not used at the same time. These signals are the selection bits of
multiplexers that connect the internal signals of various layers with trace-buffers.

IN-CIRCUIT DEBUGGING FOR VCGRAS 93

Multiple signals can be described in one (tuneable) LUT, as it was analyzed in the
previous chapter. These LUTs contain Boolean functions that upon evaluation can
describe different signal sets, as it is used in the PConf tool flow. This mechanism
is thoroughly explained in Chapters 1 and 3 and in previous work [82, 83].

The VCGRA architecture is leveraged to build an efficient SDA. The archi-
tecture of the VCGRA is detected by our tool and signal tracing infrastructure is
installed on specific signals (outputs of the PEs of each layer). In that way, not
all signals need to be observed, but only a subset. Due to the architecture of the
VCGRA, the debugging can be done layer-by-layer, allowing massive savings in
area resources as the installation of debugging cores is avoided. Additionally, the
internal observability remains constant, as the designer can select the exact signals
he/she wishes to be traced, in RTL level. This is an added benefit that is an obsta-
cle during conventional debugging of a design, where the internal observability of
the third-party IPs is limited.

The in-circuit debugger is extended with a (minor) repairing functionality. In
that case, the designer doesn’t aim to locate the source of the bug in order to
correct the design error, but to detect the PE where the bug occurs and then reload
the entire bitstream of the PE. The elements of one PE can be reconfigured to be
repaired, instead of repairing the bug by redesigning. This can be used for soft-
error and for design errors. This technology can be used as a fail-safe mechanism
that can be enabled in the case of safety-critical applications. This functionality
can be applied with microreconfiguration [89]. Microreconfiguration is a 3 step
technique that involves reading, modifying and writing back specific frames: using
the frame address, the frames containing the truth table entries of a PE or VC,
are read from the configuration memory. Then, the current truth table entries are
replaced by the requested bits (saved in an FPGA memory). Finally, by using the
same frame address, the modified four frames are written back to the configuration
memory, thus accomplishing the microreconfiguration and efficiently repairing the
erroneous subgrid, with the use of the with the use of the Xhwlcap_setClb_bits
function [88], that returns the exact location of a bug. Hence, as long as the bug is
located in four (or less) consecutive frames, these frames of the erroneous PE are
reloaded to create the self-healing overlay.

4.3 VCGRA-SDA Toolflow

In order to create the VCGRA-SDA architecture (or similar architectures), from a
target application, it is necessary to use a toolset that allows the creation of such ar-
chitectures, configurations, debugging functionalities, hardware implementations
and integration with the vendor tools, with minimal user intervention. Therefore,
the third generation VCGRA tool described in Chapter 2 and depicted in Fig-
ure 2.16, and the PConf tools have been extended, to integrate the SDA in the

%4 CHAPTER 4
Library of
Operations .
Input Properties
Application Design VCGRA
clor+ VHDL Debugging
Y
DFG
ol ¢
- ‘Lfkw
\d
o
Of] ng? ° y » mapping
‘d&’ A 6°
éo°
VCGRA SDA
datain
pe pe pe pe
virtual channel
INBINEINET
Cpe) (Cpe) (o) (pe)
INBINEINET
Cpe) (oo (oo (o)
3

v

'SR

Implementation

Figure 4.4: The tool flow that enables the SDA-integrated VCGRA implementation.

IN-CIRCUIT DEBUGGING FOR VCGRAS 95

target application automatically. Figure 4.4 offers a high-level representation of
the tool flow that has been used, to analyze and instrument systems with VCGRA
and SDA. This is based on two standalone tool flows [38, 90], with debugging
tooling integrated in both toolchains.

The SDA could be designed in an HLS language as well, as debugging would
be easier when using a higher abstraction hardware programming language. Once
the implementation in the high-level programming language is debugged, the fi-
nal circuit should also be correct, assuming that the HLS compiler is error-free.
Hence, it would be possible to incorporate this contributions in higher abstraction
hardware programming languages. However, it would be difficult to connect these
techniques with the microreconfiguration system, that is used for repairing erro-
neous frames, as the underlying functions of this functionality couldn’t be com-
bined with a high-level language. Therefore, HLS languages can be used for the
SDA, by inserting the functionality at a higher level (and not when the VCGRA is
constructed).

4.3.1 Application Mapping Toolset

In order to map an application in a target (pre-defined) VCGRA architecture, an
algorithm (represented as a graph or as a VHDL design), the properties of the
overlay and the library of operations are given as inputs. More specifically, the
library of operations is an HDL representation of all possible operations needed to
create the functionality of the PEs and the debugging infrastructure. The properties
of the VCGRA are the shape (number of layers, and dimensions of each layer) and
the number of inputs of the VCGRA. From this file, the properties of the SDA
are automatically extracted (the shape and number of inputs and outputs). The
input graph is a dataflow graph and can be automatically obtained using a small
tool, which has been developed with the help of third-party libraries, such as the
graph-tool [116], in the case that the application is described in a language such as
C/C++. However, it is also possible to provide as an input a VHDL design. The
output is a VCGRA architecture that can be mapped either with the PConf tool
(for less resource utilization) or with the vendor tools (for better performance).

4.3.2 VCGRA-SDA Toolset

While processing the HDL templates of the architecture and its components, the
tool generates VHDL and other associated files, that facilitate the mapping of a
target application to a target architecture, the creation of the SDA and the con-
figuration vectors. The SDA Generator creates the modules and the architectural
components for the SDA integration in the VCGRA. The proposed tool requires
the description of the applications and the description of the VCGRA as inputs.

96 CHAPTER 4

First, the tool analyses the inputs required by the applications and whether they
can fit in the VCGRA. If they fit, the tool adds multiplexers in the appropriate po-
sitions to interconnect PE outputs and trace-buffers. The output of the SDA tool is
the description of the connection of inputs (PE outputs) and outputs (trace-buffer
inputs) between PEs and trace-buffers and the necessary multiplexing and the VC-
GRA configurations of the target applications. This is visualized in Figure 4.4.

Additional inputs required in order to construct the SDA are the shape of the
target overlay (VCGRA), the number of the VCGRA’s inputs and the levels of
PEs/VCs. Moreover, a library of operations is also needed, that describes the
functionality of the PEs and the debugging elements. The output is a configuration
that can be later translated into bitstreams with the use of the CGRA-Configuration
Generator [38].

At the end of the SDA-generation step, the SDA tool has created a meta-layer
with the debugging infrastructure on-the-fly, that is subsequently added in the VC-
GRA incrementally. In order to create the debugging infrastructure, the trace-
buffers are installed. They are equal to the number of PEs of one layer, as it is
adequate to trace one layer of the VCGRA at any given moment, since changing
between VCGRA layers is very efficient, due to the rapid reconfigurations. Instead
of pre-reserving an area for trace-buffers (as in state-of-the-art ELAs) or instead
of using all possible leftover resources after place and route (as in state-of-the-
art academic tools), the minimum possible amount of trace-buffers and additional
logic needed to debug just one VCGRA layer are used. Therefore, this architec-
ture can reuse the same trace-buffers among different layers. In fact, the routing
is constructed between the SDA, the trace-buffers and the target VCGRA layers.
Therefore, the number of the trace-buffers scales based only on the size of one
layer and not of the entire VCGRA. Similarly, the debugging requirements scale
in a linear way for larger applications, as they are based on the number of PEs per
layer and not on the application. In that way, the architecture can scale well.

4.3.3 Online SDA Generator

In order to be able to reconfigure a VCGRA architecture in vendor tools, certain
steps need to be followed. After the generation of the VCGRA and the SDA, an
AXI-Lite template is adapted specifically for the VCGRA and the SDA. The AXI
protocol is a point to point interconnect designed for high performance, high speed
microcontroller systems. AXI interfaces can be connected to the PS. The AXI-Lite
interface is an IP that provides a point-to-point bidirectional interface between a
user IP core and the AXI. Then, the entire application that is now mapped on
the VCGRA, containing the adjacent SDA, is added as a user IP in the vendor
tools. Hence, all associated IP files, alongside the hardware description of the
application, are packaged in a form of a user IP and an AXI-wrapper is created.

IN-CIRCUIT DEBUGGING FOR VCGRAS

-
Testbench Documentation
VCGRA SDA
VCGRA AL L A 3 [AXI Lite
SDA L2 i A i A e A 3
virtual channel
Y Crampie)
template (o) (o) (o) (oo template
'y vy 'y Yy ° I
source files G G Cee) oo F[j < source files
v v v v i
=
Associated IP Files)

-
~; IP Packager ;<

>

I'F’Cata'og .
3 party IP

User IP

VCGRA-SDA
wrapper

Figure 4.5: IP design flow for the SDA-integrated VCGRA

98 CHAPTER 4

This wrapper is needed, because the VCGRA itself has been implemented in pure
VHDL and is not limited to a specific FPGA architecture. It is used to enable
communication between the VCGRA and the host system and provides access to
the inputs needed to configure the VCGRA and to the data inputs and outputs.
The interface-templates provided can be used to create interfaces which are usable
on Xilinx Zynq-SoCs, further interfaces for different FPGAs from other vendors
are possible. A little software library that is provided eases access to the AXI
interfaces used for transferring configuration and data. Additionally, some binary
signals are also provided by the interface and are used to synchronize data transfers
and to report the hardware state. The online part of the flow is shown in Figure 4.5.

The processor examines each new layer (set of signals). In case a bug is de-
tected, the process can be interrupted in order to microreconfigure the VCGRA,
(if the repair functionality is enabled in the case of soft-errors). In that way,
the method has integrated self-correction capabilities, that can be used for safety-
critical applications.

4.3.4 Theoretical Architectures Tool Flow

In the case of theoretical architectures (instead of using the vendor tools), the
PConf toolflow is used. A distinction is made at this point between theoretical
and commercial architectures. It is worth to be noted that the PConf tool flow
conceptually works for any (SRAM-based) architecture but the vendors do not al-
low access to information on the routing resources (which is a requirement of the
PConf) and therefore, for the time being (as long as the vendors have not integrated
this tool flow in their own tools) designers cannot use the PConf concept on com-
mercial architectures. We therefore can only show the PConf (and the debugging
methods that leverage it) on theoretical architectures.

The PConf option can be used when the FPGA resources are scarce, and more
flexibility (more integration and faster reconfiguration) is needed for the SDA.
Here, the user determines the VCGRA’s settings that will reconfigure the VCs and
PEs to realize a target application, as described above. During synthesis and map-
ping, a textual description of the target application is converted into PEs. The PEs
are mapped into virfual PEs of the VCGRA. Next, with a custom router, optimal
connections are created between the PEs and VCs. The multiplexers connecting
the signals to the trace-buffers (whose values change infrequently compared to the
rest) of the PEs and VCs are mapped on virtual LUTs and virtual Connections with
the PConf tool [147]. In that way, the required number of LUTs is reduced, as the
debugging infrastructure is implemented using the reconfiguration resources (that
are usually not available to the user).

As soon as the architecture of the VCGRA is constructed, textual settings
are also extracted from the VCGRA, in order to construct the SDA. The settings

IN-CIRCUIT DEBUGGING FOR VCGRAS 99

needed are the data bandwidth and the basic PE operations. Then, the multiplexers
are inserted into the VCGRA’s reconfiguration resources. At this point the granu-
larity and the functionality of the VCGRA are defined, alongside all the possible
ways the PEs and VCs can be interconnected with the debugging network.

Figure 4.6 is a high-level representation of the tool flow that we used, to analyse
and instrument systems with VCGRA and SDA. This is based on [57], with in-
circuit debugging tooling inserted. The functions in the VCGRA endure very little
changes. If the frequency of the reconfigurations is too high, this will induce a time
overhead during run time, which may be unacceptable. Next, with a custom router,
optimal connections are created between the PEs and VCs. By using TLUTs and
TCONSs the utilization of the LUTs is reduced, leaving more flexibility for the
installation of the debug infrastructure for the VCs and PEs.

4.3.5 PConf Adaptations and Limitations

In terms of debugging, PConf is very efficient for debugging theoretical archi-
tectures due to the fact that the reconfiguration resources are manipulated. This
cannot yet be done in a commercial FPGA [82]. Therefore, it is possible to use
PConf for commercial FPGAs but with some restrictions. Additionally there are
limitations in the tools, due to memory requirements. The tools that support the
VCGRA mapping on academic FPGAs can support a VCGRA of a few hundred
LUTSs. Therefore, it is able to synthesize one PE (of approximately 200 LUTs)
but not an entire VCGRA (few thousand LUTSs). Hence, due to these two limita-
tions (memory shortage and inefficient handling of debugging resources), the com-
mercial version of the approach without the PConf has been implemented, that is
leveraging architectural benefits of the VCGRA, the Vivado tool and conventional
reconfigurations instead of parameterized.

4.4 Results and Discussion

To verify the applicability of the SDA, we used for the experiments a design that
can be transformed into a VCGRA. An image processing application has been
used that implements a Sobel Edge Detection filter [129] and occupies 1% of the
FPGA’s capacity (Virtex-7). Edge detection is applied in image processing ap-
plications with the use of convolution filters, such as the Sobel filter. A pixel is
calculated by the following equation:

Ge(w,y) =Y Y Iw+i—ay+j—a)xSe(n+1—in+1-j) (41)

i=1 j=1

Where the filter’s set-point is in the middle of the filter-mask, and:

100 CHAPTER 4

hdl [VCGRAJ VCGRA — parameterised
netlist settings configuration
VCGRA o10ABBIC |
SDA generation 110BA+BC
100AABBC
-hdl ¢ 010ACC!A
* Generic =
Mapping sp?qal stgd
. configuration
PE debug Synthesis Place & Route 9]
VC debug 010001
trace buffers 110111
e 100001
Specialisation 010000
stage
bug
Post layout L
; 010001 |
yes CGR no| cesin 110111
change? 100001
010000
es
1o bug? Y

Figure 4.6: The tool flow that enables the SDA-integrated VCGRA implementation. The
repair phase shows the microreconfiguration of specific frames, to repair a bug by
resetting the parameters.

e G, (x,y) is a pixel in the result image of a convolution in vertical or hori-
zontal direction.

e [is the input image. The corresponding pixels underneath the mask are
addressed relatively, depending on the filter set-point.

e S, is a filter in either vertical or horizontal direction.

For the experiments, first, the application’s architecture is converted into a VC-
GRA and then the debugging infrastructure is added incrementally. It is shown
how it can be implemented with a smaller area using the proposed techniques.

Starting from a graph representation of a Sobel edge algorithm, a VCGRA grid
can be created. The implementation depends on the requirements of the design,
such as the graph’s depth, the PE-operations, the data paths’ bitwidth and whether
there is a need for (parameterized) reconfiguration. If the target-FPGA is large
enough, there might not be a need for reconfiguration. However, when the target
FPGA is not large enough, PConf can be used.

The DUT has two different operations (add, mul), between two neighboring
pixels and their corresponding filter coefficients. Hence, the operations are mod-

IN-CIRCUIT DEBUGGING FOR VCGRAS 101

eled as PEs, with 2 inputs: a pixel and a filter coefficient. The edges of the graph
can be modeled as VCs and a VCGRA can be constructed. The architecture has
been implemented with the proposed tool-flow. Hence, the PEs describe the differ-
ent mathematical operators to be used. The tool can use the different operators to
create the VCGRA grid. In this case the SDA needs only a trace buffer and some
additional logic. The tracing infrastructure can debug one layer. Hence, the added
circuitry is equivalent to the maximum number of PEs per layer.

Here, the minimum possible SDA that is needed is multiplexers that connect
the output signals to trace-buffers for each layer. With a conventional ILA, the de-
signer would have needed a fixed amount of trace-buffers pre-installed, that trace
a large fixed number of signals, before the nature of the VCGRA application is
known. Here, after a trigger, the SDA is reconfigured and the multiplexer network
realizes point-to-point connections between the trace-buffers and the PEs perform-
ing the operations.

4.4.1 Offline Comparison of Area Utilization.

For the comparison of the area utilization, the DUT was synthesized with Vivado
2016.1 and the PConf tool flow. In order to compare the two tools, the PEs, VCs
and the whole VCGRA target application of the DUT were used. The FPGA
architectures used were a Virtex 7 (in Vivado) and a theoretical architecture that is
supported by the PConf tool flow. All architectures contain 6-input LUTs for fair
comparison.

Commercial FPGA Architectures

In order to debug with the SDA on commercial FPGA architectures (Xilinx, Vir-
tex 7), instead of tracing sole PEs per reconfiguration (as in academic FPGAs),
one VCGRA layer was traced per reconfiguration. This design choice has been
realized in order to reduce the reconfigurations and to increase the performance, as
the proposed debugging technique works better when the VCGRA is infrequently
reconfigured. The results are depicted in Table 4.1.

Different variations of the application have been designed to evaluate the area
of the proposed technique:

e A conventional implementation (without a VCGRA) of the target applica-
tion, for fair comparison (static).

e A VCGRA wrapper with an AXI-Lite module without any debugging func-
tionality.

e A VCGRA-SDA wrapper with an AXI-Lite module that has integrated de-
bugging functionality (proposed approach).

102 CHAPTER 4

Component Area Power
Design LUTs | FF w
Static 1230 | 1420 | 15.775
VCGRA 768 | 1542 | 3.604
VCGRA-SDA | 1006 | 1542 | 3.324
VCGRA-ILA | 5303 | 8093 | 3.844

Table 4.1: Comparison of the Sobel Edge detection filter design implemented on a Virtex-7
with Vivado 2016.1. The proposed (VCGRA-SDA) technique is smaller than the static
(no-VCGRA) implementation (with no debugging infrastructure) and significantly smaller
than the conventional debugging core.

e A VCGRA wrapper with an AXI-Lite module and an ILA connected that
can trace the VCGRA’s internal signals (conventional approach).

With Vivado 2016.1, the VCGRA implementation on a Virtex-7 is up to 39%
smaller than the static implementation. The proposed architecture with the inte-
grated debugging functionality (VCGRA-SDA) is 5.2x smaller than the VCGRA
design integrated with Vivado’s ILA and 18% smaller than the static application
(without any debugging functionality). In the VCGRA, there is an area penalty
of 25%, to add the debugging functionality. However, this is considered small,
since the area penalty to add debugging functionality with the ILA core is up to
860% for a small design (PE). A schematic representation of these results is found
in Table 4.1 and in Figure 4.7. Here, even though the area penalty of the pro-
posed technique (VCGRA-SDA) is 23%, it remains 22% smaller than the original
application. Therefore, by transforming an application into a VCGRA, the debug-
ging can be included in the application without any additional overhead. Thus,
the on-silicon debugging circuitry can be integrated in an application, even post-
development, and can be re-activated, to debug bugs that escape after deployment,
which is the case in most designs [36].

Power

The power results are depicted in Figure 4.7 and in Table 4.1. The power con-
sumption of using a VCGRA instead of the conventional implementation of the
Sobel filter is decreased by 4.3x. There is no power increase for the VCGRA-
SDA architecture. In fact, it needs 13% less power compared to integrating a logic
analyzer (ILA core) in a VCGRA with Vivado.

The results indicated as PConf in Table 4.2 are compared with the results ob-
tained from ABC, the standard tool to synthesize the academic FPGA used for
the PConf. For the proposed technique there is a decrease of 25% of the FPGA
resources with the proposed technique compared to an implementation with the

IN-CIRCUIT DEBUGGING FOR VCGRAS 103

B Area
6000

4500

3000

1500

VCGRA-SDA

VCGRA

M Power
16000

12000
8000

4000

0 ...

Static VCGRA VCGRA-SDA ILA

Figure 4.7: Schematic representation of the results after the implementation of the target
application. The comparison is between a static implementation, a VCGRA, a VCGRA
with debugging with a vendor tool (VCGRA-ILA) and the proposed one (VCGRA-SDA).

conventional tools. This is achieved due to the usage of the reconfiguration inter-
face for the debugging infrastructure, that is possible with the PConf but not with
ABC.

In general, the implementation of a PE uses fewer LUTs in commercial tools
compared to the PConf tool. This is due to the fact that these tools probably con-
tain better optimizations for numerical operations and have far more optimizations
than explicitly for the specific target-architectures, compared to the generic theo-
retical FPGA architectures that are used in academic tools. However, designs with
more multiplexers are better optimized using the PConf tool. Especially tuneable
connections are heavily used for the implementation of the VCs and the debug-
ging architecture, because multiplexers are well suited for optimizations of shared

104 CHAPTER 4

Component | Commercial Component Academic
LUT | FF ABC [PConf
VCGRA VCGRA
PE 61 27 PE 85 76
VC 10 34 vVC 34 16
VCGRA 768 | 1542 VCGRA - -
VCGRA-SDA VCGRA-SDA
PE 62 35 PE 102 75
vC 10 50 VC 66 16
VCGRA | 1006 | 1542 VCGRA - -
VCGRA-ILA VCGRA-ILA
PE 3318 | 4468 PE n/a n/a
vC 3267 | 4475 vC n/a n/a
VCGRA | 5303 | 8093 VCGRA n/a n/a

Table 4.2: Logic Utilization for VCGRA-SDA designs implemented with different tools.
The area results are shown in terms of LUTs and flip-flops. For academic FPGAs the area
is compared in LUTs with the ABC tool [97].

resources. The results are shown in Table 4.2.

The two tools are not directly comparable, as they are implemented on dif-
ferent architectures. Due to some limitations with the PConf tool currently it is
impossible to implement large designs. Therefore, the results for the complete
VCGRA using this tool cannot be shown.

Theoretical FPGA Architectures

For the following experiments, it has been assumed that the application require-
ments exceed the available FPGA’s resources, hence the (parameterized) config-
urations approach is selected over a fully application-specific design. The com-
ponents were synthesized, placed and routed, with the tailor-made CAD tool that
enables the parameterized configurations. Place & Route was performed using
a 6LUT _sanitized FPGA architecture. This VCGRA has been designed based
on [90]. The results are presented in Table 4.3.

e The PE that realizes the VCGRA’s mathematical operations has been de-
signed in VHDL in two different versions: a fixed point PE and a floating
point PE. The P&R results of the fixed point and floating point PE are tab-
ulated in Table 4.3. The logic resources (in terms of LUTs) used by the
fixed point PE are optimized by 5% and for the floating point PE design
are optimized by 24%, compared to the non-parameterized implementation.
The wire length has decreased by 2% for the fixed point and by 25% for

IN-CIRCUIT DEBUGGING FOR VCGRAS 105

the floating point design. This optimization can be achieved by investing a
reconfiguration time costs of 3.4ms for the fixed point and 88.5ms for the
floating point. Moreover, 13% and 82% of the PE’s design (for fixed and
floating point PEs respectively) is responsible to form the reconfigurable
part of the processing element.

e The VC is also described in VHDL. The channel has parameterized con-
nection multiplexers whose select lines are the parameter inputs. Since we
parameterize the connections, the major part of the VC doesn’t need LUTs.
Here, 82% of the logic is mapped on the reconfigurable physical switches
instead of physical LUTs and multiplexers (as per the conventional imple-
mentation). We also observe a significant decrease of 76% in wire length
(WL) between conventional and parameterized implementation due to the
fact that the minimum channel width (mCW) is reduced by 42%. This opti-
mization can be achieved at the cost of a reconfiguration time of 4.6 ms.

The SDA is also described in VHDL. Since we parameterize the connections
between VCGRA and the debugging infrastructure, the SDA doesn’t consume any
additional LUTs and has minimal impact on the total routing. The results are pre-
sented in Table 4.3, alongside the VCGRA results. The minimum SDA architec-
ture (the one attached to a VC) needs 16 parameterized connections and no LUTs.
If it is implemented with the conventional tools, it needs 17 LUTs. The proposed
architecture has 0% impact on physical LUTs for PEs, VCs and the grid. It intro-
duces 18% routing overhead in VC, 66% in fixed point PEs, and 5.6% in floating
point PEs. The total routing impact in a VCGRA grid is 10.2%. The total wire-
length increases by 4% for a VC, by 1% for a fixed point PE, by 0.6% for a floating
point PE and 0.08% for the total grid. The results are summarized in Table 4.3,
where we can observe the LUT reduction after the VCGRA parameterization. The
area requirements are presented in terms of LUTs. We can observe that there is
no increase in the number of physical FPGA resources (LUTs) after the installa-
tion of the SDA. There is an increase in the virtual FPGA resources (TLUTs and
TCONSs), with no impact on the design’s performance. After the SDA installa-
tion on the VCGRA, the wirelength impact is also minimal. For the experiments,
it is assumed that each level of PEs is successfully debugged and self-corrected,
after the completion of the algorithm. However, this is not always the case. In
some scenarios, the bug is located in multiple PEs. In that case, a full VCGRA
reconfiguration is needed.

106 CHAPTER 4
Logic
LUTs (TLUTs) | TCONs | Depth WL mCW
level
SDA 0(0) 16 0 34 2
VC
Conventional 176(0) 0 2 3186 7
VC
parameterized 32(0) 72 1 782 4
VC
SDA 32(0) 88 1 816 4
PE
Conventional 408(0) 0 47 3832 8
PE
parameterized 387(32) 22 47 3769 8
PE
SDA 387(32) 70 47 3817 8
PE_FP
Conventional 2191(0) 0 47 23388 10
PE_FP
parameterized 1668(584) 798 47 17676 10
PE FP 1668(584) 846 47 16778 10
SDA
Grid
Conventional 17066(0) 0 155 176200 14
Grid
parameterized 16099(976) 561 153 169560 12
Grid
SDA 16099(976) 625 153 169696 12

Table 4.3: Resource utilization and P&R results of VCGRA with and without SDA

IN-CIRCUIT DEBUGGING FOR VCGRAS 107

4.4.2 Online Execution Times
Commercial FPGA Architectures

The design has been implemented on a Zedboard with Xilinx Vivado 2016.1, as
this technique is based on dynamically reconfigurable SRAM-based FPGAs. For
this work Xilinx FPGAs have been targeted. However, other commercial tools that
support SRAM-based FPGAs can be used, such as Quartus II. With some amount
of engineering effort it will be possible to support this technique for any SRAM-
based FPGAs, such as Intel’s, but not tools such as Libero, that support flash-based
FPGAs. In that case, the entire concept of debugging, VCGRAs and SDA has to
be revisited.

The four different design variations (static, VCGRA, VCGRA- SDA and VC-
GRA -ILA) of the application are used for comparison of its execution times. In
more detail, an AXI-Module is added to read and write GPIOs of the processing
system (PS) for the synchronization between the PS the VCGRA and the SDA. Ad-
ditionally, a VCGRA wrapper and a VCGRA-SDA was created with four AXI-Lite
interfaces to send and receive data and to parameterize the implemented VCGRA.
Using this interface, the configuration data can be transferred from the PS to the
programmable logic where it is saved locally within configuration registers.

On average, the current design needs around 160 to calculate a single result
pixel [38]. In order for new PEs to be instantiated for debug, we need 6.4us to
reconfigure them. PE reconfiguration is 8.25% of the total reconfiguration time.
For the whole VCGRA, more than half of the whole processing-time is used to
transmit data-values and coefficients. Frequent reconfigurations are not benefi-
cial for the execution timing. The bottleneck in the design is the AXI-Lite in-
terface between the PS and the VCGRA. Currently, the obtainable performance
is limited by the AXI-lite interface, because AXI-lite does not support bursts or
data-streaming. Thus, for each data package of four bytes, the overhead of a full
AXI-communication sequence is needed.

Theoretical FPGA Architectures

In order for a new PE to be instantiated for debug, the tool needs 280ms to place
the SDA architecture and 27ms to route it. Hence, SDA can be in-place to start
tracing the erroneous behaviour of a new virtual channel in 307ms. Then, after a
bug is confirmed, 11.28 ms are needed to microreconfigure one frame. Therefore,
318.28ms are needed to install a new SDA element in a new VCGRA location and
self-heal the erroneous element, in case the self-healing functionality is enabled.
The timing information was measured with the PConf tool.

In theoretical FPGAs the debugging infrastructure is on a separate layer. In
that way it has small effects on the interconnects and any other element that can
influence the timing of the design itself. However, it is possible that the SDA will

108 CHAPTER 4

take away resources that may no longer be used by the actual implementation and
therefore can result in congestion for the implementation and thus longer routes
and lower clock frequencies.

