575 research outputs found

    A systematic literature review on spam content detection and classification

    Get PDF
    The presence of spam content in social media is tremendously increasing, and therefore the detection of spam has become vital. The spam contents increase as people extensively use social media, i.e ., Facebook, Twitter, YouTube, and E-mail. The time spent by people using social media is overgrowing, especially in the time of the pandemic. Users get a lot of text messages through social media, and they cannot recognize the spam content in these messages. Spam messages contain malicious links, apps, fake accounts, fake news, reviews, rumors, etc. To improve social media security, the detection and control of spam text are essential. This paper presents a detailed survey on the latest developments in spam text detection and classification in social media. The various techniques involved in spam detection and classification involving Machine Learning, Deep Learning, and text-based approaches are discussed in this paper. We also present the challenges encountered in the identification of spam with its control mechanisms and datasets used in existing works involving spam detection

    Wikipedia-based hybrid document representation for textual news classification

    Get PDF
    The sheer amount of news items that are published every day makes worth the task of automating their classification. The common approach consists in representing news items by the frequency of the words they contain and using supervised learning algorithms to train a classifier. This bag-of-words (BoW) approach is oblivious to three aspects of natural language: synonymy, polysemy, and multiword terms. More sophisticated representations based on concepts—or units of meaning—have been proposed, following the intuition that document representations that better capture the semantics of text will lead to higher performance in automatic classification tasks. The reality is that, when classifying news items, the BoW representation has proven to be really strong, with several studies reporting it to perform above different ‘flavours’ of bag of concepts (BoC). In this paper, we propose a hybrid classifier that enriches the traditional BoW representation with concepts extracted from text—leveraging Wikipedia as background knowledge for the semantic analysis of text (WikiBoC). We benchmarked the proposed classifier, comparing it with BoW and several BoC approaches: Latent Dirichlet Allocation (LDA), Explicit Semantic Analysis, and word embeddings (doc2vec). We used two corpora: the well-known Reuters-21578, composed of newswire items, and a new corpus created ex professo for this study: the Reuters-27000. Results show that (1) the performance of concept-based classifiers is very sensitive to the corpus used, being higher in the more “concept-friendly” Reuters-27000; (2) the Hybrid-WikiBoC approach proposed offers performance increases over BoW up to 4.12 and 49.35% when classifying Reuters-21578 and Reuters-27000 corpora, respectively; and (3) for average performance, the proposed Hybrid-WikiBoC outperforms all the other classifiers, achieving a performance increase of 15.56% over the best state-of-the-art approach (LDA) for the largest training sequence. Results indicate that concepts extracted with the help of Wikipedia add useful information that improves classification performance for news items.Atlantic Research Center for Information and Communication TechnologiesXunta de Galicia | Ref. R2014/034 (RedPlir)Xunta de Galicia | Ref. R2014/029 (TELGalicia