In commercial FPGAs, the SDA is connected with the VCGRA. They are co-
implemented and co-exist. That means that a specific VCGRA is paired with an
SDA and they have a slower (or faster) timing compared to another VCGRA-SDA
pair. This will not affect the entire system much, since the entire VCGRA-SDA
will be faster or slower (since the timing will be different). Therefore, the on-
silicon debugging infrastructure will not impact the timing of the original imple-
mentation in the sense that it is co-designed alongside the original implementation
during the original (VCGRA) compilation.

PConf Approximation

With a PConf adaptation of a VCGRA, only an evaluation of a parameterized con-
figuration needs to be performed to create the new configuration. Then, the design
needs to perform only microreconfigurations in the FPGA and not full reconfigu-
rations. One microreconfiguration of 1 TLUT takes 64.1us. Therefore, in order
to reconfigure the entire VCGRA approximately 82ms are needed. This is calcu-
lated based on an approximation of the total number of TLUTs in a VCGRA-SDA
design. This metric is closer to the theoretical FPGA architecture reconfigura-
tion time and is 3 orders of magnitude faster than the reconfiguration time without
parameterized configurations and the conventional AXI-HWICAP reconfiguration
controller. Since some limitations with the PConf tool for large designs exist, the
complete VCGRA results with the PConf adaptations are based on approxima-
tions.

Different reconfiguration controllers

The speed of configuration is directly related to the size of the BIT file and the
bandwidth of the configuration port. Here, the reconfiguration times between dif-
ferent reconfiguration controllers and the target application are compared. Since
the bitstreams that are generated from the application have similar size, the impact
on the reconfiguration time is negligible. Therefore, if the SDA is integrated in the
VCGRA, there is no impact in the configuration time for a Virtex-7 FPGA. How-
ever, there is a significant acceleration if the MiCap-Pro controller [89] is used
instead. This is shown in table 4.4.

4.4.3 Internal Signal Analysis

With Vivado’s ILA, only 10% of the internal signals could be selected and inte-
grated in one ILA core. Above this threshold, the design was unrouteable. More-

IN-CIRCUIT DEBUGGING FOR VCGRAS 109

| Design | HWICAP | MiCap | MiCapPro | JTAG | SelectMAP |
Static 849 734 0.59 24 8.49
VCGRA 8.493 74 0596 | 2457 | 8.493
VCGRA-SDA | 8493 733 0593 | 2.445 | 8493

Table 4.4: Configuration time (in s) with different reconfiguration controllers.

over, with ILA, the designer needs to manually select all the signals of the syn-
thesized design. Then the tool performs an additional compilation to install the
extra infrastructure. This infrastructure dramatically increases the overhead of the
FPGA in terms of LUTs (the design becomes 7.7 x larger) and the additional com-
pilation overhead that is needed to install the debugging functionality adds an over-
head of additional multiple minutes. However, with the VCGRA-SDA method, the
integration of the debugging functionality is done without any significant compila-
tion overhead. In fact, the no-SDA and the SDA designs took the same amount of
time to be compiled. However, for larger designs, we expect a small compilation
overhead.

The SDA is automatically integrated in the VCGRA before synthesis. At this
point, the designer doesn’t need to pre-select signals. However, he/she can choose
to run the GateRank algorithm. The internal signals can be selected automatically.
Then the signals can be transferred for analysis. Therefore, the verification engi-
neer will be able to trace more signals with the proposed technique (up to 100%),
in comparison with ILA that can trace up to 10% of the target application’s signals.
Additional signals can be traced only after adapting the ILA core and repeating the
whole process.

4.4.4 GateRank Optimization

Here, we apply the GateRank (GR) algorithm, that was presented in Chapter 3.
The GateRank graph is shown in Figure 4.8.

Since only few of the nodes have higher GR than the rest of the nodes (3x
higher than the average), we trace them back in the sources of their respective
signals. Then, we adapt the debugging infrastructure to debug only the signals
with the highest GR. The results are presented in Figure 4.9.

A significant reduction in the resources can be observed. This has occurred
due to the fact that the SDA was applied only in specific signals (that are assumed
as the most critical ones by GR). Then, the design was fully parameterized and
synthesized and mapped with various mappers. It can be seen in the results that
the PE with the SDA installed on its most critical signals (TCON Debug_GR bar)
is 10% smaller than the original design (ABC DUT) that doesn’t have any param-

110 CHAPTER 4

GateRank

3x1072

2x1072

1072

Figure 4.8: Graphic representation of the GateRank of a PE, for the target theoretical
FPGA.

eterization nor any debugging infrastructure.

Debugging with the SDA is defined as on-silicon debug. It can also be in-
troduced during the implementation stage to assist in debugging the data path, as
according to [36], bugs always escape after debugging, post-development, even
for safety-critical applications. The structure of the co-designed VCGRA-SDA is
developed in that way that the concern can be bugs in both the control path and the
data path. It depends on the signals that will be determined to be traced (control or
data). In this work, the signals that were selected to be traced were part of the data
path. However, for a different VCGRA study, control path signals would be of (de-
bugging) interest. In that case, the VCGRA-SDA design will adapt accordingly,
as it is relatively easy with the accompanying tools to add tracing infrastructure
on the VCGRA. The acquisition can start either manually, or via triggering. This
work involved on-silicon debugging, that is realized while the VCGRA is being
developed. In that way it can collect raw debug data for offline analysis, to finalize
the design. In that case, no specific events are in need to start the acquisition, as
raw data can be used.

IN-CIRCUIT DEBUGGING FOR VCGRAS 111

350 = DUT
W Debug
B Debug_GR

300

2504

200+

150 A

100+

50 A

ABC
1pleMap
TCON
TLUT

Figure 4.9: Results from various Mappers after installing the SDA in all signals (Debug)
and only in the signals with the highest GateRank (Debug_GR) and two different forms of
parameterization.

4.5 Conclusion

In this chapter, a low-power / low-overhead superimposed debugging architecture
is proposed, for heterogeneous computing platforms. This technique is used to
integrate debugging infrastructure to efficiently debug FPGA overlays, such as
VCGRAs. In order to create this novel architecture, a supporting flow and a new
two-level virtual architecture have been constructed. The custom made tools in-
troduce resource sharing on the two-level virtual architecture, reducing the actual
FPGA’s resources. Additionally, by parameterizing the PEs and VCs, their re-
sources are further reduced. Hence, a low-overhead debugging mechanism can
be integrated in virtual FPGA architectures, without any power or reconfiguration
overhead and with a minimal area penalty of 30%.

Part 111

Fault Tolerance

Mitigation of Radiation Effects with
Microreconfiguration

Soft errors from radiation are the primary concern in digital elec-
tronic reliability. This phenomenon is more important than all other
causes of computing reliability put together. As we enter the era
of ubiquitous computing, with interlaced intelligence controlling our
machines and information, system crashes without hardware defects
are the major threat of complex designs. This chapter analyses the
basic reliability techniques for SRAM-based COTS FPGAs, to provide
integrated fault tolerance on a COTS FPGA, with multi-level config-
uration scrubbing. Two reconfiguration controllers are also proposed
that support the novel technique.

5.1 Radiation Effects

The three main sources contributing to a radiation environment are the galactic and
extra-galactic cosmic rays (GCR), solar energetic particles (SEPs), and trapped
particles. They are the main source for causing a radiation environment. The radi-
ation environment is divided in the space environment, the aerospace, the ground
(sea) level and the underground level. It is also divided in natural environment
(space radiation) and human-made radiation environment, like the nuclear plants
and particle accelerators. This is extensively analyzed in Appendix A. In this sec-

116 CHAPTER 5

Heavy lon Proton

p-substrate p-substrate

(a) lonization (b) nuclear reaction -> recoil -> lonization

Figure 5.1: Charged particles strike the silicon

tion, the energetic particle radiation is analyzed, alongside its source, and its mon-
itoring and mitigation techniques.

5.1.1 Radiation Effects in FPGAs

The COTS FPGAs do not undergo a radiation hardening procedure and they are
not tested for harsh radiation environments, leaving the system susceptible to
radiation-induced permanent and non-permanent faults. Hence, the system must
integrate built-in mitigation and validation techniques, on system or architecture
level, for run-time recovery from failures. Fault injection should also be offered
in-system, to rapidly evaluate at any moment that the mitigation process remains
robust. The objective of my research (and of Part III of the thesis) is to introduce
mitigation, validation and fault injection techniques in FPGA overlays, to enhance
their fault tolerance.

The radiation environment is composed of various particles. The particles can
be classified as two major types: charged particles such as electrons, protons and
heavy ions, and electromagnetic radiation (photons), which can be x-ray, gamma
ray, or ultraviolet light. The main sources of charged particles that contribute to
radiation effects are protons and electrons (trapped in the Van Allen belts), heavy
ions trapped in the magnetosphere, GCR and SEPs. This is further analyzed in
Appendix A.

When a single heavy ion strikes the silicon, it loses its energy via the pro-
duction of free electron-hole pairs, resulting in a dense ionized track in the local
region, whereas protons and neutrons can cause nuclear reaction when passing
through the silicon. The recoil also produces ionization. The ionization generates
a charge deposition that can be modeled by transient current pulse that can be in-
terpreted as a signal in the circuit causing an upset. This is illustrated in Figure 5.1.

The term soft errors is used for nondestructive functional errors, that are in-
duced by energetic ion strikes. They are a subset of single event effects (SEE),

FAULT TOLERANCE OVERVIEW 117

Single
Event o
; Burnout “Single
Single l [Event
| Event Gat \
vent ate —— Hard Bt
Rupture - / \, o
o [Destructive |
SEE /
Single
) [Event |
Latchup |
Single Event (seup.
Effects
(SEE)
/ Total
— B | lonization
p . Effects
/ Non \
| Destruct | —
_ive SEE / /~ Single
~_ X] Event \ e
| Functional | Total
' Interrupt o nok
. (SEF) | “Dose’)
Single ~.(TID)
(Event
| Upset —
(SEV) -~ Single
- Event
Transient
(SEM)

Figure 5.2: Radiation Effects in SRAM-based FPGAs.

and include Single Event Upsets (SEU), multiple-bit upsets (MBU), Single Event
Functional Interrupts (SEFI), Single Event Transients (SET) (that if latched, be-
come SEU), and Single Event Latchups (SEL). In SEL, the formation of parasitic
bipolar action in CMOS wells induce a low impedance path between power and
ground, producing a high current condition (SEL can also cause latent and hard er-
rors). An overview of common radiation effects that must be mitigated in SRAM-
based FPGAs is given in Figure 5.2. The main effects in the remainder of the
section.

Total Ionizing Dose

The ionization of electronic components is caused by electrons and protons and
bremmstrahlung. It causes leakage currents and various other effects [29]. Ioniza-
tion is caused due to processes related to photon interaction, such as the photoelec-
tric effect, the Compton effect, and pair production, all leading to the production
of free electrons and hole-electron pairs. The accumulation of these effects leads

118 CHAPTER 5

-

Figure 5.3: SEU effect in a SRAM Memory cell

to degradation. It is called called Total Ionizing Dose (TID) and is measured in
krad.

Single Event Latchups

A SEL is a SEE that can be potentially destructive. It can trigger parasitic PNPN
thyristor structures in a device [29]. SEL effects are of no concern for radiation
hardened devices, such as Virtex-4QV and Virtex-5QV, as both devices have a
guaranteed latchup immunity. However this is not the case for COTS FPGAs.

Single Event Upsets

SEUs are the most common effects for SRAM-based FPGAs, as they may affect
the configuration memory as well as memory cells that are used as part of the user
logic (flip-flops, embedded RAM). They are soft errors that change the state of a
bi-stable element, as it is illustrated in Figure 5.3. SEUs are caused by heavy ions
and protons and result from ionization by a SEP or the nuclear reaction products
of an energetic proton. The ionization induces a current pulse in a p — n junction
whose charge may exceed the critical charge that is required to change the logic
state of the element. As a result, the value of a memory bit can be flipped [131].

Single Event Transients

A SET is a momentary voltage or current disturbance that may propagate through
subsequent circuitry. It can eventually manifest as a SEU once it reaches a flip-flop
or other memory elements [28].

FAULT TOLERANCE OVERVIEW 119

Single Event Functional Interrupts

SEFI interfere with the normal operation of the FPGA. It is typically used to clas-
sify failures that affect the circuits needed to operate the FPGA [131]. A SEFI is
often associated with an upset in a control bit or register. Various types of SEFIs
exist, namely Power-on-reset (POR), SelectMAP (SMAP), Frame address register
(FAR), Global signal , Readback and Scrub SEFIs.

Multi-bit Upsets

Many of the SEUs are in fact Multi-bit Upsets (MBUs) [120]. When a single
high-energy ion passes through the silicon it can energize two or more adjacent
memory cells. MBUs can be induced by direct ionization. The energy of the
particle is more likely to provoke double bit upsets while multiple bit upsets are
caused by an increase of the particle incident angle [111].

5.1.2 SRAM-based FPGAs in Radiation Environments

FPGAs have become one of the core components for high-reliability computing
systems, as they are used for in-situ high-speed signal processing, for data catego-
rization and data compression in radiation environments, such as space, aerospace
and in particle accelerators. The need to modify the design as the high-reliability
system is upgraded, the low-volume cost of FPGAs, and the need for a flexible and
adaptable system all point toward the use of FPGAs as a hardware implementation
solution.

SRAM-based FPGAs specifically are a convenient solution, as they can offer
hardware reconfiguration for high-reliability applications in later design, after up-
grades or even during space missions. They are best suited for high-performance
on-board tasks due to their flexibility and their embedded DSP blocks, compared
to single-board computers and DSP processors. There is a growing demand for
Commercial Off-The-Shelf (COTS) SRAM-based FPGAs for experiments in high-
reliability environments, such as the Compact Muon Solenoid (CMS) Trigger of
the Large Hadron Collider (LHC) particle accelerator at European Organization
for Nuclear Research (CERN), that performs real-time pre-processing of collision
data. Moreover, SRAM-based FPGAs are used in Low-Earth Orbit satellites and
in space missions with less dependability constraints.

During the design process various techniques need to be applied to mitigate
SEEs in SRAM-based FPGAs. A classification of these techniques is presented
below, which uses the terminology introduced in the NASA Fault Management
Handbook [108]. Although targeting flight systems in general, this terminology
can be used to describe soft error mitigation techniques for FPGAs as well, in
various radiation environments.

120 CHAPTER 5

An abnormal state of a system is described with three terms: fault, error, and
failure. A fault is defined as the cause of an error. An error is defined as the cause
of a failure. Finally, the failure is defined as the termination of the ability of an
element, to perform a function as required.

According to the NASA Fault Management Handbook, failures can be either
prevented or tolerated. In the first case, actions are taken to avoid failures either
at design-time or runtime. The design-time fault avoidance includes fault manage-
ment capabilities to minimize the risk of a fault and resulting failure, whereas op-
erational failure avoidance predicts that a failure will occur in the future and takes
action to prevent it. According to these guidelines, with failure tolerance, failures
are either accepted or mitigated. Failure masking techniques allow a lower level
failure to occur, but mask its effects so that it does not affect the higher level sys-
tem function. Failure recovery methods allow a failure to compromise the system
function temporarily, but respond before the failure compromises a mission goal.
Finally, goal change strategies allow a failure to compromise the system function,
and respond by changing the systems goals to new, usually degraded goals that can
be achieved.

Throughout this PhD research, any erroneous FPGA output is defined as a
failure. Although the failure is always caused by a fault, a fault does not necessarily
lead to a failure, as it can be masked. In an FPGA design, such a fault could be a
soft error caused by a flipped bit in a flip-flop, a reprogrammed logical operation
due to a falsified LUT, or a permanent fault.

5.2 Mitigation of Radiation Effects in SRAM- Based
FPGAs

If an ion hits an SRAM-based FPGA, it can affect memory resources either in the
configuration memory, or in the user logic layer. When this happens, an upset can
be seen as a fault that may or may not lead to a failure. If the incoming particle
strikes the configuration cells for logic modules it can lead to misconnected signals
or to functional changes. If it strikes the routing matrix, it can cause a misrouted
signal, or a missing signal. This is depicted in Figure 5.4.

Since the SRAM-based FPGAs can be reconfigured, the affected memory cell
can be updated with the correct values. Hence, the configuration memory are the
main concern to create a mitigation strategy. A fault in the configuration memory
may lead to a failure in case the affected configuration bit controls a resource that
is utilized by the design. Xilinx classifies the configuration memory bits as non-
essential, essential and critical bits. Essential bits are defined here as those bits
associated with the circuitry of the design. Thus, a fault affecting an essential bit
may lead to a failure.

FAULT TOLERANCE OVERVIEW 121

Figure 5.4: Neutrons and alpha particles cause upsets in SRAM-based FPGAs.

Critical bits are the subset of the essential bits that guarantee a failure in the
case of a fault. They are defined here as those bits that cause a functional failure
if they change state. Both essential and critical bits are a subset of the device
configuration bits [94]. This is depicted in Figure 5.5. All other bits in the FPGA’s
configuration memory are classified as non-essential bits and they cannot cause a
failure. A failure can propagate through the system until it becomes measurable at
the output. It is often only of transient nature. A fault in a BRAM cell can lead to
a failure with the next read access.

Mitigation of radiation-induced hardware faults in COTS FPGAs considers
both permanent and non-permanent faults, such as SEUs, SETs, etc. These faults
are caused by high-energy subatomic particles that are originating from the cosmic
radiation. They can cause extensive damages in the functionality of FPGA com-
ponents such as logic blocks, I/O blocks and DSP blocks. Hence, it is essential to
apply SEU mitigation for fault tolerance. The basic approaches include mitigation
of the user logic, of the configuration memory and of the BRAMs. The specific
mitigation techniques are analyzed in the remainder of this section.

122 CHAPTER 5

Device
Configuration Bits

Essential Bits

Figure 5.5: Relationship of Device Configuration Bits, Essential Bits and Critical Bits

5.2.1 User Logic Mitigation

The failure masking is implemented on the user logic layer using a method of
redundancy. Most commonly, spatial redundancy is used, but information and
temporal redundancy can be found as well for specific components.

Spatial Redundancy

The most common mitigation technique that uses spatial redundancy is TMR.
Here, all components of a circuit are triplicated, and a majority voter is then placed
at the end that chooses the correct output. This is shown in Figure 5.6. To decrease
the probability of failure, the voter can be triplicated as well. In principle, when
any of the design domains fail, the other two domains continue to operate cor-
rectly, and the voter passes the correct behavior to the outside world. SEUs that
affect feedback loops, such as counter or state machines, can be problematic be-
cause the failure is trapped in the loop. To overcome this problem, voters can
be placed inside feedback loops. This technique, sometimes also referred to as
XTMR [15], synchronizes the flip-flops automatically after repair.

Radiation tolerance can also be improved with software-based mitigation tech-
niques, that use temporal and spatial locality to protect the data flow. Error detec-
tion is done via duplicated or triplicated instructions, or via lower level duplica-
tions of registers and selected instructions [18, 20,21, 113]. This introduces large
overheads in terms of program size, memory usage, and execution time, in the
same way TMR introduces area overheads in hardware. Recently, compiler-based
techniques have been used to introduce information redundancy with both fine-
grained and coarse-grained approaches [9,27,35, 118, 119]. For scenarios where
latency is not critical, these program replication techniques can provide high re-

FAULT TOLERANCE OVERVIEW 123

COMB
] X
LOGIC
E‘) OK | majority »
COMB OK | voter
LOGIC
CcomMB 5
LOGIC

Figure 5.6: Traditional TMR Implementation

liability for COTS systems. However, most of these techniques often slow down
program execution, target specific architectures, languages, or features, and lack
automation tools, making them of limited use for future research or commercial
projects. Additionally, the majority of these techniques are limited to server-like
environments, targeting high-performance, super-scalar processors, and are not
tailored for FPGAs.

In order to create a fault tolerant design, the designers currently employ ex-
isting CAD tools, such as Synplify Premier, XTMR, Frame ECC, or custom error
correction codes [122] and then run the conventional design flow, which introduces
significant resource overhead (> 3x) and reduces the overall performance. More-
over, a reconfiguration controller is used that increases the area overhead by more
than 1000 LUTs and is prone to radiation effects as well. TMRG [85] is able to in-
tegrate predefined mitigation techniques semi-automatically, in a target design by
merging Verilog code. However, it doesn’t support fault prediction, nor multiple
(FPGA) architectures.

TMR is usually applied to a netlist using CAD tools. Several commercial and
academic software tools are available, including the TMRTool by Xilinx [15], Pre-
cision Hi-Rel by Mentor [102], and Synplify Premier by Synopsys [141]. Despite
its demonstrated reliability, TMR has some drawbacks. The basic drawbacks are
the area overhead and the decrease in the design’s performance. Several tech-
niques have been proposed in the literature to overcome the drawbacks, such as
partial TMR and modular TMR. These techniques have increased flexibility, how-
ever they are less robust than traditional TMR.

With spatial redundancy techniques, other faults can be mitigated that manifest

124 CHAPTER 5

as bit flips, such as Silent Data Corruption (SDC). A SDC materializes as bit flip
in storage (both volatile memory and non-volatile disk) or even within processing
cores. Therefore it can be mitigated with a spatial redundancy method.

During runtime, failure masking techniques can be used to tolerate failures.
Failure masking allows the fault to happen, but masks its effect and additionally it
reduces its probability to propagate. This is usually achieved by redundancy. Most
commonly, spatial redundancy is applied, such as full or partial TMR, duplication
with compare (DWC) [72], or reduced-precision redundancy (RPR) [39].

RPR differs from TMR, as instead of using three redundant copies of a module,
one module processes data with full precision while the two other modules process
the data with reduced precision. This makes RPR is suitable for data processing
algorithms, such as fixed-point numerical problems. A decision block determines
if a failure has occurred as follows. In DWC a circuit is duplicated and the output
of the redundant circuits is compared by a comparator. This is a less popular
mechanism, as it is only able to detect failures instead of masking them. However,
it can be useful for systems that need a low-overhead failure detection mechanism
that triggers scrubbing on demand.

Information Redundancy

Although information redundancy techniques are mainly applied to memory and
communication channels, ICs can benefit from them as well. Information redun-
dancy techniques function by adding redundant bits to data to be able to detect or
even correct falsified information. An example for the first case is the CRC code,
whereas error correction can be achieved by Hamming codes. In fact, parity bits
can be added to achieve a Hamming code, which enables the detection or correc-
tion of bit upsets. State machines with a Hamming with a distance of 2 (H2) have
have fewer overall errors and state machines Hamming with a distance of 3 (H3)
codes can fully handle single errors and are least affected by double bit errors.

For SRAM-based FPGAs, however, these results should be regarded with care
because the influence of configuration memory upsets is not taken into account.
Using fault injection, authors in [107] concluded that the additional required logic
can potentially add more unreliability than the reliability it adds to the original
circuit.

Alternatively, information redundancy techniques can be used to detect and
mask failures in certain types of circuits, such as algorithm-based fault tolerance
(ABFT) that is used to implement fault-tolerant matrix operations [68], or error
detection and correction (EDAC) [92]. EDAC techniques are one of the most
popular solutions for mitigating state machines. The states can be encoded using
different coding schemes, (binary, one-hot, Grey). In addition, parity bits can be
added to achieve a Hamming code, to detect or correct SEUs.

FAULT TOLERANCE OVERVIEW 125

5.2.2 Configuration Memory Mitigation

Multiple errors can break TMR in FPGA-based systems. These systems require
dedicated mechanisms that refresh the memory by scrubbing (refreshing) the con-
tents of the configuration memory. These approaches are often coupled with hard-
ware redundancy techniques. Thus, configuration scrubbing is used as an enhance-
ment to TMR to avoid fault accumulation [10, 54,109, 117,123-125].

Scrubbing is a mitigation technique that corrects SEUs in an FPGA’s configu-
ration memory by writing incorrect bits with correct data while the system is fully
operational, via (partial) reconfiguration. Scrubbing protects against accumulation
of SEUs. It utilizes a dedicated area of the FPGA and performs the necessary oper-
ations to repair SEUs by reconfiguring a portion of the design while continuously
scrubbing the entire FPGA [51,52]. In [45], a faulty configuration frame! is first
identified and then scrubbed. The drawback of this work is long diagnosis time,
bounded by reading the configuration frame and checking its correctness. This
involves coarse-grained modules and is further analyzed in Chapter 6.

The Xilinx 7-Series FPGA provides a number of fault mitigation features, such
as a built-in internal configuration scan and Frame Error Correction Codes. These
can catch isolated bit errors, but are prone to missing multiple errors occurring
at the same time. However, results from radiation testing on the 28-nm Kintex
7 FPGA suggest that intra-frame multi-bit upsets (MBU) account for 9.9% of the
events observed [149]. That means that only 90,1% of the bits can be repaired with
the existing technology, as scrubbing will not protect TMR against a MBU, where
a single strike can hit multiple nodes at one time. Additionally, scrubbing needs
re-synchronization of the system, which introduces time overhead. Significant
time overhead is also introduced by reconfiguration during scrubbing, which may
jeopardize the entire design [1].

Blind Scrubbing

During blind scrubbing the configuration memory is periodically updated with a
known to be correct copy of the original bitstream. This copy that is sometimes
referred to as the golden copy is stored in an external, radiation-hardened memory.
An external or internal configuration controller controls the download of the bit-
stream via one of the configuration interfaces of the FPGA. Blind scrubbing is an
operational failure avoidance methodology because faults are handled in a preven-
tive manner without any knowledge about the current health state of the system.
It is the most basic methodology. However, since this scrubbing is by definition
blind, that means that potential unnecessary bitstream downloads and writes occur
to the configuration memory. Scrubbing can also be effective in cases of Detected

By frame, we mean the smallest addressable element of an FPGA’s configuration memory

126 CHAPTER 5

Uncoverable Error, that is an error that is detected but not corrected. The solution
can be scrubbing with FPGA reconfiguration or parameterized reconfiguration.

Readback Scrubbing

The readback feature of the FPGAs can also be utilized for scrubbing. In that
way, the bitstream can be read for SEUs and unnecessary write accesses to the
configuration memory can be avoided. Before writing a correct bitstream to the
device, the current bitstream is read and checked for upsets. Only if upsets are
detected is the correct bitstream eventually written. This is categorized as a failure
recovery technique [153].

Device and Frame Scrubbing

The device-based scrubbing, requires a simple implementation where the config-
uration memory is scrubbed with a full bitstream (or frame-by-frame). Then, the
bitstream can be directly downloaded from a memory to the configuration inter-
face. The basic drawback of this scrubbing method is the susceptibility of the
configuration interface to soft errors. If a soft error occurs during bitstream down-
load, the whole design is likely to become corrupted.

Frame-based scrubbing requires a more complex configuration controller im-
plementation because each frame must be prepared before download. However,
the benefit of this approach is the possibility to isolate the effects of a soft error
to a single frame. Aside from the increased complexity of implementation, the
scrubbing speed is decreased as well [16].

Periodic and On-Demand Scrubbing

In many designs, the scrubbing process is independent of other mitigation tech-
niques. The configuration memory can be periodically scrubbed and scanned for
upsets with a fixed scrubbing rate.

The scrubbing process can also be triggered by a failure detection mechanism.
Such a methodology can be advantageous in systems where continuous scrub-
bing is unwanted. Eventually, the availability of a system depends on the time a
faulty component remains unrepaired [110]. This time can be minimized either
by increasing the scrubbing frequency or by implementing a mechanism that can
trigger a repair process immediately after failure detection.

External and Internal Scrubbing

A configuration interface, such as the SelectMAP can be used for external scrub-
bing due to its high throughput rates [112]. ICAP (Internal Configuration Access
Port), the internal counterpart to SelectMAP, can be used if the scrubbing logic is

FAULT TOLERANCE OVERVIEW 127

implemented on the user logic layer. External scrubbing via the SelectMAP inter-
face is commonly seen as the more robust approach and is also recommended by
Xilinx [16]. The authors at [8] come to similar conclusions, after comparing an
external blind scrubber to an internal ECC readback scrubber by Xilinx.

Internal scrubbing does not necessitate an external configuration controller and
a memory for the golden bitstream copies and is considered a low-budget solu-
tion. However, in most applications for high-reliability environments, a radiation-
hardened supervisor and reliable memory for the initial bitstream configuration is
available anyway.

5.2.3 Block Random Access Memory

The embedded RAM blocks in Virtex devices need special care regarding the miti-
gation because similar to the configuration memory, upsets in BRAM can accumu-
late, leading to an ever-decreasing reliability of the memory. Although the BRAM
content can be read out via the configuration interface, external scrubbing is not
possible during operation because the RAM cannot be accessed by configuration
and user logic at the same time [16].

5.2.4 Mitigation Design Techniques for Design-Time Fault Tol-
erance

During design time, several techniques can help to avoid faults in advance, in-
cluding tools for the susceptibility analysis (e.g., for the quantification of sensitive
configuration bits) and tools that place and route a circuit design in a reliability-
oriented way. Analytic approaches are available from Politecnico di Torino, that
analyze the sensitivity of a design and then are reducing it, by rerouting the de-
sign [133, 136,137, 139]. In this work the critical configuration bits of a circuit
design are identified, faster than fault injection. Then, by rerouting the circuit, the
tools can avoid the problem of SEUs. However, the rerouting decreases the per-
formance of the circuit. With these tools, mitigation of MBUs is also applied with
novel placement algorithms.

5.2.5 Overview of Mitigation Techniques

As has been analyzed in this section, mitigating SRAM-based FPGAs can be done
by introducing spatial redundancy in the user logic and the BRAMs and/or by
adding scrubbing functionality to repair the configuration memory. Various tech-
niques can be used, based on the frequency of the reconfiguration and the available
FPGA resources. Figure 5.7 summarizes the most common mitigation techniques
for SRAM-based FPGAs that are used in high-reliability applications in radiation
environments.

128 CHAPTER 5

The decision graph presented in Figure 5.7 guides the designer in choosing the
best possible mitigation scheme. The method to be used can be chosen based on
the speed of reconfiguration, the number of available FPGAs, the size of the design
and the availability of external (radiation hardened) equipment.

5.3 Contributions

In this chapter a multi-level scrubbing technique is proposed and two reconfigu-
ration controllers that support it. The aim is to improve the reliability of COTS
FPGAs in radiation environments, with rapid configuration memory scrubbing.
Hence the following contributions are made:

e A scrubbing technique based on microreconfiguration that speeds up the
scrubbing process.

e An on-demand scrubbing technique that targets reconfiguration frames un-
der SEU.

e Two custom reconfiguration controllers (a lightweight and a fault-tolerant
one) that implement fault injection, fault detection and correction functions
on a target design. They are low-overhead and they support the proposed
scrubbing techniques.

5.4 Configuration Memory Microscrubbing

After the installation of a spatial redundancy scheme, scrubbing occurs in the con-
figuration memory bits to avoid SEUs, MBUs and fault accumulation. The first ap-
proach (Discrete Microscrubbing - DMS) has been designed to correct the FPGA
from SEUs. Hence, DMS, is used to target a SEU on a specific frame. During the
FPGA’s operation, if one of the mitigated outputs has a different result than the
other two, this means that a SEU has been detected at a specific location. The tool
then triggers one of the proposed scrubbing mechanisms by providing the exact
configuration frames that need to be repaired, with the use of the with the use of
the XhwIcap_setClb_bits function [88]. This is called microreconfiguration and it
is able to restore a frame after scrubbing.

5.4.1 Prerequisites: Microreconfiguration

Micro-reconfiguration is a technique to change the configuration of minor or few
resources of the FPGA. Therefore, micro-reconfiguration is the main application
of DCS, as it is analyzed in Chapter 1. The Specialized Configuration Generator
(SCQG) is realized on an embedded processor (ARM Cortex-A9 dual core processor

FAULT TOLERANCE OVERVIEW 129

Start
Frequent
Reconfiguration?
no es
Design very
smaller frequent
than 1/3 of ?
FPGA?
More than
1 FPGAs
available?
external
rad-hard
data synchr.
after repair?
[I
| Ccreate3 |
| partitions 1 TMR external scrubbing
modular I___I___I
TMR i-
l : :;?It\esr;;g:n : internal scrubbing
on-demand .
scrubbing partial TMR

Figure 5.7: Mitigation Design Decision Graph. If the FPGA is constantly reconfigured,
there is no need for a separate mitigation scheme.

130 CHAPTER 5

or a MicroBlaze soft core processor). The PPC Boolean functions are stored in
the memory such as DRAM memory of the Zyng-SoC. The ICAP is used as a
configuration interface. The HWICAP reconfiguration controller is responsible for
orchestrating the replacement of the stale frames with specialized frames present in
the configuration memory of the FPGA. The HWICAP supports a software driver
function called Xhwlcap _setClb_bits to perform the reconfiguration. This function
accepts two crucial function arguments:

e Location co-ordinates of a LUT is used to generate the frame address, which
can point to a specific frame. This frame contains the truth table entries of
the TLUT (that is implemented on this physical LUT).

e Truth table entries, that contain the specialized bits generated after the spe-
cialization stage of the DCS tool flow. The LUT truth table entries need to
be overwritten with these specialized bits.

5.4.2 Multiple-level Configuration Scrubbing

A golden bitstream needs to be maintained at the processor side before the scrub-
bing is triggered. After writing back (scrubbing) the respective frame, the ele-
ment’s state can be restored.

Different levels of scrubbing are activated by different triggers, creating an
online test mechanism for a fault-tolerant architecture. The proposed scrubbing
technique operates on three different levels and it is described in the remainder of
this chapter.

The proposed scrubbing tools scrub only the frame (lowest configuration gran-
ularity) under SEU, using golden bits (stored in a non-volatile memory). The
location is obtained via the Xhwlcap_setClb_bits function which provides the as-
sociation between specific bits and their exact location. Therefore, if a SEU is
detected, the exact frame where the error occurs can be reconfigured, instead of
the whole FPGA. This involves frame detection and scrubbing.

TMR deals mainly with SEUs. However, MBUs still need to be prevented
from having an adverse effect in the design. Therefore, two different types of
scrubbing are needed. The first technique deals with SEUs, while the second tech-
nique handles fault accumulation and MBUs. Each voter can be connected with
circuitry that will trigger configuration scrubbing on up to four frames. In that
case, MBUs that occur on neighboring frames (or in one CLB) can be scrubbed.
However, if the MBUs occur in more than 4 consecutive frames, they will not be
scrubbed with this technique, as the microreconfiguration approach can currently
reconfigure up to four frames, because a single CLB has configuration bits in 4 dif-
ferent frames [86]. Hence, different levels of scrubbing are activated by different
triggering mechanisms, aiming to create a fault-tolerant application.

FAULT TOLERANCE OVERVIEW 131

5.4.2.1 Discrete Microscrubbing

After the detection of a SEU, Discrete Microscrubbing (DMS) is triggered on-the-
fly by providing the exact configuration frame that needs to be repaired. Then,
DMS scrubs only the frame under SEU using the golden bits. This process is
triggered automatically without any user interference. Therefore, if a SEU is de-
tected, DMS scrubs only the SEU infected area and reconfigures only the targeted
frames. In that way, we are able to reconfigure an exact VCGRA frame instead of
the whole FPGA. This process involves the following steps:

o Online test (Detect frames): after a SEU, the affected frames are flagged and
the frame with the same address containing the golden configuration bits is
returned from the non-volatile memory.

e Scrubbing (Write-back frames): the same frame address is scrubbed and the
correct frames are written back to the configuration memory.

First, the TMR or partial TMR is integrated in the target design. Then, dur-
ing the FPGA’s operation, if a voter’s output is different than the current output,
a SEU has been detected at a specific location. The tool then applies DMS by
providing the exact configuration frames that need to be repaired, by triggering the
microreconfiguration process [88]. We need to maintain a golden bitstream at the
processor side before we trigger the scrubbing using microreconfiguration. After
writing back (scrubbing) the respective frame, the state can be restored. Subse-
quently, DMS scrubs only the frame under SEU, using golden bits. Therefore, if
a SEU is detected, we are able to reconfigure an exact frame instead of the whole
FPGA. This involves frame detection and scrubbing.

5.4.2.2 Microscrubbing

The second level is called Micro-Scrubbing (MS) and repairs periodically the
FPGA'’s bits, to deal with Multiple Bit Upsets (MBUs) and fault accumulation,
that are 10% of the total faults [149]. This process is completed in three steps:

e Read frames: The FPGA’s frames are read from the configuration memory.

e Modify frames: the current truth table entries are replaced by the specialized
bits, from a copy stored on a non-volatile memory.

e Write-back frames: using the same frame address, the modified frames are
written back to the configuration memory, thus accomplishing MS and effi-
ciently repairing the erroneous VCGRA.

Microscrubbing is enabled in the case the FPGA’s architecture needs to be
adapted, or more than 1 bits have been affected (a MBU has occurred). When this
trigger is enabled, the tool scrubs the FPGA.

132 CHAPTER 5

5.4.2.3 Parameterized scrubbing

Dynamic reconfiguration capabilities are highly valuable in aerospace applica-
tions, since on-site reconfiguration allows the ability to adapt and upgrade elec-
tronic functions, or create designs that can overcome a specific computational re-
quest. Thus, the parameterized FPGA configuration approach can be used, as it can
allow the design to be adapted via parameterized reconfiguration without FPGA
interruption, to rapidly evaluate a specific computation [13]. In fact, the third and
final level is called parameterized scrubbing. It is enabled in the case the (param-
eterized) application needs to be adapted, or a critical error has occurred in a pa-
rameterized application. When this trigger is enabled, a parameterized scrubbing
is initiated. In this approach the parameterized elements (infrequently changing
inputs) have been implemented as constants and the design has been optimized for
these constants. Then, the proposed tool scrubs the entire bitstream, by evaluating
a new specialized bitstream (from the protected copy) and rewrites the bitstream.

5.5 Custom Reconfiguration Controller

5.5.1 Introduction

A reconfiguration controller is needed for any reconfiguration, including scrub-
bing. Commercial FPGAs include reconfiguration controllers [152, 154]. How-
ever, these controllers are more expensive than needed for scrubbing in terms of
area needed and reconfiguration speed. Hence, in this section, two custom re-
configuration controllers are introduced, that have been designed to support the
proposed configuration scrubbing schemes on a self-reconfigurable platform for
the Zyng-SoC. In the previous section, dedicated scrubbing of certain frames has
been introduced that targets the Xilinx FPGA column-based architectures. In the
remainder of this section two reconfiguration controllers are introduced, that have
been designed to support this functionality.

FPGA vendors offer controllers that oversee autonomous reconfiguration, fault
detection and recovery operations and the golden copy of the recovery bitstreams.
These controllers enable operations such as reading and writing the FPGA con-
figuration memory. Various IP and academic controllers have been developed,
such as HWICAP [154], the SEM controller [152] and the PCC controller [46],
that handle specific requirements of the radiation fault-tolerant applications and
offer solutions to detect, manage and correct soft errors in the configuration mem-
ory. Despite their ease of use, these controllers suffer from a large area overhead,
slow performance, and lack of flexibility, as they cannot be adapted alongside de-
sign changes, they are not fault-tolerant and they don’t offer protection for custom
(overlay) applications. They are able to detect and recover faults 50% of the time
and the recover process is time-consuming [152].

FAULT TOLERANCE OVERVIEW 133

5.5.2 Prerequisites
ICAP

The Xilinx SRAM-based FPGAs contain a set of components to execute the recon-
figuration, such as the ICAP, a data access bus and an embedded processor (Pow-
erPC or ARM Cortex-A9). The ICAP is a built in hardware macro, which has
direct access to the configuration memory and it requires a reconfiguration con-
troller that is built as part of the design, to manage bitstream movement between
the ICAP macro and the processor. The HWICAP is a reconfiguration controller
that contains a complex state machine and a First In First Out (FIFO) buffer that
accesses the bitstreams from the configuration memory of the FPGA. Reconfigu-
ration time is a major limiting factor for a Xilinx FPGAs, due to the complexity of
the HWICAP architecture and the lower communication bandwidth between the
processor and the ICAP controller.

The ICAP contains two data ports for reading and writing the data. Each bus
supports a data width of 32-bits. It has a clock input and an active-low ICAP enable
input. A "RDWRB?” signal selects the direction of the data. ICAP’s maximum
clock frequency is 100 MHz.

There is a series of commands used to access the configuration bitstreams of
an FPGA. They have to be written to the ICAP’s input for every rising edge of
the clock cycle. These commands help the user to orchestrate the ICAP to read
the configuration data or write the configuration data to the configuration memory.
The ICAP commands include read from and write to the configuration memory.

With a clock input of 100 MHz and a data width of 32 bits, the maximum
throughput of the ICAP is 400 MBps [50]. However, the HWICAP that encap-
sulates the ICAP port supports only 19 MBps due to its inefficient architecture
that contains a complex state machine and a communication overhead between the
ICAP and the processor which is unnecessary for an application that has PConf
enabled. In that case, the designer can use the MiCAP.

MiCAP

Various optimizations have been proposed, to improve the reconfiguration speed
of reconfiguration controllers, such as introduction of placement constraints and
custom reconfiguration controllers for the Xilinx 7 series [88, 89]. MiCAP [88]
consists of two asynchronous FIFO buffers, a state machine and the ICAP, syn-
chronized by a clock with a frequency of 100 MHz. The ICAP read and write
commands and the (specialized configuration) data which are to be written into
the configuration memory are stored in the first asynchronous FIFO buffer, the in-
put buffer. The second asynchronous FIFO buffer, that is the output buffer stores
the data fetched by the ICAP. The ICAP gives access to the FPGA’s configuration
data. The ICAP state machine controls the controller’s read/write activities.

134 CHAPTER 5

5.5.3 Motivation

In order to efficiently implement the fault mitigation through reconfiguration, we
need an efficient reconfiguration controller. With that in mind, a lightweight re-
configuration controller is proposed, that supports the proposed mitigation and
scrubbing schemes. Additionally, its fault-tolerant version is also discussed. The
benefit of the proposed controllers is that it requires less area resources, it supports
fault injection and performs fast reconfiguration to repair SEUs.

5.5.4 Superimposed Reconfiguration Controller

The Superimposed Reconfiguration Controller (SRC) has been extended from [88].
It has been designed in order to control the fault mitigation process. It is a repro-
grammable hardware/software co-design that can be easily extended to support
different fault detection techniques. In the core functionality of the SRC there is
an optimized state machine for microreconfiguration [88]. The depth of its FIFO
is long enough to store multiple frames that define configuration of one LUT. This
results in an improved reconfiguration speed. It is also light weight and hence
power efficient compared to HWICAP. The SRC provides fault monitoring, detec-
tion, injection and correction, by rapidly reading and writing specific frames in the
FPGA configuration system.

5.5.4.1 Architecture

The SRC has an ICAP state machine and it is connected with a bidirectional In-
put buffer, two asynchronous connections to the Output buffer and to the ICAPE2
Macro. The architecture is similar to MiCAP, however the Input Buffer contains a
wider variety of commands and the state machine allows fault injection and fault
tolerance processes. The Input buffer is an asynchronous FIFO buffer that holds
the ICAP read, write and reliability commands along with specialized configu-
ration data which are to be written into the configuration memory. All the data
read from the configuration memory via the ICAP is stored in the output buffer.
Once the data is ready, the processor has to read the frames from the output buffer.
Using this element the commands and data can be read or written into the FPGA
configuration memory with the ICAP module. This is depicted in Figure 5.8.

The SRC is a fully synchronous design using the src_clk as the single clock.
All elements are synchronous to the rising edge of this clock. As a result, all in-
terfaces are also synchronous to the rising edge of this clock. The SEU correction
interface and the fault injection interface use the microscrubbing functionality en-
abled by the SRC interface to monitor and correct SEUs, by reading modifying
and writing back frames. When the SRC is in the IDLE state, the ability of the
controller to detect and correct errors is suspended. If it detects an input from the

FAULT TOLERANCE OVERVIEW 135

| — _—| _____________ |
= nput Buffer —_
B Input Buff - |
o, = |
= 0,
| 3 8 § 5 |
|) S
E—
|
|
. | v \d . |
% | SRC
= state machine |
R ICAPE2 |
o | »| clk
9 »(CSIB o[31:0]— |
g > [31:0] |
5 | »| RDWRB
—) |
5 |
| y v ¢ |—‘|_’
o < c o
| 5 = g5 |
| £ Output Buffer § |

Figure 5.8: Details of the SRC architecture

user to inject errors into the configuration memory, the fault injection interface
provides a specific location and commands the controller to create a bit flip into
the configuration memory via microreconfiguration.

5.5.4.2 State Machine

The SRC’s state machine has additional states compared to MiCAP that are de-
signed to improve the reliability of the design. Additionally to the Read and Write
state, the SRC has the SEU and FI state. The SEU_en state, is the state that is
activated if a SEU has occurred. The FI_en state, is the state that is activated if the
system needs to undergo fault injection.

The SRC State machine contains various states that orchestrate the controller’s
read and write activity and mitigation processes. The state machine handles the
multiplexing of data between the frames of the input buffer and the commands of

136

CHAPTER 5

the ICAP, from the single port RAM to establish the reconfiguration process. The
state machine contains three major states: a wait state, a read state and a write

state.

In the Wait state the SRCs state machine waits until all the data (frames + I[CAP
commands) are filled into the input FIFO.
In the Read state,

1.
2.

6.
7.

SRC_en MiCAP._rd is set to high
RDWRSB is set to high
CSIB is set to low so ICAP primitive is enabled

The read command in the input buffer is fetched and written to the ICAPs
input port. The command is written in the rising edge of the clock.

Once the read command is sent, the ICAP starts fetching the configuration
data. The frames fetched from the ICAP are written into the output buffer.

CSIB is set to high so the ICAP is disabled

SRC_done is set to high

In the Write state,

1.
2.

6.
7.

SRC_en is set to high and MiCAP _rd is set to low

RDWRB is set to low

. CSIB is set to low so the ICAP primitive is enabled

The write command is fetched from the input buffer and the command is
written to the ICAP’s input port. The command is written in the rising edge
of the clock.

Once the write command is sent, the ICAP knows that next incoming data is
the configuration data that has to be written into the configuration memory
of the FPGA. Now the state machine reads the data from the input buffer
and writes the data into the ICAP input port. The ICAP continues to write
the data sent from the input buffer into the configuration memory until the
input buffer is empty.

CSIB is set to high so the ICAP is disabled

SRC_done is set to high

The fault injection state in the state machine is a process were the reconfigu-
ration controller after reading the data, reverses them, creating a bitflip. Therefore
the 0 becomes 1 and vice versa. Therefore, in the Fault Injection state,

FAULT TOLERANCE OVERVIEW 137

6.

7.

. SRC_en and SRC_SEU _en is set to high and MiCAP _rd is set to low

RDWRB is set to low
CSIB is set to low so the ICAP primitive is enabled

The write command is fetched from the input buffer and the command is
written to the ICAP’s input port. The command is written on the rising edge
of the clock.

. Once the write command is sent, the ICAP knows that next incoming data is

the configuration data that has to be written into the configuration memory
of the FPGA. Now the state machine reads the data from the input buffer
and writes the data into the ICAP input port based on the stuck-at fault (0 or

D).
CSIB is set to high so the ICAP is disabled

SRC_done is set to high

One more state added in the state machine is the SEU state. Here, if this state
is enabled, the data are under SEU and they are scrubbed. Hence, in the SEU state,

1.

2.

SRC_en, SRC_SEU_en MiCAP _rd are set to high
RDWRSB is set to high
CSIB is set to low so the ICAP primitive is enabled

The read command in the input buffer is fetched and written to the ICAPs
input port. The command is written in the rising edge of the clock.

Once the read command is sent, the ICAP starts fetching the configuration
data. The frames fetched from the ICAP are written into the output buffer.

RDWRSB is set to low
MiCAP_rd is set to low

The write command is fetched from the input buffer and the command is
written to the ICAP’s input port.

Once the write command is sent, the ICAP knows that next incoming data is
the configuration data that has to be written into the configuration memory
of the FPGA. Now the state machine reads the data from the input buffer,
inverses the data and writes the inversed data into the ICAP input port. The
ICAP continues to write the data sent from the input buffer into the config-
uration memory until the input buffer is empty.

138 CHAPTER 5

10. CSIB is set to high so ICAP disabled
11. SRC_done is set to high

12. SRC_SEU _en is set to low, so the reliability aspect is disabled.

5.5.5 Fault Tolerant Reconfiguration Controller

Reconfiguration controllers can be designed/extended to provide reliability to a
COTS FPGA designed to operate in a High-Reliability environment. However,
there are no mitigation techniques to ensure that the actual controller is reliable.

In this work, partial TMR is added to the SRC controller. A widely-used
method for SEU mitigation is applied, where the flip-flops are triplicated and vot-
ing logic is added [49].

Partial application of TMR is a technique that can be used for reducing SEUs
on an FPGA design. In that scheme, the sequential logic is triplicated, instead of
the entire component. This is a trade-off between resource utilization and fault
tolerance. The TMR flip-flops have been designed taking synthesis tool optimiza-
tions into account, to avoid the removal of any redundant parts. In fact, the VHDL
code utilizes attributes specific to the Synplify synthesis tool [141]. The FT-SRC
Controller is depicted in Fig. 5.9.

Partial TMR provides redundancy on the sequential elements only. It provides
only a single set of input and output ports for the entity, except for the clock and
reset ports that can be triplicated. The triplicated sequential elements can be voted
with a single output voter that is also implemented in the logic. The importance
of feeding back the voted result to all voted sequential elements is discussed in
[15,54]. It is mainly done to restore the state of all redundant sequential elements
and to avoid error build up. A schematic of partial TMR is depicted in Figure 5.10.

With SRC and FT-SRC the bottleneck is the data transfer between the proces-
sor and the ICAP during the configuration. In order to overcome this it is possible
to use the high performance port (HPO) of the Zyng-SoC. Since the HP ports can
be accessed only by a master from the PL region, a DMA controller can be used
that acts as a master to the high performance ports. The data transfer that occurs
through the HPO port of the Zynq-SoC, can establish a very high speed data trans-
fer that will contribute to faster reconfiguration speed (3x faster). However, this
design option was not used for this work, as the goal of this dissertation was to
provide a fault-tolerant reconfiguration controller that remains relatively small in
size. However, if an AXI-DMA controller and the HPO were used, the area of the
controller would be increased dramatically (at least 2 orders of magnitude).

FAULT TOLERANCE OVERVIEW 139

- = e = - = - = = - = = == = == = == -

FT-SRC !
I '
| |
| o = 3 - :
[} c 3 Q3
| 32 ag | 1
| = = g — |
l '
I '
I '
. |
1 i !
! &8 | DRAM
| ICAPE2 FSM <@ = MGPO |
| go| ! Controller
1 $ = :
|
| |
| |
| =5 |
[} 5 9] (_8 c |
| %:g ===l Q-&" [}
| oL @ S|
I '
| |
|

Figure 5.9: Overview of the Fault Tolerant Controller on a Zyng-SoC.

5.5.6 Results
5.5.6.1 Microscrubbing

Both DMS and MS target the lowest granularity of configuration for 7-series FP-
GAs, which is the configuration frame. For the 7-series FPGA, each frame is 101
words of 32-bits each (3,232 bits per frame). Both techniques target the error
correction on a frame level.

In a conventional implementation, the HWICAP is used as a reconfiguration
controller. However, the MS and DMS are realized using a custom reconfiguration
controller. The reconfiguration speed with this controller is improved by 3 x over
the HWICAP. The MS and DMS prove to be more energy efficient compared to
the conventional configuration. The results are shown in Table 5.1. Power anal-
ysis shows that both DMS and MS have a more energy efficient reconfiguration
controller (14.8x & 7.6x respectively) than the conventional Xilinx controller
(HWICAP).

MS can periodically reload the reconfiguration bits from a golden instance.
Since there is no need for full or partial reconfiguration, only Boolean function
evaluation, there is a significant decrease in time (5 orders of magnitude less gen-
eration time) [57].

140 CHAPTER 5

5 ol

Figure 5.10: Partial TMR: Mitigation of faults by triplication of sequential elements and
voting

DMS has only to write-back the correct frames from the correct instance (pro-
vided by the FT infrastructure). In this case, there is no need for full or partial re-
configuration, nor Boolean function evaluation. Therefore, there is a 10x decrease
in time compared to conventional scrubbing and 3x compared to MS. Finally, in
the case the FPGA needs to be changed, parameterized scrubbing (full parameter-
ized configuration) is needed. This is 3 orders of magnitude faster compared to a
full conventional FPGA reconfiguration.

Scrubbing technique Time (us) | Power (mW)
Reconf. (mW idle)

Conventional Scrubbing | 234 62.2 (3.3)

Microscrubbing 64.1 8.1(1.6)

Discrete Microscrubbing | 23.1 4.2 (1.6)

Table 5.1: Comparison of reconfiguration time and power for reconfiguring one LUT with
different controllers and scrubbing techniques.

5.5.6.2 Reconfiguration Controller

The results of the design of custom controllers are presented and compared with
the standard reconfiguration controllers. The power measurement results of the
controllers and the trade-off between their reconfiguration speed and area (resource
utilization) are also explained.

The results in Table 5.2 show that the proposed controller (SRC) can be up
to 3.6x smaller than the above-mentioned proprietary and academic non-TMR
controllers. The results in Table 5.2 also show that the proposed fault-tolerant con-
troller (FT-SRC) requires less resources than the above-mentioned proprietary and

FAULT TOLERANCE OVERVIEW 141

Resources Optional features
RC Slices | LUTs | FFs | Fault Inj. | Fault Tolerance
HWICAP | 276 544 587 no n/a
SEM 250 863 681 optional n/a
PCC 573 1758 | 1048 yes n/a
SRC 120 221 290 yes no
FT-SRC 242 336 402 yes yes

Table 5.2: Resource overhead comparison of various standalone reconfiguration
controllers for a Xilinx Zyng-7000 design.

Golden Synplify TMR/DTMR | Proposed
Area | Freq Area Freq Area | Freq
SRC | 138 | 278.5 | 168/786 228.6 336 | 270

Table 5.3: Area and frequency of the proposed reconfiguration controller. Comparison
between the golden version (SRC), the SRC mitigated with a commercial tool (with TMR
and DTMR) and the proposed version (FT-SRC) mitigated with TMR.

academic non-TMR controllers. Direct comparison with fault-tolerant controllers
was not possible, as to the best of our knowledge, none of the current proprietary
controllers are fault tolerant.

The fault tolerance of FI-SRC has been verified with a fault injection cam-
paign, with the FI-UNSHADES?2 system, where 1000 random bit flips haven’t
resulted to any SEUs, as due to the partial TMR, none of the bit-flips affected any
of the mitigated area. The fault injection system that was used will be thoroughly
described and analyzed in the following chapters.

5.6 Conclusion

In this chapter, a fault-tolerant scheme has been presented, suitable for future
high-reliability applications in radiation environments that include overlay archi-
tectures. A technique has been proposed that applies discrete microscrubbing at a
target FPGA and a fault-tolerant reconfiguration controller has also been designed.
This work provides fast scrubbing with less FPGA resources and it aims at build-
ing an integrated fault mitigation scheme that enhances the reliability of COTS
FPGAs.

In-Circuit Fault Tolerance for FPGAs
using Dynamic Reconfiguration and
Virtual Overlays

Reassuring fault tolerance in computing systems is an important problem in high-
reliability applications. With the interest in commercial SRAM-based FPGAs in
radiation environments, it is beneficial to provide continuing operation after an
error occurred and runtime reconfigurable recovery from a failure. In this chap-
ter, a two-level FPGA overlay is proposed, with an embedded on-demand fault-
mitigation technique. The proposed method exploits spatial redundancy and run-
time recovery and can achieve fast run-time recovery with less additional resources
in FPGA devices, compared to conventional tools, by providing integrated layers
of fault mitigation.

6.1 Introduction

Radiation affects the digital electronic reliability, reducing the overall computing
reliability. In contrast to their antifuse radiation hardened counterparts, COTS
SRAM-based FPGAs are in principle more susceptible to radiation effects, such
as SEUs, as they can alter the hardware configuration. The radiation effects are
caused by high-energy subatomic particles from the cosmic radiation. A detailed
description of this process is analyzed in Appendix A. These particles can cause

144 CHAPTER 6

extensive damages in the functionality of FPGA components such as logic blocks,
I/0 blocks and DSP blocks.

As it was analyzed in Chapter 5, in COTS FPGA:s, there is no radiation harden-
ing. In that case, fault mitigation is used. Mitigation of radiation-induced hardware
faults in COTS FPGAs considers a wide variety of faults, such as SEUs, SETs, etc.
The basic approaches include Triple Modular Redundancy (TMR) and configura-
tion scrubbing.