    Statistical learning techniques for text categorization with sparse labeled data

    Get PDF
    Many applications involve learning a supervised classifier from very few explicitly labeled training examples, since the cost of manually labeling the training data is often prohibitively high. For instance, we expect a good classifier to learn our interests from a few example books or movies we like, and recommend similar ones in the future, or we expect a search engine to give more personalized search results based on whatever little it learned about our past queries and clicked documents. There is thus a need for classification techniques capable of learning from sparse labeled data, by exploiting additional information about the classification task at hand (e.g., background knowledge) or by employing more sophisticated features (e.g., n-gram sequences, trees, graphs). In this thesis, we focus on two approaches for overcoming the bottleneck of sparse labeled data. We first propose the Inductive/Transductive Latent Model (ILM/TLM), which is a new generative model for text documents. ILM/TLM has various building blocks designed to facilitate the integration of background knowledge (e.g., unlabeled documents, ontologies of concepts, encyclopedia) into the process of learning from small training data. Our method can be used for inductive and transductive learning and achieves significant gains over state-of-the-art methods for very small training sets. Second, we propose Structured Logistic Regression (SLR), which is a new coordinate-wise gradient ascent technique for learning logistic regression in the space of all (word or character) sequences in the training data. SLR exploits the inherent structure of the n-gram feature space in order to automatically provide a compact set of highly discriminative n-gram features. Our detailed experimental study shows that while SLR achieves similar classification results to those of the state-of-the-art methods (which use all n-gram features given explicitly), it is more than an order of magnitude faster than its opponents. The techniques presented in this thesis can be used to advance the technologies for automatically and efficiently building large training sets, therefore reducing the need for spending human computation on this task.Viele Anwendungen benutzen Klassifikatoren, die auf dünn gesäten Trainingsdaten lernen müssen, da es oft aufwändig ist, Trainingsdaten zur Verfügung zu stellen. Ein Beispiel für solche Anwendungen sind Empfehlungssysteme, die auf der Basis von sehr wenigen Büchern oder Filmen die Interessen des Benutzers erraten müssen, um ihm ähnliche Bücher oder Filme zu empfehlen. Ein anderes Beispiel sind Suchmaschinen, die sich auf den Benutzer einzustellen versuchen, auch wenn sie bisher nur sehr wenig Information über den Benutzer in Form von gestellten Anfragen oder geklickten Dokumenten besitzen. Wir benötigen also Klassifikationstechniken, die von dünn gesäten Trainingsdaten lernen können. Dies kann geschehen, indem zusätzliche Information über die Klassifikationsaufgabe ausgenutzt wird (z.B. mit Hintergrundwissen) oder indem raffiniertere Merkmale verwendet werden (z.B. n-Gram-Folgen, Bäume oder Graphen). In dieser Arbeit stellen wir zwei Ansätze vor, um das Problem der dünn gesäten Trainingsdaten anzugehen. Als erstes schlagen wir das Induktiv-Transduktive Latente Modell (ILM/TLM) vor, ein neues generatives Modell für Text-Dokumente. Das ILM/TLM verfügt über mehrere Komponenten, die es erlauben, Hintergrundwissen (wie z.B. nicht Klassifizierte Dokumente, Konzeptontologien oder Enzyklopädien) in den Lernprozess mit einzubeziehen. Diese Methode kann sowohl für induktives als auch für transduktives Lernen eingesetzt werden. Sie schlägt die modernsten Alternativmethoden signifikant bei dünn gesäten Trainingsdaten. Zweitens schlagen wir Strukturierte Logistische Regression (SLR) vor, ein neues Gradientenverfahren zum koordinatenweisen Lernen von logistischer Regression im Raum aller Wortfolgen oder Zeichenfolgen in den Trainingsdaten. SLR nutzt die inhärente Struktur des n-Gram-Raums aus, um automatisch hoch-diskriminative Merkmale zu finden. Unsere detaillierten Experimente zeigen, dass SLR ähnliche Ergebnisse erzielt wie die modernsten Konkurrenzmethoden, allerdings dabei um mehr als eine Größenordnung schneller ist. Die in dieser Arbeit vorgestellten Techniken verbessern das Maschinelle Lernen auf dünn gesäten Trainingsdaten und verringern den Bedarf an manueller Arbeit

    A framework of automatic subject term assignment for text categorization: An indexing conception-based approach

    Full text link
    The purpose of this study is to examine whether the understandings of subject-indexing processes con-ducted by human indexers have a positive impact on the effectiveness of automatic subject term assign-ment through text categorization (TC). More specifically, human indexers ’ subject-indexing approaches, or con-ceptions, in conjunction with semantic sources were explored in the context of a typical scientific journal arti-cle dataset. Based on the premise that subject indexing approaches or conceptions with semantic sources are important for automatic subject term assignment through TC, this study proposed an indexing conception-based framework. For the purpose of this study, two research questions were explored: To what extent are semantic sources effective? To what extent are indexing concep

    An ongoing review of speech emotion recognition

    Get PDF
    User emotional status recognition is becoming a key feature in advanced Human Computer Interfaces (HCI). A key source of emotional information is the spoken expression, which may be part of the interaction between the human and the machine. Speech emotion recognition (SER) is a very active area of research that involves the application of current machine learning and neural networks tools. This ongoing review covers recent and classical approaches to SER reported in the literature.This work has been carried out with the support of project PID2020-116346GB-I00 funded by the Spanish MICIN

    Compatibility of Clique Clustering Algorithm with Dimensionality Reduction

    Get PDF
    In our previous work, we introduced a clustering algorithm based on clique formation. Cliques, the obtained clusters, are constructed by choosing the most dense complete subgraphs by using similarity values between instances. The clique algorithm successfully reduces the number of instances in a data set without substantially changing the accuracy rate. In this current work, we focused on reducing the number of features. For this purpose, the effect of the clique clustering algorithm on dimensionality reduction has been analyzed. We propose a novel algorithm for support vector machine classification by combining these two techniques and applying different strategies by differentiating the clique structures. The results obtained from well known data sets confirm the compatibility of clique clustering algorithm with dimensionality reduction