6.1.1 Motivation

In order to create a fault tolerant design, the designers currently employ existing
TMR tools, such as Synplify Premier, XTMR and Frame ECC and then run the
conventional design flow, which introduces significant resource overhead (> 3x)
and reduces the overall performance. Also, these tools don’t offer any protection
against MBUs and fault accumulation. Additionally, SRAM-based FPGA over-
lays have been gaining traction among researchers, as it was analyzed in Chap-
ter 4. Hence, FPGA overlays, such as VCGRAs are often used because of their
potential to reduce development costs in a range of High-Performance Computing
applications [57].

The COTS FPGAs do not undergo a radiation hardening procedure, as it was
discussed in Chapter 5, and they are not tested for harsh radiation environments,
leaving the system susceptible to radiation-induced faults.

The previous chapter outlined the radiation effects that cause soft errors in
SRAM-based FPGAs and proposed scrubbing techniques to recover from the fail-
ures and reconfiguration controllers to support these functionalities. The objective
of this chapter is to introduce mitigation, validation and fault injection techniques
in FPGA overlays, to enhance their fault tolerance.

6.1.2 Related Work

Radiation tolerance can be improved with mitigation techniques, that use temporal
and spatial locality to protect the COTS FPGA. The basic approaches include TMR
and configuration scrubbing, as it was analyzed in Chapter 5 [11, 85, 102].

CGRAs and FPGA overlays can also be used for fault tolerance. Coarse-
grained architectures have also been used in [40,93, 126], where a coarse-grained
reconfigurable array (CGRA) is used as a de-facto natural reliability architecture
against SEUs [93]. The authors apply hardware redundancy and voting. How-
ever, this technique is not applied on FPGAs and therefore is not equipped with a
scrubbing mechanism. Additionally, the computational overload in these architec-
tures gives limited flexibility to add mitigation mechanisms without a performance
penalty.

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 145

Academic works have used overlay-based incremental techniques to add addi-
tional logic [31,47,61, 62], to trace internal signals, as it was analyzed in Part II
of the dissertation. Additionally, in [32, 60, 63] academic works demonstrate the
post-implementation insertion of verification infrastructure. Researchers have also
used the properties of compiler-optimized HLS circuits to enable dynamic tracing
to increase internal signal observability [43,44]. They have also adapted some of
the added circuitry for even more efficiency. However, these works demand ade-
quate empty regions to install their circuitry. On a highly-utilized FPGA, it may
be hard or even impossible to find a region large enough to implement additional
logic, that is essential for techniques such as TMR. These techniques can be proven
problematic in highly utilized FPGAs and hence cannot be used to generate spa-
tial redundancy circuitry. Additionally, they can create a new longer critical path
and cause routing congestion. Most importantly, these techniques are only avail-
able for compiler-optimized HLS designs or academic FPGAs and don’t offer any
spatial redundancy or scrubbing mechanism.

The virtual and overlay architectures provide more flexibility. However, none
of the mentioned techniques can currently support efficient fault tolerance of vir-
tual architectures without extensive resource overhead or time-consuming recom-
pilation. Thus, in order to efficiently mitigate FPGA overlays and virtual designs
in-system, the current limitations of the fault mitigation techniques need to be ad-
dressed.

6.1.3 Contribution

In this chapter an in-circuit reliability-aware infrastructure is proposed, tailored
for overlay architectures on FPGAs, with an integrated fault tolerance mechanism.
With the use of the PConf tool [57], we aim to improve the reliability of COTS
FPGAs s in radiation environments, with minimal area overhead. Hence, we make
the following contributions:

e An in-circuit reliability technique with fault tolerance for an overlay design.

e An extension for the parameterized Configurations tool flow, in order to pro-
vide the reliability functionality, by integrating spatial redundancy, scrub-
bing and fault injection to the target design.

o Adaptations for commercial FPGA architectures

e An experimental study that demonstrates how the proposed techniques can
be applied to create reliable FPGA overlays.

o A fault injection design flow to validate the results.

146 CHAPTER 6

e B
High-Rel
S
©
g ()
g In-Circuit Debugging with VCGRAs
- VCGRA S
i Sl generation 2
I >
L 2
SFT 71 S
TMR q parameterized
voters Synthesis SDA netlist :
Scrub |
T 7\
Chapters L1
5,6 A Gate
— Rank
Chapters 3,4)
—_—
\

Place & Route

O One FPGA-overlay level
B Two FPGA-overlay levels
O PConf backbone

Figure 6.1: Visualization of this chapter’s contribution

The contribution can be visualized in Figure 6.1 and where it is placed in this
dissertation regarding the rest of the contributions. It adds a high-reliability step in
the next generation tool-flow, that was first depicted in Chapter 1 in Figure 1.1(c)
and extended in Part II. In more detail, this chapter adds fault tolerance techniques
(spatial redundancy, voters and scrubbers) and FPGA overlays.

The remainder of this chapter is organized as follows: First, the proposed tech-
nique and the proposed methodology are introduced, that are dedicated to inserting
SEU mitigation infrastructure in overlay FPGA architectures. The proposed work
leverages the PConf and the VCGRA architecture and introduces SEU mitiga-
tion in (overlay) FPGA architectures. Additionally, a tool is also introduced that
adds mitigation techniques (TMR, voters) to the design with significantly less area
overhead than the proprietary tools and it also contains an in-circuit fault injection

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 147

infrastructure that can validate the design during runtime.

The accompanying tool adds mitigation techniques (TMR, voters) to the design
with significantly less area overhead than the proprietary tools and it also contains
an in-circuit fault injection infrastructure that can validate the design during run-
time. Then, this technique is paired with the multi-level scrubbing introduced in
Chapter 5 and it is shown how a designer can handle fault accumulation by using
multiple-level scrubbing techniques. Finally, a case study is presented, alongside
the subsequent steps taken to provide SEU mitigation in two image processing
applications: a Sobel Edge Detection filter and a Convolutional Neural Network
(CNN). The proposed technique is validated with a fault injection system based on
the FI-UNSHADES?2 platform in the end of this chapter.

6.2 Architecture

This section describes the proposed fault mitigation scheme for safety-critical ap-
plications that use COTS SRAM-based FPGAs and that can be integrated with an
overlay architecture, such as a VCGRA.

6.2.1 Superimposed Fault Mitigation

The VCGRA is constructed in such a way, that there are clear layers of PEs
and VCs [90]. The proposed architecture is leveraged by inserting the mitiga-
tion scheme on each individual VCGRA layer. In that way the design’s robustness
is increased and fault propagation is reduced, as each layer is mitigated and voted.
Additionally, it allows to create a mitigation scheme and then adapt it during run-
time if it is needed.

In safety-critical applications it is crucial to be able to have a detection mech-
anism that can assess if a SEU occurs. Hence, during the construction of the
VCGRA at the target FPGA, TMR is directly applied. TMR is performed on the
overlay infrastructure at a PE level and not at a gate or block level as in the state
of the art. This creates an overlay TMR infrastructure on top of the VCGRA ar-
chitecture. In that way the TMR can be adapted on-the-fly, as soon as the VCGRA
is created (or it is adapted after deployment). Moreover, since it is performed on a
higher abstraction level, not all TMR resources are translated directly to real FPGA
resources, as LUTs and flip-flops can be more efficiently designed to implement
the overlay and map it efficiently, reducing the resource overhead of the mitigation
scheme.

The VCGRA, as similar coarse grained architectures, is constructed with mul-
tiple layers of PEs/VCs. TMR is co-designed alongside the VCGRA. Therefore,
TMR is applied after each layer of PE/VC, as it is shown in Fig. 6.2. One voter is
placed directly at the output of the triplicated PE. The voted output serves as an in-

148 CHAPTER 6

il

=

L

o

£

=

datam

PE PE PE 54
E virtual channel _
A virtual channel 1 —
— virtual channel 2 ~_—

“%%+®

&
E
* + + + S
o
PE
E (Pe)
dataout v
Q virtual channel
s~ virtual channel 1
-§ — virtual channel 2

Figure 6.2: Overview of a VCGRA grid integrated fault mitigation for PEs and VCs.

put for the next level (and not the PE’s output). Hence, the VCGRA has redundant
PEs and VCs, as each element is triplicated and voted. Thus, by leveraging the
VCGRA architecture, the SEU effect can be eliminated (via redundancy), before
it can be propagated to another layer of PE/VC.

The voters are a standard mitigation technique. They provide a majority vot-
ing functionality that ensures correctness at least at the two out of three copies of
the system, in order to remain operational. Thus, the voter plays a pivotal role in
ensuring the correct operation of the system. This logic is extended to provide a
repair functionality alongside TMR and to avoid fault accumulation. A majority
voter is installed after each triplicated element. Hence, when the TMR result is dif-
ferent than the original target PE or VC, the voters can trigger on-the-fly circuitry
that can repair the current VCGRA layer. In that way, the SEU can be detected and
repaired on each layer, eliminating the need to scrub the entire VCGRA (or FPGA)
periodically. This is visualized in Fig. 6.2, where reconfiguration is enabled in a
target PE and the target PEs are scrubbed.

It is also common practice to triplicate also the voters, to provide an additional

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 149

res

Figure 6.3: Triplicated voters

level of mitigation. This method requires additional area resources, but it includes
an additional level of redundancy. Hence, in this work, we provide the possibility
of triplicating the voters as well, if there are sufficient FPGA resources. In that
way, the PE outputs are triplicated and voted. Then, the voters are also triplicated
and their result (PE,.) is used as an input for the next VCGRA layer. This is
visualized in Fig. 6.3.

6.2.2 Superimposed Fault Injection

Here, a combination of location specific fault injection is proposed, with the reuse
of the microscrubbing methodology that is already integrated in the design, as
it was presented in Chapter 5. In that way, a bit-flip can be generated through
microscrubbing since the location of the bits is already known. Hence, since the
SEUs in a PE can be modeled as bit flips, the bit at the register output can be
inverted. Subsequently, its effect on the behavior or functionality can be observed
during simulation. Moreover, the complexity of the fault injection campaign is
reduced, as the bit-flip is applied on the output of a specific PE (group of LUTS),
reducing the amount of extra hardware resources needed. The fault injection is on
a higher abstraction level (PEs and VCs) and not on specific gates nor bits.

The fault injection infrastructure is added incrementally, alongside the mitiga-
tion scheme, by reusing the TMR resources that are allocated in the reconfiguration
resource of the FPGA. The infrastructure that is reused are multiplexers that are
installed at the PE’s output that connects it with the triplicated PEs and voters.
To integrate the fault injection functionality, the multiplexers are redesigned, to
accept one more parameter-input value (one additional selection bit). The virtual
LUTs and routing are implemented in the reconfiguration infrastructure and hence
do not need extra resources. Hence, the LUT utilization remains constant, since

150 CHAPTER 6

virtual LUTs and routing connections have been used exclusively, to describe all
the additional multiplexers, in the reconfiguration infrastructure of the FPGA. The
designer has no access in the reconfiguration infrastructure with the conventional
methods, leaving routing resources unexploited. In that way, by exploiting these
resources, a fault injection functionality can be introduced at specific locations in
the FPGA, that are accessed via reconfiguration. In these locations a stuck-at fault
or a bit-flip can be introduced.

6.2.3 Configuration Scrubbing

After the installation of the TMR, the scrubbing occurs to avoid SEUs, MBUs and
fault accumulation. Here, the approaches that are used (MS, DMS) have been first
introduced in Chapter 5. Here, they target the PEs specifically. The first approach
has been designed to correct the VCGRA from SEUs. Hence, the first scrubbing
technique, is to target a SEU on a specific PE. The second technique, is to han-
dle fault accumulation and MBUs on various PEs/VCs, by periodically scrubbing
the VCCGRA. Hence, different levels of scrubbing are activated by different trig-
gering mechanisms, without disrupting the FPGA operation, aiming to create a
fault-tolerant application.

Hence, DMS, is used to target a SEU on a specific PE. After a subgrid is con-
structed, during the design stage, the fault mitigation scheme is integrated along-
side the VCGRA. Then, during the FPGA’s operation, if one of the triplicated
outputs has a different result than the other two, this means that a SEU has been
detected at a specific PE or VC. The tool then triggers DMS by providing the ex-
act configuration frames that need to be repaired via microreconfiguration [88],
that is also able to restore the state of the PE after scrubbing. A golden bitstream
needs to be maintained at the processor side before the scrubbing is triggered. Af-
ter writing back (scrubbing) the respective frame, the PE’s state can be restored.
Subsequently, DMS scrubs only the frame (lowest configuration granularity) under
SEU, using golden bits (stored in a non-volatile memory). The location is obtained
via a function which provides the association between specific bits and their exact
location. Therefore, if a SEU is detected, the exact VCGRA frame where the error
occurs is reconfigured, instead of the whole FPGA. This involves frame detection
and scrubbing.

Microscrubbing (MS) repairs periodically the VCGRA’s bits, to deal with Mul-
tiple Bit Upsets (MBUs) and fault accumulation, that are 10% of the total faults
[149]. The MS is enabled by the processor after multiple DMS cycles. This pro-
cess is completed in three steps that include reading the VCGRA’s frames from the
configuration memory, replacing the current truth table entries of a PE/VC with the
specialized bits (from a copy stored on a non-volatile memory) and writing back
the modified frames to the configuration memory. Microscrubbing is built on top

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 151

of the parameterized FPGA configuration technique. It is enabled in the case the
FPGA'’s overlay architecture needs to be adapted, or a critical error has occurred.
When this trigger is enabled, a parameterized reconfiguration is initiated. Then,
the proposed tool scrubs the entire VCGRA, evaluates the new VCGRA and in-
tegrates it with the adjacent TMR infrastructure. MS is similar to the technique
described in Chapter 5. However, here it is used for scrubbing PEs.

The microscrubbing technique can be offered for any SRAM-based FPGA that
is able to apply DCS. The VCGRA-TMR adaptations can be applied in a design
that can benefit from such architecture and has relatively scarce resources. There-
fore, the mitigation decision graph that was depicted in Figure 5.7 from Chapter 5
can be extended into Figure 6.4.

6.3 Tool Flow

Before the mitigation schemes (spatial redundancy, fault injection, monitoring) can
be included in the design, the respective back-end tools that generate them need to
be integrated in the conventional (parameterized configurations) tool-flow [55].

The generic design tool flow consists of the basic steps, namely synthesis,
technology mapping, place & route and bitstream generation. The additions are
introduced before the place & route. A pre-synthesis step is needed to create the
VCGRA and the mitigation infrastructure, while during synthesis the supplemen-
tary files are generated. The supporting tool-flow that implements a fully parame-
terized VCGRA integrated with the mitigation schemes is shown in Fig. 6.5.

In more detail, in order to create a VCGRA, the user provides an HDL design
and the VCGRA architecture and settings. In this work the tool has been adapted
to add the mitigation schemes and to create a fault-tolerant design. At this point,
the design can be synthesized placed and routed according to [57], in order to
allow the designer to create the generic (parameterized) infrastructure. The tool
is divided in two parts, namely the offline phase and the online phase. The first
(offline) part of the flow occurs only when the VCGRA is designed (or adapted).
The second part (online phase) is executed during runtime, where upon a detection
of a SEU, the design is repaired by reloading the frames that have been scrubbed.
This process is analyzed in the remainder of this section.

6.3.1 Offline phase: Superimposed Fault Tolerant Tool

In order to setup the SEU mitigation scheme, the VCGRA settings first need to be
extracted. The settings needed are the number of PE levels used in the applica-
tion, the function of each PE (or the set of functions), the (possible) connections
between PEs and the number of PEs that define each level.

152 CHAPTER 6

Start

Frequent
Reconfiguration?

no es

Design very
smaller frequent
than 1/3 of ?

FPGA?

More than
1 FPGAs
available?

CGRA
possible
?

data synchr. DCs
after repair h SUP’EOH
k ?
/
1
i
1
I
| TMR external scrubbing
|
modular I___I___I
MR sz | internal scrubbin
l | FPGA system 1| 9
on-demand 9
scrubbing partial TMR micro-scrubbing

End

Figure 6.4: The mitigation decision graph that supports DCS, VCGRA and
microscrubbing.

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 153

hdl [VCGRAJ VCGRA — parameterised
netlist settings configuration
VCGRA o10ABBIC |
TMR generation 110BA+BC
100AABBC
-hdl ¢ 010ACC!A
— Generic =
Injection Tool * M . specialised
apping i i
. configuration
™R Synthesis Place & Route L
voters 010001
°rs 110111
Fault Injection == 100001
Specialisation 010000
stage
- 1 bit-flip
Post layout L
oftjooo1 |f
yes CGR no HikiE 100111
change? 100001
oftjoooo
no yes T
SEU? U ¢ scrubbing
010001 [}
110111
100001
010000

Figure 6.5: The tool flow that integrates the VCGRA implementation with mitigation
schemes.

First, the proposed tool constructs a tailor-made TMR scheme, starting from
a target application and the overlay infrastructure settings. The VCGRA settings
define the levels of PE needed, alongside some information for the .par file that
will be generated. In more detail, the user provides the original netlist, written
in a HDL language (VHDL or Verilog), the VCGRA settings and the VCGRA
architecture as inputs to the Superimposed Fault Tolerant (SFT) Injection tool,
that is shown in Fig. 6.5. As soon as the architecture of the VCGRA is defined,
the TMR is integrated on the VCGRA, as a second overlay. The output of the
tool is an HDL design. The tool can repeat the process for each VCGRA level, by
incrementally adding two additional identical versions of each PE on each level
for full TMR, or by triplicating only the sequential logic for partial TMR. The
tool gets as an input the number of levels and the VHDL description of a PE and
extracts a VHDL output where each level of PEs is triplicated and connected with
a majority voter.

The hierarchy introduced in the VCGRA is leveraged to our benefit in the
TMR design. The output of the majority voter is the input of the next level of the
VCGRA. The voted output is the input of the VC. The tool repeats this process
numerous times, until all levels are triplicated. This architecture provides a very
convenient method to add spatial redundancy, as the hierarchy allows the introduc-

154 CHAPTER 6

tion of TMR on each PE or on each layer. When the design is in fault injection
mode, the tool reuses the multiplexers from TMR. The multiplexer injects a bit-
flip at the target PE. The bit-flip is a single operation, where the current frame is
modified and written back.

At this point the SFT Injection tool has already defined the granularity, the
functionality and the mitigation scheme of the VCGRA, alongside all the possible
ways the triplicated and voted PEs and VCs can be interconnected.

For FPGAs that support parameterized and fully parameterized configurations,
as it was discussed in Chapter 4, the VCGRA’s parameter inputs are mapped in
virtual LUTs (with Boolean logic as well as 1’s and 0’s) that allow their lookup
entries to be defined as Boolean functions of the parameter inputs instead of static
ones and zeros. The truth table entries (Boolean values) will be microreconfigured
upon every change in the VCGRA. This part of the flow creates a parameterized
VCGRA configuration. This configuration is a virtual intermediate layer and de-
scribes the target application (depicted on the top right schematic of Fig. 6.5).
Here, the PEs are mapped into virtual PEs of the VCGRA. Next, with the custom
router, optimal connections are created between the voted outputs.

The parameterized configurations approach has some benefits (reduction of
the FPGA resources and fast reconfiguration). However, in some cases it is more
beneficial to use the conventional approach, such as in the occurrence of many nu-
merical operations and when reconfiguration is frequent and the FPGA resources
are not scarce. In these cases, the VCGRA can be implemented on a commercial
FPGA without using parameterized configurations. Then, the fault tolerance can
be integrated on top of the VCGRA. In order to achieve this, it is essential to follow
a very specific procedure, to create a user IP:

1. Describe the application in a form of a graph

2. Create the settings of the VCGRA

3. Generate TMR functionality

4. Create the AXI settings

5. Create a user-IP that contains an AXI wrapper of the VCGRA
6. Implement it on the FPGA with vendor tools.

The outcome of this procedure, is a third-party IP of the VCGRA, where each
layer is triplicated. Since here each level is triplicated, without any parameteriza-
tion, the area is increased. However, since some optimizations still exist, due to the
VCGRA architecture, the area overhead is more constrained. This flow is applied
for Xilinx Virtex-7 FPGAs. This procedure is depicted in Figure 6.6.

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 155

Testbench VCGRA M

VCGRA
TMR

template

=

AXI Lite

template <

source files

i

source files

Associated IP Files

!

IP Packager

I

| P Catalog I
3" party 1P

User IP

VCGRA-TMR
wrapper

Figure 6.6: Representation of the procedure to create the fault-tolerant VCGRA IP.

6.3.2 Online phase: SEU Mitigation

During runtime (later design stage), the FPGA can be rapidly repaired from SEUs
and MBUs on-the-fly via targeted (discrete) microscrubbing. By using the pro-
posed flow the two-level VCGRA gives a new set of triplicated components. The
voter examines the PE, until its output doesn’t match with the original. When it
doesn’t pass, the new settings for the components are merged with the special-
ization stage and create a new specialized configuration with the repaired compo-
nents. Hence, in case a SEU is detected, the controller activates the microscrubbing
process to repair one frame and return to SEU checking.

At the current frame address that a SEU has been detected (after voting), four

156 CHAPTER 6

frames containing all the truth table entries of a column of LUTS are read from the
configuration memory. Then, a function locates the truth table bits of all the LUTs
that are present in the frame. The current truth table entries of these LUTs are
replaced with the original (golden copy) specialized truth table bits. Finally, with
the help of the same frame address, the modified truth table values are updated in
all the LUTs of the column by swapping in multiple frames into the configuration
memory of the FPGA. This updates all the truth table entries of multiple LUTSs that
are placed in a single column and completes the Discrete Microscrubbing process.

6.4 Results and Discussion

For the experiments we have used two benchmarks to showcase how the proposed
mitigation scheme is applied and how it impacts the original design, in terms of
usage and timing. Then, a Fault Injection campaign is executed to validate the
mitigation technique. We have used two case studies for image processing appli-
cations: one is a Sobel Edge Detection filter [129], and the other is a Convolutional
Neural Network (CNN) [84].

First we map the applications into a VCGRA architecture. Then, we integrate
our designs with SEU mitigation components, such as TMR, voters and config-
uration scrubbing and perform an area exploration study by comparing it with a
commercial tool and subsequently a fault injection campaign with the use of FT-
UNSHADES?2 (FTU2). Alongside the case studies, we perform fault injection to
verify the fault tolerance of the proposed fault-tolerant reconfiguration controller
(FT-SRO).

For the area overhead, we compare the benchmarks with conventional FPGA
architectures. We have implemented it on a Xilinx Virtex-5 FPGA and applied
TMR with the Synplify Premier tool by Synopsys. The FPGA was selected as the
one that supports all the vendor tools that are needed for the experimental study.
Then, in order to create the proposed fault-tolerant VCGRA grid with our method,
we have applied TMR on each PE.

6.4.1 Sobel Edge Detection Algorithm

The Sobel filter is used for edge detection in image processing. It was first pre-
sented in Chapter 5. Starting from a graph representation of a Sobel edge algo-
rithm, we can create a VCGRA grid, as it was explained in Section 4. The algo-
rithm has two different operations (add, mul), between two neighboring pixels and
their corresponding filter coefficients. Hence, the operations are modeled as PEs,
with 2 inputs: a pixel and a filter coefficient. The edges of the graph can be mod-
eled as VCs. Therefore, we can construct a VCGRA. The architecture has been
implemented with the proposed tool-flow.

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 157

data in data_in |

Et‘
@

wrtual channel virtual channel
ﬁ*]q D

[data_out data_out

(@ (b) ©

Figure 6.7: Model of a Sobel edge detection filter as a reprogrammable PE. Fig. (a) shows
the graph of the filter, Fig. (b) shows how it can be mapped on a VCGRA and Fig. (c) how
the fault tolerance can be applied.

Usage Timing
LUTs | FF | Freq (MHz)
PE coiaen 62 81 319.5
PE ™ 147 | 27 189.5
PE R ogica vorersy | 164 | 43 248.9
PE utvr 205 | 45 141.5

Table 6.1: Sobel Edge Filter utilization comparison between the golden version, the
proposed, the proposed with triplicated voters and with Synplify. The design used is a
processing element of the DUT.

For the area utilization of commercial FPGA architectures, we compare the
Sobel filter with a conventional architecture without an overlay. We have imple-
mented it on a Xilinx Virtex-5 FPGA and applied TMR with the Synplify Premier
tool by Synopsys. Then, in order to create the proposed fault tolerant VCGRA grid
we have applied TMR on each PE.

The area results of the area overhead needed, is shown in Table 6.1. We have
added 5 VCGRA layers, with 9 PEs per layer. Thus, each PE is triplicated and
voted, as it is shown in Fig. 6.7(c). Since it is also integrated with the use of FPGA
overlays (VCGRA), we notice an overall reduction up to 30% of the total TMR
resources compared to full TMR. To implement the entire Sobel filter we need 45
PEs and 4 VCs. The results are compared with the area overhead produced with
Synplify Pro.

6.4.2 Reconfiguration Speed

The time overhead is calculated based on the time to reconfigure all the processing
elements and virtual channels. This takes 156 ms and 18.4 ms of reconfiguration

158 CHAPTER 6

[l Commercial FPGAs [Academic FPGAs
500

375

250

125

Golden Golden (par) TMR Proposed TMR

Figure 6.8: Comparison of area results for a Virtex-5 FPGA and an academic architecture
that allows parameterized configurations. The y axis is the area in terms of LUTs and the
x-axis each design mapped on commercial and academic FPGAs respectively.

time respectively. For this application, the reconfiguration speed is improved by
3x over the HWICAP. Additionally, DMS has a 10x decrease in time compared
to conventional scrubbing, as it was analyzed in Chapter 5 and 3x compared to
MS, as it was also presented in Section 6.2.3. Both DMS and MS target the lowest
granularity of configuration for 7-series FPGAs, which is the configuration frame.!

Parameterized Configurations Optimization

The Processing Element has been designed in VHDL and a parameterized appli-
cation has been compared to a conventional one. In the parameterized application,
the parameters are used in order to define the two different mathematical opera-
tions of the filter. Due to dynamic data folding, the logic resources (in terms of
LUTs) can be reduced up to 24% and the wire length is decreased up to 25% for
a parameterized application compared to a conventional one. This has a reconfig-
uration time costs from 3.4ms up to 88.5ms. A major part of the virtual channel
doesn’t need LUTs to make them reconfigurable, due to routing multiplexing (pa-
rameterization) of the graph’s edges. Hence, up to 82% of its logic is mapped on
the reconfigurable physical switches instead of physical LUTs and multiplexers (as
per the conventional implementation). The wire length is decreased by 76% and
the minimum channel width is reduced by 42%. This optimization can be achieved

!For the 7-series FPGA, each frame is 101 words of 32-bits each (3,232 bits per frame)

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 159

neuron PE
Synapse_1
TMR neuron layer
weight_1 datain
v
Synapse_2 '___, feuron) (neurony (neurony (meuron /
weight—Q Cf) neuron neuron neuron
% 2 3 4

Synapse_3

4

pae

%

E

neuron
4

neuron ' neuron
2

1 3

vv

virtual channel

weight_.

\

B

Synapse_4

5050 BB

weight_4

Figure 6.9: Model of a single neuron structure as a reprogrammable PE

at the cost of a reconfiguration time of 4.6 ms. In order to add fault-tolerance (by
triplicating the asynchronous logic) in the parameterized design, we have an area
increase of 30%. However, with the commercial architectures, the area utiliza-
tion is more optimized for numerical operations, making the non-parameterized
method more efficient in terms of LUTs. However, the area overhead in academic
FPGAs is less than the area overhead in commercial FPGAs. This is depicted in
Fig. 6.8, where we can observe that the DUT (golden circuit) is only 62 LUTs
with the commercial FPGA and 317 LUTs with the academic FPGA. Hence, the
original implementation is 5x larger if it is synthesized with academic tools.

6.4.3 Convolutional Neural Network

A CNN is a class of deep, feed-forward artificial neural networks that has success-
fully been applied to analyze visual imagery. CNNs use a variation of multilayer
nodes designed to require minimal pre-processing. Each node is a neuron that
uses a nonlinear activation function. Because of this design, CNNs make ideal
candidates for overlay architectures, such as VCGRAs, after minimal modifica-
tions. Hence, each neuron is modelled as a PE, and the multiple layers of these
PEs model a 2-dimensional VCGRA, similar to Fig. 6.2.

The neuron architecture is designed in VHDL and it is depicted in the left
part of Fig. 6.9. The neuron allows parallel multiplication of the inputs by the
weights. Timesteps are implemented using a clock signal. Our implementation
on a VCGRA is smaller compared to the conventional implementation in terms of
LUTs.

160 CHAPTER 6

Golden Synplify TMR/DTMR Proposed
Area | Freq Area Freq Area | Freq
1 PE neuron 36 | 4909 | 155/605 198.1 112 | 499.7
VCGRA ow | 432 | 451.7 | 1954/6574 184.7 1220 | 457

Table 6.2: Area and Frequency comparison between the golden design (the original circuit
without mitigation), with the Synplify tool (TMR and distributed TMR) and with the
proposed method. The designs compared are a neuron of a CNN and a complete CNN.

The fault tolerant neuron has been designed in VHDL, by adding TMR at the
flip-flops of each neuron. The reliable neuron is smaller if it is implemented with
our technique instead of the Synplify Premier [141]. The components that add
fault mitigation were implemented with the proposed tool. Since we virtualize
the connections between VCGRA and the TMR infrastructure, TMR consumes
less additional LUTs than full TMR with Synplify. This gain exists due to the
fact that overlay architectures don’t always translate in real FPGA resources. The
results are shown in Table 6.2. From the results, we can observe that the proposed
technique occupies less FPGA resources than with Synplify and its frequency is
always higher.

6.4.4 Fault Injection Campaign

In order to validate our example, we performed a fault injection campaign. We
have used the FT-UNSHADES2 (FTU2) system [2, 104]. FTU2 is an automated
FPGA-based fault injection platform that consists of an FPGA motherboard con-
nected with two custom daughterboards via PCI-Express. The motherboard stores
stimuli and configuration data and compares responses. Each daughterboard fea-
tures a service FPGA and a test FPGA. The service FPGA configures the test
FPGA, applies input stimuli, and records output responses from the test FPGA.
FTU2 can inject errors to user registers in the design or the configuration mem-
ory. All FPGAs in the FTU2 system are Xilinx Virtex-5 FPGAs. Therefore, the
target FPGA used in the test described in this paper is a Xilinx Virtex-5 FX70T.
Subsequently, all of our designs were adapted and re-implemented for this specific
FPGA. We have created a flow (Fig. 6.10) that prepares the design and executes
the fault injection campaign.

The designs followed each step of the system described in Fig. 6.10. The RTL
description of each design is mitigated and synthesized with the Xilinx flow and
with the proposed flow. Then, the designs are implemented on the Virtex-5 FX70T
FPGA. The bitstream, the readback and the register location files are generated.
At this point the fault injection system is initiated. Three designs were compared
during the campaign. The processing element of the Sobel edge detection filter,

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 161

Injector Campaign Errors
Injections | Runs | Synplify | Proposed
PE: swacoaen | Random 100 10 - 354
PE: sobatvr Random 100 10 0 3
PE: cxvvir Random 100 10 10 5
FT-SRC Random 100 10 2 2

Table 6.3: Fault Injection Campaign

a neuron of a CNN, and the fault-tolerant reconfiguration controller. The logic of
the designs was mitigated with the Synplify Pro and with the proposed tool.

Multiple fault injection campaigns were executed for the PEs. The Reconfig-
uration Controller, even though it is originally implemented for Xilinx Series 7
FPGAs making use of the AXI interface, it has been re-implemented, to offer con-
sistency for the fault injection results, as FTU2 currently supports Xilinx 5 FX70T
FPGAs. However, the main functionality has remained intact. The service FPGA
configured the test FPGA, applied input stimuli, and recorded output responses
from the test FPGA. The FTU2 injected 1000 errors to user registers in the design
or the configuration memory. By error we mean that an erroneous output has been
reported after a SEU occurred. In fact, during the campaign, 100 runs were exe-
cuted, with 10 induced SEUs per run. Hence, the following results are per 1000
flipped bits.

The results of the fault injection of the designs are summarized in Table 6.3.
The fault injections were realized at the same locations, for both Synplify and
the proposed method. For the designs tested, the results show that the proposed
method (last column) is equally robust compared to traditional TMR with Synplify
for the Reconfiguration controller, as both tools eliminate all the SEUs, more ro-
bust for the CNN, where 5 errors are reported per 1000 injections and less robust
for the Sobel filter, as 3 more errors occurred, compared to the design hardened
with the Synplify Pro tool. However, with the proposed fault-tolerant scheme, 351
less errors were reported per 1000 SEUs and the critical bits were reduced sig-
nificantly (from 354 to 3). After cross-reference of the location of the triplicated
registers and the locations of the SEUs that caused an error that propagated to the
output, none of SEUs caused an error at these locations, nor it was propagated to
the output. Therefore, the tool is robust, as no errors from SEUs were recorded in
the critical bits of any of the designs, nor in the reconfiguration controller.

162 CHAPTER 6

HDL | | Testbench

N ED)

Test Set - Up

(bit)
(D)

(@) TMR & Synthesis (b) Implementation

Validation

Compare

(c) Fault Injection Campaign (d) Results

Figure 6.10: The Fault Injection System with its complete flow.

IN-CIRCUIT FAULT TOLERANCE WITH VIRTUAL FPGA OVERLAYS 163

6.5 Conclusion

A fault-tolerant scheme for future high-reliability applications in radiation environ-
ments has been presented. A technique that applies TMR and discrete microscrub-
bing at the FPGA’s overlay has been proposed. This work provides fast scrubbing
with less FPGA resources and it aims at building an integrated fault mitigation
scheme that enhances the reliability of COTS FPGAs. The fault tolerant tech-
niques have been applied to a Sobel Edge Detection filter and to a Convolutional
Neural Network and have been verified by a Fault Injection Campaign.

Fault Injection with Parameterized
Configurations

In this chapter, the parameterized configurations technique is leveraged, to create
a novel fault injection method with very low area overhead. This method can
be used to test the ability of a design to detect future faults by introducing faults
and seeing how the design reacts. It can inject both permanent faults for test set
generation, and soft errors, for high-reliability environments. Experimental results
demonstrate the practicality of the new technique as, compared to conventional
tools, speedups of up to 3 orders of magnitude are observed, alongside 8 area
reduction, and no increase in critical path delay.

7.1 Introduction

Ensuring a design’s functional correctness is very crucial in current technologies.
In Chapters 3 and 4 of the thesis, techniques that detect logic and functional errors
were proposed. Then, in Chapters 6 and 7, novel fault tolerance and mitigation
methodologies were presented, that mitigate the effect of soft errors in the FPGA
configuration memory and were validated with long fault injection processes. This
chapter introduces a fault injection methodology that is able to significantly expe-
dite the process of injecting faults in a design to locate permanent faults or soft
errors. This contribution is added in this thesis because integrated circuits are be-
coming more and more susceptible to permanent and non-permanent errors, due

166 CHAPTER 7

to the constant decrease of CMOS feature sizes, or due to radiation environments.
Hence, one of the biggest challenges for today’s design teams is the complexity of
testing and ensuring reliability. It is therefore essential that a design is extensively
tested for multiple errors, during various steps of the chip design flow and under
possible technological deviations.

One of the most important step in the final testing of fabricated ASICs, or the
functional testing of ASIC and FPGA designs is the generation of a complete test
set that is able to find the possible errors in the design. Automatic Test Pattern Gen-
eration (ATPQG) is often done by fault simulation which is very time-consuming.
Speed-ups in this process can be achieved by emulating the design on an FPGA
and using the actual speed of the hardware implementation to run proposed tests.
However, faults then have to be actually built in into the design, which induces area
overhead as (part of) the design has to be duplicated to introduce both a faulty and
a correct design. The area overhead can be mitigated by run-time reconfiguring
the design, at the expense of large reconfiguration time overheads.

In testing a design (after fabrication or FPGA implementation), the crucial
point is having the right test set which should be small enough, not to take too much
time to run, but also have enough tests to cover most of the possible errors. Within
ATPG, fault simulation is important. The main reason to use fault simulation is
that one cannot test all input combinations so one has to drastically limit the total
number of input combinations. In order to be sure that this limited set covers all
(or most) possible errors, the test engineers need to guess what errors may occur
and therefore fault simulation is needed. However, due to necessary sequential
computations, the time needed for fault simulation is prohibitively large.

FPGA-based fault emulation has proven more efficient than software-based
methods to detect if a design will function properly. Therefore, reconfiguration
itself can be used to expedite the ATPG process, with often an impact on area and
time. Reducing this impact is the main focus of this chapter.

Most ATPG methods rely on fault injection. Fault injection can be realized
either by fault simulation or fault emulation. Fault simulation is based on the in-
sertion of a fault model into a Design Under Test (DUT), and the simulation of
the design under faulty conditions in order to find a set of input values that can
produce an error at one of the outputs for that particular fault. While software-
based simulations offer results of good quality they are often very impractical due
to their limited speed and memory consuming calculations. Furthermore, as the
complexity of integrated circuits continues to increase, consistent with Moore’s
Law, fault simulation becomes unfeasible. In order to overcome these limitations,
circuit designers have turned to FPGAs for the emulation of their complete sys-
tems. In FPGA emulation, the faults are built in the hardware and tests can be
applied at actual hardware speeds, thus gaining significantly in test set generation
time. However, as all faults need to be emulated in hardware, this induces a very

FAULT INJECTION WITH PARAMETERIZED CONFIGURATIONS 167

large area cost, unless the same hardware can be reused to emulate different faults.
This can be done in FPGAs, as explained next.

Fault injection is a crucial step to prove the reliability of a mitigation technique
in safety critical systems. It is used as a step before radiation testing, as it needs
no dedicated facilities (radiation chambers) and is significantly faster. Fault in-
jection in safety critical applications has been traditionally done with simulation
with vendor tools, such as Questasim [101]. However, this faces the same com-
plications as fault injection for test set generation. As the designs become larger
and more complex, the long simulation times become restrictive. FPGA-based
fault injection, systems exist that expedite fault injection, such as the one that
was used in Chapter 6, where emulation-based fault injection is used (and not its
slower counterpart, simulation). Multiple methods have been proposed to expedite
fault injection, namely masking (that can mask faults and reduce fault injections),
machine learning, and bitstream-based fault injection. However, the main focus
of this thesis is FPGA emulation and how is can expedite verification methods.
Hence, emulation-based fault injection is the main focus of this chapter.

In order to create a fault-injected circuit with emulation, traditionally the initial
design is injected with a single fault and synthesized, mapped, placed and routed
on the target FPGA device. Then, a bitstream is generated that can be programmed
into the FPGA. Normally, if a fault is observed by a different output value than the
correct one, the test set is stored and then the device is reconfigured for another
fault. Therefore, for each possible fault, the device needs to be reconfigured. The
process is repeated until a test set is created for a large enough set of faults. At this
point, we can observe that this process requires significantly long time. In order
to reduce the time, a method can be used that creates multiple instantiations of the
same design, each one implemented with different faults. This technique doesn’t
need the time consuming reconfigurations, however, it introduces area overhead
and makes it practically impossible to be used for large designs.

7.1.1 Motivation

Fault injection has already been presented in Chapter 5 as a frame-level fault in-
jection system, supported by the SRC, and in Chapter 6 as a validation system
of TMR. However, these techniques are either tailored for specific FPGA architec-
tures (frame-based architectures) or they need dedicated tools (FTU2) and multiple
FPGAs. In this chapter, a different approach to fault injection is considered, that
can target either ASIC designs that used FPGA prototyping as an intermediate step
to expedite fault injection, or FPGA designs as a final product. Here, virtual faults
are injected in a gate-level design, to provide a virtual layer of potential faults,
without being depended on frame-based injections or in specific FPGA architec-
tures.

168 CHAPTER 7

Physical fault injection is well suited when a prototype of the system is already
available, or when the system itself is too large to be modeled and simulated at an
acceptable cost. Simulation-based fault injection is very effective in early and de-
tailed analysis of designed systems, since it can be exploited when a prototype is
not yet available, and allows the analysis of any possible fault, but requires very
high CPU time to simulate the model of the system. An intermediate solution, be-
tween physical fault injection and simulation-based fault injection, that provides
most of the benefits of both techniques, while avoiding most of their disadvantages,
is emulation-based fault injection. It is also an efficient alternative before the radi-
ation testing campaign. By being orders of magnitude faster than simulation and
without needing a working prototype and/or specified lab infrastructure (such as
a cyclotron), it is able to be applied fast and easily, to evaluate the efficiency of a
mitigation technique, or to generate a test-set, for ASIC testing.

However, current fault injection techniques require either massive area re-
sources, as they need to physically inject logic to emulate bit-flips and stuck-at
faults, or they apply bit-flips to the reconfiguration bitstreams. Given the fact that
the reconfiguration bitstream is protected as IP, a significant amount of engineering
is needed as a pre-injection step.

7.1.2 Contribution

In this chapter, a novel fault injection methodology is proposed, that virtually in-

jects faults in a gate-level design, without affecting its area resources, nor its crit-

ical path. The proposed technique targets either ASIC designs that are prototyped

in FPGAs to expedite fault injection, or designs that use FPGAs as a final product.
Therefore, the following contributions are made:

1. A partially parameterized fault-injection methodology, based on the param-
eterized configurations tool-flow for commercial FPGAs.

2. A fully parameterized fault injection technique that is tailored for academic
FPGAs.

3. An extension to the parameterized configurations tool-flow, to support fault
injection.

The contribution can be visualized in high-level in Figure 7.1 and is a first step
towards adding a fault injection step in the next generation tool-flow, that was first
depicted in Chapter 1 in Figure 1.1(c).

The remainder of this chapter is organized as follows: Section 7.2 provides
the background and Section 7.3 the proposed method. Section 7.4 discusses the
alterations made to the FPGA flow, in order to support the proposed method. Then,
experimental results are presented in Section 7.5 and Section 7.6 concludes this
chapter.

FAULT INJECTION WITH PARAMETERIZ

ED CONFIGURATIONS

169

VCGRA

generation

VCGRA arch

| In-Circuit Debugging with VCGRA

S‘FT (

VCGRA
leneration

v

Yore YHOOA

parameterized |
SDA netlist [
I
—_—— - !
ﬂ Gate
Rank
Chapters 3,4

TMR g
- Synthesis
Scrub
Chapters
5,6
Place & Route

7

Chapter 7

Mapping |

@ One FPGA-overlay level
I Two FPGA-overlay levels
O PConf backbone

Figure 7.1: Visualization of this chapter’s contribution

7.2 Related Work

It is necessary to validate any mitigation methodology applied to a design. There-
fore, various techniques have been created, to simulate and/or emulate SEUs and

permanent faults.

Fault injection investigation is an efficient method to qualify the design before
submitting the part to radiation. Radiation testing is the prime technique to validate
mitigation techniques. SEUs can be induced by protons. Linear and cyclotron
accelerators can generate protons with adequate energy to simulate proton belt
conditions and solar flares. GREs and SEPs on ground are simulated with particle
accelerators. Generally, the estimation of the SEU sensitivity using this concept
is rather conservative [7]. The machine most commonly used for heavy ion SEU

170 CHAPTER 7

testing is the cyclotron. Bombarding a chip with radiation can test how susceptible
the chip is to radiation but it cannot control where exactly the radiation hits. This
is much better controlled by fault injection, hence less tests are needed in a fault
injection campaign than a radiation campaign.

In SRAM-based FPGAs, fault injection is defined as a bit flip in specific bits
of the configuration bitstream, (or as a stuck-at fault in a specific location, that will
be later also a bit flip in the bitstream).

By modelling permanent faults and SEUs in that way, it is possible to evaluate
the effects of an upset in sensitive areas of the programmable matrix. Some of
these bits are directly related to the user designed logic, and some of them are
related to the FPGA architecture and design implementation.

With fault injection, SEUs can be emulated in the configuration memory. As
it was mentioned in the previous chapter, various different implementations have
been created. The main structure is similar for most projects. Usually, two devices,
one of the DUT, that is used as a golden (original) copy of the design and one
that undergoes fault injection are needed. The faults are injected at the second
(identical) DUT. The basic methodology for fault injection of SEUs is based on
bitstream alterations.

A configuration frame is usually read back from the FPGA via one of the con-
figuration interfaces. Then, one or more bits are flipped, and the frame is written
back to the device. The outputs of both designs are compared to conclude whether
the fault injection led to a failure (a difference in the output). Alternatively, only
one DUT can be used, and its response is compared to golden answers during the
fault injection campaign.

There are many ways to perform fault injection. First, it is important to have a
good model for the type of fault to be injected. For example, a SEU in a memory
cell can be modeled as a bit-flip [74]. So, a SEU can be easily injected in a de-
sign described in a hardware description language, such as VHDL or Verilog, by
performing a XOR operation between the original stored value and a mask, which
defines the bit to be flipped.

The most common techniques for FPGA-based fault injection are presented
below. They try to avoid the large area or large computation times needed for
emulation-based fault injection. There are two basic methodologies, in order to
create an FPGA-based fault injection tool.

1. Reconfiguration based fault emulation, that modifies directly the configura-
tion bitstream of the design to emulate faults. Fault emulation platforms can
be used such as JBits and [96, 138], but they cannot support state-of-the-art
FPGAs yet [5]. Direct bitstream manipulation has also been proposed to
inject faults in LUTs [115], however not all faults can be covered with this
technique. Also, changes to the HDL design have been proposed, but this

FAULT INJECTION WITH PARAMETERIZED CONFIGURATIONS 171

again requires recompilation for every new fault injection (or one needs a
lot of memory to store all possible bitstreams for every fault).

2. Circuit instrumentation based fault emulation techniques modify the struc-
tural descriptions of a circuit by adding extra hardware for fault injection.
This avoids the time-consuming recompilations for generating a new bit-
stream every time a new fault needs to be injected [23]. Injecting multi-
ple faults to avoid unnecessary recompilations has also been proposed [19].
However, the size of the new design is directly proportional to the hardware
complexity of the injector making the technique again unfeasible for large
designs.

Several works already explored the usage of FPGAs for speeding-up fault sim-
ulation of permanent single stuck-at faults [23,67, 130]. However, these methods
avoid circuit reconfiguration but introduce significant area overhead (and this lim-
its the size of circuits that can be analyzed), or they have to perform a full recon-
figuration for every fault injection. In general, both circuit instrumentation-based
and reconfiguration based approaches introduce specialization overhead, which is
the extra resources and the extra time needed in order to generate a test set for a
specific design.

Below, two European research efforts are explained, under European Space
Agency (ESA) funding, that successfully perform fault injection:

FLIPPER

The system comprises of one (Virtex-II) FPGA as a controller that can be con-
nected to a DUT board hosting the FPGA under test [3]. The controller communi-
cates with a software running on a host PC via USB. Here, only one DUT is used,
and its response is compared to stored and correct answers. Test vectors can be
converted from testbench stimuli and are fed into the DUT after one or more faults
have been injected into the bitstream. Compared to radiation testing, results from
FLIPPER concluded that it is effective, however its failure rate is underestimated,
as it emulates only SEUs in the configuration memory. Moreover, FLIPPER sup-
ports only up to the outdated Virtex-2 FPGAs.

FT-UNSHADES2

The second fault injection system developed is FI-UNSHADES2 (FTU2) from
the University of Seville. Compared to FLIPPER, its initial aim was the emulation
of SEUs and MBUs that originate from SETs and thus manifest in flip-flop cells
rather than the emulation of configuration memory upsets. All data management
is processed in hardware, leading to very high fault injection rates. The system can
also be used to inject faults into the configuration memory. The system is based

172 CHAPTER 7

on Virtex-V FPGAs, and the circuit under test is duplicated and compared within
one FPGA.

During a fault injection campaign, the application is driven to the desired fault
injection time, the clock is stopped, the fault is injected into the desired flip-flop(s)
of one of the circuits, the clock is restarted, and the outputs of both circuits are
compared to detect any mismatch [105]. The system only uses one circuit under
test whose output is compared to the correct output [104]. FTU2 has increased
usability, compared to other academic tools, due to a simplified design flow and
a Web browser-based user interface. FTU2 has been essential to perform fault
injection experiments in Chapter 6 of this thesis, to evaluate the proposed TMR
schemes.

7.3 Fault Injection with Parameterized Configura-
tions

In this chapter an emulation-based method is proposed for fault injection, that
virtually injects faults in a given design.

Instead of manipulating the configuration bitstreams to introduce bitflips, or by
adding extra logic, fault injection is performed by introducing parameterized con-
figurations. A virtual multiplexer network is integrated in the design, that injects
the right faults at the right place, instead of creating a separate circuit for every
fault (or set of faults). This virtual network is implemented via reconfiguration,
limiting the amount of extra resources needed. This is visualized in Figure 7.2.

Before a fault is injected in a specific location, it needs to be modelled. Since
we take two types of faults under consideration for fault injection, we need two
models. The first is the stuck-at fault. A stuck-at fault by definition is a gate output
that is always either O or 1. This is modelled with a multiplexer, as it is shown in
Figure 7.2.

The second fault category that is modelled is a soft error. Soft errors in gate-
level designs are demonstrated as bitflips. There are two main ways to create a
bitflip and to inject it at a specific location. One is with the SRC and FT-SRC
reconfiguration controllers that were presented in the previous chapter, where a
specific frame is read, inversed and written back. The other is by adding hardware
circuitry in a specific location in the gate-level design. In that way, it is easier to
control and test a specific area, if the information of the location of each frame is
not known. Therefore, in order to achieve that, specific circuitry is added in the
design. This circuitry needs to inverse the output of a specific gate, which actually
encapsulates the damage a radiation particle inflicts on the configuration memory,
resulting to a bitflip. This is achieved by adding in the output of the target gate a
2:1 multiplexer. Therefore, in a specific location, soft error can be introduced by

FAULT INJECTION WITH PARAMETERIZED CONFIGURATIONS 173

Parameter
sa0/sal
Original line

Parameter
Sel Fault on/off

-
A f
Fault Point
|| 43 :
-

LUT

clk |

Figure 7.2: Visual representation of a stuck-at fault in a SRAM-based FPGA.

adding the same circuitry, as with the stuck-at fault.

Therefore, with the same circuitry, we can introduce two different types of
faults, a stuck-at fault and a soft error. The next step, is to introduce these faults in
various locations in the design and virtualize them with two different methods, the
partially parameterized and fully parameterized fault injection:

e The first method leverages the LUTs and adds logic in them, according to the
parameterized configurations technique. Here, each fault location is identi-
fied, and circuitry is added. This is repeated with multiple possible fault
locations. At this point, all additional circuitry is parameterized. In that
way, all fault locations (multiplexer inputs) are treated as constants, instead
of actual LUT inputs, and they are optimized as such. A parameterized con-
figuration is then created, based on these constants. The evaluation of the
parameterized configuration creates a new circuit, but with a specific fault,
located at a specific location in the gate-level design.

e The second method leverages the routing infrastructure with the TCON tool.
Here, the fault injection problem is transformed into a routing problem, as
during the fault injection cycle the only aspects of the FPGA that have to
be reconfigured with this method are the routing resources and specifically,
only the configuration cells for all the multiplexers in the routing switch
boxes and the connection boxes.

Both of the proposed methods allow the FPGA to be reconfigured during run-

174 CHAPTER 7

time very efficiently based only on the evaluation of the Boolean functions in order
to reconfigure and create a bitstream. An intermediate bitstream is first produced,
that represents all the bits as Boolean functions of parameters that describe the
behaviour of faults.

As compared with other fault emulation methods, almost no area increase is
achieved. Different faults can be controlled with the use of the dynamic special-
ization of the FPGA’s logic and routing resources. The advantage of this technique
is that there is minimal area and runtime overhead during fault injection and it
needs no iterative executions of the computationally intensive design re-synthesis,
mapping, placement and routing. Finally, with the use of this technique the critical
path delay also stays the same as in the initial design, before the fault injection.
Therefore, the proposed fault injection method has minimal impact on the original
design and requires almost no additional overhead.

7.4 Fault Injection Tool

At a high level, the tool works in two phases: the offline stage (that has two parts)
and the online stage, as in the in-circuit debugging method from Part II. The first
stage creates a new design that has a selected fault model injected in the initial
design. Then, this fault model is mapped to abstract logic and routing resources
of the FPGA, in a way that it doesn’t occupy extra space. During the online stage,
the FPGA is reconfigured multiple times to apply each time a new fault. This
dynamic mapping in the abstract logic and routing resources, can create a design
with various injected faults.

The parameterized configurations tool has been extended in such way, that it
can be used as an automatic tool that injects faults into a design and produces a
Boolean bitstream (a bitstream that contains Boolean functions depending on the
fault parameters) and is able to reconfigure the FPGA’s logic and routing resources.
For this purpose, new modules have been created that can support the new design
(with the injected faults).

Figure 7.3 shows the proposed tool-flow, that is an extension of the original
parameterized configurations tool-flow.

7.4.1 The Fault Injection phase (offline)

According to the PConf methodology, the design has to pass each of the above
steps (synthesis, mapping, P&R) only once. This computationally intensive stage
is the offline stage of the tool flow. At the end of the offline stage, there is a
parameterized bitstream generation, with a virtual multiplexer network of injected
faults. The details of how this is achieved are analyzed in the remainder of this
section.

FAULT INJECTION WITH PARAMETERIZED CONFIGURATIONS

175

injected faults

virtual network of

Y

Route

Bitstream
generation

Generic
Stage

Placement
TPlace

\4

Configuration with
injected fault

Specialization

HDL design Synthesis
parameterised
[__Fault Model] —— [

Permanent Faullt

bit-flip Injection parameter
saf 0/1 values

\/
[Technology mapping] Partial
TLUT/TCON Parameterised

Configuration

Y

evaluate
Boolean
function

Specialised

Stage

Figure 7.3: The three-stage fault injection tool flow.

176 CHAPTER 7

During the first stage, the design is introduced. The synthesis step doesn’t
need to be modified, as the RTL circuit is unaltered. Then, a new step is added
in the flow, fault injection. Here, the fault model is defined, and the appropriate
hardware is inserted in all possible locations. This is done in the .blif circuit, that
is the gate-level representation of a synthesized design with the tools Quartus or
ABC. The new design (including all faults as parameters) has to pass all the typical
compilation steps, namely synthesis, technology mapping, packing, placement and
routing, similar to the tool flow shown in Figure 2.10 [55].

In order to use the parameterized reconfiguration tool flow for our solution, we
have transformed it into a three-stage flow. Our tool, during the offline part uses
fault injection with a new (instrumentation-based) technique and adds faults to
each possible fault location, creating the virtual multiplexer network. So, it starts
from a gate-level netlist and modifies it, by virtually adding extra hardware that
represents a new fault. However, as every fault is annotated as a parameter, say for
example fault X, the tool creates a generic bitstream (the PConf) that represents
all circuit changes needed for every specific fault in a single bitstream, reducing
the online changes needed to reflect a new fault to a simple Boolean function eval-
uation and a reconfiguration of the FPGA for the obtained new bitstream. This
parameterized Boolean bitstream can be rapidly evaluated for a specific fault au-
tomatically with the parameterized configurations tool flow. The design is never
recompiled, only reconfigured.

The design can originally be described in various HDLs, such as VHDL/Ver-
ilog. The synthesis step can be performed by any tool that is able to extract a .blif
format. At this point the design is ready for fault injection.

The faults need to be added into the design at every possible fault location in
such a way that after the new modifications, the new description remains synthe-
sizable. In order to achieve that, the solution is to add multiplexers into each fault
point to introduce a logic one or zero in order to mimic such fault, as shown in
Figure 7.2. The tool reads the netlist and locates all the possible fault checkpoints,
i.e. locations where faults need to be inserted. The selection signals are annotated
as parameters, as they will change (but less frequently than the other signals) de-
pending on the type of fault and whether or not the fault should be injected. In
our approach, we basically add logic (multiplexers) without adding more LUTs
because they are depending only on parameters and can hence be implemented in
the reconfiguration resources. So we basically have almost the same size as for the
original circuit but now for an extended circuit with all faults injectable.

7.4.2 The Parameterized Configuration creation phase (offline)

In this work, the technique focuses on permanent faults and soft errors, and we
assume that the injected fault set is either optimized, or it can be optimized by ex-

FAULT INJECTION WITH PARAMETERIZED CONFIGURATIONS 177

isting techniques such as fault dropping and fault collapsing. The main fault model
that is used (single stuck-at fault model) is widely applied within the testing com-
munity and an easy-to-implement method in order to introduce faulty behaviour in
the circuit. However, our methodology is not limited to this model alone.