    Classification and visualisation of text documents using networks

    Get PDF
    In both the areas of text classification and text visualisation graph/network theoretic methods can be applied effectively. For text classification we assessed the effectiveness of graph/network summary statistics to develop weighting schemes and features to improve test accuracy. For text visualisation we developed a framework using established visual cues from the graph visualisation literature to communicate information intuitively. The final output of the visualisation component of the dissertation was a tool that would allow members of the public to produce a visualisation from a text document. We represented a text document as a graph/network. The words were nodes and the edges were created when a pair of words appeared within a pre-specified distance (window) of words from each other. The text document model is a matrix representation of a document collection such that it can be integrated into a machine or statistical learning algorithm. The entries of this matrix can be weighting according to various schemes. We used the graph/network representation of a text document to create features and weighting schemes that could be applied to the text document model. This approach was not well developed for text classification therefore we applied different edge weighting methods, window sizes, weighting schemes and features. We also applied three machine learning algorithms, naïve Bayes, neural networks and support vector machines. We compared our various graph/network approaches to the traditional document model with term frequency inverse-document-frequency. We were interested in establishing whether or not the use of graph weighting schemes and graph features could increase test accuracy for text classification tasks. As far as we can tell from the literature, this is the first attempt to use graph features to weight bag-of-words features for text classification. These methods had been applied to information retrieval (Blanco & Lioma, 2012). It seemed they could also be applied to text classification. The text visualisation field seemed divorced from the text summarisation and information retrieval fields, in that text co-occurrence relationships were not treated with equal importance. Developments in the graph/network visualisation literature could be taken advantage of for the purposes of text visualisation. We created a framework for text visualisation using the graph/network representation of a text document. We used force directed algorithms to visualise the document. We used established visual cues like, colour, size and proximity in space to convey information through the visualisation. We also applied clustering and part-of-speech tagging to allow for filtering and isolating of specific information within the visualised document. We demonstrated this framework with four example texts. We found that total degree, a graph weighting scheme, outperformed term frequency on average. The effect of graph features depended heavily on the machine learning method used: for the problems we considered graph features increased accuracy for SVM classifiers, had little effect for neural networks and decreased accuracy for naïve Bayes classifiers Therefore the impact on test accuracy of adding graph features to the document model is dependent on the machine learning algorithm used. The visualisation of text graphs is able to convey meaningful information regarding the text at a glance through established visual cues. Related words are close together in visual space and often connected by thick edges. Large nodes often represent important words. Modularity clustering is able to extract thematically consistent clusters from text graphs. This allows for the clusters to be isolated and investigated individually to understand specific themes within a document. The use of part-of-speech tagging is effective in both reducing the number of words being displayed but also increasing the relevance of words being displayed. This was made clear through the use of part-of-speech tags applied to the Internal Resistance of Apartheid Wikipedia webpage. The webpage was reduced to its proper nouns which contained much of the important information in the text. Training accuracy is important in text classification which is a task that can often be performed on vast amounts of documents. Much of the research in text classification is aimed at increasing classification accuracy either through feature engineering, or optimising machine learning methods. The finding that total degree outperformed term frequency on average provides an alternative avenue for achieving higher test accuracy. The finding that the addition of graph features can increase test accuracy when matched with the right machine learning algorithm suggests some new research should be conducted regarding the role that graph features can have in text classification. Text visualisation is used as an exploratory tool and as a means of quickly and easily conveying text information. The framework we developed is able to create automated text visualisations that intuitively convey information for short and long text documents. This can greatly reduce the amount of time it takes to assess the content of a document which can increase general access to information

    A Classification Framework for Imbalanced Data

    Get PDF
    As information technology advances, the demands for developing a reliable and highly accurate predictive model from many domains are increasing. Traditional classification algorithms can be limited in their performance on highly imbalanced data sets. In this dissertation, we study two common problems when training data is imbalanced, and propose effective algorithms to solve them. Firstly, we investigate the problem in building a multi-class classification model from imbalanced class distribution. We develop an effective technique to improve the performance of the model by formulating the problem as a multi-class SVM with an objective to maximize G-mean value. A ramp loss function is used to simplify and solve the problem. Experimental results on multiple real-world datasets confirm that our new method can effectively solve the multi-class classification problem when the datasets are highly imbalanced. Secondly, we explore the problem in learning a global classification model from distributed data sources with privacy constraints. In this problem, not only data sources have different class distributions but combining data into one central data is also prohibited. We propose a privacy-preserving framework for building a global SVM from distributed data sources. Our new framework avoid constructing a global kernel matrix by mapping non-linear inputs to a linear feature space and then solve a distributed linear SVM from these virtual points. Our method can solve both imbalance and privacy problems while achieving the same level of accuracy as regular SVM. Finally, we extend our framework to handle high-dimensional data by utilizing Generalized Multiple Kernel Learning to select a sparse combination of features and kernels. This new model produces a smaller set of features, but yields much higher accuracy
    corecore