During technology mapping, the parameterized Boolean network generated by
the synthesis step is not directly mapped onto the resource primitives available in
the target FPGA architecture, but intermediately on abstract primitives that intro-
duce and allow the reconfigurability of the logic and routing resources.

Next, the Tunable Place & Route tool (TPAR) places and routes the netlist
and performs packing, placement and routing with the algorithms TPack, TPlace
and TRoute. These algorithms can enable routing of circuits where their routing
resources can be reused during the fault emulation and drastically reduce the area
usage. At the end of the computationally intensive offline stage the TPaR creates
a PConf, a virtual intermediate FPGA configuration in which the bits are Boolean
functions of the parameters.

7.4.3 The Fault Testing phase (online)

Fast test set generation is essential. It is faster to generate random test inputs and
select a viable test by emulation, than to effectively search for a test that detects
the fault in simulation. So, we use a Linear Feedback Shift Register (LFSR) to
generate random input vectors. Both the initial circuit output and the fault-injected
one have to be compared (with a XOR gate) for every different input set. If a fault
is detected (by a difference in both output vectors) the input vector is stored as a
test vector that detects the specific fault at hand. If the required fault coverage is
not yet achieved, a new fault is chosen and the FPGA is reconfigured to match the
new fault. The stored vectors form the test set. This is depicted in Figure 7.4. The
overhead of the reconfiguration for every fault is comparable but always smaller
than the overhead we would have in the traditional reconfiguration based fault
emulation, as we have less bits to reconfigure than in the original case. However,
the big gains of this method lie in the offline part (which in other cases would also
be online and very time-consuming or produce a circuit with a very large area).

7.5 Results and Discussion

We have used synthesized gate-level benchmarks for our experiments [66]. The
benchmarks selected (ISCAS89) where chosen for their wide acceptance in the
testing community and their available and certified gate-level design descriptions
(.blif files). Despite the fact that we have used small benchmarks (up to 1% of
the FPGA area), we will also discuss the scaling behaviour and show that we can
have interesting results also for larger designs. Since our tool follows the flow of

178 CHAPTER 7

Output
Golden
o Reference -
| Circuit
0
Input 0 Store
Generator 1 Co%mgruattor o
0 p Vector
\ 1 h’
0
CuT —
Store
achieved?, Test Set
apply new fault FPGA
Reconfiguration

Figure 7.4: The fault injection tool flow for test set generation.

the parameterized configurations, it targets theoretical architectures. However, the
results are representative for designs implemented in any LUT-based configurable
logic of commercial FPGAs as well. In our experimental setup, our tool adds
multiplexers that can introduce stuck-at fault logic in all possible fault locations.
Each multiplexer now describes one possible fault at one specific location. The
faults can easily model both SEUs and stuck-at faults.

7.5.1 Area Overhead

The proposed approach is compared with the conventional approach, mapped with
ABC [97]. In the current approaches such as ABC, we can only include the fault
injection with a large area overhead, while we can do the same with almost no
area overhead if we use the TCONMap (from Section 2.1). As described in this
chapter, the conventional fault modelling adds circuitry (multiplexers) wherever
a fault needs to be introduced. So the traditional techniques scale worse than our
approach and therefore cannot be applied to larger designs. With our methodology,
after the parameterization of the selection bit of multiplexers and the SAO/SA1
fault we have minimal area overhead.

For the experiments, we compared the area of the fault injected circuit to the
reference (fault-free) design. Four possible structures are evaluated. The first pro-
posed structure is a normal implementation (without any parameterized reconfigu-
ration), mapped with a conventional mapper. The second structure is an implemen-
tation, where only the logic (functional) resources are dynamically reconfigured.
The third approach is a structure where we reconfigure both logic and routing re-
sources and finally, a fourth approach, where the stuck-at fault signal was also

FAULT INJECTION WITH PARAMETERIZED CONFIGURATIONS 179

M Golden W PPD W FPD W ABC

1200

900

600

300

s349 s510 s1196 51238 s1423 51488 1494

Figure 7.5: Area comparison with the conventional mapper(ABC) and the partially
parameterized fault-injection(PPD with TLUTMap) and fully parameterized
fault-injection (FPD with TCONMap). The initial area (of the golden circuit) that is
needed for the benchmark is compared with different fault injection approaches for the
fault injected circuit, FPD,PPD and ABC.

identified as an infrequently varying input, alongside dynamic reconfiguration of
logic and routing resources. All these approaches are compared in Table 7.1, with
the initial, fault-free design (golden).

In the conventional fault injection approach, the lack of resource parameteri-
zation causes a massive area overhead (8 times more area), making this approach
unfeasible for large designs (as the extra area needed is proportional to the number
of faults). A step forward is mapping of the design with parameterization of its
logic resources only (first Proposed). Here, we can see an area reduction com-
pared to VIR’s conventional mapper (up to a factor of 4.7). However, there is still
a significant area overhead, compared to the golden circuit. The next approach
applies parameterized reconfiguration of the FPGA’s logic and routing resources,
reducing the area even more. Finally, the last approach, builds upon approach 3.
Now, the stuck-at fault (or the bitflip) circuitry is fully parameterized, instead of
only its selection bit. This results in the minimal area overhead, (needs up to 8%
less LUTs than the conventional method, and is only 3% larger than the initial de-
sign). Moreover, the problem can scale very well, making the technique feasible

180 CHAPTER 7

Golden Conventional Proposed(l) Proposed(2) Proposed(3)
s349 24 237 50 41 25
s510 39 346 133 106 45
s1196 || 124 861 302 253 126
s1238 || 137 869 337 289 144
s1423 || 129 1049 220 210 130
s1488 || 148 1027 400 334 153
s1494 || 149 1010 408 343 153

Table 7.1: Area results in #LUTs: The first column is for the fault-free design, the other
columns contain fault injections. For the proposed method, we distinguish mapping with
parameterized configuration of (1) logic, (2) logic & routing, (3) fully parameterized
circuitry (logic & routing).

for larger designs.

Parameterized configurations are more beneficial than full reconfiguration, re-
gardless the size of the initial design. Even in an almost full FPGA we can apply
our technique, as the area overhead is almost zero. In more details, full recon-
figuration often needs to change the entire circuit (depending on how incremental
synthesis, place and route is done), whereas with parameterized configurations the
design does not differ that much from the initial design. In fact, the difference
lies only in changing one set of parameters. Therefore, our technique can scale
very well. As can also be seen from the experimental results in Figure 7.5 and in
Table 7.1, the area overhead remains constant regardless the design, whereas with
the conventional methods, the area is increased linearly, with larger benchmarks.
This means that the gain in reduction of the overhead in our technique compared
to the conventional one is larger for the larger benchmarks.

7.5.2 Critical Path Delay

Our mapper reduces the critical path delay of the added functionality for the faults
by reducing the number of lookup tables and the routing infrastructure on the crit-
ical path. From Table 7.2, we can observe that the logic depth (inversely related to
clock speed) of the design remains constant after the fault injection and the use of
our mapper. This is very different from the conventional fault injection technique
that introduces MUXSs also in the critical path. In fact, the logic depth decreases
with a factor of 5 to 8 in our method, compared to conventional fault injection.

7.5.3 Runtime Impact Estimation

The conventional approach as described above has a prohibitive area overhead for
large designs. However, as no reconfiguration is needed, it does not have any

FAULT INJECTION WITH PARAMETERIZED CONFIGURATIONS 181

#LLUTs || Golden Proposed Conventional
24 3 3 20
39 3 3 14
124 5 5 25
137 5 5 25
129 10 10 61
148 3 3 18
149 3 3 18

Table 7.2: Depth comparison between the initial circuit and the fault injected version
mapped with 6-input LUTs, with the proposed mapper (FPD with TCONMap) and the
conventional one (ABC), respectively.

reconfiguration time overhead. In this section we discuss the reconfiguration time
overhead of our method.

The runtime overhead depends on the number of times the emulator needs to be
reconfigured and on the reconfiguration overhead, the time to evaluate the PConf
and to reconfigure the bits that changed. The frequency of reconfiguration depends
on the time between two fault injections and hence on the number of tests that need
to be performed with the same fault. The number of faults to be injected gives the
number of reconfigurations needed. The FPGA needs to be reconfigured when a
new fault needs to be activated. Therefore, the time overhead can be expressed
as the single specialization time (for specializing the FPGA once) multiplied by
the number of times a new fault will be activated. This has to be related to the
total time needed. Additionally, the overhead as the time of a single fault injection
compared to one complete test run (for one fault) should be considered. This is
the relative overhead and this overhead then has to be paid for every new fault (but
that does not change the relative overhead if the number of tests per fault is roughly
constant).

For large designs, a lot of random tests are needed on average before a fault
is detected. As long as the time needed for the evaluation of all these tests is
significantly larger than the single specialization time, our technique will have
a relatively low time overhead. The single specialization time depends on the
evaluation time and the time required for reconfiguration.

The time is needed to evaluate the Boolean functions in the parameterized con-
figuration produced by the offline generic stage of the TCON tool flow. The time
needed for one parameterized reconfiguration is highly dependent on the complex-
ity of the Boolean function, and needs maximum 50 us. Thus, each parameter-
ized configuration can be 3 orders of magnitude faster than a full reconfiguration,
which is typically 176 milliseconds for a Xilinx Virtex-5 FPGA. Also, assuming
the FPGA design runs at 400 MHz (which is quite fast for an FPGA implementa-
tion) and the test vector generation loop in figure 7.4 can be executed in 4 clock

182 CHAPTER 7

ticks (which requires a fully pipelined design), the 50 ps overhead corresponds
with the time needed to perform 5000 tests on the FPGA fabric. This is a rea-
sonable number for large designs. So for larger designs, the overhead becomes
smaller relative to the test set generation time.

Besides the methods that have area overhead but no reconfiguration overhead,
there is also a common technique that does not have an area overhead but requires
execution of the entire tool flow online [30]. In this case, bitstream manipulations
are performed on the fly, which takes a lot of time. Since they have to reconfigure
the entire chip for every different fault, they would need 176 ms + 169.738 ms for
each bitstream manipulation. Comparing this number with our online tool flow
that takes 176 ms + 50 us we are about twice as fast. However, the online time
needed is only 50 us in our case and thus orders of magnitude faster. This shows
that the proposed method can introduce minimal time overhead as well. Also, our
tool flow automatically produces the bitstream from simple additions to the HDL
code, without the need for low-level bitstream manipulations to be done by the
designer (as in the other approach).

7.6 Conclusion

Emulation-based fault injection provides numerous advantages over fault simula-
tion techniques, but, up to now, at a considerable cost. In this chapter a novel
technique is introduced, where faults can be generated efficiently (with minimal
area overhead and minimal time overhead at the same time) and thus enhance
the time consuming fault injection procedure during the conventional design flow.
The experimental results have demonstrated the feasibility of the approach, as it
obtains an area and delay reduction of a factor of 8, and operates within 3 orders
of magnitude faster, compared to conventional methods.

Part IV

Conclusion

Conclusion and Future work

FPGAs have been increasingly used as prototyping platforms and in various ap-
plications, including safety-critical ones. Due to their bit-level parallelism that
is possible in HW, they can achieve significantly higher throughput than CPUs,
while being more cost-efficient than ASICs. This has made FPGAs ideal proto-
typing and verification platforms and it has allowed designers to increase their
verification coverage by several orders of magnitude. FPGAs are excellent candi-
dates to create the next generation of design and verification solutions, including
debugging, fault injection and fault tolerance. However, the observability of their
values on internal signals is limited and excessive area is used. If reconfiguration is
used, the long recompilation/reconfiguration times often prohibit designers to of-
fer efficient FPGA-based hardware verification methods. Additionally, the FPGA
configuration memory is prone to soft errors, in radiation environments.

In order to conclude this dissertation I recapitulate the goal of the thesis:

The primary goal of this dissertation is the creation of novel, efficient hardware
verification methods that, alongside custom FPGA components (reconfiguration
controllers, VCGRAs), are providing on-silicon debugging and fault mitigation,
in commercial-off-the-self FPGAs. Different improvements to the FPGA conven-
tional tool flows are proposed, by adding a pre-synthesis step (for debugging and
fault mitigation) and a post-synthesis step (for fault injection). After adapting cus-
tom FPGA structures with integrated verification schemes (TMR and scrubbing),
it is investigated how FPGA overlays and parameterized configurations can assist

186 CHAPTER 8

in reducing the overheads of verification on FPGAs. Reducing the overheads is
important to allow the proposed techniques to be useful in commercial designs.

8.1 Conclusions

In this section, I present the overall conclusions of the research focusing on how
the thesis’ goals are achieved for a given set of problems.

The results throughout the thesis demonstrate that an FPGA overlay called
VCGRA can be used to provide both debugging and fault mitigation with very
low area and performance overheads. Additionally, parameterized configurations
can be used alongside all the verification methods that were studied in this thesis,
to reduce the area and reconfiguration overhead, for two different architectures of
dynamically reconfigurable FPGAs. In more detail:

8.1.1 In-Circuit Debugging

In this dissertation I presented two different debugging schemes, that can be tai-
lored for both commercial and academic FPGA architectures.

In chapter 3, an integrated debugging method is introduced, that offers ex-
tended internal observability. Thanks to integration with the parameterized con-
figurations tool-set, the designer can rapidly trace different sets of signals. The
proposed tool offers low area overhead for the debugging infrastructure and less
debugging cycles, with the use of signal ranking techniques. Hence, in Chapter
3, in-circuit debugging infrastructure can be integrated and optimized, alongside
the original design, with an area penalty of 10% - 30%. Here, the penalty is the
overhead for adding verification to an otherwise unverified design. That penalty,
however, is much smaller than with conventional methods.

To improve the applicability of the debugging technique, the techniques from
Chapter 3 have been extended into CGRA architectures. Conventional CGRAs
suffer from high reconfiguration overhead and have no parameterization options.
Hence, in Chapter 4, a low-power / low-overhead superimposed debugging archi-
tecture for heterogeneous computing platforms is described. First, it is demon-
strated how to efficiently implement a CGRA in an FPGA, and then how to extend
it with an on-silicon debugging infrastructure, called SDA. The SDA is used to
integrate a debugging infrastructure to efficiently debug FPGA overlays, such as
VCGRAs, with a small area penalty. In order to create this novel architecture, a
supporting flow and a new two-level virtual architecture have been constructed.
The custom made tools introduce resource sharing on the two-level virtual archi-
tecture, reducing the actual FPGA resources. Additionally, by parameterizing the
VCGRA, its resources can be further reduced. Hence, in Chapter 4, a novel method
of low-overhead debugging mechanism is introduced, that can be integrated in vir-

CONCLUSION AND FUTURE WORK 187

tual FPGA architectures, without any power or reconfiguration overhead and with
a relatively small area penalty (up to 30%), that is still 5x smaller than in com-
mercial tools.

8.1.2 Fault Tolerance

COTS SRAM-based FPGAs have been extensively used in high-reliability envi-
ronments and in safety-critical applications. So far, fault mitigation for COTS
FPGAs is provided at a high cost of area and time. In Chapter 5, a fault-tolerant
scheme is presented, for future high-reliability applications in radiation environ-
ments that include multi-level reconfiguration scrubbing and fault-tolerant recon-
figuration controllers. First, two microscrubbing techniques (MS and DMS) are
proposed. The MS can periodically reload the reconfiguration bits from a golden
instance, resulting in a significant decrease in time. DMS improves this result by
achieving 10x decrease in time compared to conventional scrubbing and 3x com-
pared to MS, as in DMS only the correct frames that are affected by the SEU are
written and not all the frames.

Next, two reconfiguration controllers that support the custom scrubbing tech-
niques have also been designed (SRC and its fault-tolerant version, FT-SRC). This
work provides fast scrubbing with less FPGA resources and it aims at building an
integrated fault mitigation scheme that enhances the reliability of COTS FPGAs.
DMS and MS can be combined with the proposed reconfiguration controllers that
are more efficient than the conventional Xilinx controllers in terms of area, energy
and runtime.

In Chapter 6, a spatial redundancy scheme that provides fault-tolerance in ra-
diation environments, for overlay architectures has been introduced. The proposed
technique applies TMR on an FPGA overlay and achieves an overall reduction
up to 30% of the total TMR resources compared to full TMR with vendor tools.
The mitigation scheme and the FPGA overlay are co-designed and co-optimized
in such a way that they result in a fault-tolerant architecture with less overhead in
terms of area, time and power. This work aims at building an integrated fault mit-
igation scheme that enhances the reliability of COTS FPGAs. The fault tolerant
techniques have been verified by a fault injection campaign that has been designed
specifically for this dissertation. During the fault injection campaign, no wrong
outputs were recorded as a result from SEUs and the critical bits of the designs
under test have been significantly reduced, making the proposed method equally
robust to commercial mitigation tools.

8.1.3 Fault Injection

Emulation-based fault injection provides numerous advantages over fault simula-
tion techniques, but, in general, at a considerable cost. In Chapter 7, a new fault

188 CHAPTER 8

injection technique has been proposed, where faults can be generated efficiently
(with minimal area overhead and minimal time overhead) , thus enhancing the time
consuming fault injection procedure during the conventional design flow. The ex-
perimental results have demonstrated the feasibility of the approach, as it obtains
a significant area reduction, and operates 3 orders of magnitude faster, compared
to conventional methods. The proposed technique can apply fault injection either
for test set generation, or for detection of soft errors, with the same fault injec-
tion model. Hence, a low-overhead fault injection approach is proposed, where a
virtual multiplexer network applies fault injection in a given design, with minimal
impact on the DUT.

CONCLUSION AND FUTURE WORK 189

8.2 Future Work

I conclude this dissertation with a possible scope for future research on debugging,
reliability and FPGA overlays.

The main objectives for future research are the development of a design &
verification toolflow that contains innovative scalable methods to mitigate, predict
and debug a large variety of faults (including MBUs) in complex digital integrated
systems for various FPGAs. A possible visualization is depicted in Figure 8.1, that
is consistent with the tool-flow that has been used throughout this thesis.

High-Rel Debug Test

yore y49OA

Place & Route

@ One FPGA-overlay level
E Two FPGA-overlay levels
O PConf backbone

Figure 8.1: Visualization of the future tool-flow

A future direction can be to introduce a framework that adds mitigation tech-
niques to the design that will also contain a fault prediction mechanism able to
assist in predicting faults before they occur and to validate the design during run-
time. MBUs should also be addressed in the next generation of high performance
digital systems that utilize commercial FPGAs, as due to the constant technology
shrinking, the probability of MBUs is increased.

The proposed algorithms from Chapters 5 and 6 could be used as a basis and

190 CHAPTER 8

extended to cover a wider variety of radiation effects, such as MBUs, SETs and
SELs. Alongside the basic mitigation technique, the FT-SRC custom reconfigura-
tion method that has been introduced in Chapter 5 could be extended with a high
performance port (HPO) of the Zyng-SoC. Since the HP ports can be accessed only
by a master from the PL region, a possibility will be to use a DMA controller that
acts as a master to the HPO. The data transfer will then occur through the HPO
port of the Zyng-SoC, thus establishing a very high speed data transfer that will
contribute to faster scrubbing and fault injection.

In the future, the proposed methods of this dissertation could be valorized
through the development of custom CAD tools to implement on-the-fly radiation
hardened digital designs, as currently, the vendor tools do not offer techniques that
mitigate multiple radiation effects without compromising the performance (area,
speed, power) of the system. Finally, it would be interesting as a future direction to
demonstrate a prototype chip that employs these techniques to realize a radiation
hardened digital design. Therefore, I pinpoint the future work in various different
objectives:

1. Methods to apply in-circuit debugging and fault tolerance for complex dig-
ital designs. An FPGA overlay can be used to automatically generate and
instantiate various verification schemes in a target design for multiple FPGA
architectures.

2. It will be interesting to create a failure prediction model that will analyze
data acquired from fault injection or radiation testing, to determine what
failure may occur in the future. It can be used to predict the possibility of an
error, and to calculate the error rate.

3. An Intermediate Representation language could be also designed, that will
be able to translate design requirements, mitigation circuitry, debugging cir-
cuitry, fault injection methods and error locations for various FPGA archi-
tectures. This language could then be translated in different hardware de-
scription languages (VHDL, Verilog) or any other languages that the system
is described (in C++, python, etc). It will be interesting to first integrate this
language in the initial design, during development, but making it inactive,
until mitigation is needed. Then, at the moment that redundancy is needed,
or a new technology is needed, the new requirements could be applied im-
mediately.

4. A framework that operates alongside the typical FPGA flow and rapidly inte-
grates the above-mentioned techniques in the conventional FPGA flow. The
FPGA overlays will reduce the runtime of the CAD tools, and will decrease
the resource overhead. In the first level of the framework the system will be

CONCLUSION AND FUTURE WORK 191

trained to analyze complex designs. The tool will be able to adapt the de-
sign during runtime, based on the time series predictions of the single event
effects. The second part of the framework will apply selective redundancy
and will integrate debugging circuitry, in the areas that it is more possible
for an upset or a bug to occur. Then, the tool will be extended with a pre-
processing step, that will instantiate mitigation circuitry, to support future
FPGA architectures and different FPGA families. Hence, according to the
target FPGA family and the design language, it will generate the mitigation
scheme, the debugging method, create a new overlay and install it in the tar-
get FPGA automatically. This step, will decrease the implementation time
dramatically, as no reimplementation nor redesign will be needed, to adapt
to a new FPGA architecture.

The outcome of these future directions could result in the ability to mitigate
and debug a wide variety of faults, and to develop fault tolerant designs that can be
reused with future state-of-the-art architectures, without the need to be redesigned.
Then, novel techniques can be designed that will automatically integrate various
debugging techniques, and prevent failures due to radiation effects, by finding the
most effective reliability techniques, tailored for SRAM-based and flash-based FP-
GAs. In more detail, possible future directions can be summarized in:

e Assessing hardware-based techniques that use spatial redundancy (TMR,
DMR, etc) to efficiently prevent a wide variety of faults.

e Creating an intermediate representation language that translates the fault-
tolerance, debugging and fault prediction models into a specified FPGA ar-
chitecture and design language.

e Reacting to faults, immediately upon their detection via a CAD tool that
enables just-in-time scrubbing, real-time on-chip monitoring and readback
techniques via novel reconfiguration methods and controllers.

8.2.1 Overlay-based fault tolerance and debug

An MBU detection technique can be designed, for future high-reliability applica-
tions in radiation environments that include overlay architectures. In more detail,
an in-circuit reliability technique with fault mitigation of multiple bit upsets for
an FPGA overlay can be created. The overlay could be extended from Chapter 6,
instantiated alongside the design and triplicate the logic. Moreover, scrubbing
methods will also be integrated to the target design, alongside the spatial redun-
dancy.

A fault-tolerant custom reconfiguration controller that implements the pro-
posed functionality, can also be integrated, as it will detect erroneous configuration

192 CHAPTER 8

frames during configuration scrubbing. Then, it can also apply various injection
models and debugging infrastructure. The fault-tolerant reconfiguration controller
that was proposed in Chapter 5 can be extended in order to assist and control the
novel verification schemes.

The output of this future work can be a user IP that is able to install the overlay
in the FPGA and adapt it to apply different verification methods.

Error detection can be done at much lower cost than error correction. Thus,
a fault detection technique can also be created to detect erroneous configuration
frames before configuration scrubbing, by predicting the time and location of the
radiation effect, by using neural networks, or one of the Mean Time to Failure
(MTTF) models. In order to efficiently create a model for fault prediction, single
event upset data can be collected with radiation testing, or fault injection. Then,
the data can be organized to facilitate the model, that will be designed based on
the availability of the training data.

8.2.2 Intermediate Representation language for multiple archi-
tectures

In the future, the proposed debugging and mitigation techniques from this disser-
tation could be further investigated to be applied in other FPGA architectures. The
circuitry generated from the tools described above could be integrated at the target
FPGA. Then, an Intermediate Representation (IR) language could be created that
during runtime can be translated in specific code description, based on the inputs
of the framework.

A language could be created, with a simple set of description rules and regis-
ters that describe the design-level fault mitigation and debugging scheme, such as
the mitigation method, a signal set to be debugged, the scrubbing technique, the
scrubbing frequency, etc. An example of this translation is depicted in Fig. 8.2.
We believe it would be beneficial to design the IR in such a way, that can allow to
adapt the validation schemes automatically, without the need to redesign nor reim-
plement the circuit. In that way, the radiation tolerance can be adapted, and the
debugging scheme changed, only by evaluating the IR and adapting the overlay.

In order to support the IR language, a compiler could be designed that uses
the standard UNIX yacc parser generator and lex scanner generator tools. First it
can create a state machine and generate expressions that represent the values of
each identifier in each state. If the end of the input is reached without an error, the
second pass can perform some simple optimizations on the circuit, generate the
FPGA overlay and output the netlist.

CONCLUSION AND FUTURE WORK

193

begin
if(rising_edge(CIk))
then

Q<=D;
end if;
end process;

(a) Original
implementation

Figure 8.2: Scheme that shows in (a) an example design, in (b) the Intermediate

begin

if(rising_edge(Clk)) then
Q<=D;

end if;

end process;

ADD _TMR_
EXT ful_TMR all
EXT ful_TMR clk
ADD _voter_
EXT _TMR_voter logic ff
GEN scrub internal
TS200s
— ADD debug
- EXT _par_deb_ logic_a
- EXT _TB_ logic_a

(b) IR language
integrated & inactive

K

clk_c

begin
if(rising_edge(Clk))
then

Qa <= Da;

Qb <= Db;

Qc <= Dc;
end if;
end process;

(c) Mitigation integrated
in the design

Representation language having no impact in the design and (c) translation of the IR and
mitigation of the design.

194 CHAPTER 8

8.2.3 CAD Framework

Another possibility is to extend the above-mentioned methods in a framework that
could be designed following the principles of modularity and technology indepen-
dence. In that way, the framework will be expandable. The main components of
the platform could be the inputs provided by the user and the final generated arti-
facts are presented in Fig. 8.3. We believe that this platform will allow the user to
specify the application logic in various languages, such as C/C++, VHDL, python.
It is also possible to extend the supported languages by modifying and replacing
the modules that analyze the user application.

Along with the code, the platform will also require a HW description that de-
fines the system template, the proposed mitigation method, the debugging model,
the target architecture, and a description of the overlay that will be instantiated.
The flow could then be organized in three main components: the frontend, the
overlay and mitigation optimization component and the backend. All the compo-
nents will operate on the selected node architectural templates, which specify how
the reconfigurable nodes of the target system should be mitigated. In particular
an architectural template could specify both the mitigation model, the debugging
scheme within the reconfigurable hardware, the levels of overlay, the maximum
number of observed signals and the specific technology used to implement the
model.

The frontend can analyze the users code and will provide suggestions on the
architectural templates, debugging circuitry and mitigation schemes that best fit
the application, allowing also the user to consider multiple mitigation schemes
for the subsequent phases. It will also give the possibility to add or remove the
debugging infrastructure. The frontend could return a mitigation technique to be
instantiated on the overlay, within the FPGA target architecture. The HW de-
scription of the system (overlay and mitigation) could then be fed to the backend
component, which, after some implementation steps, can produce a final fault-
tolerant bitstream for FPGA configuration and the application that the user can use
to execute the mitigated version of his/her application. In the future, we believe
that such framework can be essential in providing a mean to integrate multiple
mitigation and debugging methods.

Ideally, these techniques could be complimentary to the Vivado tool flow that
already adds incrementally the FPGA overlay in Chapter 4 and 5. The FPGA
could then be updated during run-time, alongside its mitigation scheme. The re-
configuration controller could also be integrated automatically.

Multiple fault tolerant mechanisms and the MTTF-like predictions for various
architectures could be used as either inputs or templates at the framework. Ide-
ally, the IR language will be able to be translated in specific designs that support
mitigation and debugging overlays for various FPGA architectures, from different
vendors.

CONCLUSION AND FUTURE WORK 195

Start

Input data —
rovided by the :}. -
° designeyr injection Design
Overlay
hw description Data Set

+ mitigation scheme
+ FPGA technology

Architectural Verification
Templates Templates

iterative Fault
Result area: fault Tolerant
Generated by adaptable tolerant Deesign
overla! i
the framework IP-corey bitstreams +
debug
—_—

Figure 8.3: High level overview of the framework, that includes all the possible directions
that can be targeted for future work

196 CHAPTER 8

At a later stage, the tools could be extended in a homogeneous design and
verification tool-flow, similar to Figure 1.1(c), presented in Chapter 1. The tool
could start from a target design and create all the above-mentioned techniques,
using as a back-bone the PConf tool, that by then could be already integrated in
the vendor tools.

8.2.4 Integration With Vendor Tools

A very interesting future direction will be if the vendors (Xilinx, Intel, etc) would
include the methods proposed in this thesis, in their own tools. In that way, the
tools of this thesis will be beneficial the most, by leveraging the internal FPGA
structure (that is currently protected). So, in order to benefit from this thesis the
most, the proposed methods would have to be integrated in the vendor tools itself
so the tool has access to the internal structure and can use it to the method’s benefit.
According to industry, there is a need to extend the debugging methodology for
the last generation of Xilinx FPGAs. Then, it will be possible to integrate these
techniques in FPGA prototyping platforms. Since the results of this dissertation
have demonstrated that it is beneficial to apply in-circuit debugging by leveraging
the FPGA’s reconfiguration resources, it is anticipated that these techniques will
introduce large area savings in FPGA prototyping platforms. Hence, for future
work, the techniques should first be extended to support the Xilinx UltraScale
FPGAs. Additionally, an integration with the RapidWright tool from Xilinx, will
be a first step to leverage the reconfiguration resources of Xilinx FPGAs. This
will be the first step towards integrating the tools in the conventional toolflow of
commercial FPGAs.

8.2.5 Beyond FPGAs

For future work, the techniques could also be generalized into a technique for map-
ping ICs automatically via the framework, by adding the appropriate template in
the framework. Optimizations can be designed to support ASIC designs. Another
possibility for future work, could be to extend the IR model to cover ASICs. The
outcome of this could be an ASIC flow that creates a tolerant version of the target
design for SoC. First, a custom recovery circuit can be developed that implements
the techniques from this thesis. Fault injection data can be applied to classify
the probability of errors and apply targeted mitigation. This could possibly elimi-
nate the performance overhead requirements of the new design and it might reduce
respins. A methodology can then be created, to automatically add debugging, fault
tolerance and implement a design.

Appendices

Radiation Effects

From space to ground and below

The Part III of this dissertation, focuses on the impact of space radiation that
imposes on microelectronics, and especially in SRAM-based FPGAs. Therefore,
this appendix includes supplementary material, to provide background information
on the source of radiation effects. Hence, in this chapter I analyze the energetic
particle radiation, its source, and its monitoring and mitigation techniques. The
three main sources contributing to a radiation environment are the galactic and
extra-galactic cosmic rays (GCR), solar energetic particles (SEPs), and trapped
particles. These sources are the main source for causing a radiation environment.
The radiation environment is divided in the space environment, the aerospace, the
ground (sea) level and the underground level. It is also divided in natural environ-
ment (space radiation) and human-made radiation environment, like the nuclear
plants and particle accelerators.

A.1 The space radiation environment

The space radiation environment is defined as an environment that is complex and
hostile, with risks to space-mission survival coming from a variety of sources,
including meteoroids, space debris, residual atmosphere, energetic particle radia-
tion, and lower energy plasma. Here, I focus on particle radiation and its effects
on microelectronics.

200 APPENDIX

A.1.1 Galactic cosmic rays

Galactic Cosmic Rays (GCR) originate from outside of the Solar System and con-
sist of charged particles travelling near the speed of light. Their average energy
is < E > 1GeV/u, while the most energetic particles have an energy reaching
< E > 1021eV. The energy of cosmic rays is believed to derive from acceleration
by interaction with moving magnetic fields, such as in moving shocks originating
from supernovae [34].

Primary cosmic rays in outer space manifest themselves as a continuous flux
of about 4 particles /(cm?s) on average, with intensity in anti-correlation with
solar activity. The majority of the GCRs is made of atomic nuclei, and about
1% is made of electrons. Among the nuclei, protons constitute about 90%, alpha
particles 9%, and the remaining 1% of the particles consists of heavier ions. Due
to their high atomic number and high energy, this numerically small proportion
of very penetrating particles contribute significantly to SEEs in microelectronics
(and to the predicted biological dose in astronauts in long duration interplanetary
human spaceflight).

A.1.2 Trapped radiation

The particles able to penetrate the geo-magnetic (GEO) field and reach the Earth
are shielded by the atmosphere. Collisions of the primary cosmic rays in the upper
atmosphere produce secondary particles. Part of the secondary particles, generated
by GCR interactions, reach ground level. This flux of secondary particles, causes
in particular SEEs and it has an impact on the performance of microelectronics
(including SRAM-based FPGAs).

In the near-Earth region the magnetic field keeps electrons and protons popula-
tions trapped in a gyration, bounce and drift movement [135]. This is visualised in
Figure A.1. The energetic electrons and ions are magnetically trapped in the Van
Allen radiation belts (which extend from 100km to 65000km above the surface of
the Earth) and consist mainly of electrons up to a few MeV and protons of up to
several hundred M eV energy.

The Earths magnetic field is not symmetrical. This leads to local distortions,
such as the South Atlantic anomaly (SAA), that exposes passing spacecraft pass-
ing, from this area, to an increased level of radiation'. This is visualised in Figure
At a low altitude, variations of the proton fluxes are observed, anti-correlated with
solar cycle changes in thermosphere density (neutral atmosphere). Effects to mi-
croelectronics in this altitudes include Displacement Damage (DD), SEEs, and
nuclear activation. The SAA is a significant source of effects for all polar orbits,

'SAA is a manifestation of the lower inner belt proton altitude in the South Atlantic region, due to
the Earth magnetic field being tilted by 11 degrees with respect to the Earth rotation axis and offset by
500km towards the north Pacific

APPENDIX 201

iux TUBE
DYV

TRAJECTORY OF
TRAPPED PARTICLE

MAGNETIC FIELD LINE

Figure A.1: A descriptive drawing of the three types of motion of particles trapped in the
Earth’s magnetic field [135].

and it is the only significant radiation exposure on many low altitude orbits, es-
pecially with low inclination or heavy shielding (e.g. for the International Space
Station - ISS).

The outer belt is dominated by a dynamic population of energetic electrons,
with (kinetic) energy ¥ < 10MeV. Trapped electrons dominate the geostationary
orbit (GEO) and the medium Earth orbit (MEO) environment. Electron effects tra-
ditionally include total dose and electro-static discharges (ESD) from surface and
internal charging, and component susceptibility to electron-induced SEEs [76].

A.1.3 Solar energetic particles during solar flares

SEPs like solar flares, are generating particles such as protons, heavier ions, elec-
trons, neutrons, gamma rays, X-rays. They are emitted from the sun, and in some
cases are accelerated (either in the vicinity of the sun, or by shocks in interplan-
etary space). The energy spectrum of the SEPs is highly variable, and is much
softer than that of GCRs.

Charged SEPs are normally shielded by the Earth’s magnetic field, but can get
closer to the Earth surface at higher latitudes (closer to the polar regions). If the
energy spectrum of the SEPs is high enough, from their interactions in the upper
layers of the atmosphere, secondary particles are generated that can reach aircraft
altitude, or even ground level. Cumulative fluence of heavy ions of solar origin
have been shown to exceed GCRs during solar maximum, with an impact on SEEs
in microelectronics [151].

Therefore, GCRs, trapped electrons and protons, and SEPs have been intro-
duced as the main sources of particle radiation in space. Their impact on electronic

202 APPENDIX

2 km

* 1000

100

Latitude

AP—E MX Deanldirectienal Flus > 10.00 Mav {em™%™") at 500

10000

1000

Latitude

100

HE—B Max Flue > 1,00 Mev {em™a™") at 500.0 km

Longitude

Figure A.2: World map at 500 km altitude of the trapped proton (> 10M eV) and trapped
electron (> 1M eV) distributions, respectively. The SAA shows up clearly in both
maps [134].

APPENDIX 203

systems on board spacecraft is quantified in terms of TID, non-ionising dose and
SEEs. However, the variability of the intensity and energy spectrum of the en-
vironment is still not fully captured in the prediction models. A general trend is
that the high exposures that are seen at very thin shielding, can decrease behind
an aluminum structure of just a few mm (as the low-energy portion of the particle
spectra is absorbed). Then, the dose levels can decrease much more with increas-
ing shielding (either due to the hard proton spectra, or to the penetrating secondary
Bremsstrahlung gammas in the electron environment).

A.2 Aircraft Radiation Environments

The different sources of cosmic radiation can affect spacecrafts for interplanetary
missions and in the near-Earth environment. In addition, the interactions of GCRs
and SEPs with the atmosphere lead to the generation of a variety of secondary par-
ticles which affect the lower reaches of the atmosphere. These particles affect mi-
croelectronics at aircraft altitudes (and on the ground) through SEEs [95]. The in-
teractions of energetic (10sM eV /nuc to many 100sGeV /nuc) protons and heav-
ier ions include nuclear spallation potentially with the production of many other
nucleons and other nuclear fragments, and if sufficient energy is present, more
rare particles such as pions (at incident energies > 2900 eV'), and other mesons
appear. The ambient dose equivalent rate as a function of altitude, and the contri-
butions made by these particle species to the dose is shown in Figure A.3. These
products can themselves undergo further interactions, that can result in a flux of
lower-energy particles from a single cosmic-ray or SEP, striking the higher reaches
of the atmosphere. Furthermore, many of the particles produced can lead to y - ray
production from the de-exciting nuclei, and ~y-rays, electrons and positrons from
the decaying mesons. Depending upon the application and the component used in
the mission, the effects of these particles must also be considered.

The intensity of the atmospheric environment depends on the altitude and
(magnetic) latitude, with the Earth geo-magnetic shielding (that is less effective
closer to the poles). Intensity, composition and spectrum of the particle environ-
ment are also dependent on the depth in the atmosphere. Here, neutrons are the
major contributor to the SEE rates, especially at lower altitudes. The contributions
to SEEs from heavier ions (both residual GCRs and nuclear fragments) account
for <15% of the event rates (up to 15 km).

Zgpallation is the process in which a heavy nucleus emits a large number of nucleons as a result of
being hit by a high-energy particle, thus greatly reducing its atomic weight.

204 APPENDIX

1.E+02

SEREFARES S5

1.E401 et

1.E+00

Ambient Dose Equivalent rate [uSv hr]

1.E-01
~+Neutron

1.E-02 =
-&-Proton
~+~Pions

1E-03 ~=Muon
—+Electron
-o-Total

1.E-04

0 2 4 6 8 10 12 14 16 18 20

Altitude [km]

Figure A.3: The ambient dose equivalent rate as a function of altitude, and the
contributions made by different particle species to the dose [95, 134].

Altitude Neutron Proton Heavier Ions Total
km [events/year] | [events/year] | [events/year] | [events/year]
12 25 5 5 35
20 43 20 12 75
99 11 26 112 149

Table A.1: Predicted ESA SEU Monitor upset rates due to GCR-induced atmospheric
radiation, including contributions from neutrons, protons and heavier ions. The
predictions are based on the MAIRE model for location 45° N, 74°W, which has a vertical
cut-off rigidity of 1GV, and solar minimum conditions.

A.3 Radiation environment at ground level

The radiation environment at ground level consists mainly of muons, neutrons,
electrons and photons and it can affect modern electronic components, circuits
and systems. It has two main origins: the cosmic ray induced particles showers
that propagate from the top atmosphere to ground and radioactive species in the
earth.

Human-made activities produce a huge quantity of radiation in Nuclear Fis-
sion Power Plants experimental reactors [140]. Additionally, medical applications
use more and more accelerators with possible side leakage of radiation. In these
facilities the radiation environment can be compared to natural radiation level. In
addition, microelectronics may suffer from a radiation effects linked to residual ra-

APPENDIX 205

dioactivity located in the active device materials or inside the package close to the
active device. Additionally, high energetic ions (protons, alphas and heavy ions)
from galactic or extragalactic origin can reach the upper atmosphere and interact
with the atmospheric species (oxygen, nitrogen, argon, water vapor) [6,24].

The flux of particles is much lower in ground level than at aircraft altitudes and
in space, but the huge number of COTS electronic devices that may be sensitive
to SEEs has a direct impact on microelectronics. In that case, neutrons are giving
the most important contribution to SEEs on microelectronics. But sensitivity of
devices varies continuously with the technology node. Thus, the contribution of
other particles may become important. Radiation in human-made radiation envi-
ronments may reach tens of kGy/h and the total cumulative dose may reach tens
of MGy.

A.4 Radiation environment below ground level

The radiation fields that occur in close vicinity of a high-energy accelerator such
as the Large Hadron Collider (LHC) are extremely complex in nature, with inten-
sities and composition which strongly depend on the location and operation mode.
The LHC [33] at CERN is the worlds largest and most powerful particle acceler-
ator. The CERN accelerator complex, from the injector chain up to the LHC is
visualized in Figure A.4. Its main purpose is to provide large enough energies and
intensities to generate rare events, that will allow us to answer fundamental ques-
tions and improve our understanding of the high-energy physical universe laws.
The LHC consists of a 27km ring of superconducting magnets in which two high-
energy (7TeV) beams travel in opposite directions and separate ultra-high vacuum
beam pipes before they are made to collide.

A.4.1 LHC radiation source

In the so-called high-luminosity experiments (CMS and ATLAS) the circulating
proton bunches, of roughly 1011 protons each, and separated by 25ns, collide
producing approximately 20 inelastic interactions per crossing. The number of
collisions per unit cross section produced in a detector is defined as the luminosity.
The nominal design luminosity value for the LHC is 103*c¢rm =251, The main per-
formance parameter for a high-energy particle collider is the integrated luminos-
ity. It is expressed in units of inverse cross section, typically as inverse femtobarns
(fb=1) which for T'eV energies corresponds to roughly 10 collisions.

In the vicinity of the accelerator, a mixed radiation field is present consisting
of multiple particle species and energies and that can therefore negatively impact
the availability of the accelerator equipment through radiation effects on electronic
components and systems. Additionally, a large number of COTS FPGAs are in a

206 APPENDIX

cMS
North As
GIF++
CENF
ALICE o ' T LHCb

1976 (7 km)

T2

AWA KE\/
Em

HiRadMat 7
_ Em | [1o
) " AD
ISOLDE
T2] NN
\ C e mREX/HIE
\ % DY, EAe
/ - {IRRAD/CHARM
PS
& /

\ { ¢
/ LEIR
/ | 2005 78 m) |

Figure A.4: The CERN accelerator complex, from the injector chain up to the LHC [17].

close vicinity of the accelerator. The radiation effects to electronics can negatively
impact the performance of the accelerator either through the induction of failures
leading to premature beam dumps and/or the need of intervention to repair them,
increasing the accelerator downtime.

A.4.2 LHC Radiation Environment

The LHC radiation environment largely depends on the angle and distance with
respect to the source, as well as on the type and amount of shielding (if any) in
between. It is originated by three sources of radiation:

e particle debris induced by colliding beams
e direct losses in beam intercepting devices

e interactions between the circulating beam and the residual gas inside the
beam pipe

In the LHC, the contribution of the various high-energy particles and its re-
spective radiation damage, depends highly on the specific radiation environment.
In general, hadrons (neutrons, protons and pions) are the main SEE contributors.
Charged hadrons, electrons/positrons and photons dominate Total Ionizing Dose
(TID), and neutrons are the primaru cause of the DD.

APPENDIX 207

A.5 Monitoring and Characterization of Radiation
Environments

The radiation-induced effect rate, or failure risk, is determined by complex cal-
culations, from the radiation environment source, through the transport through
spacecraft structures, down to the specific effects in electronics. Currently, no
end-to-end risk assessment is available for radiation effects to electronics. For
each element of the calculation, a confidence level is calculated that is based on
statistical uncertainties from the observed environment variability, from conserva-
tive predictions, or from engineering margins (that have been already introduced
to ensure safety). Recent engineering tool developments are aiming at providing
model predictions based on statistical analysis. Additionally, various efforts in-
clude model prediction of the dynamic nature of the environments, and predictions
that associate mission confidence levels and their consistency with the variability
of the particle fluxes [41,71,100].

A.6 Conclusion

The atmospheric radiation environment has always existed. However, due to the
technology scaling according to Moore’s law, the trends in microelectronics tech-
nologies towards smaller feature- sizes, require constantly much lower critical
charges to upset devices. The Concorde for example, flew at higher altitudes than
almost all current commercial jets, but the 1960s/70s technology-base of that air-
liner meant that there was negligible chance of GCR or SEP radiation affecting
its systems. Today there is much greater awareness of the vulnerabilities of micro-
electronics in terrestrial applications from the natural cosmic-radiation-induced ra-
diation environment, and it is recognized by semiconductor manufacturers as a key
risk affecting the reliability of future state-of-the-art components, in safety-critical
applications, such as automotive systems, flight and aircraft engine control, data
centers and nuclear plants.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Bibliography

P. Adell, G. Allen, G. Swift, and S. McClure. Assessing and mitigating
radiation effects in Xilinx SRAM FPGAs. In Radiation and Its Effects on
Components and Systems (RADECS), 2008 European Conference on, pages
418-424, Sept 2008.

M. A. Aguirre, J. N. Tombs, F. Munoz, V. Baena, H. Guzman, J. Napoles,
A. Torralba, A. Fernandez-Leon, F. Tortosa-Lopez, and D. Merodio. Selec-
tive protection analysis using a SEU emulator: Testing protocol and case
study over the leon2 processor. IEEE Transactions on Nuclear Science,
54(4):951-956, Aug 2007.

M. Alderighi, F. Casini, S. D’ Angelo, M. Mancini, D. M. Codinachs, S. Pa-
store, C. Poivey, G. R. Sechi, G. Sorrenti, and R. Weigand. Experimental
validation of fault injection analyses by the flipper tool. IEEE Transactions
on Nuclear Science, 57(4):2129-2134, Aug 2010.

H. Angepat, G. Eads, C. Craik, and D. Chiou. NIFD: Non-intrusive FPGA
Debugger — Debugging FPGA *Threads’ for Rapid HW/SW Systems Pro-
totyping. In 2010 International Conference on Field Programmable Logic
and Applications, pages 356-359, Aug 2010.

L. Antoni, R. Leveugle, and B. Fehér. Using run-time reconfiguration
for fault injection applications. Instrumentation and Measurement, IEEE
Transactions on, 52(5):1468-1473, 2003.

J. L. Barth, C. S. Dyer, and E. G. Stassinopoulos. Space, atmospheric, and
terrestrial radiation environments. /EEE Transactions on Nuclear Science,
50(3):466—482, June 2003.

J. L. Barth, K. A. LaBel, and C. Poivey. Radiation assurance for the space
environment. In 2004 International Conference on Integrated Circuit De-
sign and Technology (IEEE Cat. No.0O4EX866), pages 323-333, May 2004.

M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. A. LaBel,
M. Friendlich, H. Kim, and A. Phan. Effectiveness of internal versus exter-
nal SEU scrubbing mitigation strategies in a xilinx FPGA: Design, test, and

210

REFERENCES

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]
(18]

[19]

analysis. IEEE Transactions on Nuclear Science, 55(4):2259-2266, Aug
2008.

M. Bohman, B. James, M. J. Wirthlin, H. Quinn, and J. Goeders. Micro-
controller compiler-assisted software fault tolerance. IEEE Transactions on
Nuclear Science, 66(1):223-232, Jan 2019.

C. Bolchini, A. Miele, and C. Sandionigi. A novel design methodology
for implementing reliability-aware systems on SRAM-based FPGAs. IEEE
Transactions on Computers, 60(12):1744-1758, Dec 2011.

B. Bridgford, C. Carmichael, and C. W. Tseng. Single-event upset mitiga-
tion selection guide. Xilinx Application Note, XAPP987 (vi. 0), 2008.

K. Bruneel, F. Abouelella, and D. Stroobandt. Automatically mapping ap-
plications to a self-reconfiguring platform. In Proceedings of the Confer-
ence on Design, Automation and Test in Europe, DATE °09, pages 964-969,
3001 Leuven, Belgium, Belgium, 2009. European Design and Automation
Association.

K. Bruneel, W. Heirman, and D. Stroobandt. Dynamic data folding with
parameterizable FPGA configurations. ACM Transactions on Design Au-
tomation of Electronic Systems, 16(4):43:1-43:29, Oct. 2011.

L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of
latency-insensitive design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 20(9):1059-1076, Sep 2001.

C. Carmichael. Triple module redundancy de-
sign techniques for virtex FPGAs. Retrieved from:

https://www.xilinx.com/support/documentation/application_notes/xapp197,
2018.

C. Carmichael and C. W. Tseng. Correcting single-event up-
sets in virtex-4 FPGA configuration memory. Retrieved from:
http://citeseerx.ist.psu.edu/viewdoc/download, 2018.

CERN. CERN document server. Retrieved from: https://cds.cern.ch/, 2019.

J. Chang, G. A. Reis, and D. 1. August. Automatic instruction-level
software-only recovery. In International Conference on Dependable Sys-
tems and Networks (DSN’06), pages 83-92, June 2006.

K.-T. Cheng, S.-Y. Huang, and W.-J. Dai. Fault emulation: A new method-
ology for fault grading. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18(10):1487-1495, Oct 1999.

REFERENCES 211

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, S. Cuenca-Asensi, L. A.
Tambara, P. Rech, and H. Quinn. S-SETA: Selective software-only error-
detection technique using assertions. [EEE Transactions on Nuclear Sci-
ence, 62(6):3088-3095, Dec 2015.

E. Chielle, F. Rosa, G. S. Rodrigues, L. A. Tambara, J. Tonfat, E. Mac-
chione, F. Aguirre, N. Added, N. Medina, V. Aguiar, M. A. G. Silveira,
L. Ost, R. Reis, S. Cuenca-Asensi, and F. L. Kastensmidt. Reliability
on ARM processors against soft errors through SIHFT techniques. /IEEE
Transactions on Nuclear Science, 63(4):2208-2216, Aug 2016.

S. Y. L. Chin and S. J. E. Wilton. An analytical model relating FPGA
architecture and place and route runtime. In 2009 International Conference
on Field Programmable Logic and Applications, pages 146—153, Aug 2009.

P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Violante.
An FPGA-based approach for speeding-up fault injection campaigns on
safety-critical circuits. Journal of Electronic Testing, 18(3):261-271, Jun
2002.

N. Combier, A. Claret, P. Laurent, V. Maget, D. Boscher, A. Ferrari, and
M. Brugger. Improvements of fluka calculation of the neutron albedo. IEEE
Transactions on Nuclear Science, 64(1):614-621, Jan 2017.

J. Coole and G. Stitt. Intermediate fabrics: Virtual architectures for circuit
portability and fast placement and routing. In 2010 IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System Synthesis
(CODES+1SSS), pages 13-22, Oct 2010.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted mosfet’s with very small physical di-
mensions. IEEE Journal of Solid-State Circuits, 9(5):256-268, Oct 1974.

M. Didehban and A. Shrivastava. nzdc: A compiler technique for near zero
silent data corruption. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1-6, June 2016.

P. E. Dodd, M. R. Shaneyfelt, J. A. Felix, and J. R. Schwank. Production
and propagation of single-event transients in high-speed digital logic ICs.
IEEE Transactions on Nuclear Science, 51(6):3278-3284, Dec 2004.

J. Drabbe. ECSS-E-ST-10-12C: methods for the calculation of radiation
received and its effects, and a policy for design margins. Retrieved from:
https://ecss.nl/standard/ecss-e-st-10-12c-methods-for-the-calculation-
of-radiation-received-and-its-effects-and-a-policy-for-design-margins/,
2019.

212

REFERENCES

(30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

(39]

[40]

M. Ebrahimi, A. Mohammadi, A. Ejlali, and S. G. Miremadi. A fast, flexi-
ble, and easy-to-develop FPGA-based fault injection technique. Microelec-
tronics Reliability, 54(5):1000 — 1008, 2014.

F. Eslami, E. Hung, and S. J. E. Wilton. Enabling effective FPGA debug us-
ing overlays: Opportunities and challenges. CoRR, abs/1606.06457, 2016.

F. Eslami and S. J. E. Wilton. An adaptive virtual overlay for fast trigger
insertion for FPGA debug. In 2015 International Conference on Field Pro-
grammable Technology (FPT), pages 32-39, Dec 2015.

L. Evans and P. Bryant. LHC machine. Journal of Instrumentation,
3(08):S08001-S08001, aug 2008.

E. Fermi. On the origin of the cosmic radiation. Phys. Rev., 75:1169-1174,
Apr 1949.

C. Fetzer, U. Schiffel, and M. SiiBkraut. An-encoding compiler: Building
safety-critical systems with commodity hardware. In B. Buth, G. Rabe,
and T. Seyfarth, editors, Computer Safety, Reliability, and Security, pages
283-296, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

H. D. Foster. Trends in functional verification: A 2014 industry study. In
Proceedings of the 52Nd Annual Design Automation Conference, DAC 15,
pages 48:1-48:6, New York, NY, USA, 2015. ACM.

P. W. Foulk. Data-folding in SRAM configurable FPGAs. In [1993]
Proceedings IEEE Workshop on FPGAs for Custom Computing Machines,
pages 163-171, April 1993.

F. Fricke, A. Werner, K. Shahin, and M. Huebner. CGRA tool flow for
fast run-time reconfiguration. In N. Voros, M. Huebner, G. Keramidas,
D. Goehringer, C. Antonopoulos, and P. C. Diniz, editors, Applied Reconfig-
urable Computing. Architectures, Tools, and Applications, pages 661-672,
Cham, 2018. Springer International Publishing.

A. Gavros, H. H. Loomis, and A. A. Ross. Reduced precision redundancy
in a radix-4 FFT implementation on a field programmable gate array. In
2011 Aerospace Conference, pages 1-15, March 2011.

M. G. Gericota, L. F. Lemos, G. R. Alves, and J. M. Ferreira. On-line self-
healing of circuits implemented on reconfigurable FPGAs. In /3th IEEE
International On-Line Testing Symposium (IOLTS 2007), pages 217-222,
July 2007.

REFERENCES 213

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

G. P. Ginet, T. P. O’Brien, S. L. Huston, W. R. Johnston, T. B. Guild,
R. Friedel, C. D. Lindstrom, C. J. Roth, P. Whelan, R. A. Quinn, D. Mad-
den, S. Morley, and Y.-J. Su. Ae9, ap9 and spm: New models for specifying
the trapped energetic particle and space plasma environment. Space Science
Reviews, 179(1):579-615, Nov 2013.

R. Gnanaolivu, T. S. Norvell, and R. Venkatesan. Mapping loops onto
coarse-grained reconfigurable architectures using particle swarm optimiza-
tion. In 2010 International Conference of Soft Computing and Pattern
Recognition, pages 145-151, Dec 2010.

J. Goeders and S. J. E. Wilton. Using Dynamic Signal-Tracing to Debug
Compiler-Optimized HLS Circuits on FPGAs. In 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing Ma-
chines, pages 127-134, May 2015.

J. Goeders and S. J. E. Wilton. Signal-tracing techniques for in-system
FPGA debugging of high-level synthesis circuits. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 36(1):83-96,
Jan 2017.

M. Gokhale, P. Graham, E. Johnson, N. Rollins, and M. Wirthlin. Dynamic
reconfiguration for management of radiation-induced faults in FPGAs. In
18th International Parallel and Distributed Processing Symposium, 2004.
Proceedings., pages 145—, April 2004.

L. Gong, T. Wu, N. T. H. Nguyen, D. Agiakatsikas, Z. Zhao, E. Cetin, and
O. Diessel. A programmable configuration controller for fault-tolerant ap-
plications. In 2016 International Conference on Field-Programmable Tech-
nology (FPT), pages 117-124, Dec 2016.

P. Graham, B. Nelson, and B. Hutchings. Instrumenting bitstreams for de-
bugging FPGA circuits. In The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01), pages 41-50,
March 2001.

D. Grant, C. Wang, and G. G. Lemieux. A CAD framework for Malibu:
An FPGA with time-multiplexed coarse-grained elements. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA ’11, pages 123—-132, New York, NY, USA, 2011. ACM.

S. Habinc. Gaisler research, functional triple modular redundancy (FTMR).
Retrieved from: https://www.gaisler.com/doc/fpga_003_01-0-2.pdf. Ac-
cessed: 2019-01-26.

214

REFERENCES

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

S. Hansen, D. Koch, and J. Torresen. High speed partial run-time recon-
figuration using enhanced ICAP hard macro. In Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on, pages 174—180, May 2011.

J. Heiner, N. Collins, and M. Wirthlin. Fault tolerant ICAP controller
for high-reliable internal scrubbing. In 2008 IEEE Aerospace Conference,
pages 1-10, doi. 10.1109/AER0O.2008.4526471, March 2008.

J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. FPGA partial reconfiguration
via configuration scrubbing. In 2009 International Conference on Field
Programmable Logic and Applications, pages 99-104, Aug 2009.

L. Hellerman. A catalog of three-variable or-invert and and-invert logical
circuits. IEEE Transactions on Electronic Computers, EC-12(3):198-223,
June 1963.

I. Herrera-Alzu and M. Lopez-Vallejo. Design techniques for Xilinx Virtex
FPGA configuration memory scrubbers. [EEE Transactions on Nuclear
Science, 60(1):376-385, Feb 2013.

K. Heyse, B. Al Farisi, K. Bruneel, and D. Stroobandt. TCONMAP: Tech-
nology Mapping for Parameterised FPGA Configurations. ACM Trans. Des.
Autom. Electron. Syst., 20(4):48:1-48:27, Sept. 2015.

K. Heyse, K. Bruneel, and D. Stroobandt. Mapping logic to reconfigurable
FPGA routing. Proceedings of the 22nd International Conference on Field
Programmable Logic and Applications, pages 315-321, 2012.

K. Heyse, T. Davidson, E. Vansteenkiste, K. Bruneel, and D. Stroobandt.
Efficient implementation of virtual coarse grained reconfigurable arrays on
FPGAS. 1In 2013 23rd International Conference on Field programmable
Logic and Applications, pages 1-8, Sept 2013.

A. B. T. Hopkins and K. D. McDonald-Maier. Debug support for complex
systems on-chip: a review. IEEE Proceedings - Computers and Digital
Techniques, 153(4):197-207, July 2006.

E. Hung, A. Jamal, and S. J. E. Wilton. Maximum flow algorithms for max-
imum observability during FPGA debug. In 2013 International Conference
on Field-Programmable Technology (FPT), pages 20-27, Dec 2013.

E. Hung, T. Todman, and W. Luk. Transparent insertion of latency-oblivious
logic onto FPGAs. In 2014 24th International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 1-8, Sep. 2014.

REFERENCES 215

[61]

[62]

[63]

[64]

[65]

(66]

[67]

[68]

[69]

[70]

E. Hung and S. J. Wilton. Towards simulator-like observability for FP-
GAs: A virtual overlay network for trace-buffers. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Ar-
rays, FPGA *13, pages 19-28, New York, NY, USA, 2013. ACM.

E. Hung and S. J. E. Wilton. Incremental trace-buffer insertion for FPGA
debug. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
22(4):850-863, April 2014.

B. L. Hutchings and J. Keeley. Rapid post-map insertion of embedded logic
analyzers for Xilinx FPGAs. In 2014 IEEE 22nd Annual International Sym-
posium on Field-Programmable Custom Computing Machines, pages 72—
79, May 2014.

Intel. Quartus Prime Standard Edition Handbook, Volume 3: Verification:
Design and Debugging with the SignalTap II Logic Analyzer. Retrieved
from: https://www.mouser.com/pdfdocs/qts-qps-5v3.pdf, 2019. Accessed:
2019-01-02.

Intel. Quartus SignalTap: embedded logic analyzer. Retrieved from:
https://www.intel.com/content/pdfs/literature/ug/signal.pdf, 2019. Ac-
cessed: 2019-04-22.

ISCASS9. ISCAS89 Benchmark Suite. Retrieved
from:https://ddd.fit.cvut.cz/prj/Benchmarks/, 2018.

R. K. Iyer and D. Tang. Fault-tolerant computer system design. In
D. K. Pradhan, editor, Fault-tolerant Computer System Design, chapter Ex-
perimental Analysis of Computer System Dependability, pages 282-392.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, and H. Lam.
Reconfigurable fault tolerance: A comprehensive framework for reliable
and adaptive FPGA-based space computing. ACM Trans. Reconfigurable
Technol. Syst., 5(4):21:1-21:30, Dec. 2012.

A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient overlay architecture
based on DSP blocks. In 2015 IEEE 23rd Annual International Symposium
on Field-Programmable Custom Computing Machines, pages 25-28, May
2015.

A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. DeCO: A DSP
block based FPGA accelerator overlay with low overhead interconnect. In
2016 IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 1-8, May 2016.

216

REFERENCES

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

P. Jiggens, A. Varotsou, P. Truscott, D. Heynderickx, F. Lei, H. Evans, and
E. Daly. The solar accumulated and peak proton and heavy ion radiation
environment (SAPPHIRE) model. IEEE Transactions on Nuclear Science,
65(2):698-711, Feb 2018.

J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey, P. Gra-
ham, and K. Morgan. Using duplication with compare for on-line error
detection in FPGA-based designs. In 2008 IEEE Aerospace Conference,
pages 1-11, March 2008.

M. A. Kadi and M. Huebner. Integer computations with soft GPGPU on
FPGAs. In 2016 International Conference on Field-Programmable Tech-
nology (FPT), pages 28-35, Dec 2016.

F. Kastensmidt, L. Carro, and R. Reis. Fault-tolerance techniques for
SRAM-based FPGAs, volume 32. Springer, 01 2006.

A. Khan, R. N. Pittman, and A. Forin. gNOSIS: A Board-Level Debugging
and Verification Tool. In Proceedings of the 2010 International Conference
on Reconfigurable Computing and FPGAs, RECONFIG ’ 10, pages 4348,
Washington, DC, USA, 2010. IEEE Computer Society.

M. P. King, R. A. Reed, R. A. Weller, M. H. Mendenhall, R. D. Schrimpf,
B. D. Sierawski, A. L. Sternberg, B. Narasimham, J. K. Wang, E. Pitta,
B. Bartz, D. Reed, C. Monzel, R. C. Baumann, X. Deng, J. A. Pellish, M. D.
Berg, C. M. Seidleck, E. C. Auden, S. L. Weeden-Wright, N. J. Gaspard,
C. X. Zhang, and D. M. Fleetwood. Electron-induced single-event upsets
in static random access memory. IEEE Transactions on Nuclear Science,
60(6):4122-4129, Dec 2013.

D. Koch. Self-adaptive reconfigurable networks. In Partial Reconfiguration
on FPGAs: Architectures, Tools and Applications, pages 285-305, Cham,
2012. Springer Science & Business Media.

D. Koch, C. Beckhoff, and G. G. F. Lemieux. An efficient FPGA overlay for
portable custom instruction set extensions. In 2013 23rd International Con-
ference on Field programmable Logic and Applications, pages 1-8, Sept
2013.

D. Koch, C. Haubelt, and J. Teich. Efficient Hardware Checkpointing: Con-
cepts, Overhead Analysis, and Implementation. In Proceedings of the 2007
ACM/SIGDA 15th International Symposium on Field Programmable Gate
Arrays, FPGA °07, pages 188-196, New York, NY, USA, 2007. ACM.

REFERENCES 217

(80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

A. Kourfali, F. Fricke, M. Huebner, and D. Stroobandt. An integrated on-
silicon verification method for FPGA overlays. Journal of Electronic Test-
ing, Mar 2019.

A. Kourfali, A. Kulkarni, and D. Stroobandt. SICTA: A superimposed in-
circuit fault tolerant architecture for SRAM-based FPGAs. In Proceedings
of the IEEE 23rd International Symposium on On-Line Testing and Robust
System Design, page 4. IEEE, 2017.

A. Kourfali and D. Stroobandt. Efficient Hardware Debugging Using Pa-
rameterized FPGA Reconfiguration. In 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 277—
282, May 2016.

A. Kourfali and D. Stroobandt. Superimposed in-circuit debugging for self-
healing FPGA overlays. In 2018 IEEE 19th Latin-American Test Sympo-
sium (LATS), pages 1-6, March 2018.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems - Volume 1,
NIPS’12, pages 1097-1105, USA, 2012. Curran Associates Inc.

S. Kulis. Single event effects mitigation with TMRG tool. Journal of In-
strumentation, 12(01):C01082, 2017.

A. Kulkarni, T. Davidson, K. Heyse, and D. Stroobandt. Improving recon-
figuration speed for dynamic circuit specialization using placement con-
straints. In Proceedings International Conference on Reconfigurable Com-
puting and FPGAs, pages 1-6. IEEE xplore, 2014.

A. Kulkarni, K. Heyse, T. Davidson, and D. Stroobandt. Performance eval-
uation of dynamic circuit specialization on xilinx FPGAs. In Proceedings
of the FPGA World Conference 2014, FPGAWorld ’ 14, pages 1:1-1:6, New
York, NY, USA, 2014. ACM.

A. Kulkarni, V. Kizheppatt, and D. Stroobandt. MiCAP: a custom reconfig-
uration controller for dynamic circuit specialization. In 2015 International
Conference on ReConFigurable Computing and FPGAs (ReConFig), pages
1-6, doi. 10.1109/ReConFig.2015.7393327, Dec 2015.

A. Kulkarni and D. Stroobandt. Micap-pro: a high speed custom reconfigu-
ration controller for dynamic circuit specialization. Design Automation for
Embedded Systems, 20(4):341-359, Dec 2016.

218

REFERENCES

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

A. Kulkarni, D. Stroobandt, A. Werner, F. Fricke, and M. Huebner. Pixie:
A heterogeneous virtual coarse-grained reconfigurable array for high per-
formance image processing applications. In 3rd International Workshop on
Overlay Architectures for FPGAs (OLAF 2017), pages 1-6, 2017.

A. Kulkarni, E. Vansteenkiste, D. Stroobandt, A. Brokalakis, and A. Niki-
takis. A fully parameterized virtual coarse grained reconfigurable array for
high performance computing applications. In 2016 IEEE International Par-
allel and Distributed Processing Symposium Workshops, pages 265-270.
IEEE xplore, 2016.

M. Lanuzza, P. Zicari, F. Frustaci, S. Perri, and P. Corsonello. Exploiting
self-reconfiguration capability to improve sram-based FPGA robustness in
space and avionics applications. ACM Trans. Reconfigurable Technol. Syst.,
4(1):8:1-8:22, Dec. 2010.

V. Lari, A. Tanase, J. Teich, M. Witterauf, F. Khosravi, F. Hannig, and B. H.
Meyer. A co-design approach for fault-tolerant loop execution on coarse-
grained reconfigurable arrays. In 2015 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), pages 1-8, June 2015.

R. Le. Soft error mitigation using prioritized essential bits. Retrieved from:
https://www.xilinx.com/support/documentation/application_notes/xapp538-
soft-error-mitigation-essential-bits, 2019.

F. Lei, A. Hands, S. Clucas, C. Dyer, and P. Truscott. Improvements to
and validations of the ginetiq atmospheric radiation model (qarm). In 2005
8th European Conference on Radiation and Its Effects on Components and
Systems, pages D3—-1-D3-8, Sep. 2005.

C. Lopez-Ongil, L. Entrena, M. Garcia-Valderas, M. Portela, M. A. Aguirre,
J. Tombs, V. Baena, and F. Munoz. A unified environment for fault injection
at any design level based on emulation. [EEE Transactions on Nuclear
Science, 54(4):946-950, Aug 2007.

J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson, J. Rose,
and V. Betz. VTR 7.0: Next Generation Architecture and CAD System
for FPGAs. ACM Trans. Reconfigurable Technol. Syst., 7(2):6:1-6:30, June
2014.

P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford. Invited paper:
Enhanced architectures, design methodologies and cad tools for dynamic
reconfiguration of xilinx FPGAs. In 2006 International Conference on Field
Programmable Logic and Applications, pages 1-6, Aug 2006.

REFERENCES 219

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

R. L. Lysecky, K. Miller, F. Vahid, and K. A. Vissers. Firm-core virtual
FPGA for just-in-time FPGA compilation (abstract only). In FPGA, 2005.

D. Matthi, T. Berger, A. I. Mrigakshi, and G. Reitz. A ready-to-use galactic
cosmic ray model. Advances in Space Research, 51(3):329 — 338, 2013.

Mentor. Modelsim: Simulation of hardware description languages. Re-
trieved from: https://www.mentor.com/products/fv/modelsim/, 2019.

Mentor. Precision Hi-Rel:Advanced FPGA Synthesis. Retrieved from:
https://www.mentor.com/products/fpga/synthesis/precision-hi-rel, 2019.

Mentor Graphics. Certus Silicon Debug, 2016.

H. Michel, H. Guzman-Miranda, A. Dorflinger, H. Michalik, and M. A.
Echanove. SEU fault classification by fault injection for an FPGA in the
space instrument SOPHI. In 2017 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), pages 9—15, July 2017.

J. M. Mogollon, H. Guzmn-Miranda, J. Npoles, J. Barrientos, and M. A.
Aguirre. Ftunshades2: A novel platform for early evaluation of robustness
against SEE. In 2011 12th European Conference on Radiation and Its Ef-
fects on Components and Systems, pages 169—174, Sep. 2011.

G. E. Moore. Cramming more components onto integrated circuits,
reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114
ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33-35, Sep. 2006.

K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin. A compar-
ison of tmr with alternative fault-tolerant design techniques for fpgas. IEEE
Transactions on Nuclear Science, 54(6):2065-2072, Dec 2007.

NASA. Fault management handbook. Retrieved from:
https://snebulos.mit.edu/projects/reference/NASA-Generic/NASA-HDBK-
1002.pdf, 2019.

G. L. Nazar. Improving FPGA repair under real-time constraints. Micro-
electronics Reliability, 55(7):1109 — 1119, 2015.

G. L. Nazar, L. P. Santos, and L. Carro. Accelerated FPGA repair through
shifted scrubbing. In 2013 23rd International Conference on Field pro-
grammable Logic and Applications, pages 1-6, Sep. 2013.

G. Neuberger, F. de Lima, L. Carro, and R. Reis. A multiple bit upset toler-
ant SRAM memory. ACM Trans. Des. Autom. Electron. Syst., 8(4):577-590,
Oct. 2003.

220

REFERENCES

[112]

[113]

[114]

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

M. Nielson. Using a microprocessor to configure 7 series FP-
GAs via slave serial or slave SelectMAP mode. Retrieved from:
https://www.xilinx.com/support/documentation/application_notes/xapp583-
fpga-configuration.pdf, 2019.

N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by duplicated
instructions in super-scalar processors. [EEE Transactions on Reliability,
51(1):63-75, March 2002.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLLab, November 1999. Previous number = SIDL-WP-1999-0120.

A. Parreira, J. P. Teixeira, and M. Santos. A novel approach to FPGA-
based hardware fault modeling and simulation. In Proc. of the Design and
Diagnostics of Electronic Circuits and Syst. Workshop, pages 17-24, 2003.

T. P. Peixoto. The graph-tool python library, 2014.

M. Psarakis and A. Apostolakis. Fault tolerant FPGA processor based on
runtime reconfigurable modules. In 2012 17th IEEE European Test Sympo-
sium (ETS), pages 1-6, May 2012.

H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran. Software
resilience and the effectiveness of software mitigation in microcontrollers.
IEEE Transactions on Nuclear Science, 62(6):2532-2538, Dec 2015.

H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran. Robust dupli-
cation with comparison methods in microcontrollers. IEEE Transactions on
Nuclear Science, 64(1):338-345, Jan 2017.

H. Quinn, P. Graham, K. Morgan, Z. Baker, M. Caffrey, D. Smith, and
R. Bell. On-orbit results for the Xilinx Virtex-4 FPGA. In 2012 IEEE
Radiation Effects Data Workshop, pages 1-8, July 2012.

B. Quinton and S. Wilton. Post-silicon debug using programmable logic
cores. In Proceedings. 2005 IEEE International Conference on Field-
Programmable Technology, 2005., pages 241-247, Dec 2005.

P. M. B. Rao, M. Ebrahimi, R. Seyyedi, and M. B. Tahoori. Protecting
SRAM-based FPGAs against multiple bit upsets using erasure codes. In
2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1-6, June 2014.

M. S. Reorda, L. Sterpone, and A. Ullah. An error-detection and self-
repairing method for dynamically and partially reconfigurable systems. In
2013 18th IEEE European Test Symposium (ETS), pages 1-7, May 2013.

REFERENCES 221

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

A. Sari and M. Psarakis. Scrubbing-based SEU mitigation approach for
systems-on-programmable-chips. In 2011 IEEE International Conference
on Field-Programmable Technology, pages 1-8, Dec 2011.

A. Sari, M. Psarakis, and D. Gizopoulos. Combining checkpointing and
scrubbing in FPGA-based real-time systems. In 2013 IEEE 31st VLSI Test
Symposium (VTS), pages 1-6, April 2013.

T. Schweizer, P. Schlicker, S. Eisenhardt, T. Kuhn, and W. Rosenstiel.
Low-cost TMR for fault-tolerance on coarse-grained reconfigurable archi-
tectures. In 2011 International Conference on Reconfigurable Computing
and FPGAs, pages 135-140, Nov 2011.

L. Sekanina. Virtual reconfigurable circuits for real-world applications of
evolvable hardware. In Proceedings of the 5th International Conference on
Evolvable Systems: From Biology to Hardware, ICES’03, pages 186197,
Berlin, Heidelberg, 2003. Springer-Verlag.

A. Severance and G. Lemieux. VENICE: A compact vector processor for
FPGA applications. In 2011 IEEE Hot Chips 23 Symposium (HCS), pages
1-5, Aug 2011.

M. Sharifi, M. Fathy, and M. T. Mahmoudi. A classified and comparative
study of edge detection algorithms. In Proceedings. International Confer-
ence on Information Technology: Coding and Computing, pages 117120,
April 2002.

J.-H. H. Shih-Arn Hwang and C.-W. Wu. Sequential circuit fault simulation
using logic emulation. [EEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(8):724-736, Aug 1998.

F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam. Mitigation of radiation
effects in SRAM-based FPGAs for space applications. ACM Comput. Surv.,
47(2):37:1-37:34, Jan. 2015.

H. K.-H. So, C. Liu, F. Hannig, and D. Ziener. FPGA Overlays, pages
285-305. Springer International Publishing, Cham, 2016.

M. Sonza Reorda, L. Sterpone, and M. Violante. Multiple errors produced
by single upsets in FPGA configuration memory: a possible solution. In
European Test Symposium (ETS’05), pages 136—141, May 2005.

SPENVIS. ESA’s SPace ENVironment information system. Retrieved from:
https://www.spenvis.oma.be/, 2019.

222

REFERENCES

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

Spjeldvik and Rothwell. Handbook of geophysics and the space environ-
ment. Phys. Rev., 75:1169-1174, 1985.

L. Sterpone and N. Battezzati. A novel design flow for the performance
optimization of fault tolerant circuits on SRAM-based FPGAs. In 2008
NASA/ESA Conference on Adaptive Hardware and Systems, pages 157-163,
June 2008.

L. Sterpone, M. S. Reorda, and M. Violante. Rora: a reliability-oriented
place and route algorithm for SRAM-based FPGAs. In Research in Mi-
croelectronics and Electronics, 2005 PhD, volume 1, pages 173-176 vol.1,
July 2005.

L. Sterpone and M. Violante. A new partial reconfiguration-based fault-
injection system to evaluate seu effects in SRAM-based FPGAs. [EEE
Transactions on Nuclear Science, 54(4):965-970, Aug 2007.

L. Sterpone and M. Violante. Static and dynamic analysis of seu effects in
SRAM-based FPGAs. In I2th IEEE European Test Symposium (ETS’07),
pages 159-164, May 2007.

D. Stork. Demo and the route to fusion power. Retrieved from:
https://fire.pppl.gov/eu_demo_Stork_FZK2009.

Synopsys. Synplify premier: Accelerate implementation of
FPGA designs and FPGA-based prototypes. Retrieved from:
https://www.synopsys.com/implementation-and-signoff/fpga-based-
design/synplify-premier.html, 2019. Accessed: 2018-02-22.

D. Synopsys. Identify: simulator-like visibility into hardware debug. Re-
trieved from: https://www.synopsys.com/implementation-and-signoff/fpga-
based-design/identify-rtl-debugger.html, 2019. Accessed:2019-01-10.

M. A. A. Tuhin and T. S. Norvell. Compiling parallel applications to coarse-
grained reconfigurable architectures. In 2008 Canadian Conference on
Electrical and Computer Engineering, pages 001723-001728, May 2008.

G. Tzimpragos, D. Cheng, S.Tapp, B. Jayadev, and A. Majumdar. Applica-
tion Debug in FPGAs in the Presence of Multiple Asynchronous Clocks. In
2016 IEEE International Conference on Field-Programmable Technology,
2016. (FPT). Proceedings., Dec 2016.

UG03. Vivado Design Suite User Guide : Us-
ing Constraints, ugd903 (v2018.1). Retrieved from:
https://www.xilinx.com/support/documentation/sw_manuals/, 2018.

REFERENCES 223

[146] UGY973. Programming and Debugging: Vivado Design Suite User Guide,
ug973 (v2018.1). Retrieved from: https://www.xilinx.com/products/design-
tools/vivado.html, 2018.

[147] E. Vansteenkiste, B. A. Farisi, K. Bruneel, and D. Stroobandt. TPaR: Place
and route tools for the dynamic reconfiguration of the FPGA’s interconnect

network. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 33(3):370-383, March 2014.

[148] T. Wheeler, P. Graham, B. Nelson, and B. Hutchings. Using Design-Level
Scan to Improve FPGA Design Observability and Controllability for Func-
tional Verification, pages 483—492. Springer Berlin Heidelberg, 2001.

[149] M. Wirthlin, D. Lee, G. Swift, and H. Quinn. A method and case study
on identifying physically adjacent multiple cell upsets using 28-nm, inter-
leaved and SECDED-protected arrays. IEEE Transactions on Nuclear Sci-
ence, 61(6):3080-3087, Dec 2014.

[150] M. J. Wirthlin and B. L. Hutchings. Improving functional density through
run-time constant propagation. In Proceedings of the 1997 ACM Fifth In-
ternational Symposium on Field-programmable Gate Arrays, FPGA 97,
pages 86-92, New York, NY, USA, 1997. ACM.

[151] M. A. Xapsos, C. Stauffer, T. Jordan, J. L. Barth, and R. A. Mewaldt. Model
for cumulative solar heavy ion energy and linear energy transfer spectra.
IEEE Transactions on Nuclear Science, 54(6):1985-1989, Dec 2007.

[152] Xilinx. Soft error mitigation controller (pg036) v4.1. Retrieved from:
https://www.xilinx.com/support/documentation/ip_documentation/sem/v4_1/
pg036_sem.pdf. Accessed: 2019-01-26.

[153] Xilinx. Virtex-5 FPGA Configuration User Guide (ugl9l).
https://www.xilinx.com/support/documentation/user_
guides/ugl91.pdf. Accessed: 2019-03-14.

[154] Xilinx. Xilinx, logicore IP AXI HWICAP (pgl134), 2016. Retrieved from:
www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v2_03_a/
ds817_axi_hwicap.pdf. Accessed: 2019-01-26.

[155] Xilinx. ChipScope Integrated Logic Analyzer , 2016.

[156] Xilinx, Inc. Configuration Readback Capture in UltraScale FPGAs. Appli-
cation Note, XAPP1230, Nov 2015.

https://www.xilinx.com/support/documentation/user_guides/ug191.pdf
https://www.xilinx.com/support/documentation/user_guides/ug191.pdf

224 REFERENCES

[157] P. Yiannacouras, J. G. Steffan, and J. Rose. Fine-grain performance scaling
of soft vector processors. In Proceedings of the 2009 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems,
CASES ’09, pages 97-106, New York, NY, USA, 2009. ACM.

	Examination Commission
	Acknowledgements
	Samenvatting
	Summary
	I Introduction
	Introduction
	Design Flow of Digital Integrated Circuits
	Heterogeneous and Reconfigurable Computing
	Debugging and Reliability

	Design and Verification Trends
	Design and Verification Methodology
	Pre-silicon Validation
	Post-silicon validation

	Thesis Contribution
	Thesis Structure
	Publications

	Field Programmable Gate Arrays
	FPGA Architecture
	Island-style FPGA architecture
	Column-style FPGA architecture
	Other FPGA Architectures

	FPGA CAD Tool Flow
	Logic Synthesis
	Technology Mapping
	Placement
	Routing
	Bitstream Generation

	Reconfiguration methods and techniques
	Dynamic Partial Reconfiguration
	Parameterized Reconfiguration
	Micro-reconfiguration

	FPGA Overlay Architectures
	FPGA Overlay Types
	VCGRA CAD Flow
	First generation
	Second generation
	Third generation

	FPGA Overlays for Verification

	Conclusion

	II In-Circuit Debugging
	In-Circuit Debugging using Parameterized Configurations
	Introduction
	Motivation
	Contribution

	Related Work
	In-Circuit Debugging using Parameterized Configurations
	In-Circuit Debugging Tool
	Design phase
	Debugging phase

	Efficient signal selection
	GateRank
	Signal Classification Tool
	Trace-buffer Optimization

	Results and Discussion
	Offline Comparison of Area Utilization
	Reconfiguration Overhead
	Signal Ranking

	Conclusion

	Integrated Post-Silicon Validation for FPGA Overlays
	Introduction
	Prerequisites
	Contribution

	In-Circuit Debugging for FPGA Overlays
	VCGRA Overview
	Architecture: SDA Overview

	VCGRA-SDA Toolflow
	Application Mapping Toolset
	VCGRA-SDA Toolset
	Online SDA Generator
	Theoretical Architectures Tool Flow
	PConf Adaptations and Limitations

	Results and Discussion
	Offline Comparison of Area Utilization.
	Online Execution Times
	Internal Signal Analysis
	GateRank Optimization

	Conclusion

	III Fault Tolerance
	Mitigation of Radiation Effects with Microreconfiguration
	Radiation Effects
	Radiation Effects in FPGAs
	SRAM-based FPGAs in Radiation Environments

	Mitigation of Radiation Effects in SRAM- Based FPGAs
	User Logic Mitigation
	Configuration Memory Mitigation
	Block Random Access Memory
	Mitigation Design Techniques for Design-Time Fault Tolerance
	Overview of Mitigation Techniques

	Contributions
	Configuration Memory Microscrubbing
	Prerequisites: Microreconfiguration
	Multiple-level Configuration Scrubbing
	Discrete Microscrubbing
	Microscrubbing
	Parameterized scrubbing

	Custom Reconfiguration Controller
	Introduction
	Prerequisites
	Motivation
	Superimposed Reconfiguration Controller
	Architecture
	State Machine

	Fault Tolerant Reconfiguration Controller
	Results
	Microscrubbing
	Reconfiguration Controller

	Conclusion

	In-Circuit Fault Tolerance with Virtual FPGA Overlays
	Introduction
	Motivation
	Related Work
	Contribution

	Architecture
	Superimposed Fault Mitigation
	Superimposed Fault Injection
	Configuration Scrubbing

	Tool Flow
	Offline phase: Superimposed Fault Tolerant Tool
	Online phase: SEU Mitigation

	Results and Discussion
	Sobel Edge Detection Algorithm
	Reconfiguration Speed
	Convolutional Neural Network
	Fault Injection Campaign

	Conclusion

	Fault Injection with parameterized Configurations
	Introduction
	Motivation
	Contribution

	Related Work
	Fault Injection with Parameterized Configurations
	Fault Injection Tool
	The Fault Injection phase (offline)
	The Parameterized Configuration creation phase (offline)
	The Fault Testing phase (online)

	Results and Discussion
	Area Overhead
	Critical Path Delay
	Runtime Impact Estimation

	Conclusion

	IV Conclusion
	Conclusion and Future work
	Conclusions
	In-Circuit Debugging
	Fault Tolerance
	Fault Injection

	Future Work
	Overlay-based fault tolerance and debug
	Intermediate Representation language for multiple architectures
	CAD Framework
	Integration With Vendor Tools
	Beyond FPGAs

	Appendices
	Radiation Effects
	The space radiation environment
	Galactic cosmic rays
	Trapped radiation
	Solar energetic particles during solar flares

	Aircraft Radiation Environments
	Radiation environment at ground level
	Radiation environment below ground level
	LHC radiation source
	LHC Radiation Environment

	Monitoring and Characterization of Radiation Environments
	Conclusion

	Bibliography

